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Abstract

Solving the analytical inverse kinematics (IK) of redundant manipulators in real time is a difficult problem in robotics since its
solution for a given target pose is not unique. Moreover, choosing the optimal IK solution with respect to application-specific
demands helps to improve the robustness and to increase the success rate when driving the manipulator from its current configuration
towards a desired pose. This is necessary, especially in high-dynamic tasks like catching objects in mid-flights. To compute a
suitable target configuration in the joint space for a given target pose in the trajectory planning context, various factors such as
travel time or manipulability must be considered. However, these factors increase the complexity of the overall problem which
impedes real-time implementation. In this paper, a real-time framework to compute the analytical inverse kinematics of a redundant
robot is presented. To this end, the analytical IK of the redundant manipulator is parameterized by so-called redundancy parameters,
which are combined with a target pose to yield a unique IK solution. Most existing works in the literature either try to approximate
the direct mapping from the desired pose of the manipulator to the solution of the IK or cluster the entire workspace to find IK
solutions. In contrast, the proposed framework directly learns these redundancy parameters by using a neural network (NN) that
provides the optimal IK solution with respect to the manipulability and the closeness to the current robot configuration. Monte
Carlo simulations show the effectiveness of the proposed approach which is accurate and real-time capable (≈ 32 µs) on the KUKA
LBR iiwa 14 R820.

Keywords: redundant manipulator, analytical inverse kinematics; numerical inverse kinematics; machine learning; trajectory
optimization.

1. Introduction

The inverse kinematics (IK) [39] solution is fundamental
for many applications in robotics involving motion planning,
e.g., point-to-point trajectory optimization [44, 20], path-wise
trajectory planning [18, 11], dexterous grasping [14, 32], and
pick-and-place scenarios [35, 30]. Solving the IK problem for
a given target position in the task space yields the robot’s con-
figuration in joint space that satisfies the kinematic constraints
[26].

There are three types of techniques to solve IK problems,
i.e. the algebraic approach, see, e.g., [33, 6], the analytical (or
so-called geometric) approach, see, e.g., [37, 45], and the nu-
merical (or so-called iterative) approach, see, e.g., [34, 38]. In
the algebraic approach, essentially systems of polynomial equa-
tions [29] are solved. Typically, they are classified as difficult
algebraic computational problems [6]. In general, this algebraic
problem can be solved for a manipulator with 6 degrees of free-
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dom (DoF), see, e.g., [7], but is not generally applicable to kine-
matically redundant manipulators [36]. On the other hand, nu-
merical methods, typically based on least-squares or pseudoin-
verse formulations, are widely employed, see, e.g., [46], for
various kinematic structures due to their simplicity, low com-
puting time, and their generality. However, these methods may
converge to a local minimum that predominantly depends on
the initial guess of the solution.

In contrast to the numerical IK, the analytical IK com-
putes the exact solution, which is important for many indus-
trial applications [48, 12]. The computing time of the analytical
IK solutions is much faster and real-time capable, compared to
the numerical approach. While the analytical IK is only avail-
able for specific robot kinematics, most industrial robots are
designed such that an analytical solution of the IK is available.
Hence, the IK of 6-DoF industrial robots with a spherical wrist,
non-offset 7 DoF S-R-S redundant manipulators [41, 21], e.g.,
KUKA LBR iiwa 14 R820, but also the offset redundant ma-
nipulator, e.g., Franka Emika Panda [10], OB7 [31], and Neura
Robotics LARA [28], can be solved analytically. These ma-
nipulators are often referred to as collaborative robots (Cobot).
Typically, the analytical IK parameterizes the robot redundancy
by additional (three) parameters, which are usually named re-
dundancy parameters. Examples are [37] and [16] for the non-
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offset and offset redundant manipulator, respectively. Due to the
redundant nature of these parameters, infinite sets of parameters
exist in general yielding different IK solutions. However, find-
ing the set of redundancy parameters which represents the best
IK solution of a specific task is a non-trivial problem.

In this work, a learning-based framework to compute the
optimal set of redundancy parameters for an analytical IK is
proposed. This improves the computing performance for solv-
ing the IK problem, which is essential for highly dynamic tasks
like catching objects in mid-flight or handing over objects be-
tween moving agents. These tasks are frequently solved using
trajectory optimization where typically dynamic system con-
straints, state and control input constraints, and a target pose
constraint are considered.

The target pose constraint is often formulated in the task
space and for kinematically redundant robots, in which infinite
joint configurations satisfy this constraint. Utilizing the analyt-
ical IK in the trajectory optimization problem allows to find the
best target joint configuration for a specific task. On the other
hand, computing time becomes an issue with this approach. Re-
cently, [45] proposed a real-time capable closed-form solution
for the KUKA iiwa 14 R820, where the authors minimize the
joint velocities and accelerations while avoiding joint bound-
aries for a trajectory tracking task. This approach does neither
consider the dynamic constraints nor the system state and input
constraints in the trajectory optimization.

In addition, it is crucial that the target configuration is well
chosen among the infinite solutions of the IK, i.e. close to the
initial robot configuration and with high manipulability. For
example in a dynamic handover of an object where the target
is moving, see Fig. 1, it is advantageous to choose a target
configuration that maximizes manipulability such that the robot
end-effector can move to another target configuration with high
agility. Moreover, choosing a target configuration that is close
to the initial configuration of the robot can lead to high perfor-
mance of the trajectory optimization with a high success rate.
Including such criteria in the trajectory optimization is the mo-
tivation for the work in this paper.

