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Light-weight Deformable Registration using
Adversarial Learning with Distilling Knowledge

Minh Q. Tran, Tuong Do, Huy Tran, Erman Tjiputra, Quang D. Tran, Anh Nguyen

Abstract— Deformable registration is a crucial step in
many medical procedures such as image-guided surgery
and radiation therapy. Most recent learning-based methods
focus on improving the accuracy by optimizing the non-
linear spatial correspondence between the input images.
Therefore, these methods are computationally expensive
and require modern graphic cards for real-time deployment.
In this paper, we introduce a new Light-weight Deformable
Registration network that significantly reduces the com-
putational cost while achieving competitive accuracy. In
particular, we propose a new adversarial learning with
distilling knowledge algorithm that successfully leverages
meaningful information from the effective but expensive
teacher network to the student network. We design the
student network such as it is light-weight and well suitable
for deployment on a typical CPU. The extensively experi-
mental results on different public datasets show that our
proposed method achieves state-of-the-art accuracy while
significantly faster than recent methods. We further show
that the use of our adversarial learning algorithm is essen-
tial for a time-efficiency deformable registration method.
Finally, our source code and trained models are available
at https://github.com/aioz-ai/LDR ALDK.

Index Terms— Adversarial Learning, Deformable Regis-
tration, Knowledge Distillation, Light-weight Network, Time
Efficiency.

I. INTRODUCTION

Medical image registration is the process of systematically
placing separate medical images in a common frame of ref-
erence so that the information they contain can be effectively
integrated or compared [1]. Applications of image registration
include combining images of the same subject from different
modalities, aligning temporal sequences of images to com-
pensate for the motion of the subject between scans, aligning
images from multiple subjects in cohort studies, or navigating
with image guidance during interventions [2]–[10]. Since
many organs do deform substantially while being scanned, the
rigid assumption can be violated as a result of scanner-induced
geometrical distortions that differ between images. Therefore,
performing deformable registration is an essential step in many
medical procedures.
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Fig. 1. Comparison between typical deep learning-based methods for
deformable registration (a) and our approach using adversarial learning
with distilling knowledge for deformable registration (b). In our work, the
expensive Teacher Network is used only in training; the Student Network
is light-weight and inherits helpful knowledge from the Teacher Network
via our Adversarial Learning algorithm. Therefore, the Student Network
has high inference speed, while achieving competitive accuracy.

Recently, learning-based methods have become popular to
tackle the problem of deformable registration. These methods
can be split into two groups: (i) supervised methods that rely
on the dense ground-truth flows obtained by either traditional
algorithms or simulating intra-subject deformations [11]–[14].
Although these works achieve state-of-the-art performance,
they require a large amount of manually labeled training
data, which are expensive to obtain; and (ii) unsupervised
learning methods that use a similarity measurement between
the moving and the fixed image to utilize a large amount of un-
labelled data [15]–[17]. These unsupervised methods achieve
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competitive results in comparison with supervised methods.
However, their deformations are reconstructed without the
direct ground-truth guidance, hence leading to the limitation
of leveraging learnable information [17]. Furthermore, recent
unsupervised methods all share an issue of great complexity
as the network parameters increase significantly when multiple
progressive cascades are taken into account [16]. This leads to
the fact that these works can not achieve real-time performance
during inference while requiring intensively computational
resources when deploying.

In practice, there are many scenarios when medical image
registration are needed to be fast − consider matching pre-
operative and intra-operative images during surgery, interac-
tive change detection of CT or MRI data for a radiologist,
deformation compensation or 3D alignment of large histolog-
ical slices for a pathologist, or processing large amounts of
images from high-throughput imaging methods [18]. Besides,
in many image-guided robotic interventions, performing real-
time deformable registration is an essential step to register the
images and deal with organs that deform substantially [19].
Economically, the development of a CPU-friendly solution for
deformable registration will significantly reduce the instrument
costs equipped for the operating theatre, as it does not require
GPU or cloud-based computing servers, which are costly
and consume much more power than CPU. This will benefit
patients in low- and middle-income countries, where they face
limitations in local equipment, personnel expertise, and budget
constraints infrastructure [20]. Therefore, design an efficient
model which is fast and accurate for deformable registration
is a crucial task and worth for study in order to improve a
variety of surgical interventions.

In this paper, we propose a new deformable registration
method that can achieve competitive results with other state-
of-the-art approaches, while significantly decreasing the net-
work parameters and inference time (Fig. 1). Our principal
contribution is a robust adversarial learning algorithm that
leverages distilled knowledge from a teacher network to a
light-weight student model. Our observation is based on the
fact that although the teacher network achieves state-of-the-
art performance, it has a large number of parameters and
computationally expensive. Therefore, we only employ the
teacher network during the training period then use our ad-
versarial learning algorithm to leverage meaningful knowledge
of the teacher network to the student network. Apart from the
adversarial learning algorithm, we design a new light-weight
student network which significantly reduces the inference time,
making our deformable registration framework more suitable
for real-world medical procedures.

