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Abstract
Human emotion recognition is an active research area in artificial intelligence and has made substantial progress over the

past few years. Many recent works mainly focus on facial regions to infer human affection, while the surrounding context

information is not effectively utilized. In this paper, we proposed a new deep network to effectively recognize human

emotions using a novel global-local attention mechanism. Our network is designed to extract features from both facial and

context regions independently, then learn them together using the attention module. In this way, both the facial and

contextual information is used to infer human emotions, therefore enhancing the discrimination of the classifier. The

intensive experiments show that our method surpasses the current state-of-the-art methods on recent emotion datasets by a

fair margin. Qualitatively, our global-local attention module can extract more meaningful attention maps than previous

methods. The source code and trained model of our network are available at https://github.com/minhnhatvt/glamor-net.
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1 Introduction

Emotion recognition aims to classify input data into several

expressions that convey universal emotions, such as an-

gry, disgust, fear, happy, neutral, sad, and

surprise. The input data can be one or more of different

modalities such as visual information, audio, and text

[10, 24, 35]. Due to the availability of a large number of

images and videos on the Internet, inferring human emo-

tion from visual content, is considered to be one of the

most popular tasks. Recently, automatic emotion recogni-

tion has gained a lot of attention in both academia and

industry [49]. It enables a wide range of novel applications

in different domains, ranging from healthcare [15],

surveillance [9] to robotics [42] and human-computer

interaction [11].

Traditional methods for emotion recognition combine

handcrafted features (e.g, histogram of oriented gradients

(HOG) [5], local binary patterns) with classifiers such as

SVM [20] or graphical models [27]. With the popularity of

deep learning techniques, especially Convolutional Neural

Network (CNN) [30], together with the exists of many

large-scale datasets, the meaningful features can be

extracted using a deep network. However, the majority of

previous methods [6, 23, 38, 58] only exploit features from

human’s face, and use this information to predict human

emotions. These works assume that the facial region is the

most informative representation of human emotion, there-

fore they ignore the surrounding context, which is shown to

play an important role in the understanding of the per-

ceived emotion, especially when the emotions on the face

are expressed weakly or indistinguishable [32].

Recently, researchers have been focusing on incorpo-

rating background information such as people’s pose, gaits,

etc., into the model to improve the performance [39, 43]. In

this work, we follow the same direction. However, unlike

other works that learn the facial and context information

independently [39], we propose to jointly learn both facial

and context information using our new Global-Local

Attention mechanism. We hypothesize that the local
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information (i.e., facial region) and global information (i.e.,

context background) have a correlative relationship, and by

simultaneously learning the attention using both of them,

the accuracy of the network can be improved. This is based

on the fact that the emotion of one person can be indicated

by not only the face’s emotion (i.e., local information) but

also other context information such as the gesture, pose, or

emotion/pose of a nearby person. Figure 1 shows some

recognition results of our proposed method.

To verify the effectiveness of our approach, we bench-

mark on the CAER-S dataset [32], a large-scale dataset for

context-aware emotion recognition. We achieved 77:90%

top-1 accuracy on the test set, which is an improvement of

4:38% over the recent state-of-the-art method [32]. Fur-

thermore, with the integrated ResNet-18 [25] as the back-

bone network, we obtained state-of-the-art performance on

the CAER-S dataset with 89.88% classification accuracy.

We also present a novel way to create a new static-image

dataset from videos of the CAER dataset [32]. The

experiments on this new dataset also confirm that our

proposed method consistently achieves better performance

than previous state-of-the-art approaches.

In summary, our contributions are as follows:

– We propose a new deep network, namely, Global-Local

Attention for Emotion Recognition Network (GLA-

MOR-Net) that surpasses the state-of-the-art methods

in the emotion recognition task.

– In GLAMOR-Net, we proposed the Global-Local

Attention module, which successfully encodes both

local features from facial regions and global features

from surrounding background to improve the human

emotion classification accuracy.