To this end, a learning-based framework to include addi-
tional, application-specific criteria in the analytical IK of re-
dundant robots is proposed. First, a database of 108 random
pairs of initial configurations and target poses is generated. For
each pair, the optimal trajectory is computed using classical ap-
proaches, considering application-specific criteria, and is stored
in the database together with the set of optimal redundancy pa-
rameters. This database serves as the basis to train a neural
network (NN), which is used to predict the optimal redundancy
parameters for the analytical IK in highly dynamic real-time
applications.

The main contribution of this work is a learning-based
framework that employs a NN to predict the redundancy pa-
rameters of an analytical IK. This yields an optimal target joint
configuration for a given target pose by considering application-
specific criteria. In this work, the target joint configuration is
chosen close to the current joint configuration of the robot and
to have a high measure of manipulability. The proposed learn-
ing framework significantly speeds up the computing time of

initial configuration

target pose

possible target
configurations

Figure 1: An example of a handover task between robot and human.

the trajectory optimization problem. Note that the proposed
framework is tailored to the non-offset redundant manipulator
KUKA LBR iiwa 14 R820. Nevertheless, it is also applicable
to other kinematically redundant robots with an analytical IK,
e.g., [10, 31, 28].

The remainder of this paper is organized as follows. Sec-
tion 2 presents the mathematical modeling and analytical in-
verse kinematics. Additionally, details of the point-to-point
(PTP) trajectory optimization problem and the algorithm for de-
termining the optimal target joint configuration w.r.t. application-
specific criteria are given. The learning framework for predict-
ing the redundancy parameters for the analytical IK problem in-
cluding database generation and the proposed NN is presented
in Section 3. Simulation results are shown in Section 4. The
last section, Section 5, concludes this work.

2. Trajectory Optimization Framework

This section presents the trajectory optimization frame-
work which is commonly used in robotics [1]. For example, in
Figure 1, with a given target pose and a robot’s initial config-
uration, an optimal trajectory in joint space is planned for the
robot to catch an object.

In this section, the mathematical modeling of the KUKA
LBR iiwa 14 R820, including kinematics and system dynamics,
is briefly summarized. Then, the analytical inverse kinematics
with the redundancy parameters of this redundant manipulator
is presented in Section 2.2. Subsequently, a point-to-point tra-
jectory optimization is performed, which is used to plan trajec-
tories to the optimal target configuration, explained in Section
2.4.

2.1. Mathematical modeling

The KUKA LBR iiwa 14 R820 is an anthropomorphic ma-
nipulator due to its similarity to a human arm, which has an S-
R-S kinematic structure [41]. The coordinate frames Oi and the
corresponding seven revolute joints qi, i = 1, . . . , 7, of the robot
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Figure 2: Schematic drawing of the robot KUKA LBR iiwa. The x-, y-, and
z-axis of each coordinate frame are shown as red, green, and blue arrows, re-
spectively.

are shown in Fig. 2. The red, green, and blue arrows represent
the x-, y-, and z-axis, respectively. The shoulder intersection
position ps of the joint axes q1, q2, and q3 and the wrist inter-
section position pw of the joint axes q5, q6, and q7 correspond to
the shoulder and wrist positions of the human arm, respectively.
The elbow position pe is in the center of the joint axis q4.

The robot is modeled as a rigid-body system with the gen-
eralized coordinates qT = [q1, q2, . . . , q7], see Fig. 2, which are
the rotation angles qi about the z-axes (blue arrows) of each co-
ordinate frame Oi, i = 1, . . . , 7. To describe the kinematic rela-
tionship between the joint angles and the pose of the robot links
comprising position and orientation, the homogeneous trans-
formations Tm

n between two adjacent frames On and Om are
constructed, see Tab. 1. Here and in the following, the ho-
mogeneous transformation of a simple translation by distance d
along the local axis j ∈ {x, y, z} is denoted by TD, j(d), while an
elementary rotation around the local axis j ∈ {x, y, z} by the an-
gle φ is described by TR, j(φ). The end-effector transformation
matrix Te

0 is referred to as forward kinematics and is computed
in the form

Te
0 = FK(q) =

7∏
i=0

Ti+1
i =

[
R7

0(q) pt(q)
0 1

]
(1)

comprising the 3D tip position pt ∈ R3 and the 3D orientation
of the end effector as rotation matrix R7

0 ∈ R
3×3. The equations

of motion are derived using the Lagrange formalism, see, e.g.,

Table 1: Coordinate transformation of the robot

Frame
On

Frame
Om

Transformation matrix
Tm

n
0 1 TD,z(d1)TR,z(q1)
1 2 TD,z(d2)TR,z(−π)TR,x(π/2)TR,z(q2)
2 3 TD,y(d3)TR,z(π)TR,x(π/2)Rz(q3)
3 4 TT,z(d4)TR,x(π/2)TR,z(q4)
4 5 TD,y(d5)TR,z(π)TR,x(π/2)TR,z(q5)
5 6 TD,y(d6)TR,x(π/2)TR,z(q6)
6 7 TD,z(d7)TR,z(π)TR,x(π/2)TR,z(q7)
7 t TD,y(dt)

