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Abstract. Depth estimation is a crucial step for image-guided interven-
tion in robotic surgery and laparoscopic imaging system. Since per-pixel
depth ground truth is difficult to acquire for laparoscopic image data,
it is rarely possible to apply supervised depth estimation to surgical
applications. As an alternative, self-supervised methods have been intro-
duced to train depth estimators using only synchronized stereo image
pairs. However, most recent work focused on the left-right consistency in
2D and ignored valuable inherent 3D information on the object in real
world coordinates, meaning that the left-right 3D geometric structural
consistency is not fully utilized. To overcome this limitation, we present
M3Depth, a self-supervised depth estimator to leverage 3D geometric
structural information hidden in stereo pairs while keeping monocular in-
ference. The method also removes the influence of border regions unseen
in at least one of the stereo images via masking, to enhance the corre-
spondences between left and right images in overlapping areas. Intensive
experiments show that our method outperforms previous self-supervised
approaches on both a public dataset and a newly acquired dataset by a
large margin, indicating a good generalization across different samples
and laparoscopes.
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1 Introduction

Perception of 3D surgical scenes is a fundamental problem in computer assisted
surgery. Accurate perception, tissue tracking, 3D registration between intra- and
pre-operative organ models, target localization and augmented reality [15, 8] are
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predicated on having access to correct depth information. Range finding sen-
sors such as multi-camera systems or LiDAR that are often employed in au-
tonomous systems and robotics are not convenient for robot-assisted minimally
invasive surgery because of the limited port size and requirement of steriliza-
tion. Furthermore, strong ‘dappled’ specular reflections as well as less textured
tissues hinder the application of traditional methods [16]. This has led to the
exploration of learning-based methods, among which fully convolutional neural
networks (CNNs) are particularly successful [1, 22].

Since it is challenging to obtain per-pixel ground truth depth for laparoscopic
images, there are far fewer datasets in the surgical domain compared with main-
stream computer vision applications [2, 9]. It is also not a trivial task to transfer
approaches that are based on supervised learning to laparoscopic applications
due to the domain gap. To overcome these limitations, view-synthesis methods
are proposed to provide self-supervised learning for depth estimation [10, 15],
with no supervision via per-pixel depth data. Strong depth prediction baselines
have been established in [3, 4, 11]. However, all of these methodologies employed
left-right consistency and smoothness constraints in 2D, e.g. [3, 5, 7], and ignored
the important 3D geometric structural consistency from the stereo images.

Recently, a self-supervised semantically-guided depth estimation method was
proposed to deal with moving objects [13], which made use of mutually benefi-
cial cross-domain training of semantic segmentation. Jung et al. [12] extended
this work by incorporating semantics-guided local geometry into intermediate
depth representations for geometric representation enhancement. However, se-
mantic labels are not common in laparoscopic applications except for surgical
tool masks, impeding the extension of this work. Mahjourian et al. [17] pre-
sented an approach for unsupervised learning of depth by enforcing consistency
of ego-motion across consecutive frames to infer 3D geometry of the whole scene.
However, in laparoscopic applications, the interaction between the surgical tools
and tissue creates a dynamic scene, leading to failure of local photometric and
geometric consistency across consecutive frames in both 2D and 3D. Neverthe-
less, the 3D geometry inferred from left and right synchronized images can be
assumed identical, allowing adoption of 3D- as well as 2D-loss.

In this paper, we propose a new framework for self-supervised laparoscopic
image depth estimation called M3Depth, leveraging not only the left-right consis-
tency in 2D but also the inherent geometric structural consistency of real-world
objects in 3D (see section 2.2 for the 3D geometric consistency loss), while en-
hancing the mutual information between stereo pairs. A U-Net architecture [20]
was employed as the backbone and the network was fed with only left image
as inputs but was trained with the punitive loss formed by stereo image pairs.
To cope with the unseen areas at the image edges that were not visible in both
cameras, blind masking was applied to suppress and eliminate outliers and give
more emphasis to feature correspondences that lay on the shared vision field.
Extensive experiments on both a public dataset and a new experimental dataset
demonstrated the effectiveness of this approach and a detailed ablation study
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indicated the respective positive influence of each proposed novel module on the
overall performance.