Our contributions can be summarised as follow:
• We propose a new adversarial learning with distilling

knowledge algorithm that can perform deformable reg-
istration effectively and timely.

• We design a new light-weight network to act as a stu-
dent network, which allows our system to achieve fast
inference time using just a typical CPU.

• We extensively evaluate our method on several datasets
to validate the results. Our source and trained models are
publicly available for reproducibility.

Next, we review the related work in Section II. We then
describe our adversarial learning with distilling knowledge al-
gorithm for light-weight deformable registration in Section III.
In Section IV, we present extensively experimental results
and compare our method with recent approaches. Finally, we
discuss and conclude the paper in Section V.

II. RELATED WORK

Deformable Registration. Medical image registration is a
popular research topic in medical imaging [1]–[6], [21]–[23].
Recently, lightweight methods for medical image registration
have explored in many tasks including: fluid registration [24],
surface registration [25], symmetric registration [26], [27],
electron microscopy registration [28], rigid registration [29],
elastic registration of soft tissues [30], x-ray/echo registra-
tion [31] and thoracic 4D CT registration [32]. To embark
upon, there are many approaches that try to find an op-
timal transformation. Myriad works develop tools such as
FAIR [33], ANTs [34], and Elastix [35], which iteratively
update the parameters of the defined alignment objective.
These optimization procedures are time consuming for prac-
tically clinical applications. With the recent rise of deep
learning, supervised methods are widely used in medical image
registration [12]–[14], [19], [36]–[39]. Despite their adequate
performance, they demand copious ground-truth alignment or
synthetic data that have to be generated with careful designs
to resemble the real ones.

To overcome the shortcoming of the supervised approaches,
unsupervised methods are introduced for deformable registra-
tion [15]–[17], [40]–[44]. Specifically, VoxelMorph [15] pre-
dicts a dense deformation using deconvolutional layers [45],
whereas VTN [17] proposes an end-to-end framework by
substituting the traditional affine stage by the one utilizing
in a convolutional neural network. By building on these two
base networks, RCN [16] outperforms state-of-the-art methods
by presenting recursive cascaded networks, in which every
cascade learns to perform a progressive deformation for the
current warped image. However, compared with the supervised
methods, deformations are reconstructed without the direct
ground-truth guidance, hence the learnable information of the
network is limited [17].

Adversarial Learning. Adversarial learning has shown its
effectiveness in improving the performance of many regis-
tration tasks. Indeed, it works as a powerful regularization
method in different supervised generators [46]–[52]. In [53],
the authors minimize an additional adversarial generator loss
that measures the divergence between the predicted and
the biomechanical-based simulated deformations. The authors
in [50] introduce an unsupervised adversarial similarity net-
work that automatically learns the similarity metric for the
deformable registration task without any ground-truth. Recent
studies have shown that adversarial data synthesis or aug-
mentation during the training process is effective to improve
model generalization and robustness [54]–[56]. The use of
adversarial learning makes the model output less biased and
leverages learnable parameters more efficiently. Different from
previous approaches that focus on regularization or augmenta-
tion purposes, we take advantage of well-learned deformations
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Fig. 2. An overview of our proposed Light-weight Deformable Registration (LDR) method using Adversarial Learning with Distilling Knowledge
(ALDK). Firstly, by using knowledge distillation, we extract the deformations from the Teacher Network as meaningful ground-truths. Secondly, we
design a light-weight student network, which has competitive speed. Finally, We employ the Adversarial Learning with Distilling Knowledge algorithm
to effectively transfer the meaningful knowledge of distilled deformations from the Teacher Network to the Student Network.

extracted from a cumbersome trained model, i.e., distilling
knowledge. Thereby, exploring how adversarial learning can
be used to improve the performance of our designed light-
weight student network.

Knowledge Distillation. Knowledge distillation is a process
of transferring knowledge from a cumbersome pretrained
model (i.e., teacher network) to a smaller light-weight one
(i.e., student network) [57]–[60]. The light-weight student
network is useful in cases where computational resources and
deployment costs need to be reduced during the inference
stage. For instance, to interpret the teacher model, an explainer
module is introduced by [58] to highlight the regions of an
input medical image that are important for the prediction of the
teacher model. In the deformable registration task, inspired by
knowledge distillation, we leverage the good pseudo guiding
deformations of the teacher model as useful ground-truths in
our adversarial learning algorithm to improve the performance
of the student network.

Unlike other approaches that mainly target the optimization
of the non-linear spatial correspondence between the input
images, we introduce a Light-weight Deformable Registration
network (LDR) that copes with challenges in model com-
plexity and deployment costs. Our light-weight network is
trained using a novel Adversarial Learning with Distilling
Knowledge algorithm (ALDK), allowing it to achieve state-
of-the-art performance while having fewer parameters and
significantly reducing the inference time.