Table 2: Kinematic and dynamic limits of the system

Joint i Joint limits Velocity limits Torque limits
qi (◦) q̇i (◦/s) τi (N)

1 170 85 320
2 120 85 320
3 170 100 176
4 120 75 176
5 170 130 110
6 120 135 40
7 175 135 40

[39],
M(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (2)

where M(q) denotes the symmetric and positive definite mass
matrix, C(q, q̇) is the Coriolis matrix, g(q) is the force vector
associated with the potential energy, and τ are the motor torque
inputs. The kinematic and dynamic parameters of the KUKA
LBR iiwa in (2) are taken from [40]. Since the mass matrix
M(q) is invertible, (2) is rewritten in the state-space form

ẋ =

[
q̇

M−1(q)(τ − C(q, q̇)q̇ − g(q))

]
, (3)

with the system state xT = [qT, q̇T]. The kinematic and dynamic
limits of the robot [22] are summarized in Tab. 2. All limits are
symmetric w.r.t. zero, i.e. qi = −qi, q̇i = −q̇i, and τi = −τi.

To reduce the complexity of the system dynamics (2), the
vector of joint acceleration q̈ is utilized as a new control input
for planning a trajectory in Section 2.3, i.e., u = q̈ = M−1(q)(τ−
C(q, q̇)q̇ − g(q)). Hence, the system dynamics (3) is rewritten
in the compact form

ẋ =

[
q̇
u

]
. (4)

2.2. Analytical inverse kinematics
Typically in manipulation tasks, the desired end-effector

pose for a point-to-point motion is given in the 6D Cartesian
space in the form, cf. (1)

Te
0,d =

[
Re

0,d pt,d

0 1

]
. (5)
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To compute the robot joint configuration q from a desired end-
effector pose Te

0,d, the inverse kinematics (IK) of the robot has
to be solved. In the following, an inverse kinematics solu-
tion with redundancy parmeters tailored to the non-offset 7-DoF
robot KUKA LBR iiwa 14 R820 is shortly revisited, see, e.g.,
[37]. Similar to [21, 9], the redundancy parameters of this robot
are chosen as the binary vector jT

c = [ js, je, jw] and the angle ϕ,
which are introduced below.

With a given end-effector pose Te
0,d, the position of the

robot wrist pw in the world frame is fixed and is computed as

pw = pt,d − R7
0,d

[
0 0 d7 + dt

]T
, (6)

with the distance from the wrist point to the end effector of the
robot d7 + dt. The vector psw from the fixed shoulder position
ps =

[
0 0 d1 + d2

]T
to the wrist position pw is expressed

as psw = pw − ps. Using the law of cosines in the triangle
formed by the shoulder, elbow, and wrist, the joint position q4
is immediately calculated as

q4 = je arccos
(
|psw|

2 − d2
se − d2

ew

2dsedew

)
, (7)

where dse = d3 + d4 is the distance from the shoulder to the
elbow and dew = d5 + d6 is the distance from the elbow to the
wrist. In (7), the binary redundancy parameter je ∈ {−1, 1} dis-
tinguishes between the elbow-up and the elbow-down configu-
ration.

The constellation of the shoulder, elbow, and wrist po-
sition forms two triangles of which the sides have a constant
length for a given end-effector pose. Further, these three points
and the two triangles lie on a plane, denoted as arm plane, which
can be rotated around the vector psw resulting in two cones, see
Fig. 3. Thereby, the elbow position pe always stays on the
perimeter of the cone bases. As a result, the robot can perform
self-motions by moving the elbow on this perimeter. To this
end, an arm angle ϕ is introduced as a redundancy parameter,
referring to the angle between a reference arm with the special
configuration q3,n = 0 (red lines in Fig. 3), and the actual arm
plane (blue lines in Fig. 3). Here and in the following, the
index n refers to the reference arm configuration. The actual
elbow orientation R4

0 is equivalent to rotating the orientation of
the reference elbow orientation R4

0,n about the shoulder-wrist
vector psw by ϕ, i.e.

R4
0 = RϕR4

0,n, (8)

with Rodrigues’ formula [26]

Rϕ = I3×3 + [psw]× sinϕ + [psw]2
×(1 − cosϕ) , (9)

where I3×3 is the identity matrix, and [a]× denotes the skew-
symmetric matrix of the vector a. Since q4 remains unchanged
between the reference arm configuration and the actual arm
configuration for a given end-effector pose, (8) leads to

R4
3 = R4

3,n (10a)

R3
0 = RϕR3

0,n (10b)

R7
4 = (R3

0R4
3)TR7

0,d

= (RϕR3
0,nR4

3,n)TR7
0,d

(10c)

Note that R3
0,n depends only on the joint angles q1,n and

q2,n, since q3,n = 0 in the reference configuration. The joint
angles q1,n and q2,n, shown in Fig. 4, are simply found as

q1,n = arctan2(psw,x, psw,y) (11a)

q2,n = arctan2
(√

(psw,x)2 + (psw,y)2, psw,z

)
+γ , (11b)

with pT
sw = [psw,x, psw,y, psw,z], and

γ = je arccos
(

d2
se + |psw|

2 − d2
ew

2dse|psw|

)
.

