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Abstract

Despite significant progress over the past few years, am-
biguity is still a key challenge in Facial Expression Recog-
nition (FER). It can lead to noisy and inconsistent anno-
tation, which hinders the performance of deep learning
models in real-world scenarios. In this paper, we pro-
pose a new uncertainty-aware label distribution learning
method to improve the robustness of deep models against
uncertainty and ambiguity. We leverage neighborhood in-
formation in the valence-arousal space to adaptively con-
struct emotion distributions for training samples. We also
consider the uncertainty of provided labels when incor-
porating them into the label distributions. Our method
can be easily integrated into a deep network to obtain
more training supervision and improve recognition ac-
curacy. Intensive experiments on several datasets un-
der various noisy and ambiguous settings show that our
method achieves competitive results and outperforms re-
cent state-of-the-art approaches. Our code and models are
available at https://github.com/minhnhatvt/
label-distribution-learning-fer-tf.

1. Introduction
Facial expression recognition (FER) plays an important

role in understanding people’s feelings and interactions be-
tween humans. Recently, automatic emotion recognition
has gained a lot of attention from the research commu-
nity [43] due to its applications in healthcare [35], surveil-
lance [7], or human-robot interaction [8]. Most recent FER
methods utilize deep learning [28] and achieve better re-
sults than handcrafted features approaches [9, 44]. The suc-
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cess of deep networks can be attributed to large-scale FER
datasets such as AffectNet [37], EmotioNet [3], and RAF-
DB [33]. Some datasets describe emotion in terms of Ac-
tion Units (AUs) following the Facial Action Coding Sys-
tem [6] or quantify affection over continuous scales, such as
valence and arousal [41], while most of them classify facial
expressions into basic universal emotions [12, 36] and the
neutral state.

Unfortunately, large-scale FER datasets often suffer
from the problem of label uncertainty and annotation ambi-
guity [58, 5, 45]. People with different backgrounds might
perceive and interpret facial expressions differently, which
can lead to inconsistent and uncertain labels [58, 45]. In
addition, real-life facial expressions usually manifest a mix-
ture of feelings [67, 5] rather than a single exaggerated emo-
tion often found in the lab-controlled setting. For exam-
ple, Figure 1 shows that people may have different opinions
about the expressed emotion, particularly in ambiguous im-
ages. Consequently, a distribution over emotion categories
is better than a single label because it takes all sentiment
classes into account and can cover various interpretations,
thus mitigating the effect of ambiguity [16]. However, most
current large-scale FER datasets only provide a single label
for each sample instead of a label distribution, which means
we do not have a comprehensive description for each facial
expression. This can lead to insufficient supervision during
training and pose a big challenge for many FER systems.

To overcome annotation ambiguity in FER, this paper
proposes a new uncertainty-aware label distribution learn-
ing method that constructs emotion distributions for train-
ing samples. Specifically, for each instance, we leverage
valence-arousal information to identify a set of neighbors
and calculate their corresponding contributions using our
adaptive similarity mechanism. We then aggregate neigh-
borhood information with the provided single label, ad-
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Happy Happy Sad

Low uncertainty High uncertainty

Figure 1: User study results by 50 volunteers on three random images from RAF-DB dataset. The expression on the right
image are more ambiguous, which leads to high uncertainty in the emotion label. Labels at the bottom denote the provided
annotation from the dataset. (Su=Surprise, Fe=Fear, Di=Disgust, Ha=Happy, Sa=Sad, An=Angry, Ne=Neutral)

justed by its learnable uncertainty factor, to generate the
target label distribution. Finally, we use the constructed dis-
tribution as supervision signals to optimize the model via la-
bel distribution learning. We also introduce a discriminative
loss that reduces intra-class variations and encourages inter-
class differences to improve the model’s robustness against
ambiguous features. Note that the distribution construction
only occurs during training while the inference process re-
mains intact. In summary, our contributions are as follows:

1. We propose a new method, namely Label Distribution
Learning with Valence-Arousal (LDLVA), for FER
with ambiguous annotation by exploiting neighbor-
hood information in the valence-arousal space.

2. Our uncertainty-aware label distribution construction
provide more accurate and richer supervision for train-
ing deep FER networks, allowing them to learn from
ambiguous data effectively in an end-to-end manner.