– We perform extensive experiments to validate the

effectiveness of our proposed method and the contri-

bution of each module on recent challenging datasets.

The paper is organized as follow: We review the related

work in Sect. 2. We then describe our methodology in

detail in Sect. 3. In Sect. 4, we present extensive experi-

mental results on challenging datasets and analyze the

contribution of each module in GLAMOR-Net. Finally, we

conclude the paper and discuss future work in Sect. 5.

2 Related work

2.1 Human emotion

In the late twentieth century, Ekman and Friesen discov-

ered six basic universal emotions including anger, disgust,

fear, happiness, sadness, and surprise [18]. Several years

later, contempt was added and considered as one of the

basic emotions [37]. However, our affective displays in

reality are much more complicated and subtle compared to

the simplicity of these universal emotions. To represent the

complexity of the emotional spectrum, many approaches

were proposed such as the Facial Action Coding System

[8], where all facial actions are described in terms of

Action Units (AUs); or dimensional models [46], where

affection is quantified by values chosen over continuous

emotional scales like valence and arousal. Nevertheless,

those models which use discrete affections are the most

popular in automatic emotion recognition task because they

are easier to interpret and more intuitive to human.

2.2 Emotion recognition

In automatic human emotion recognition, many approaches

mainly focus on analyzing facial expression. Thus, a

standard emotion recognition system usually consists of

three main stages: face detection, feature extraction, and

expression classification [6, 23, 38, 58]). Traditional

methods relied on handcrafted features (LBP [51], HOG

[5]) to extract meaningful features from input images, and

classifiers (such as SVM or random forest) to classify

human emotions based on extracted features. With the rise

of deep learning, CNN-based methods have made signifi-

cant progress in the task of emotion recognition [34]. Apart

from using input image, other works focus on categorizing

emotions by utilizing extra information such as speech

[19, 26], human pose [50], body movements and gaits

[47, 55]. However, these works have relied on the infor-

mation coming from a single modality, hence they have

limited ability to fully exploit all usable information of

human emotions.

To overcome this limitation, many researches have

investigated the use of multiple modalities. Primarily, these

works tried to fuse multiple channels of information from

each modality to predict emotion. Castellano et al. [4] usedFig. 1 Examples of human emotion detection results from our method
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extracted features from three different modalities (facial

expressions, body gestures and speech expressions), and

then fused those modalities in two different levels (i.e.

feature level and decision level). Their results showed that

the fusion performed at the feature level provided better

results than the one performed at the decision level. Sikka

et al. [52] extracted different visual features such as SIFT-

Bag of Words [53], LPQ-TOP [45], HOG [12], PHOG [3],

and GIST [44] and fuse them with audio features by

building a kernel from each set of features, then combine

them using a SVM classifier. Likewise, the authors in [56]

used the same multi-modality approach but using deep

learning techniques. In [39], three interpretations of context

information are fused together by a deep neural network to

classify human emotions in an end-to-end manner.

Recently, many works have focused on exploring con-

text-aware information for emotion recognition. Kosti et al.

[29] and Lee et al. [32] proposed two architectures based

on deep neural networks for learning context information.

Both of them have two separate branches for extracting

different kinds of information. One branch focuses on

human features (i.e. face for [32] and body for [29]) and the

other concentrates on surrounding context. When consid-

ering multiple modalities, which have a large amount of

information, deep learning-based methods like

[16, 29, 32, 39] are more suitable and effective than tra-

ditional approaches. These multi-modal approaches often

yield better classification performance than uni-modal

methods.

2.3 Attention model

Attention was first introduced in machine translation [2],

allowing the translation model to search for words in the

input sentence that are more relevant to the prediction

words. Since then attention models have become an

important concept and an essential component of neural

network architectures. It has made significant impacts in

many application domains, including natural language

processing [21], computer vision [57], graph [33], and

speech processing [7].