Note that R3
0 and R7

4 can be directly computed using (10b),
(10c) and Tab. 1. Analytically, the rotation matrices R3

0 and
R7

4 result from Tab. 1 in the form

R3
0 =

 ∗ ∗ cos q1 sin q2
∗ ∗ sin q1 sin q2

− sin q2 cos q3 sin q2 sin q3 cos q2

 (12a)

R7
4 =

 ∗ ∗ cos q5 sin q6
− sin q6 cos q7 sin q6 sin q7 cos q6

∗ ∗ − sin q5 sin q6

 , (12b)

where the elements written as ∗ are omitted for brevity. From
(12), the joint angles of the redundant manipulator are com-
puted in a straightforward manner

q1 = arctan2(R3
0[2, 3],R3

0[1, 3])

q2 = js arccos(R3
0[3, 3])

q3 = arctan2(R3
0[3, 2],−R3

0[3, 1])

q5 = arctan2(−R7
4[3, 3],R7

4[1, 3])

q6 = jw arccos(R7
4[2, 3])

q7 = arctan 2(R7
4[2, 2],−R7

4[2, 1]) ,

(13)

where js, jw ∈ {−1, 1} are the remaining binary redundancy pa-
rameters and R[i, j] is the matrix element of the i-th row and
j-th column of R.

In summary, the parameterization of the inverse kinemat-
ics solution uses the three binary variables jT

c = [ js, je, jw] and
the arm angle ϕ in (7) and (13) as redundancy parameters to de-
termine a unique joint configuration q for a desired end-effector
pose Te

0,d. In Fig. 3, the blue lines illustrate a possible robot
configuration with jc = [1,−1, 1]T that is rotated by ϕ = 95°
from the reference arm plane, drawn with red lines. To this
end, by combining (7) and (13), the unique analytical inverse
kinematics of the KUKA LBR iiwa 14 reduces to the compact
form

q = AIK(Te
0,d, jc, ϕ), (14)

with the redundancy parameters jc ∈ {1,−1}3 and ϕ ∈ [0, 2π].

2.3. Point-to-point trajectory optimization

In the point-to-point (PTP) trajectory planning, a desired
trajectory ξ∗(t) = [x∗(t),u∗(t)]T, t ∈ [t0, tF] for the robotic
system (4) is planned from an initial configuration ξ∗(t0) =

4
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Figure 3: Two configurations of the KUKA iiwa at the same pose are illustrated in red and blue lines. The green rim indicates the virtual movement of the elbow
position w.r.t the specific end-effector pose. The red lines and blue lines illustrate the robot at the arm angle ϕ = 0 and ϕ = 95◦, respectively.
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Figure 4: The redundant manipulator (q3,n = 0) in the xy-plane (a) and in the
3D xyz-plane (b). The shoulder, elbow, and wrist positions are colinear in (a).

[xt0 ,ut0 ]T to a target configuration ξ∗(tF) = [xtF ,utF ]T. The tar-
get configuration has to satisfy the forward kinematics relation
for the desired end-effector pose Te

0,d, see (1)

Te
0,d − FK(qtF ) = 0 (15)

Without loss of generality, the initial time t0 is chosen as t0 = 0.
Furthermore, the target configuration is assumed to be a station-
ary point xT

tF
= [qT

tF
, 0T].

The PTP trajectory planning is formulated as optimization
problem using the direct collocation method, see, e.g., [2], by
discretizing the trajectory ξ(t), t ∈ [0, tF], with N +1 grid points
and solving the resulting static optimization problem

min
ξ∗

J(ξ) = tF +
1
2

h
N∑

k=0

uT
k Ruk (16a)

s.t. xk+1 − xk =
1
2

h
[
q̇k+1 + q̇k

uk+1 + uk

]
(16b)

x0 = xt0 , xN = xtF (16c)
x ≤ xk ≤ x (16d)
τ ≤M(qk)uk + C(qk, q̇k)q̇k + g(qk) ≤ τ (16e)
k = 0, . . . ,N

for the optimal trajectory

(ξ∗)T = [t∗F , (x
∗
0)T, . . . , (x∗N)T, (u∗0)T, . . . , (u∗N)T], (17)

with the time step h = tF/N. Note that the final time t∗F in (17)
denotes the optimal duration of the trajectory from the initial
state xt0 to the target state xtF . In addition, R is a positive def-
inite weighting matrix for the input u which also weighs the
tradeoff between the cost of the duration and the smoothness of
the trajectory. The system dynamics (4) is approximated by the
trapezoidal rule in (16b). Moreover, x and x in (16d) denote the

5



symmetric lower and upper bounds of the state, respectively,
and (16c) considers the upper and lower torque limit τ and τ.

It should be noted that (16e) is a computationally expen-
sive inequality constraint, mainly because of the large expres-
sions in the Coriolis matrix C(q, q̇). Indeed, the Coriolis matrix
is often neglected in industrial applications [3]. To still consider
the influence of the Coriolis matrix C(q, q̇) for the torque limits,
the range of values of the term C(q, q̇)q̇ is investigated for the
KUKA LBR iiwa 14 R820 using a Monte Carlo simulation. In
this simulation, 108 uniformly distributed random state vectors
x are selected from the admissible operating range, see Tab.
2. This simulation shows that the values of Cq̇ are between
cT

= [6, 8, 3, 4, 1, 1, 0.1] N m and cT = −[6, 7, 3, 4, 1, 1, 0.1]
N m, which is much smaller than the torque limits of the motor.
Although the influence of the Coriolis matrix on the dynamics
of the overall system is not significant, it is still advantageous to
consider these physical limits in the optimization problem (16).
To this end, the costly inequality condition (16e) is replaced by

τ − c ≤ (M(qk)uk + g(qk)) ≤ τ − c . (18)

The optimal trajectory is computed by solving the static op-
timization problem (16a)-(16d) and (18) using Interior Point
OPTimize (IPOPT), an open-source package based on the in-
terior point method (IPM) for large-scale nonlinear program-
ming, see, e.g., [43].