3. We perform extensive experiments under various syn-
thetic and real-world ambiguity settings and achieve
state-of-the-art results on RAF-DB, AffectNet, and
SFEW datasets.

2. Related Work
Most recent methods [57, 25, 64, 15, 5, 52, 58, 31, 61,

50, 30] categorize facial expression into discrete classes
corresponding to basic universal emotions [12, 36], which
is easy to interpret and intuitive to humans. Other ap-
proaches [62, 39] attempted to represent human emotion
using Action Units (AUs) [6] or continuous scales such as
valence and arousal [41]. In this work, we leverage the aux-
iliary information of continuous scales to mitigate the effect
of uncertainty and ambiguity in existing FER datasets when
predicting the discrete emotion of a given facial expression.

One challenging problem of FER is that ambiguous fa-
cial expressions can make it difficult to correctly identify
the expressed emotions, which might lead to noisy and un-
certain annotations [5, 45]. Empirical studies also show

that neural networks are sensitive to noise and can easily
overfit noisy data [1, 48, 29]. To overcome this challenge,
previous approaches model the noise by a transition ma-
trix [47, 20, 40, 58]. In [2], precise image features are
extracted from a pre-trained model to regulate the learning
process with noisy labels. The authors in [63, 54] use noise-
tolerant loss functions to increase noise robustness. Other
methods [59, 52] measure the uncertainty of each sample
and utilize a sample-weighting strategy to help the network
tolerate noisy samples. Recently, Zhang et al. [60] propose
to quantify the uncertainties from the relative difficulty of
samples by feature mixup. However, these methods only
focus on improving the accuracy on mislabelled data and
do not handle the ambiguous nature of facial expressions.

An alternative approach to address label noise and am-
biguity is label distribution learning (LDL) [17]. In other
domains, previous works [19, 18, 16] leverage prior knowl-
edge to transfer logical labels into discretized bivariate
Gaussian label distribution. The authors in [48, 29] utilize
network’s predictions as label distributions to correct noise,
which can be unstable and hard to optimize. Instead, our
method not only adaptively utilizes the model’s predictions
but also exploits domain knowledge of the valence-arousal
space to construct target distributions. In FER literature,
Zhou et al. [67] introduces a framework to map a facial
expression to multiple emotions with corresponding inten-
sities. Jia et al. [23] proposes to learn emotion distribu-
tions by exploiting label correlations at a local level. Zhao
et al. [65] uses a pre-trained label distribution generator to
produce emotion distribution. Other works create the label
distribution by computing the membership degrees to the la-
bels [13, 24, 46, 34, 22]. Recently, Chen et al. [5] leverages
the topology in facial landmarks and action units spaces
to acquire more information for label distribution learning.
She et al. [45] proposed to leverage multiple branches to ob-
tain the latent distribution. However, these methods either
rely heavily on good features with local linearity to work
properly [13, 11, 24, 46, 34, 38, 22] or only use the mined
label distributions to regularize the model’s training process



instead of directly learning from them [5, 45].
Unlike previous works, our method constructs emotion

distributions for training instances and directly uses them
as supervision information, thus reducing the effects of an-
notation ambiguity. We do not need to be provided with
label distributions to train the network since they can be
accurately estimated using our adaptive similarity mecha-
nism and learnable uncertainty factors. We experimentally
show that our approach is more effective as the network
is trained end-to-end with label distributions, which brings
more meaningful information to the training process.

3. Methodology
We first introduce a list of notations that will be used

throughout this paper. Let x ∈ X be the instance variable
in the input space X and xi be the particular i-th instance.
The label set is denoted as Y = {y1, y2, ..., ym} where m
is the number of classes and yj is the label value of the j-
th class. The logical label vector of xi is indicated by li

= (liy1
, liy2

, ..., liym
) with i

yj
∈ {0, 1} and ‖l‖1 = 1. We

define the label distribution of xi as di = (diy1
, diy2

, ..., diym
)

with ‖d‖1 = 1 and diyj
∈ [0, 1] representing the relative

degree that xi belongs to the class yj . A neural network
with parameters θ followed by a softmax layer is denoted as
f(x; θ). The corresponding feature vector of xi extracted
by a CNN backbone model is indicated by vi ∈ RV .

