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Abstract—Surgical instrument segmentation and depth estima-
tion are crucial steps to improve autonomy in robotic surgery.
Most recent works treat these problems separately, making the
deployment challenging. In this paper, we propose a unified
framework for depth estimation and surgical tool segmentation
in laparoscopic images. The network has an encoder-decoder
architecture and comprises two branches for simultaneously
performing depth estimation and segmentation. To train the
network end to end, we propose a new multi-task loss function
that effectively learns to estimate depth in an unsupervised
manner, while requiring only semi-ground truth for surgical tool
segmentation. We conducted extensive experiments on different
datasets to validate these findings. The results showed that
the end-to-end network successfully improved the state-of-the-
art for both tasks while reducing the complexity during their
deployment.

Index Terms—Deep learning, Self-supervised depth estimation,
Surgical instrument segmentation, Multi-task learning

I. INTRODUCTION

M INIMALLY invasive surgery (MIS), including robot-
assisted procedures, provides significant advantages

such as reducing operative trauma and the risk of infection.
Advanced robotic surgery systems such as the da Vinci sur-
gical platform [1] allow multiple types of information to be
integrated together with effective feedback to the surgeon.
However, interpreting visual surgical data is complex and
involves many tasks such as tissue deformation modeling [2],
tool tracking [3], and scene depth estimation [4] [5].

In recent years there has been much work on depth es-
timation and surgical tool segmentation. Notably, learning-
based algorithms have shown excellent prediction capability
of the relationship between color images and depth, as well
as image segmentation into meaningful regions. These depth-
predicting algorithms may use monocular or stereo input
data, with either supervised, self-supervised or unsupervised
[6] training approaches depending on availability of ground
truth labels. Instrument segmentation may also use supervised
or unsupervised methods [7]. Knowing the tissue depth and
the instrument masks could facilitate tissue scanning [8] or
dynamic image overlays [9], which are useful for laparoscopic
surgery.
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Fig. 1. Simultaneous depth estimation and surgical tool segmentation in
laparoscopic images. Given the left and the right image, our method is able
to perform depth estimation and surgical tool segmentation simultaneously.

To date, depth estimation and surgical tool segmentation
have been mainly treated as separate challenges, requiring
time-consuming sequential task completion. In this work,
we propose a novel unified framework that can perform
simultaneous depth estimation and surgical tool segmentation:
SDSNET. Our method does not require manually labeled
ground truth, and achieves the state-of-the-art performance for
both tasks, as well as reducing the deployment complexity.

II. RELATED WORK

Depth Estimation Most existing methods treat depth es-
timation as a supervised regression problem [10], however,
collecting per-pixel ground truth for laparoscopic imaging
is challenging. To overcome this limitation, Liu et al. [11]
introduced a self-supervised algorithm for dense depth esti-
mation in stereo endoscopy. The authors in [12] proposed a
geometry-aware network for motion estimation. By enforcing
consistency between left and right RGB images, Godard et
al. [13] produced results that outperformed contemporary
supervised methods.

Surgical Tool Segmentation Semantic segmentation of
robotic instruments has also attracted a lot of attention
in robot-assisted surgery research [14]. Some discriminative
models such as Naive Bayesian classifiers [15] and maximum
likelihood Gaussian Mixture Models [16] can be trained on
color features. More recently, the state of the art has increas-
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Fig. 2. An overview of our learning framework. The proposed architecture includes two tasks (image depth estimation and segmentation) and loss constraints
from both spatial and spectral perspectives across the tasks. The SDSNET generates both depth map and segmented map from the left image, while the Spatial
Transformer Network combines the depth map and the right image to reconstruct to left image for unsupervised depth estimation.

ingly focused on fully convolutional neural networks. The
authors in [17] used CNN for segmenting robotic tools.

Simultaneous Depth Estimation and Segmentation The
task of depth estimation and segmentation are usually tackled
separately, with few works unifing both tasks, especially for
laparoscopy. Most recent methods used RGB images as the
training data, for instance in EdgeStereo [18] the authors in-
corporated edge detection to accurately estimate depth changes
across object boundaries. In medical imaging, self-supervised
depth estimation was used to regularize the semantic segmen-
tation during knee arthroscopy [19].

III. METHODOLOGY

An overview of our proposed SDSNET can be found in
Fig. 3. We first combined the depth estimation and tool
segmentation tasks by sharing an encoder network, where
essential geometric features from the input images were ex-
tracted. After the encoder, the features flowed separately to
two branches (segmentation and depth estimation). By forcing
the disparity map to generate a reconstructed input image that
is consistent with the original, we could derive an accurate
disparity map for depth inference.

Depth Estimation Branch The depth estimation branch
was based on the general U-Net architecture [20], i.e. an
encoder-decoder network with skip connections, which repre-
sents local information as well as deep abstract features. The
size of the input batch was 1 × 3 × 192 × 384, where b was
the batch size, 3 was the number of channels and 192 × 384
was the size of the input image. A Resnet50 was adopted as
the encoder to extract features from the input color image.