2.4. Optimal target configuration qtF

In this section, the optimal choice for the target configu-
ration qtF is discussed. The inverse kinematics for a redundant
robot does not yield a unique joint configuration qtF , as pre-
sented in Section 2.2. Moreover, choosing an unsuitable target
configuration qtF may cause the trajectory optimization (16) to
fail or deliver poor results.

For redundant robots, there is an infinite number of joint
configuration solutions qtF for a desired end-effector pose Te

0,d.
Therefore, two criteria for selecting the best inverse kinematics
solution, i.e. the manipulability and closeness, are introduced
in the following and an optimization problem is formulated.

First, the manipulability m(q) [47] is the most popular in-
dex used to measure the dexterity of a robot for a specific joint
configuration q. It is defined as

m(q) =

√
det

(
J(q)JT(q)

)
, (19)

where the geometric manipulator Jacobian J(q) takes the form

J(q) =

[
Jv(q)
Jω(q)

]
=


∂pt(q)
∂q

∂ωt(q)
∂q

 . (20)

In (20), ωt is the angular velocity of the end effector described
in the frame O0, which is computed by

[ωt]× = Ṙ7
0(q)

(
R7

0(q
)T
. (21)

To reduce the computational burden of (19) due to the compu-
tation of the determinant, an analytical expression of the ma-
nipulability is derived, which is given in the appendix.

Second, to consider the closeness between the inverse kine-
matics solution q and the initial joint configuration q0 of the
robot, the L∞-norm ‖.‖∞ is employed to find the largest devi-
ation between these two joint space configurations. Here, the
closeness is given by

c(q) = ‖q0 − q‖∞, (22)

where qt0 is the initial joint configuration of the initial state
xt0 = [qT

t0 , 0].
Next, the two criteria (19) and (22) are considered in an

optimization problem to choose the best target configuration qtF

for a given target pose Te
0,d. To solve this problem, according

to (14), the redundancy parameters of the inverse kinematics jc

and ϕ have to be determined. Since there are three binary re-
dundancy parameters in jc, 23 = 8 different values are contained
in the set Xjc = {jc,i | i = 1, ..., 8}. Additionally, the arm angle
ϕ ∈ [0, 2π] is equidistantly discretized with the grid points

Xϕ =

{
j
2π
nϕ

∣∣∣∣ j = 1, ..., nϕ
}
.

The following optimization problem is solved to find the best
target configuration qtF = q∗i, j as well as its corresponding re-
dundancy parameters j∗c and the virtual angle ϕ∗ for the desired
pose Te

0,d

arg min
q∗i, j,j

∗
c ,ϕ∗

{
JIK(q0,qi, j)

}
i ∈ {1, ..., 8}
j ∈ {1, ..., nϕ}

(23a)

s.t. JIK(q0,qi, j) =
ωm

m(qi, j)
+ ωcc(q0,qi, j) (23b)

qi, j = AIK(Te
0,d, jc,i, ϕ j) (23c)

q ≤ qi, j ≤ q , (23d)

with the user-defined weighting parameters ωm > 0 and ωc > 0.

3. Framework for learning redundancy parameters

The cost function (23b) and the inverse kinematics (23c)
are nonlinear and discontinuous functions with many local min-
ima, which is illustrated on the right-hand side of Fig. 5 for an
example joint configuration q. Therefore, to find the global op-
timum, the optimization problem (23) has to be solved by ex-
haustive search, which is a time-consuming process since (23c)
has to be evaluated 8nϕ times. To significantly reduce the com-
putational effort for this step, a neural network (NN) is pre-
sented in this section to quickly determine the joint configura-
tion j∗c and narrow down the search space for the arm angle ϕ∗

for a desired end-effector pose Te
0,d and the given initial config-

uration q0.
First, the generation of the database to train the NN for

learning the redundancy parameters jc and ϕ is introduced. Then,
the network architecture of this NN is presented in the next step.
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Figure 5: The color map of the cost function (23b) for the initial configuration of the robot q0 (in gray color) and the position of the end effector (the RGB triad)
is shown on the right-hand side of this figure. The white color regions depict infeasible joint configurations. The robot target configuration qtF computed by the
proposed NN is shown in red color on the left-hand side. This achieves a very small value of the cost function (23b) (≈ 0.0717). The target robot configuration
calculated using the numerical method [5] is depicted in green. The cost of this configuration is approximately 0.54.
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Figure 6: Overview of the proposed framework for learning the redundancy
parameters.