3.1. Overview

Most existing FER datasets assign only a single class or
equivalently, a logical label li for each training sample xi.
In particular, the given training dataset is a collection of n
samples with logical labels Dl = {(xi, li)|1 ≤ i ≤ n}.
However, as depicted in Figure 1, a label distribution di is a
more comprehensive and suitable annotation for the image
than a single label. Inspired by the recent success of label
distribution learning (LDL) in addressing label ambiguity
[16], we aim to construct an emotion distribution di for each
training sample xi, thus transform the training set Dl into
Dd = {(xi,di)|1 ≤ i ≤ n}, which can provide richer super-
vision information and help mitigate the ambiguity issue.
Consequently, our goal is to optimize the parameters θ of
the neural network f(x; θ) such that it can learn an appro-
priate mapping function for the instance xi from the input
space to the target label distribution di. Mathematically, we
use cross-entropy to measure the discrepancy between the
model’s prediction and the constructed target distribution
[16]. Hence, the solution can be obtained by minimizing
the following classification loss:

Lcls =

n∑
i=1

CE
(
di, f(xi; θ)

)
= −

n∑
i=1

m∑
j=1

dij log fj(x
i; θ).

(1)

An overview of our method is presented in Figure 2. To
construct the label distribution for each training instancexi,
we leverage its neighborhood information in the valence-
arousal space. Particularly, we identify K neighbor in-
stances for each training sample xi and utilize our adap-
tive similarity mechanism to determine their contribution
degrees to the target distribution di. Then, we combine the
neighbors’ predictions and their corresponding contribution
degrees with the provided label li and li’s uncertainty factor
to obtain the label distribution di. The constructed distribu-
tion di will be used as supervision information to train the
model via label distribution learning. It is worth noting that
these steps occur only during training, thus no extra costs
are introduced at inference time.

3.2. Adaptive Similarity Measuring

As in previous works [68, 56, 5], we assume that facial
images should have similar emotions to their neighbors in
an auxiliary or supporting space. Therefore, the label distri-
bution of an instance can be constructed using the informa-
tion of its neighbors. Since our goal is to reconstruct the tar-
get label distribution with high fidelity, the chosen support-
ing space should highly correlate with the emotion space to
transfer as much information as possible. Although infor-
mation such as facial landmarks and action units can be uti-
lized as the supporting space, we find that valence-arousal
values are more closely associated with discrete emotions
and thus particularly suitable to be the auxiliary space. In
practice, the valence-arousal has been widely used to repre-
sent the human emotional spectrum, with valence describ-
ing how positive or negative an expression is and arousal
indicating the intensity or activation degree of the expres-
sion [42].

Similar to the smoothness assumption [68], we assume
that the label distribution of the main instance xi can be
computed as a linear combination of its neighbors’ distri-
butions. To determine the contribution of each neighbor,
we propose an adaptive similarity mechanism that not only
leverages the relationships between xi and its neighbors in
the auxiliary space but also utilizes their feature vectors ex-
tracted from the backbone. In particular, we first use the
K-Nearest Neighbor algorithm to identify K closest points
for each training sample xi, denoted as N(i), based on the
distance between training instances in the valence-arousal
space. We then compute a local similarity score between xi

and each of its K neighbors using the following formula:

sik = exp

(
−‖a

i − ak‖22
δ2

)
, ∀xk ∈ N(i), (2)

where a is the corresponding auxiliary valence-arousal vec-
tor of x, and δ is a hyperparameter controlling similarity
measurement. Intuitively, the higher sik is, the more xk con-
tributes to the label distribution of xi.
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Figure 2: An overview of our Label Distribution Learning with Valence-Arousal (LDLVA) for facial expression recognition
under ambiguity. Dotted lines denote components used in training only while solid lines denote components used in both
training and testing.

However, since valence-arousal values are not always
available in practice, we leverage an existing method [49] to
generate pseudo-valence-arousal. Consequently, these val-
ues can be inaccurate and lead to incorrect calculation of
sik. Therefore, we proposed to correct these potential er-
rors with our adaptive similarity mechanism. Specifically,
we calculate a calibration score for each (xi,xk) pair using
the feature vectors (vi,vk) extracted by the CNN backbone
of xi and its neighbor instance xk ∈ N(i) as follows:

ζik = Sigmoid
(
g([vi,vk];φ)

)
, (3)

where [·, ·] is the concatenation operator, g is a three-layer
perceptron (MLP) with parameter φ. The dimensionality of
each layer is 512, 256, and 1, respectively. We also apply
layer normalization and ReLU non-linearity in the first two
layers.