III. METHODOLOGY

In this section, we describe our method for Light-weight
Deformable Registration using Adversarial Learning with Dis-
tilling Knowledge. Our method is composed of three main
components: (i) a Knowledge Distillation module which ex-
tracts meaningful deformations ϕt from the Teacher Network;
(ii) a Light-weight Deformable Registration (LDR) module
which outputs a high-speed Student Network; and (iii) an
Adversarial Learning with Distilling Knowledge (ALDK) al-
gorithm which effectively leverages teacher deformations ϕt

to the student deformations. An overview of our proposed
deformable registration method can be found in Fig. 2.

A. Background: Deformable Registration

We follow RCN [16] to define deformable registration task
recursively using multiple cascades. Let Im, If denote the
moving image and the fixed image respectively, both defined
over d-dimensional space Ω. A deformation is a mapping
ϕ : Ω → Ω. A reasonable deformation should be contin-
uously varying and prevented from folding. The deformable
registration task is to construct a flow prediction function F
which takes Im, If as inputs and predicts a dense deformation
ϕ that aligns Im to If using a warp operator ◦ as follows:

F(n)(I(n−1)
m , If ) = ϕ(n) ◦ F(n−1)(ϕ(n−1) ◦ I(n−2)

m , If ) (1)

where F(n−1) is the same as F(n), but in a different flow
prediction function. Assuming for n cascades in total, the final
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Fig. 3. The structure of our proposed Light-weight Deformable Registration student network. The number of channels is annotated above the
layer. Curved arrows represent skip paths (layers connected by an arrow are concatenated before transposed convolution). Smaller canvas means
lower spatial resolution.
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Fig. 4. The structure of the discriminator Dθ used in the Discrimination Loss (ldis) of our Adversarial Learning with Distilling Knowledge algorithm.

output is a composition of all predicted deformations, i.e.,

F(Im, If ) = ϕ(n) ◦ ... ◦ ϕ(1), (2)

and the final warped image is constructed by

I(n)m = F(Im, If ) ◦ Im (3)

In general, Equations 1 and 2 form the hypothesis function
F under the learnable parameter W,

F(Im, If ,W) = (vϕ, I(n)m ) (4)

where vϕ = [ϕ(1),ϕ(2), ...,ϕ(k), ...,ϕ(n)] is a vector contain-
ing predicted deformations of all cascades. Each deformation
ϕ(k) can be computed as

ϕ(k) = F (k)
(

I(k−1)
m , If ,Wϕ(k)

)
(5)

To estimate and achieve a good deformation, different
networks are introduced to define and optimize the learnable
parameter W [17].

B. Knowledge Distillation for Deformation
Knowledge distillation is the process of transferring knowl-

edge from a cumbersome model (teacher model) to a distilled
model (student model). The popular way to achieve this goal
is to train the student model on a transfer set using a soft
target distribution produced by the teacher model.

Different from the typical knowledge distillation methods
that target the output softmax of neural networks as the knowl-
edge [57], in the deformable registration task, we leverage
the teacher deformation ϕt as the transferred knowledge.
As discussed in [57], teacher networks are usually high-
performed networks with good accuracy. Therefore, our goal
is to leverage the current state-of-the-art Recursive Cascaded
Networks (RCN) [16] as the teacher network for extracting

meaningful deformations to the student network. The RCN
network contains an affine transformation and a large num-
ber of dense deformable registration sub-networks designed
by VTN [17]. Although the teacher network has expensive
computational costs, it is only applied during the training and
will not be used during the inference.

C. Light-weight Deformable Registration Network

In practice, recent deformation networks follow an encoder-
decoder architecture and use 3D convolution to progressively
down-sample the image, and deconvolution (transposed con-
volution) to recover spatial resolution [16], [17]. However,
this setup consumes a large number of parameters. Therefore,
the built models are computationally expensive and time-
consuming. To overcome this problem we design a new light-
weight student network as illustrated in Fig. 3.

In particular, the proposed light-weight network has four
convolution layers and three deconvolution layers. Each con-
volutional layer has a bank of 4× 4× 4 filters with strides of
2×2×2, followed by a ReLU activation function. The number
of output channels of the convolutional layers starts with
16 at the first layer, doubling at each subsequent layer, and
ends up with 128. Skip connections between the convolutional
layers and the deconvolutional layers are added to help refine
the dense prediction. The subnetwork outputs a dense flow
prediction field, i.e., a 3 channels volume feature map with
the same size as the input.

In comparison with the current state-of-the-art dense de-
formable registration network [17], the number of parameters
of our proposed light-weight student network is reduced ap-
proximately 10 times. In practice, this significant reduction
may lead to an accuracy drop. Therefore, we propose a new
Adversarial Learning with Distilling Knowledge algorithm to
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effectively leverage the teacher deformations ϕt to our intro-
duced student network, making it light-weight but achieving
competitive performance.

D. Adversarial Learning with Distilling Knowledge
Our adversarial learning algorithm aims to improve the

student network accuracy through the distilled teacher de-
formations extracted from the teacher network. The learning
method comprises a deformation-based adversarial loss Ladv

and its accompanying learning strategy (Algorithm 1).
Adversarial Loss. The loss function for the light-weight

student network is a combination of the discrimination loss
ldis and the reconstruction loss lres. However, the forward
and backward process through loss function is controlled by
the Algorithm 1. In particular, the last deformation loss Ladv

that outputs the final warped image can be written as:

Ladv = γlrec + (1− γ)ldis (6)

where γ controls the contribution between lrec and ldis. Note
that, the Ladv is only applied for the final warped image.