3.1. Database generation

For the database generation, Np pairs of robot initial joint
configurations q0,k and corresponding feasible desired poses Te,k

0,d
are randomly selected from a uniform random distribution in
the admissible ranges and are stored in the set X = {ζk} =

{q0,k,Te,k
0,d

∣∣∣ k = 1, ...,Np}. For each pair of q0,k and Te,k
0,d, the

optimization problem (23) is solved by an exhaustive search to
find the global optimum redundancy parameters j∗c and ϕ∗ as
well as the target configuration q∗tF

. The redundancy parame-
ters are stored in the set Y = {ηk} = {jc,k, ϕk | k = 1, ...,Np}. The
database D = (X,Y) comprises both sets X and Y. Elements
from the set X are the input to the NN and elements from the
set Y are the corresponding labeled outputs, see Fig. 6.

The input data in the set X contain redundant data due
to the constant bottom row in the desired pose Te,k

0,d, see (5).
Therefore, only the three basis vectors ex,k, ey,k, and ez,k, of

Re,d
0 = [ex,k, ey,k, ez,k] and the position of the end effector pt,k

are considered in the set X. Thus, the input set X is re-arranged
in the form

X = {ζk | k = 1, ...,Np},

with

ζT
k = [(q0,k)T, (ex,k)T, (ey,k)T, (ez,k)T, (pt,k)T] ∈ R19

Since (23b)-(23c) are discontinuous nonlinear functions,
see Fig. 5, a complex NN is required to approximate these
functions. However, the training and prediction time of such
a neural network is very long, making it impossible to be im-
plemented in real time. Thus, the continuous output variable
for the predicted arm angle ϕ is discretized into nb bins and
the bin index bϕ is predicted instead. This helps to reduce the
complexity of the problem. This way, the i-th bin contains the

range
[
(i − 1)

2π
nb
, i

2π
nb

]
, i = 1, ..., nb. Consequently, ϕk is re-

placed by its bin index bϕ,k ∈ {1, ..., nb} in the set Y resulting in
Y = ηk = {jc,k, bϕ,k}.

3.2. Network Architecture

The architecture of the proposed NN is shown in Fig. 7.
This NN is designed for the two sub-problems, i.e., to learn the
joint configuration jc and the bin index bϕ of the arm angle ϕ.
Note that the input of the proposed NN is ζ ∈ X and the output
is the predicted value ηT = [jT

c , bϕ] ∈ Y.
First, two fully connected layers of size 32 with a ReLU

activation function [23] are utilized, as shown in Fig. 7. Since
there are 8 possibilities for choosing jc, a fully connected layer
of size 8 with a softmax activation function [4] is employed to
output jc. The cross-entropy function is used to compute the
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Figure 7: Architecture of the proposed NN for learning the joint configuration jc and the bin index bϕ of the virtual angle ϕ.

loss between the prediction ĵc,k of the NN and the target value
jc,k in the form

Ljc =

M∑
k=1

−jT
c,k log(ĵc,k) + (1 − jc,k)T log(1 − ĵc,k) , (24)

where M is the size of the training dataset.
Second, the predicted ĵc is concatenated with the input ζ

again as a new input for the second subproblem. Similar to
the first subproblem, two fully connected layers of size 32 with
a ReLU activation function are used. Subsequently, the fully
connected layer of size 8 and the softmax activation function
are implemented to predict the bin index bϕ of the arm angle ϕ.
Again, the cross entropy function is used to compute the loss
between the predicted value of the bin index b̂ϕ and the target
value bϕ

Lbϕ =

M∑
k=1

−bϕ,k log(b̂ϕ,k) + (1 − bϕ,k) log(1 − b̂ϕ,k). (25)

The employed optimizer of the proposed NN is Adam [19]
with a learning rate of 10−3. Furthermore, the L2 regularization
[19] with λ = 10−6 is added to both loss functions Ljc and Lbϕ
to avoid overfitting [27].

4. Results

The simulation results presented in this section are ob-
tained on a computer with a 3.4 GHz Intel Core i7-10700K and
32 GB RAM. The generated database with Np = 108 pairs de-
scribed in Section 3.1 is randomly shuffled and divided into 3
subsets, i.e., training dataset, validation dataset, and test dataset,
which are partitioned as 80%, 10%, and 10% of the gener-
ated database, respectively. To speed up the computing time
of database generation, C++ code is generated for (23) using
MATLAB coder in MATLAB R2021b. Additionally, the an-
alytical expression of the manipulability in the appendix (29)
is utilized. The remaining parameters are chosen as nϕ = 100
and nb = 8. For the database generation, the average computing
time of (23) for a given pose and initial joint configuration is ap-
proximately 1.5 ms. Since nϕ in (23) is set to 100, the average
computing time of the analytical inverse kinematics expression
in (23c) is approximately 1.8 µs.
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Figure 8: Training and validation accuracy of the joint configuration jc.

4.1. Statistical information on training the proposed NN

The proposed NN is trained using the open-source soft-
ware package Keras [13]. To reduce the training time, the CUDA
cores of an Nvidia GeForce RTX 3070 are employed. During
training, the mini-batch size is set to 2000 and the training data
is reshuffled in each epoch.

Fig. 8 shows that the learning accuracy for the joint con-
figuration jc of the training dataset and the validation dataset af-
ter 500 epochs reaches 96.62% and 95.76%, respectively. Also,
the corresponding values of the loss function Ljc decreased to
0.1034 and 0.1264, respectively. To further validate the training
result, the accuracy of the test dataset with the trained parame-
ters of the proposed NN is approximately 96.49%.