The final contribution degrees of neighbor instances are
calculated as the product of the local similarity and the cal-
ibration score:

cik =

{
ζiks

i
k, for xk ∈ N(i),

0, otherwise.
(4)

3.3. Uncertainty-aware Label Distribution Con-
struction

After obtaining the contribution degree of each neighbor
xk ∈ N(i), we can now generate the target label distribu-
tion di for the main instance xi. The target label distribu-
tion is calculated using the logical label li and the aggre-

gated distribution d̃i defined as follows:

d̃i =

∑
k c

i
kf(x

k; θ)∑
k c

i
k

, (5)

di = (1− λi)li + λid̃i, (6)

where λi ∈ [0, 1] is the uncertainty factor for the logical
label. It controls the balance between the provided label li

and the aggregated distribution d̃i from the local neighbor-
hood. Intuitively, a high value of λi indicates that the logical
label is highly uncertain, which can be caused by ambigu-
ous expression or low-quality input images as illustrated in
Figure 6, thus we should put more weight towards neighbor-
hood information d̃i. Conversely, when λi is small, the la-
bel distribution di should be close to li since we are certain
about the provided manual label. In our implementation, λi

is a trainable parameter for each instance and will be op-
timized jointly with the model’s parameters using gradient
descent.

Mathematically speaking, consider Equation 1 and 6, the
derivative of Lcls with respect to λi can be computed as:

∂Lcls

∂λi
=
∂CE

(
di, f(xi; θ)

)
∂λi

(7)

= −
∑
j

d̃ij log fj(x
i; θ) +

∑
j

lij log fj(x
i; θ)

(8)

= CE(d̃i, f(xi; θ))− CE(li, f(xi; θ)). (9)

If CE(li, f(xi; θ)) is smaller than CE(d̃i, f(xi; θ)), the
derivative of Lcls with respect to λi is positive, which leads



to a negative update for λi following gradient descent op-
timization scheme. This is desirable because in this case,
the network output is in more agreement with the logical la-
bel than the aggregated neighborhood distribution. In other
words, it is more confident about the provided label and
thus, we should decrease the value of the uncertainty fac-
tor λi. The same reasoning can be applied in the opposite
situation.

3.4. Loss Function

Recent literatures have shown the benefits of learning
discriminative features in FER [4, 27, 14, 15]. Inspired
by this, we believe it is beneficial to encourage the net-
work to learn good facial descriptions because it can help
improve the model’s ability to discriminate between am-
biguous emotions. We find that the center loss [55] is suit-
able for our purpose because of its simplicity and efficacy
in reducing the intra-class variations of the learned repre-
sentations. Nevertheless, in the traditional formulation of
the center loss [55], the features of a sample are “blindly"
pulled towards its corresponding class center given its la-
bel. This means when the provided label is incorrect, it can
cause the network to learn imprecise features. We propose
to overcome this problem by incorporating the label uncer-
tainty factor λi to adaptively penalize the distance between
the sample and its corresponding center. For instances with
high uncertainty, the network can effectively tolerate their
features in the optimization process. Furthermore, we also
add pairwise distances between class centers to encourage
large margins between different classes, thus enhancing the
discriminative power. Our discriminative loss is calculated
as follows:

LD =
1

2

n∑
i=1

(1− λi)‖vi − µyi‖22

+

m∑
j=1

m∑
k=1
k 6=j

exp

(
−‖µj − µk‖22√

V

)
, (10)

where yi is the class index of the i-th sample while µj ,
µk, and µyi ∈ RV are the center vectors of the j-th, k-th,
and yi-th classes, respectively. During the training phase,
all center vectors are zero-initialized and optimized using
Equation 10. Intuitively, the first term of LD encourages
the feature vectors of one class to be close to their corre-
sponding center [55] while the second term improves the
inter-class discrimination by pushing the cluster centers far
away from each other.

Combining Equation 1 and Equation 10, we obtain the
total loss for training:

L = Lcls + γLD, (11)

where γ is the hyperparameter balancing between the two
losses.

4. Experiments
In this section, we first validate the effectiveness of our

approach on synthetic ambiguity caused by noisy label data.
Next, we evaluate the performance of our LDLVA in han-
dling inconsistent labels caused by ambiguous facial ex-
pressions. We then compare LDLVA with state-of-the-art
methods to demonstrate the robustness of our approach to-
wards annotation ambiguity that inherently exists in real-
world data. Finally, we conduct ablation studies and present
qualitative results to investigate the effectiveness of each
component as well as the advantages of our method.