Discrimination Loss. In the student network, inspired by
WGAN-GP [47], the discrimination loss is computed in Equa-
tion 7.

ldis = ∥Dθ(ϕs)−Dθ(ϕt)∥22 + λ

(∥∥∥∇ϕ̂s
Dθ(ϕ̂s)

∥∥∥
2
− 1

)2

(7)
where λ controls gradient penalty regularization. The joint
deformation ϕ̂s is computed from the teacher deformation ϕt

and the predicted student deformation ϕs as follow:

ϕ̂s = βϕt + (1− β)ϕs (8)

where β control the effect of the teacher deformation.
In Equation 7, Dθ is the discriminator, formed by a neural

network with learnable parameters θ. The details of Dθ is
shown in Fig. 4. In particular, Dθ consists of six 3D convolu-
tional layers, the first layer is 128×128×128×3 and takes the
c×c×c×1 deformation as input. c is equaled to the scaled size
of the input image. The second layer is 64 × 64 × 64 × 16.
From the second layer to the last convolutional layer, each
convolutional layer has a bank of 4× 4× 4 filters with strides
of 2× 2× 2, followed by a ReLU activation function except
for the last layer which is followed by a sigmoid activation
function. The number of output channels of the convolutional
layers starts with 16 at the second layer, doubling at each
subsequent layer, and ends up with 256. Basically, this is
to inject the condition information with a matched tensor
dimension and then leave the network learning useful features
from the condition input. The output of the last neural layer is
the mean feature of the discriminator, denoted as M . Note that
in the discrimination loss, a gradient penalty regularization is
applied to deal with critic weight clipping which may lead to
undesired behavior in training adversarial networks.

Reconstruction Loss. The reconstruction loss lrec is an im-
portant part of a deformation estimator. Follow the VTN [17]
baseline, the reconstruction loss is written as:

lrec(Ihm, If ) = 1− CorrCoef [Ihm, If ] (9)

Algorithm 1: Adversarial Learning Strategy
Input: The number of generator iterations per

discriminator iteration ngen. The batch size b.
Initial generator parameters W0. Initial
discriminator parameters θ0.

while (W AND θ) has not converged do
for t = 1 to ngen do

for i = 1 to b do
Sample x real data images in the dataset.
l
(i)
rec ← Compute reconstruction loss of i-th
sample using Equation 9.

Backward lrec.
for i = 1 to b do

Sample x real data images in the dataset.
l
(i)
rec ← Compute reconstruction loss of i-th
sample using Equation 9.
ϕ̂i

s ← Compute joint deformation of the final
deformation of i-th sample using Equation 8.
l
(i)
dis ← Compute discrimination loss of the final
deformation of i-th sample using Equation 7.
L(i)
adv ← Compute adversarial loss of i-th
sample using Equation 6.

Backward Ladv .

where

CorrCoef [I1, I2] =
Cov[I1, I2]√

Cov[I1, I1]Cov[I2, I2]
(10)

Cov[I1, I2] =
1

|ω|
∑
x∈ω

I1(x)I2(x)−
1

|ω|2
∑
x∈ω

I1(x)
∑
y∈ω

I2(y)

(11)
where CorrCoef [I1, I2] is the correlation between two im-
ages I1 and I2, Cov[I1, I2] is the covariance between them.
ω denotes the cuboid (or grid) on which the input images are
defined.

Learning Strategy. The forward and backward of the
aforementioned Ladv is controlled by the adversarial learning
strategy described in Algorithm 1.

In our deformable registration setup, the role of real data and
attacking data is reversed when compared with the traditional
adversarial learning strategy. In adversarial learning [47], the
model uses unreal (generated) images as attacking data, while
image labels are ground truths. However, in our deformable
registration task, the model leverages the unreal (generated)
deformations from the teacher as attacking data, while the
image is the ground truth for the model to reconstruct the input
information. As a consequence, the role of images and the
labels are reversed in our setup. Since we want the information
to be learned more from real data, the generator will need to
be considered more frequently. Although the knowledge in
the discriminator is used as attacking data, the information
it supports is meaningful because the distilled information
is inherited from the high-performed teacher model. With
these characteristics of both the generator and discriminator,
the light-weight student network is expected to learn more
effectively and efficiently.



6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

IV. EXPERIMENTS

A. Datasets

We generally follow [16], [17] to conduct our experiments.
In particular, we train our method on two types of scans: Liver
CT scans and Brain MRI scans.

For Liver CT scans, we use 5 datasets:
1) LiTS [61] contains 131 liver segmentation scans.
2) MSD [62] has 70 liver tumor CT scans, 443 hepatic

vessels scans, and 420 pancreatic tumor scans.
3) BFH [17] is a smaller dataset with 92 scans.
4) SLIVER [63] is a challenging dataset with 20 liver

segmentation scans and annotated by 3 expert doctors.
5) LSPIG (Liver Segmentation of Pigs) contains 17 pairs

of CT scans from pigs, provided by the First Affiliated
Hospital of Harbin Medical University.