2 Methodology

2.1 Network Architecture
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Fig. 1. Overview of the proposed self-supervised depth estimation network. ResNet18
was adopted as the backbone and received a left image from a stereo image pair as
the input. Left and right disparity maps were produced simultaneously and formed
2D losses with the original stereo pair. 3D point clouds were generated by applying
the intrinsic parameters of the camera and iterative closest point loss was calculated
between them. Blind masks were applied to the 2D disparity maps to remove outliers
from areas not visible in both cameras.

Network Architecture The backbone of the M3Depth followed the general U-
Net [20] architecture, i.e. an encoder-decoder network, in which an encoder was
employed to extract image representations while a decoder with convolutional
layer and upsampling manipulation was designed to recover disparity maps at
the original scale. Skip connections were applied to obtain both deep abstract
features and local information. To keep a lightweight network, a ResNet18 [6]
was employed as the encoder with only 11 million parameters. To improve the
regression ability of the network from intermediate high-dimensional features
maps to disparity maps, one more ReLU [18] activation function and a convolu-
tional layer with decreased last latent feature map dimension were added before
the final sigmoid disparity prediction. Similar to Monodepth1 [3], in M3Depth,
the left image I l of a stereo image pair (I l, I r ∈ Rh×w×3

+ ) was always the in-

put and the framework generated two distinct left and right disparity maps d l,
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d r ∈ Rh×w
+ simultaneously, i.e. Z : I l 7→ (d l,d r). Given the camera focal length

f and the baseline distance b between the cameras, left and right depth maps
D l,Dr ∈ Rh×w

+ could then be trivially recovered from the predicted disparity,

(D l,Dr)=bf /(d l, d r). h and w denote image height and width. Full details of
the architecture are presented in the supplementary material.

Image Reconstruction Loss in 2D With the predicted disparity maps and
the original stereo image pair, left and right images could then be reconstructed
by warping the counter-part RGB image with the disparity map mimicking op-
tical flow [3] [14]. Similar to Monodepth1 [3], an appearance matching loss Lap,
disparity smoothness loss Lds and left-right disparity consistency loss L2D

lr were
used to encourage coherence between the original input and reconstructed im-
ages (I l∗, I r∗) as well as consistency between left and right disparities while
forcing disparity maps to be locally smooth.
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1
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ij | (3)

where N is the number of pixels and γ was set to 0.85. Note that 2D losses were
applied on both left and right images but only equations for the right image are
presented here.

2.2 Learning 3D Geometric Consistency

Instead of using the inferred left and right disparities only to establish a map-
ping between stereo coordinates and generate reconstructed original RGB input
images, a loss function was also constructed that registered and compared left
and right point clouds directly to enforce the 3D geometric consistency of the
whole scene. The disparity maps of the left and right images were first converted
to depth maps and then backprojected to 3D coordinates to obtain left and
right surgical scene point clouds (P l,P r ∈ Rhw×3) by multiplying the depth
maps with the intrinsic parameter matrix (K ). The 3D consistency loss em-
ployed Iterative Closest Point (ICP) [17, 21], a classic rigid registration method
that derives a transformation matrix between two point clouds by iteratively
minimizing point-to-point distances between correspondences.

From an initial alignment, ICP alternately computed corresponding points
between two input point clouds using a closest point heuristic and then recom-
puted a more accurate transformation based on the given correspondences. The
final residual registration error after ICP minimization was output as one of the
returned values. More specifically, to explicitly explore global 3D loss, the ICP
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loss at the original input image scale was calculated with only 1000 randomly
selected points to reduce the computational workload.

2.3 Blind Masking

Some parts of the left scene were not visible in the right view and vice versa,
leading to non-overlapping generated point clouds. These areas are mainly lo-
cated at the left edge of the left image and right edge of the right image after
rectification. Depth and image pixels in those area had no useful information
for learning, either in 2D and 3D. Our experiments indicated that retaining the
contribution to the loss functions for such pixels and voxels degraded the overall
performance. Many previous approaches solved this problem by padding these
areas with zeros [3] or values from the border [4], but this can lead to edge
artifacts in depth images [17].