In emotion recognition, attention models were mainly

used to discover the attentive areas of the face that need to

be focused on [6]. Recently, the work that forced the model

to pay attention to the most discriminative regions of the

background using attention was proposed in CAER-Net-S

[32]. However, previous work only used the background

encoding to learn the context saliency map and did not take

advantage of the facial representation to assist the process.

Therefore, we propose the Global-Local Attention mech-

anism, which takes both facial and context encoding as

inputs, to utilize facial information more efficiently to

guide the context saliency map learning procedure.

3 Methodology

3.1 Overview

In this work, we assume that emotions can be recognized

by understanding the context components of the scene

together with the facial expression. Our method aims to do

emotion recognition in the wild by incorporating both

facial information of the person’s face and contextual

information surrounding that person. Our model consists of

three components: Encoding Module, Global-Local

Attention (GLA) Module, and Fusion Module. Our main

contribution is the novel GLA module, which utilizes facial

features as the local information to attend better to salient

locations in the global context. Figure 2 shows an overview

of our method.

3.2 Network architecture

3.2.1 Encoding module

To detect human emotion, many works first process the

image by cropping out the human faces from the scene, and

then feed them into a convolutional network to extract

facially-expressive features [6, 23, 38, 58]. We generally

follow this approach in our Encoding Module. In particu-

lar, our Encoding Module comprises the Facial Encoding

Module to learn the face features, and the Context

Encoding Module to learn the context features.

Facial Encoding Module This module aims to learn

meaningful features from the facial region of the input

image. The facial embedding information can be denoted

as Ff :

Ff ¼ CðIf ; hf Þ ð1Þ

where C is the convolutional operation parameterized by

hf , and If is the input facial region. In practice, we use a

sub-network (Fig. 3) as the feature extractor for the Facial

Encoding Module.

The proposed sub-network has five convolutional layers.

Particularly, each convolutional layer has a kernel set of

3� 3 filters with strides of 1� 1 followed by a Batch

Normalization layer and a ReLU activation function. The

number of filters starts with 32 in the first layer, increasing

by a factor of 2 at each subsequent layer except the last

one. Our network ends up with 256 output channels. We

also use the padding technique before each convolutional

layer to keep the output spatial dimensions the same as the

input. The output of each convolutional layer is pooled

using a max-pooling layer with strides of 2� 2. The

encoding module outputs a 256-channel volume feature
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map, which is the embedded representation with respect to

the input image.

Context Encoding Module This module is used to exploit

background knowledge to support the emotion predicting

process. Similar to the Facial Encoding Module, we follow

the same procedure to extract context information con-

tained in the scene with a different set of parameters:

Fc ¼ CðIc; hcÞ ð2Þ

where C is the convolutional operation parameterized by

hc, and Ic is the input context. Similar to the Facial

Encoding Module, we use the sub-network (Fig. 3) to

extract deep features from the background context region

in the Context Encoding Module.

After getting these two feature maps, we feed them into

the Global-Local Attention Module to calculate the atten-

tion scores for regions in the context. However, if we

extract the context information in the raw image where the

faces apparently exist, the network will also encode the

facial information. This problem can make the attention

module produce trivial outputs because the network may

only focus on the facial region, and omitting the context

information in other parts of the image. To address this

problem, we first detect the face and then hide it in the raw

input by setting all the values in the facial region to zero.

3.2.2 Global-local attention module

Inspired by the attention mechanism [7, 41], to model the

associative relationship of the local information (i.e., the

facial region in our work) and global information (i.e., the

surrounding context background), we propose the Global-

Local Attention Module to guide the network focus on

meaningful regions (Fig. 4). Specifically, our attention

mechanism models the hidden correlation between the face

and different regions in the context by capturing their

similarity using deep learning techniques. Our attention

module takes the extracted face feature map Ff and the

context feature map Fc from the two encoding modules as

input, and then outputs a normalized saliency map that has

the same spatial dimension as Fc.