For Liver CT scans, all methods are trained on the combination
of MSD and BFH datasets with 10252 (1025 = 70 + 443 +
420 + 92) image pairs in total. The SLIVER (20× 19 pairs),
LiTS (131 × 130 pairs), and LSPIG (34 intra-subject pairs)
datasets are used for evaluation.

For Brain MRI scans, we use 4 datasets:
1) ADNI [64] contains 66 scans.
2) ABIDE [65] contains 1287 scans.
3) ADHD [66] contains 949 scans.
4) LPBA [67] has 40 scans, each featuring a segmentation

ground truth of 56 anatomical structures.
For Brain MRI scans, as in [16], [17], the ADNI, ABIDE, and
ADHD dataset are used for training, and the LPBA dataset is
used for testing.

B. Experimental Setup

Evaluation Metric. As standard practice [16], we use the
Dice score to quantify the performance of all models. The
Dice score can be computed as:

Dice(A,B) = 2 · |A ∩B|
|A|+ |B|

(12)

Also, the Jaccard correlation coefficient (Jacc) between the
warped segmentation and the ground-truth can be utilized as
an auxiliary metric [17].

Jacc(A,B) =

∣∣∣∣A ∩B

A ∪B

∣∣∣∣ (13)

where A,B are the set of voxels the organ consists of.
To verify the effectiveness of all models in practice, we

also report the performance in terms of speed (CPU and GPU
time - second/sample) and the number of network parameters
during the inference stage.

Baseline. We compare our proposed method with the fol-
lowing recent deformable registration methods:

• ANTs SyN [34] and Elastix B-spline [35] are methods
that find an optimal transformation by iteratively update
the parameters of the defined alignment.

• VoxelMorph [15] predicts a dense deformation in an
unsupervised manner by using deconvolutional layers.

• VTN [17] is an end-to-end learning framework that uses
convolutional neural networks to register 3D medical
images, especially large displaced ones.

• RCN [16] is a recent recursive deep architecture that
utilizes learnable cascade and performs progressive de-
formation for each warped image.

It is worth noting that RCN is cascaded VTN. Therefore,
both RCN and VTN can be considered as state-of-the-art
approaches. In practice, we keep the architecture of all teacher
networks unchanged.

Implementation. We implement our network using Ten-
sorFlow [68]. The network is trained with a batch size of
4 on 11GB Nvidia 1080 Ti. The training stage runs for
105 iterations and takes approximately 8 hours with Adam
optimizer [69]. The learning rate is set to 10−4. Based on
validation results, the parameters ngen, β, λ, and γ are set to
3, 0.1, 1.0, and 0.5 for CT scans and 3, 0.05, 0.9, and 0.3 for
MRI scans, respectively.

Hardware Setup. Since measuring the inference time is
crucial to compare the effectiveness of all methods in practice,
we test and report the inference time of all baselines and our
method on the same CPU and GPU. They are Intel Xeon
E5-2690 v4 CPU and Nvidia GeForce GTX 1080 Ti GPU,
respectively. No overclocking is used.

C. Results
Table I summarizes our overall performance, testing speed,

and the number of parameters compared with recent state-of-
the-art methods in the deformable registration task. The re-
sults clearly show that our proposed Light-weight Deformable
Registration network (LDR) accompanied by our Adversar-
ial Learning with Distilling Knowledge (ALDK) algorithm
significantly reduces the inference time and the number of
parameters during the inference phase. Moreover, the proposed
method achieves competitive accuracy with the most recent
highly performed but expensive networks, such as VTN or
VoxelMorph. We notice that this improvement is consistent
across all experiments on different datasets SLIVER, LiTS,
LSPIG, and LPBA.

In particular, we observe that on the SLIVER dataset the
Dice score of our best model with 3 cascades (3-cas LDR
+ ALDK) is 0.3% less than the best result of 3-cas VTN +
Affine, while our inference speed is ∼ 21 times faster on
a CPU and the parameters used during inference is ∼ 88
times smaller. Including benchmarking results in three other
datasets, i.e., LiTS, LSPIG, and LPBA, our proposed light-
weight model only trades off an average of 0.5% in Dice score
and 1.25% in Jacc score for a significant gain of speed and a
massive reduction in the number of parameters. We also notice
that our method is the only work that achieves the inference
time of approximately 1s on a CPU. This makes our method
well suitable for deployment as it does not require expensive
GPU hardware for inference.