To tackle this problem, we present a blind masking module Ml,r that sup-
pressed and eliminated these outliers and gave more emphasis to correspondences
between the left and right views. First, a meshgrid was built with the original
left image pixel coordinates in both horizontal Xgrid and vertical Ygrid directions.
Then the Xgrid was shifted along the horizontal direction using the right dispar-
ity map d r to a get a new grid X ′

grid, which was then stacked with Ygrid to
form a new meshgrid. Finally, grid sampling was employed on the new meshgrid
with the help of the original left image coordinates, from which the pixels that
were not covered by the right view for the current synchronized image pair were
obtained. By applying the blind masking on the depth maps for the stereo 3D
point cloud generation, a 3D alignment loss was obtained as follows.

M l,r
ij =

{
1, (dl,r

ij + Xij) ∈ {X}
0, (dl,r

ij + Xij) /∈ {X}
(4)

P l,r = backproj(dl,r,K ,M l,r) (5)

L3D
gc = ICP(P l,P r) (6)

2.4 Training Loss

Pixel-wise, gradient-based 2D losses and point cloud-based 3D losses were ap-
plied to force the reconstructed image to be identical to the original input while
encouraging the left-right consistency in both 2D and 3D to derive accurate dis-
parity maps for depth inference. Finally, an optimization loss used a combination
of these, written as:

Ltotal = (Lr
2D + Ll

2D) + L3D
lr

= αap(Lr
ap + Ll

ap) + αds(Lr
ds + Ll

ds) + α2D
lr (L2D(r)

lr + L2D(l)
lr ) + βL3D

gc

(7)

where α∗ and β balanced the loss magnitude of the 2D and 3D parts to stabilize
the training. More specifically, αap, αds, α

2D
lr and β were experimentally set to

1.0, 0.5, 1.0 and 0.001.
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3 Experiments

3.1 Dataset

M3Depth was evaluated on two datasets. The first was the SCARED dataset
[1] released at the MICCAI Endovis challenge 2019. As only the ground truth
depth map of key frames in each dataset was provided (from structured light),
the other depth maps were created by reprojection and interpolation of the key
frame depth maps using the kinematic information from the da Vinci robot,
causing a misalignment between the ground truth and the RGB data. Hence,
only key-frame ground truth depth maps were used in the test dataset while the
remainder of the RGB data formed the training set but with the similar adjacent
frames removed.

To overcome the SCARED dataset misalignment and improve the validation,
an additional laparoscopic image dataset (namely LATTE ) was experimentally
collected, including RGB laparoscopic images and corresponding ground truth
depth maps calculated from a custom-built structured lighting pattern projec-
tion. More specifically, the gray-code detection and decoder algorithm [23] were
used with both original and inverse patterns. To remove the uncertainty brought
by occlusions and uneven illumination conditions, we used a more advanced 3-
phase detection module, in which sine waves were shifted by π/3 and 2π/3 and
the modulation depth T was calculated for every pixel. Pixels with modulation
depth under T were defined as uncertain pixels, and the equation for calculat-
ing the modulation is written as Eq. 8. This provided 739 extra image pairs for
training and 100 pairs for validation and testing.

T =
2
√
2

3
×
√
(I1 − I2)2 + (I2 − I3)2 + (I1 − I3)2 (8)

where I1, I2, I3 denotes original modulation and modulations after shifts.

Table 1. Quantitative results on the SCARED dataset. Metrics labeled with blue
headings mean lower is better while those labeled with red mean higher is better.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Mono2 [4] 1.100 74.408 56.548 0.717 0.102 0.284 0.476
PackNet3D [5] 0.733 37.690 32.579 0.649 0.288 0.538 0.722

Mono1 [3] 0.257 20.649 33.796 0.404 0.696 0.837 0.877
M3Depth 0.116 1.822 9.274 0.139 0.865 0.983 0.997

3.2 Evaluation Metrics, Baseline, and Implementation Details

Evaluation Metrics To evaluate depth errors, seven criteria were adopted that
are commonly used for monocular depth estimation tasks [3][4]: mean absolute
error (Abs Rel), squared error (Sq Rel), root mean squared error (RMSE), root
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Ground truth (GT)Left image M3Depth (ours)Mono2 Mono1PackNet3D |M3Depth-GT|
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Fig. 2. Qualitative results on the SCARED dataset with error map of M3Depth. The
depth predictions are all for the left input image. M3Depth generated depth maps
with high contrast between the foreground and background and performed better at
distinguishing different parts of the scene, reflecting the superior quantitative results
in Table 1.

mean squared logarithmic error (RMSE log), and the ratio between ground truth
and prediction values, for which the threshold was denoted as δ.