Fig. 9 shows the accuracy of the training dataset and the
validation dataset with respect to the bin index bϕ of the arm an-
gle ϕ. Note that the resulting accuracy is approximately 85.57%
for the training dataset and 85.12% for the validation dataset.
The values of the loss function Lbϕ are approximately 0.32 and
0.38 for the two datasets. To verify the trained parameters of
the proposed NN, a consistent accuracy of 84.78% is reported
for the test dataset.

For further validation, the proposed NN is compared to the
performance of four well-known algorithms, i.e., naive Bayes
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Table 3: Performance of the prediction with different algorithms

Classifier
Acc. jc

%
Acc. bϕ

%
Time
µs

Memory
MB

Naive Bayes
[15] 57.6 38.2 1.1 76.8

Discriminant
Analysis [42] 65.1 40.6 1.23 70.5

Binary Decision
Tree [25] 77.8 65.5 0.35 89.6

k-Nearest
Neighbor [17] 49.5 40.1 1810 76.8

Proposed NN 96.5 84.8 7.35 0.17

classifier [15], discriminant analysis classifier [42], binary de-
cision tree classifier [25] and k-nearest neighbor classifier [17].
Similar to the proposed NN, each classifier takes the input ζ ∈
X and outputs the prediction η ∈ Y. The statistical perfor-
mance of the four algorithms and the proposed NN is shown
in Tab. 3. Among the above algorithms, the binary decision
tree classifier achieves the highest prediction accuracy for jc

and bϕ, i.e., 77.8% and 65.5%, respectively. Moreover, the av-
erage execution time of this classifier is approximately 0.35 µs,
i.e., the fastest algorithm. However, the prediction accuracy of
the proposed NN is still significantly higher compared to the
binary decision tree classifier. Another aspect is the memory
consumption, which is with 0.17 MB much less compared to
over 70 MB for each of the four other algorithms. This is rea-
sonable since in the proposed NN, the memory consumption is
mainly used for storing the network parameters.

The average NN execution time for the prediction of jc

and bϕ is about 7.35 µs. Also, the average computing of the
analytical inverse kinematics with the given jc and bϕ is about
2 µs. Thus, the proposed NN provides the possibility to com-
pute a good IK solution with respect to the two criteria, i.e.,

manipulability (19) and closeness (22), in real time.

4.2. Performance of the proposed NN in the framework of tra-
jectory optimization
To verify the efficiency of the proposed NN, the example

task of planning a PTP trajectory from the initial configuration

qT
0 = [−1.5,−0.1, 0.3, 0.7, 0.5,−0.6, 1.4] rad,

jT
c,0 = [−1, 1,−1],

ϕ0 = 3.21 rad

to the target pose

Te
0,d =


0.863 0.262 −0.433 −0.55
0.003 0.853 0.522 0.160
0.505 −0.451 0.735 1.049

0 0 0 1

 (26)

is considered.
First, the comparison between the well-known damped

least-squares inverse kinematics solution [26, 5] and the pro-
posed algorithm is depicted in Fig. 5. On the right-hand side of
Fig. 5, a color map of (23b) is depicted where the x-axis com-
prises the 8 possible joint configurations jc ∈ Xjc and the y-axis
contains the nϕ = 100 arm angles ϕ ∈ Xϕ. Using the network
architecture of Fig. 7 with nb = 8, the proposed NN takes about
7.35 µs to predict the joint configuration jc = [−1,−1,−1]T and
the bin bϕ = 3, i.e. ϕ ∈ [π/2, 3π/4]. To find the optimum value
for the arm angle ϕ inside the predicted bin, (14) and (23a) are
evaluated on an equidistant grid for ϕ ∈ [π/2, 3π/4] with nϕ/nb

grid points. This way, the effort to solve the optimization prob-
lem (23) reduces from 8nϕ = 800 to nϕ/nb ≈ 13 evaluations of
(14) and (23b). Since the analytical manipulability expression
(29) is used in (23b), the computing time of (23b) is approxi-
mately 0.15 µs, which is much smaller than (14). Thus, the total
execution time for computing the optimal target configuration
qtF is approximately 32 µs including the computing time of (14)
of 2 µs. On the other hand, the damped least-squares method in
this example requires 17 iterations to find the solution of the in-
verse kinematics with a tolerance of 10−8. The computing time
of the numerical method is approximately 3 ms.

On the left-hand side of Fig. 5, the computed target con-
figurations for the given desired target pose Te

0,d are

qT
tF ,A = [−0.55,−0.96,−0.71,−0.78,−0.45,−0.8, 1.55] rad,

jT
c,A = [−1,−1,−1],

ϕA = 2.17 rad
(27)

for the proposed algorithm (red color), and

qT
tF ,N = [−0.7,−0.45, 1.1, 0.78, 0.43, 0.81,−0.82] rad,

jT
c,N = [−1, 1, 1],

ϕA = 3.8 rad

(28)

for the damped least-squares method (green color). It is ob-
vious that in this example the joint configuration solutions of
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the two methods jc,A and jc,N are different from the initial joint
configuration jc,0. The proposed solution has a slightly higher
manipulability measure (29) of 0.061 compared to the manipu-
lability measure of 0.045 of the numerical solution. The close-
ness value (22) of the proposed solution is 1.49 which is signifi-
cantly smaller than the closeness value of 2.23 of the numerical
solution.