The decoder consisted of five cascaded blocks of multiple
scales. Previously, multi-scale depth predictions and image
reconstruction used gradient locality of a bilinear sampler
[21], which was prone to create ‘holes’ and texture-copy
artifacts in large low-texture regions. In our work, similar to
[13], this problem is tackled by decoupling the resolutions
of the disparity maps and corresponding color images used

to compute the reprojection error. The lower resolution depth
maps were first upsampled to the input image resolution and
then reprojected and resampled. From the second block, the
output of each block was taken by the convolutional layer and
followed by a sigmoid activation function, which generated
the disparity map at each scale. In total, 4 scales were used
with output sizes 1×1×24×48, 1×1×48×96, 1×1×96×192,
1 × 1 × 192 × 384. The largest of these was the final disparity
map which was the same size as the input image.

The final disparity map (the sigmoid output) �̂ was con-
verted to a depth map by � = 1/(0�̂ + 1), in which 0 and 1
constrained � between 0.1 and 80 units.

Segmentation Branch The shared encoder features were
also fed into the segmentation map decoder, which consisted
of five convolutional layers and three upsampling layers to
interpolate the features to full image resolution. The first layer
was 1 × 256 × 6 × 12 and took the 1 × 2048 × 6 × 12 input
followed by an ELU activation function. The upsampling layer
interpolated the features to four times the input size. After the
third convolutional layer, the features were concatenated into
the corresponding layer from the depth estimation decoder to
perform feature fusion between the two branches. The size of
the segmentation subnetwork output was 1 × : × 192 × 384,
where : = 2 was the number of classes. In practice, the depth
decoder features were concatenated with the segmentation
branch decoder in the fourth block. We generated the surgical
instrument segmentation semi-ground truth by applying the
network from [22] pretrained on the EndoVis dataset [23].

Multi-Task Loss The network was trained end-to-end using
a multi-task loss function Cl

t , which was formed as

Cl
t = UdpCl

dp + UsgCl
sg (1)

where � l
3?

is the loss from the depth estimation branch and
� l
B6 is from semantic segmentation, as described below.
1) Depth Loss: In the depth estimation branch, the depth

loss Cl
dp consisted of the appearance matching loss Cl

ap and



3

Input left 

image

Convolution

Layer
Pooling 

Layer

Upsampling 

Layer
Sigmoid Concatenation Segmentation

Output

Depth Output

ConvBlock1

ConvBlock2
ConvBlock3

ConvBlock4

256
512

1024

2048

256
128

64
32 32 16 1

64

128

256

256 128
128

32 16 16 16

Encoder

Decoder

Fig. 3. The detailed architecture of SDSNET. The depth branch and the segmentation branch share the same encoder network. The features of the third
convolutional layer in the segmentation branch decoder are fused with the features from the fourth block in the depth branch decoder. We use only one
ConvBlock to represent all repeated blocks for better visualization .

disparity smoothness loss Cl
ds as:

Cl
3? =

4∑
B=1
Cl
B =

4∑
B=1
(Cl
0? + U3BCl

3B) (2)

where U3B was set to 0.001.
Appearance Matching Loss The appearance matching loss
Cl

ap forced the reconstructed image to be similar to the
corresponding training input and was computed for the higher
input resolution. During training, the autoencoder in the depth
estimation branch generated a disparity map �̂C from the
input left color image �;C . This map was then transformed
using an image sampler from the Spatial Transformer Network
(STN) [21], along with the right input image �AC (the counter-
part of �;C ), to reconstruct the left image � l∗C . This sampler
model used bilinear interpolation and the output pixel was the
weighted sum of four input pixels. This bilinear sampler was
locally fully differentiable and could be seamlessly integrated
into the fully convolutional architecture, in contrast to [24].
Hence, there was no need to simplify or approximate the cost
function. As in [25], we applied a combination of !1 loss and
structural similarity (SSIM) index as the photometric image
reconstruction cost Cl

ap. Training the depth estimation network
then required minimizing the reconstruction loss between the
reconstructed image � l∗ and the corresponding training input
� l, where # denotes the number of pixels.

Cl
ap =

1
#

∑
8, 9

W

2
(1 − SSIM(� l8 9 , � l∗8 9 )) + (1 − W)‖� l8 9 − � l∗8 9 ‖1 (3)

Similar to [13], the SSIM was simplified to a 3 × 3 block
filter rather than a Gaussian, and W was set to 0.85.

Disparity Smoothness Loss Smooth disparities were favored
by this loss, and since discontinuities usually occur at image

gradients [13], this cost was weighted by an edge-aware term
based on the image gradients m�.

Cl
ds =

1
#

∑
8 9

| mG �̂l
8 9 | 4

−|mG � l
8 9
|+ | mH �̂l

8 9 | 4
−|mH � l

8 9
|

(4)

2) Segmentation Loss: The segmentation branch only con-
siders the full resolution image to reduce the computational
complexity. For the segmentation subnetwork, given a se-
quence of input images and the corresponding sequence of
semi-ground truth segmentation annotations, we performed
end-to-end training by minimizing the normalized pixel-wise
cross-entropy loss [26], which is denoted as Cl

sg.