D. Ablation Study
Effectiveness of ALDK. Table II summarizes the effec-

tiveness of our proposed Adversarial Learning with Distilling
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Architecture
SLIVER LiTS LSPIG LPBA

CPU
(sec)

GPU
(sec)

#ParamsDice Jacc Dice Jacc Dice Jacc Dice Jacc
(%) (%) (%) (%) (%) (%) (%) (%)

ANTs SyN [34] 89.5 81.2 86.2 − 82.5 − 70.8 − 748 − −
Elastix B-spline [35] 91.0 83.7 86.3 − 82.5 − 67.5 − 115 − −
VoxelMorph [15] 91.3 84.0 87.0 76.2 83.3 − 68.8 − 14 0.31 14.47M

VTN (ADDD) [17] 94.2 88.6 89.7 − 84.6 − 70.1 − 26 0.28 98.90M

1-cas RCN [16] 91.4 86.1 87.0 78.4 83.3 72.8 68.6 53.4 10 0.20 42.41M

2-cas RCN [16] 93.5 87.9 89.1 80.5 84.3 73.7 69.7 54.2 18 0.31 70.67M

3-cas RCN [16] 94.3 89.3 90.0 82.7 85.0 74.4 70.3 55.0 26 0.40 98.89M

1-cas LDR + ALDK (ours) 91.2 83.6 86.7 76.4 83.7 72.3 68.3 53.0 0.69 0.16 0.56M

2-cas LDR + ALDK (ours) 93.2 86.0 88.6 78.7 84.1 73.2 69.0 53.5 0.98 0.24 0.84M

3-cas LDR + ALDK (ours) 94.0 87.1 89.4 81.1 84.6 73.9 69.6 54.3 1.24 0.30 1.12M

TABLE I
COMPARISON AMONG OUR PROPOSED MODEL WITH RECENT APPROACHES.

Architecture
SLIVER LiTS LSPIG LPBA

CPU
(sec)

#ParamsDice Jacc Dice Jacc Dice Jacc Dice Jacc
(%) (%) (%) (%) (%) (%) (%) (%)

1-cas LDR 87.8 78.4 82.9 71.2 75.9 67.4 66.8 51.4 0.69 0.56M

1-cas LDR + ALDK 91.2(+3.4) 83.6(+5.2) 86.7(+3.8) 76.4(+5.2) 83.7(+7.8) 72.3(+4.9) 68.3(+1.5) 53.0(+1.6) 0.69 0.56M

2-cas LDR 89.2 81.1 85.5 74.2 78.6 69.9 67.9 52.2 0.98 0.84M

2-cas LDR + ALDK 93.2(+4.0) 86.0(+4.9) 88.6(+3.1) 78.7(+4.5) 84.1(5 + 5.5) 73.2(+3.3) 69.0(+1.1) 53.5(+1.3) 0.98 0.84M

3-cas LDR 90.9 83.2 87.9 77.6 81.2 71.5 68.5 52.7 1.24 1.12M

3-cas LDR + ALDK 94.0(+3.1) 87.1(+3.9) 89.4(+1.5) 81.1(+3.5) 84.6(+3.4) 73.9(+2.4) 69.6(+1.1) 54.3(+1.6) 1.24 1.12M

TABLE II
THE COMPARISON WHEN OUR LIGHT-WEIGHT DEFORMABLE REGISTRATION NETWORK IS USED WITH AND WITHOUT THE ADVERSARIAL LEARNING

WITH DISTILLING KNOWLEDGE PROCEDURE.

Knowledge (ALDK) when being integrated into the light-
weight student network. Note that LDR without ALDK is
trained using only the reconstruction loss in an unsuper-
vised learning setup. From this table, we clearly see that
our proposed ALDK algorithm improves the Dice score of
the LDR tested in the SLIVER dataset by +3.4%, +4.0%,
and +3.1% for 1-cas, 2-cas, and 3-cas setups, respectively.
Additionally, using ALDK also increases the Jacc score by
+5.2%, +4.9%, and 3.9% for 1-cas LDR, 2-cas LDR, and 3-
cas LDR. These results verify the stability of our adversarial
learning algorithm in the inference phase, under the differences
evaluation metrics, as well as the number of cascades setups.
Furthermore, Table II also clearly shows the effectiveness
and generalization of our ALDK when being applied to the
student network. Since the deformations extracted from the
teacher are used only in the training period, our adversarial
learning algorithm fully maintains the speed and the number
of parameters for the light-weight student network during
inference. All results indicate that our student network incor-
porated with the adversarial learning algorithm successfully
achieves the performance goal, while maintaining the efficient
computational cost of the light-weight setup.

Accuracy vs. Complexity. Fig. 5 demonstrates the exper-
imental results from the SLIVER dataset between our LDR
+ ALDK and the baseline VTN [17] under multiple recursive

cascades setup on both CPU and GPU. On the CPU (Fig. 5-a),
in terms of the 1-cascade setup, the Dice score of our method is
0.2% less than VTN while the speed is ∼ 15 times faster. The
more the number of cascades is leveraged, the higher the speed
gap between our proposed LDR + ALDK and the baseline
VTN, e.g. the CPU speed gap is increased to ∼ 21 times in
a 3-cascades setup. We also observe the same effect on GPU
(Fig. 5-b), where our method achieves slightly lower accuracy
results than VTN, while clearly reducing the inference time.
These results indicate that our proposed LDR + ALDK can
work well with the teacher network to improve the accuracy
while significantly reducing the inference time on both CPU
and GPU in comparison with the baseline VTN network.