To further demonstrate the effectiveness of the proposed
IK approach, the two target configurations obtained by the pro-
posed algorithm and the numerical method are used in the tra-
jectory optimization framework detailed in Section 2. The non-
linear optimization problem (16) is solved using the interior
point solver IPOPT [43] together with the linear solver MA27
[8]. To increase the computational speed, the gradient and the
numerical Hessian are computed using the BFGS method [24]
and provided to the IPOPT solver. The trajectory in (16) is dis-
cretized with N = 50 collocation points, giving a total of 1051
optimization variables. For this comparison, the same initial
configuration q0 and two different target configurations qtF ,A ac-
cording to (27) and qtF ,N according to (28) of the pose Te

0,d from
(26) are used. While the computing time of the optimization
(16) for both target configurations is almost the same (55 ms),
the time for moving to the target configuration of the proposed
algorithm qtF ,A is 3.83 s compared to 4.03 s of the numerical so-
lution qtF ,N . Moreover, the cost function in (16a) with qtF ,A and
qtF ,N is 4.7 and 5.03, respectively.

Finally, a Monte Carlo simulation is performed to vali-
date the efficiency of the proposed NN in the PTP trajectory
optimization. To this end, 105 pairs of initial robot configu-
rations q0 and target poses Te

0,d are randomly selected from a
uniform random distribution in the admissible ranges. Then,
the proposed NN and the numerical IK are used to determine
the target joint configuration and for each target configuration,
an optimal trajectory is calculated using (16). The statistical
results are summarized in Tab. 4. While the computing times

Table 4: Performance of the proposed NN and the numerical IK [26] in the
trajectory optimization framework

Proposed NN Numerical IK [26]
Avg. tF (s) 4.52 ± 1.93 5.39 ± 2.6

Cost value of (16a) 5.75 ± 2.79 6.69 ± 3.29
Num. of failed IK 0 13896

Num. of failed PTP 554 1588
Success rate 99.5% 84.5%

Avg. comp. time (ms)
of (16) 28.9 ± 13 30.3 ± 19

of (16) utilizing the target configuration of the proposed algo-
rithm qtF ,A and the numerical IK qtF ,N are nearly the same (≈
30 ms), the average optimal trajectory time using the proposed
algorithm is slightly better, i.e. 4.52 s compared to 5.39 s.

Since the solution of the numerical IK depends on the ini-
tial guess, 13896 test cases fail to converge to feasible target
configurations. Note that the maximum number of iterations
for the numerical IK is 50. Additionally, after excluding 13896

failed cases, 1588 test cases are not valid to plan the PTP tra-
jectory using (16). Note that these test cases fail because of
violating the iteration limit, i.e., 100 iterations, which is set in
the IPOPT solver. The overall success rate by using the nu-
merical IK is approximately 84.5%. On the other hand, for the
proposed algorithm, in all the test cases, a feasible target con-
figuration is found. Only 554 test cases fail during the planning
of the PTP trajectory due to the iteration limit of the IPOPT
solver. Overall, the proposed NN outperforms the numerical IK
by achieving a success rate of 99.5%.

5. Conclusions

In this work, a machine learning-based approach for the
inverse kinematics (IK) of kinematically redundant robots is
presented, which is suitable for trajectory planning in highly
dynamic real-time applications like human-robot object han-
dovers or robotic object catching. In this approach, the optimal
redundancy parameters are predicted by a neural network (NN)
according to the application-specific criteria, closeness to the
initial robot configuration and manipulability at the target pose.
Redundancy parameters, i.e. a virtual arm angle and binary
variables describing the joint configurations, resolve the non-
uniqueness of the analytical IK of redundant robots and allow
for a unique mapping between the target pose and the joint con-
figuration. Since a NN is employed, the proposed framework
can be applied to different collaborative robots, e.g., KUKA
LBR iiwa 14 R820, Franka Emika Panda, OB7, of which the
analytical IK can be parameterized by redundancy parameters.
The NN used in the proposed framework outperforms classical
classification algorithms in terms of accuracy and the prediction
run time. A Monte Carlo simulation of 105 random pairs of an
initial configuration and a target pose validates the proposed
algorithm in the context of point-to-point (PTP) trajectory opti-
mization. The proposed method succeeds in 99.5% of the test
cases to find a feasible target configuration while achieving a
shorter optimal time of the trajectory from the initial to the tar-
get pose on average compared to using a numerical IK method
at a significantly shorter computing time (≈ 32 µs for the pro-
posed IK compared to ≈ 3 ms for the numerical IK). Thus, the
proposed framework is perfectly suited for real-time applica-
tions.

In future works, this machine learning-based framework
will be applied to dynamic human-robot handover tasks.
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Appendix

The square of the manipulability (19) of the KUKA LBR
iiwa 14 R820 [22] reads as

m2(q) = 2d2
sed2

ew sin2(q4)·[
d2

se sin2(q2) sin2(q4) cos2(q5) cos2(q6)+

d2
ew cos2(q2) cos2(q3) sin2(q4) sin2(q6)+(
d2

se + 2dsedew cos(q4) − d2
ew

)
sin2(q2) sin2(q6)+

1
2
(
d2

se cos(q4) + dsedew
)

sin2(q2) sin(q4) cos(q5) sin(2q6)+

1
2
(
d2

ew cos(q4) + dsedew
)

sin(2q2) cos(q3) sin(q4) sin2(q6)
]
,

(29)
where dse = d2 + d3 and dew = d4 + d5.
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