Baseline The M3Depth model was compared with several recent deep learning
methods including Monodepth [3], Monodepth2 [4], and PackNet [5], and both
quantitative and qualitative results were generated and reported for compari-
son. To further study the importance of each M3Depth component, the various
components of M3Depth were removed in turn.

Implementation Details M3Depth was implemented in PyTorch [19], with
an input/output resolution of 256 × 320 and a batch size of 18. The learning
rate was initially set to 10−5 for the first 30 epochs and was then halved until
the end. The model was trained for 50 epochs using the Adam optimizer which
took about 65 hours on two NVIDIA 2080 Ti GPUs.

4 Results and Discussion

The M3Depth and other state-of-the-art results on the SCARED and LATTE
dataset are shown in Table 1 and Table 2 using the seven criteria evaluation
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Table 2. Quantitative results on LATTE dataset. Metrics labeled with blue headings
mean lower is better while labeled by red mean higher is better.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Mono2 [4] 1.601 306.823 87.694 0.913 0.169 0.384 0.620
PackNet3D [5] 0.960 357.023 259.627 0.669 0.135 0.383 0.624

Mono1 [3] 0.389 57.513 99.020 0.424 0.268 0.709 0.934
M3Depth 0.236 21.839 57.739 0.245 0.665 0.893 0.969

Table 3. Ablation study results on the SCARED dataset. Metrics labeled with blue
headings mean lower is better while those labeled with red mean higher is better.

Method 3GC Blind masking Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Mono1 [3] ✗ ✗ 0.257 20.649 33.796 0.404 0.696 0.837 0.877
M3Depth w/ mask ✓ ✗ 0.150 3.069 13.671 0.249 0.754 0.910 0.956

M3Depth ✓ ✓ 0.116 1.822 9.274 0.139 0.865 0.983 0.997

metrics. M3Depth outperformed all other methods by a large margin on all seven
criteria, which shows that taking the 3D structure of the world into consideration
benefited the overall performance of the depth estimation task. In particular,
the M3Depth model had 0.141, 18.827, 24.522, and 0.265 units error lower than
Monodepth1[3] in Abs Rel, Sq Rel, RMSE and RMSE log, and 0.169, 0.146,
and 0.12 units higher than Monodepth1 [3] in three different threshold criteria.
Furthermore, the average inference time of M3Depth was 105 frames per second,
satisfying the real-time depth map generation requirements.

Detailed ablation study results on the SCARED dataset are shown in Ta-
ble 3 and the impact of the proposed modules, 3D geometric consistency (3GC)
and blind masking were evaluated. The evaluation measures steadily improved
when the various components were added. More specifically, the addition of the
blind masking further boosted the 3GC term, which shows the importance and
necessity of removing invalid information from areas that are not visible to both
cameras. We note that more quantitative results can be found in our supplemen-
tary material.

Qualitative results comparing our depth estimation results against prior work
using the SCARED dataset are presented in Fig 2. As the sample images shows,
the application of temporal consistency encouraged by the 3D geometric con-
sistency loss can reduce the errors caused by subsurface features, and better
recover the real 3D surface shape of the tissue. Furthermore, depth outputs
from M3Depth show better results along the boundaries of objects, indicating
the effectiveness of the proposed 3GC and blind masking modules.

5 Conclusion

A novel framework for self-supervised monocular laparoscopic images depth
estimation was presented. By combining the 2D image-based losses and 3D
geometry-based losses from an inferred 3D point cloud of the whole scene, the
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global consistency and small local neighborhoods were both explicitly taken into
consideration. Incorporation of blind masking avoided penalizing areas where
no useful information exists. The modules proposed can easily be plugged into
any similar depth estimation network, monocular and stereo, while the use of
a lightweight ResNet18 backbone enabled real time depth map generation in
laparoscopic applications. Extensive experiments on both public and newly ac-
quired datasets demonstrated good generalization across different laparoscopes,
illumination condition and samples, indicating the capability to large scale data
acquisition where precise ground truth depth cannot be easily collected.
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