E. Visualization

Fig. 6 illustrates the visual comparison among 1-cas LDR,
1-cas LDR + ALDK, and the baseline 1-cas RCN. Five
different moving images in a volume are selected to apply
the registration to a chosen fixed image. It is important to
note that though the sections of the warped segmentations can
be less overlap with those of the fixed one, the segmentation
intersection over union is computed for the volume and not
the sections. In the segmented images in Fig. 6, besides the
matched area colored by white, we also marked the miss-
matched areas by red for an easy-to-read purpose.
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Fig. 5. Plots of Dice score and Inference speed with respect to the number of cascades of the baseline Affine + VTN and our proposed LDR
+ ALDK. (a) for CPU speed and (b) for GPU speed. Note that results are reported for the SLIVER dataset; bars represent the CPU speed; lines
represent the Dice score. All methods use an Intel Xeon E5-2690 v4 CPU and Nvidia GeForce GTX 1080 Ti GPU for inference.

From Fig. 6, we can see that the segmentation resutls of
1-cas LDR network without using ALDK (Fig. 6-a) contains
many miss-matched areas (denoted in red color). However,
when we apply ALDK to the student network, the registration
results are clearly improved (Fig. 6-b). Overall, our LDR +
ALDK visualization results in Fig. 6-b are competitive with the
baseline RCN network (Fig. 6-c). This visualization confirms
that our proposed framework for deformable registration can
achieve comparable results with the recent RCN network.

F. Student Networks Comparison

Student Network
SLIVER LiTS

CPU

(sec)

GPU

(sec)
#ParamsDice Jacc Dice Jacc

(%) (%) (%) (%)

LDR (ours) 91.2 83.6 86.7 76.4 0.69 0.16 0.56M

Mobilenet [70] 79.4 75.9 80.0 72.1 4 0.17 1.25M

U-Net [71] 86.2 81.8 84.2 75.5 11 0.18 28.28M

U-Net++ [72] 87.7 83.1 85.5 75.9 12 0.18 29.31M

VoxelMorph [15] 91.6 84.5 87.2 76.4 14 0.31 14.47M

VTN [17] 89.5 81.6 85.9 76.1 8 0.18 28.25M

RCN [16] 91.7 86.4 87.1 78.6 10 0.20 42.41M

TABLE III
THE EFFECTIVENESS OF DIFFERENT NETWORK ARCHITECTURES WHEN

WE USE THEM AS THE STUDENT NETWORK UNDER OUR ADVERSARIAL

LEARNING WITH DISTILLING KNOWLEDGE ALGORITHM.

The student network plays an important role in our approach
as it receives the transferred knowledge from the teacher
network during the adversarial learning process. In practice,
the student network must also be light-weight to have a fast
inference time while being able to maintain the accuracy from
the teacher network. Our student LDR network is designed
based on the popular encoder-decoder U-Net [71] architecture.
In this study, we show the comparison between different

network architectures when we use them as the student net-
work. In particular, we compare our LDR network with the
following works: the classical U-Net [71] and U-Net++ [72],
the popular light-weight network for computer vision task, i.e.,
Mobilenet [70], and different networks in recent deformation
registration tasks: VoxelMorph [15], VTN [17], and RCN [16].

Table III shows the effectiveness of our introduced light-
weight student network in comparison with different other
architectures when we use them as the student network under
ALDK. Particularly, our LDR achieves comparative results
with other high-complexity architectures such as VoxelMorph
and RCN. Moreover, our LDR also outperforms U-Net and
VTN by a fair margin. We notice that while the accuracy of
our LDR is competitive or better than other networks, the
inference time and the number of parameters in our LDR
network is significantly lower. It is also worth noting that,
compared to Mobilenet, which is a well-known light-weight
architecture for computer vision tasks, our LDR network
outperforms Mobilenet in both accuracy and running time
by a large margin. These results indicate that our LDR is a
portable architecture, and it works well with ALDK to reserve
the accuracy of the teacher network.

Correlation between student and teacher architecture.
Basically, our proposed ALDK can leverage the deformations
extracted from any high-performed teacher model that can
extract distilled deformations to improve the student score.
However, according to [73]–[75], the knowledge distillation-
based algorithm is more effectively utilized when both the
student and teacher have similarities in learning behavior. As
shown in Table III, VTN [17], VoxelMorph [15], RCN [16]
achieve good results when we use them as student models
since their architectures are very similar to the RCN teacher
model. From Table III, we can see that MobileNet [70]
achieves less improvement than other students when ALDK is
applied since its architecture does not fit well with the teacher
model.