4.1. Datasets

We perform experiments on three popular in-the-
wild FER datasets: AffectNet [37], RAF-DB [33] and
SFEW [10]. They are created by collecting data from
the Internet and reflect real-life scenarios. AffectNet [37]
has more than 400,000 facial images manually annotated
with discrete emotions and valence-arousal. Following pre-
vious work [5, 58, 15], we select approximately 280,000
and 3,500 images for training and testing, all of which be-
long to six basic emotions (surprise, fear, disgust,
happy, sad, and angry) and neutral expression.
RAF-DB [33] is split into training and test sets with more
than 12,000 and 3,000 images, respectively. SFEW [10] has
879 training images and 406 testing images, all of which are
extracted from movie videos.

4.2. Experimental Settings

By default, we use the pretrained ResNet-50 [21] as the
CNN backbone. We align the input image and perform on-
the-fly augmentation during training by randomly flipping
the image horizontally and taking a random crop of size
224×224 after padding 16 pixels on each side. At test time,
we use the central crop of the image as input for the model.
During training, for each instance, we consider 8 nearest
neighbors and initialize its uncertainty factor λi to zero. To
optimize the discriminative loss (Equation 10), we follow
the same settings as in [55]. We train the network using
Adam optimizer [26] with batch size 32 for 30 epochs with
an initial learning rate of 0.001. The parameters δ in Equa-
tion 2 and γ in Equation 11 are set to 0.5 and 0.1 based on
validation results. Similar to previous works [5, 60, 52], we
use the overall accuracy as the metric to evaluate the mod-
els.

4.3. Experiments with Noisy Labels

The two main aspects of annotation ambiguity in FER
are noisy labels and uncertain visual features [52]. In par-
ticular, it can be difficult for people to accurately recognize
the emotions on ambiguous facial images, which can result
in noisy and incorrect labels. Therefore, we conduct experi-
ments to study the robustness of our LDLVA on mislabelled



Table 1: Accuracy with synthetic noise.

Noise
ratio

Method Accuracy (%)

AffectNet RAF-DB SFEW

10%

Baseline 60.14 ± 0.23 83.28 ± 0.45 45.98 ± 0.93
SCN [52] 61.57 ± 0.15 84.65 ± 0.32 49.51 ± 0.76
RUL [60] 62.89 ± 0.13 86.24 ± 0.22 47.82 ± 1.32
LDLVA (ours) 64.37 ± 0.11 87.98 ± 0.10 53.33 ± 0.57

20%

Baseline 58.37 ± 0.35 81.89 ± 0.61 41.25 ± 1.12
SCN [52] 60.83 ± 0.19 83.21 ± 0.49 46.26 ± 1.24
RUL [60] 61.74 ± 0.18 84.49 ± 0.24 44.78 ± 1.04
LDLVA (ours) 63.89 ± 0.14 86.81 ± 0.12 51.53 ± 0.92

30%

Baseline 56.94 ± 0.43 78.92 ± 0.59 38.51 ± 1.69
SCN [52] 58.80 ± 0.32 80.61 ± 0.54 43.28 ± 2.06
RUL [60] 60.77 ± 0.15 82.59 ± 0.42 41.79 ± 0.81
LDLVA (ours) 62.57 ± 0.15 85.85 ± 0.09 50.3 ± 0.88

data by adding synthetic noise to AffectNet, RAF-DB, and
SFEW datasets. More specifically, we randomly flip the
manual labels to one of the other categories. Three levels of
noise are studied in our experiment. We quantitatively eval-
uate our method and compare with the baseline ResNet-50
[21] and recent noise-tolerant FER methods including SCN
[52] and RUL [60].

We perform each experiment three times and report the
mean accuracy and standard error in Table 1. The results
clearly show that our method consistently outperforms other
approaches in all cases. Particularly, our model makes sig-
nificant improvements over the baseline with an average
accuracy margin of 5.13%, 5.52%, and 9.81% on the Af-
fectNet, RAF-DB, and SFEW datasets, respectively. We
also observe that the improvements are even more appar-
ent when the noise ratio increases, for example, the accu-
racy improvement on RAF-DB is 4.7% with 10% noise and
6.93% with 30% noise. The consistent results under various
settings demonstrate the ability of our method to effectively
deal with noisy annotation, which is crucial in the robust-
ness against label ambiguity.