Cl
sg = −

#∑
8=1

Ĥ8 ∗ log(H8) (5)

where H8 , Ĥ8 are the predicted value, and semi-ground truth.
Training As there was no per-pixel depth ground truth label

available, the depth estimation relied on the image recon-
struction similarity, trained in self-supervised mode. For depth
estimation, the data augmentation was performed by flipping
50% the input images horizontally. For segmentation, the semi-
ground truth was provided for supervised training. The whole
SDSNET was trained end-to-end with the combination of
losses from each branch that involved the generation of a depth
map and segmentation map.

IV. EXPERIMENTS

Experimental Setup We evaluated our SDSNET on two
datasets: DB80 [27] and D ?>A [28]. For the depth estimation
branch, similar to [29], we used the SSIM index to evaluate
the unsupervised depth estimation. To evaluate the result of
the segmentation branch, we manually labeled 400 images
with the surgical tool ground truth and the segmentation
performance was assessed by the Jaccard index and the Dice
Score [20].



4

Fig. 4. Qualitative results on stereo pairs. From top to bottom: the left input image, the corresponding right image in the stereo pair, the predicted depth
map, and the segmentation result from (SDSNET).

TABLE I
SSIM SCORES ON THE DB80 TEST SET

Mean SSIM Std.SSIM

ELAS [31] 47.3 0.079
SPS [30] 54.7 0.092
V-Basic [27] 55.5 0.106
V-Siamese [27] 60.4 0.066
Monodepth [13] 58.4 0.114
Monodepth2 [29] 71.2 0.075
SDSNET without fusion (ours) 71.9 0.079
SDSNET with fusion (ours) 72.8 0.073

Baseline For depth estimation, we compared the results
to those from the Basic and Siamese architectures [27],
Monodepth2 [29], and two non-learning methods, SPS [30]
and ELAS [31]. For surgical instrument segmentation, results
from the SDSNET were compared with the popular U-Net
[20] architecture.

Implementation The SDSNET model was implemented in
PyTorch [32], with a batch size of 16 and an input/output
resolution of 192 x 384. The learning rate was set to 10−4 for
the first 15 epochs and dropped to 10−5 for the remainder. The
hyperparameters U3? and UB6 in Equation (1) were empirically
set to 10 and 1, respectively. The network was trained for 20
epochs using Adam optimizer [33] and the training took about
8 hours on a single NVIDIA 2080 Ti GPU.

V. RESULTS

Table I summarizes the SDSNET results as well as other
depth estimation methods, using the mean and standard de-
viation (std.) of the SSIM index. The SDSNET outperforms
the other methods. More specifically, it is 1.6% higher than
Monodepth2 [29] and 12.4% higher than the Siamese architec-

TABLE II
SEGMENTATION RESULTS ON THE DB80 TEST SET

IoU Dice Time

U-Net [20] 71.16 80.90 0.22
SDSNET (segmentation only) (ours) 73.34 84.13 0.30
SDSNET without fusion (ours) 73.44 84.59 0.38
SDSNET with fusion (ours) 74.92 85.63 0.35

ture [27]. This is a significant improvement and interestingly,
we achieve the best result when both the depth estimation
branch and the segmentation branch were fused together,
with the added benefit of surgical instrument segmentation
included.

Table II summarizes the segmentation results using the IoU
and Dice index. It can be seen that SDSNET is not only
computationally efficient but also produces superior segmen-
tation results 5.28% higher than U-Net [20] for IoU and
5.85% for Dice index. Table II also confirms that the use
of a fusion operation when performing depth estimation and
segmentation simultaneously can improve the segmentation
result. Example qualitative results are presented in Fig 4,
showing that SDSNET provides consistent depth estimation
and accurate segmentation simultaneously.

Generalization To validate the generalization of our net-
work, an additional experiment used the model trained on
the DB80 dataset but tested directly on the D ?>A dataset,
without retraining the whole network. Table III represents the
results of SDSNET and Monodepth2 in this experiment using
the SSIM index. Overall, SDSNET with fusion from both
segmentation and depth estimation branch achieved higher
SSIM index, confirming that the SDSNET generalizes well
across different datasets, while still achieving competitive
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TABLE III
SSIM SCORES ON THE D?>A TEST SET

Mean SSIM Std.SSIM

Monodepth2 [29] 76.67 0.047
SDSNET with fusion (ours) 77.53 0.041

performance compared to the recent state-of-the-art methods.

VI. CONCLUSIONS

In this work we have presented SDSNET, a joint learning
network that can simultaneously segment surgical tools and
estimate the depth for each pixel. The proposed fusion network
achieved state-of-the-art performance in both tasks. Besides,
the framework does not require any depth labels and segmen-
tation ground truth, and thus allows superior applicability on
large-scale in vivo video processing where ground truth for
per-pixel depth maps and manual segmentation labels are not
easy to obtain.
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