Student Network Complexity. Through the experimental
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(a) LDR (b) LDR + ALDK (ours) (c) RCN

Fig. 6. The visualization comparison between our LDR (a), LDR + ALDK (b), and the baseline RCN (c). The left images are sections of the warped
images; the right images are sections of the warped segmentation (white color represents the matched areas between warped image and fixed
image, red color denotes the miss-matched areas). The segmentation visualization indicates that our proposed LDR + ALDK (b) method reduces
the miss-matched areas of the student network LDR (a) significantly. Best viewed in color.

results, we found out that apart from the correlation between
student and teacher model, the complexity of the student
network also plays an essential role in improving the results.
Since we use adversarial training to transfer the knowledge
from the teacher model to the student network, using some
cumbersome network may cause difficulty in this process
(in adversarial learning, bigger networks may not always
converge well because the training optimizes the equilibrium
between generator and discriminator loss [47]). As a result,
although U-Net, U-Net++ and our LDR share encoder-decoder
architecture, U-Net and U-Net++ are much bigger than our
LDR, hence it is more challenging for them to learn the
deformation from the teacher model through the adversarial
training process.

G. Teacher Networks Analysis

Table IV illustrates the effectiveness of different models
when we use them as the teacher network. We use Voxel-
Morph [15], ADDD [17], and RCN [16] as the teacher model
since they have high performance in deformable registration.
The 1-cas LDR is used as the student network. We also show
the mean of the number of voxels, with non-positive Jacobian

determinants for all flows in each dataset. From Table IV,
we can see that our LDR student network can work well with
different teacher models. We achieve a consistent improvement
on both SLIVER, LiTS, LSPIG, and LPBA datasets. This
table also confirms that the use of teacher model and our
ALDK is essential to improve the accuracy of the deformation
registration task.

To further evaluate the results, as in VoxelMorph [15],
we analyse the smoothness of deformations extracted from
a model using the distortion of the deformation. Table IV also
shows the quality of the deformation based on the smoothness
calculated by the non-positive Jacobian determinant Jϕ. The
smoothness of deformation is defined by the distortion which
is computed by the number of voxels in deformation with non-
positive Jacobian determinants. The smaller Jϕ is, the better
the model as it has less distortion. Table IV shows that the
smoothness of the deformation using our LDR is improved
gradually when the teacher contains the smooth regularizer
(VoxelMorph) or has invertibility (VTN, RCN). This confirms
that if the teacher contains deformation smoothing techniques
to deal with the distortion problem, then our student network
can inherit them during the adversarial learning process. To
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Network Teacher Model
SLIVER LiTS LSPIG LPBA

Dice (%) Jacc (%) |Jϕ| ≤ 0 Dice (%) Jacc (%) |Jϕ| ≤ 0 Dice (%) Jacc (%) |Jϕ| ≤ 0 Dice (%) Jacc (%) |Jϕ| ≤ 0

LDR None 87.8 78.4 59, 025 82.9 71.2 39, 870 75.9 67.4 27, 856 66.8 51.4 24

VoxelMorph [15] None 91.3 84.0 51, 799 87.0 76.2 35, 259 83.3 72.5 22, 727 68.8 52.9 15

LDR + ALDK VoxelMorph [15] 88.6 80.2 54, 271 84.4 73.7 37, 372 78.2 69.1 24, 020 67.4 51.6 17

VTN [17] None 91.4 86.6 46, 213 87.0 77.9 31, 576 83.2 72.4 14, 122 68.5 53.3 8

LDR + ALDK VTN [17] 90.1 81.8 48, 284 85.3 74.8 36, 421 81.6 70.8 16, 675 67.9 52.1 8

RCN [16] None 91.4 86.1 40, 005 87.0 78.4 24, 129 83.3 72.8 14, 087 68.6 53.4 0

LDR + ALDK RCN [16] 91.2 83.6 43, 625 86.7 76.4 24, 903 83.7 72.3 14, 231 68.3 53.0 2

TABLE IV
ANALYSIS AND COMPARISON WHEN USING DIFFERENT TEACHER MODELS. NOTE THAT WE USE 1-CASCADE IN THIS EXPERIMENT AND ALL

BASELINES ARE REPRODUCED WITH THE SAME HARDWARE SETUP.

conclude, our LDR+ALDK can effectively learn from differ-
ent teacher networks. Although the student network can not
outperform the teacher network, the use of the teacher network
is essential as it clearly helps improve the accuracy of the
deformable registration task in different datasets.

V. DISCUSSION AND CONCLUSION

We introduce a Light-weight Deformable Registration
(LDR) network that significantly reduces the model complex-
ity while achieving competitive accuracy. We show that by
combining our LDR with the proposed Adversarial Learning
with Distilling Knowledge (ALDK) algorithm, our framework
can effectively leverage the knowledge of the effective but
computationally expensive teacher network to the student
network, hence ensuring the student network is light-weight
and novel. Currently, our deformable registration framework
relies on the teacher model to provide the master knowledge.
Although the teacher model is complex, it is only be used
during the training process and does not affect the inference
time of the light-weight student network.

The extensive experiments confirm that our proposed LDR
with ALDK successfully balances the trade-off between the
computational costs and model accuracy for the deformable
registration task. In the future, we would like to improve
ALDK by utilizing more than one teacher network. Further-
more, investigating new light-weight student architectures that
can achieve real-time speed on the CPU is also an interesting
research direction. Finally, our source code and trained models
are available for reproducibility and further studies.
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