4.4. Experiments with Inconsistent Labels
Table 2: Accuracy with inconsistent labels.

Method Accuracy (%)

AffectNet RAF-DB SFEW Average

AIR [2] 54.23 67.37 49.88 57.16
NAL [20] 55.97 84.22 58.13 66.11
IPA2LT [58] 57.85 83.80 53.15 64.93
LDL-ALSG [5] 58.29 85.33 55.87 66.50
LDLVA (ours) 62.89 87.26 58.70 69.62

Due to the ambiguous nature of facial expressions, dif-
ferent individuals can assign different labels for the same
image as illustrated in Figure 1. Since the annotations for
large-scale FER data are commonly obtained via crowd-
sourcing, this can create label inconsistency, especially be-

Table 3: Accuracy of different methods on original datasets.

Method Accuracy (%)

AffectNet RAF-DB SFEW

Island Loss [4] - - 52.52
IPFR [51] 57.40 - 55.10
EfficientFace [66] 63.70 88.36 -
DACL [15] 65.20 87.78 -
MViT [32] 64.57 88.62 -
RAN [53] - 86.90 56.4
SCN [52] - 87.03 -
DMUE [45] - 88.76 57.12
RUL [60] - 88.98 -
PSR [50] 63.37 88.98 -
LDLVA (ours) 66.23 90.51 59.90

tween different datasets. Therefore, to examine the effec-
tiveness of the proposed methods in dealing with this prob-
lem, we follow the cross-dataset protocol in previous state-
of-the-art methods [5, 58] and adopt the experimental set-
tings as proposed in [5] for a fair comparison. Specifically,
the model is trained using the joint training dataset from
RAF-DB and AffectNet. The resulting model is then tested
on all three RAF-DB, AffectNet, and SFEW datasets.

Table 2 reports the results of our experiments. Our
method achieves the best performance on all three datasets
and the highest average accuracy. Notably, LDLVA sur-
passes the current state-of-the-art LDL-ALSG [5] with an
improvement of 3.12% on average accuracy. Compared to
our approach, LDL-ALSG only uses the neighbors’ distri-
butions to constrain the network prediction without con-
structing a label distribution for the center instance. It also
lacks a mechanism to adaptively measure the contribution
of each neighbor and the uncertainty of the provided annota-
tion. The favorable performance confirms the advantages of
our method over previous works and demonstrates the gen-
eralization ability to data with label inconsistency, which is
essential for real-world FER applications.

4.5. Experiments on Original Datasets

We further perform experiments on the original Affect-
Net, RAF-DB, and SFEW to evaluate the robustness of our
method to the uncertainty and ambiguity that unavoidably
exists in real-world FER datasets. We compare the pro-
posed LDLVA with several state-of-the-art methods in Ta-
ble 3. By leveraging label distribution learning on valence-
arousal space, our model outperforms other methods and
achieves state-of-the-art performance on AffectNet, RAF-
DB, and SFEW. Although these datasets are considered to
be “clean", the results suggest that they indeed suffer from
uncertainty and ambiguity.
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Figure 3: Comparison of the results from our survey and our model. More results can be found in the supplementary materials.

4.6. Qualitative Analysis

Real-world Ambiguity. To understand more about real-
world ambiguous expressions, we conducted a user study in
which we asked 50 participants to choose the most clearly
expressed emotion on random test images from RAF-DB
and AffectNet datasets. The numbers of votes per class are
normalized to obtain the emotion distribution. We compare
our model’s predictions with the survey results in Figure
3. We can see that these images are ambiguous as they ex-
press a combination of different emotions, hence the partic-
ipants do not fully agree and have different opinions about
the most prominent emotion on the faces. It is further shown
that LDLVA can give consistent results and agree with the
perception of humans to some degree, which suggests that
our model can effectively address the ambiguity problem in
facial expressions.

Adaptive Similarity. Figure 4 presents the normalized
calibration scores of different neighbors with respect to the
center instance computed by our adaptive similarity mecha-
nism. It can be seen that some neighbors may look visually
similar to the central image but do not express the same
emotion. By giving low calibration values, our method can
effectively suppress the negative influence of these neigh-
bors and lower their contribution, hence resulting in a more
robust and accurate estimation of the emotion distribution.

Constructed Label Distribution. In Figure 5, we visu-
alize the emotion distributions reconstructed by our method
on mislabelled images. Despite the incorrect annotations,
our approach is able to construct plausible distributions and
discover the correct labels. It is also noteworthy that some
expressions manifest multiple emotions rather than only the
single provided category, which means the discovered dis-
tribution can provide more supervision for training.

Uncertainty Factor. Figure 6 shows the estimated un-
certainty factors of some training images in the RAF-DB
dataset and their original labels. The uncertainty values
decrease from top to bottom. Highly uncertain labels can
be caused by low-quality inputs (as shown in Angry and
Surprise columns) or ambiguous facial expressions. In
contrast, when the emotions can be easily recognized as
those in the last row, the uncertainty factors are assigned
low values. This characteristic can guide the model to de-
cide whether to put more weights on the provided label or
the neighborhood information. Therefore, the model can be

Table 4: Component analysis (LD: Label Distribution, AS:
Adaptive Similarity, UF: Uncertainty Factor, DL: Discrimi-
native Loss)

Setting LD AS UF DL
RAF-DB
(original)

RAF-DB
(30% noise)

(i) - - - - 87.06 78.92
(ii) 3 3 - - 88.95 82.69
(iii) 3 3 3 - 89.57 84.38
(iv) 3 - 3 3 89.31 83.56
(v) 3 3 3 3 90.51 85.85

more robust against uncertainty and ambiguity.

4.7. Ablation Study

Contribution of Each Component. In Table 4, we
present the accuracy corresponding to different combina-
tions of our components: label distribution (whether to con-
struct di or not), adaptive similarity (whether to compute
calibration scores or directly use local similarity scores as
contribution degrees), uncertainty factor (whether to use
separate λi for each instance or share a fixed value λ for
all training samples), and discriminative loss (whether to
incorporate LD in Equation 11 or not). By employing label
distribution with adaptive similarity (ii), we can signifi-
cantly improve the accuracy of the vanilla approach (i) by
1.89% on original RAF-DB and 3.77% on 30%-noise RAF-
DB. Further integrating uncertainty factor and discrimina-
tive loss consistently boost the performance of the model, as
shown in the results of (iii) and (v), respectively. The
results show the effectiveness of each component as well as
the advantages of their combination in our LDLVA method.

Number of Nearest Neighbors. We present the effect
of the number of nearest neighbors K on the model per-
formance in Figure 7. For original RAF-DB data, higher
values of K give better results but also require more train-
ing time. In particular, our training time with K = 8 and
K = 16 on AffectNet is 12 hours and 20 hours, respec-
tively. Under noisy conditions, the best result is obtained
with K = 8 while larger or smaller K can lead to slightly
worse performance. The reason is that using a large K
might include more corrupted labels while using too few
neighbors can limit the amount of exploitable information.
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Figure 4: The calibration scores of neighbor images with respect to the main instance. The large image on the left is the main
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Surprise

Neutral

Angry

Happy

Disgust

Sad Neutral

Fear

Sad

Fear

Happy

Fear

Figure 5: Examples of the emotion distribution recovered by our method when the dataset is contaminated with noisy labels.
The label on top of each image is the synthetic noisy label and the bottom denotes the human annotation.
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Figure 6: Visualization of uncertainty values of some exam-
ples from RAF-DB dataset.

5. Conclusion

This paper introduces a new label distribution learn-
ing method for facial expression recognition by leverag-
ing structure information in the valence-arousal space to
recover the intensities distributed over emotion categories.
We first employ the adaptive similarity to account for the
errors caused by pseudo valence-arousal and robustly mea-
sure the contribution degree of each neighbor. Then, the tar-
get label distribution is constructed by incorporating both

2 4 6 8 10 12 14 16
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88.0 %
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90.0 %

91.0 %
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Ac
cu

ra
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no noise 30% noise

Figure 7: Evaluation results with different numbers of
neighbors.

the provided single label and the combination of neigh-
bor distribution guided by the uncertainty value. The con-
structed label distribution provides rich information about
the emotions, thus can effectively describe the ambiguity
degree of the facial image. Intensive experiments on pop-
ular datasets demonstrate the effectiveness of our method
over previous approaches under inconsistency and uncer-
tainty conditions in facial expression recognition.
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