In practice, we first reduce the facial feature map Ff into

vector representation using the Global Pooling operator,

denoted as vf . Note that the context feature map Fc is a 3D

tensor, Fc 2 RHc�Wc�Dc , where Hc, Wc, and Dc are the

height, width, and channel dimension respectively. We

derive the context feature map Fc as a set of Wc � Hc

vectors with Dc dimensions, each vector in each cell (i, j)

represents the embedded features at that location, which

can be projected back to the corresponding patch in the

input image:

Fc ¼ fvi;j 2 RDc j1� i�Hc; 1� j�Wcg ð3Þ
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Fig. 2 The architecture of our proposed network. The whole process

includes three steps. First, we extract the facial information (local)

and context information (global) using two Encoding Modules.

Second, we feed the extracted face and context features into the

Global-Local Attention (GLA) module to perform attention inference

on the global context. Lastly, we fuse both features from the facial

region and output features from GLA into a neural network to make

final emotion classification
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Fig. 3 Our proposed encoder network as the feature extractor for both face and context branches. The network contains five convolutional layers

with ReLU non-linearity, each convolution is followed by a max pooling layer except the last one to reduce the spatial dimensions of the input
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At each location (i, j) in the context feature map, we have

Fði;jÞc ¼ vi;j, where vi;j 2 RDc and 1� i�Hc, 1� j�Wc.

We concatenate ½vf ; vi;j� into a big vector �vi;j, which

contains both information about the face and some small

regions of the scene. We then employ a feed-forward

neural network to compute the score corresponding to that

region by feeding �vi;j into the network. After repeating the

same process for all regions, each region (i, j) will output a

raw score value si;j, we spatially apply the Softmax func-

tion to produce the attention map:

ai;j ¼
expðsi;jÞ

RaRb expðsa;bÞ
ð4Þ

To obtain the final context representation vector, we squish

the feature maps by taking the average over all the regions

weighted by ai;j as follow:

vc ¼ RiRjðai;j � vi;jÞ ð5Þ

where vc 2 RDc is the final single vector encoding the

context information, and � is the scalar multiplication

operation. Additionally, vc mainly contains information

from regions that have high attention, while other unim-

portant parts of the context are mostly ignored. With this

design, our attention module can guide the network focus

on important areas based on both facial information and

context information of the image. Note that, in practice, we

only need to extract context information once and then

using different encoded face representations to make the

system look at different regions with respect to that person.

3.2.3 Fusion module

The Fusion Module is used to incorporate the facial and

context information more effectively when predicting

human emotions. The Fusion Module takes vf and vc as the

input, then the face score and context score are computed

independently by two neural networks:

sf ¼ Fðvf ;/f Þ sc ¼ Fðvc;/cÞ ð6Þ

where /f and /c are the network parameters of the face

branch and context branch, respectively. Next, we nor-

malize those scores by the Softmax function to produce

weights for each face and context branch so that these

weights sum up to 1.

wf ¼
expðsf Þ

expðsf Þ þ expðscÞ
wc ¼

expðscÞ
expðsf Þ þ expðscÞ

ð7Þ

Notice that the face weight and the context weight are

independently computed by their corresponding networks

and represent the importance of these branches. We let the

two networks competitively determine which branch is

more useful than the other. Then we amplify the more

useful branch and lower the effect of the other by multi-

plying the extracted features with the corresponding

weight:

vf  vf � wf vc  vc � wc ð8Þ

Finally, we use these vectors to estimate the emotion cat-

egory. Specifically, in our experiments, after multiplying

both vf and vc by their corresponding weights, we con-

catenate them together as the input for a network to make

final predictions. Fig. 5 shows our fusion procedure in

detail.

Fig. 4 The proposed Global-Local Attention module takes the

extracted face feature vector and the context feature map as the

input to perform context attention inference. Each vector vi;j in the

context feature map Fc is concatenated with the face vector vf and

then fed into a sub-network to compute the attention weight for the

(i, j) position. The final output vector is a linear combination of all

regions in the context weighted by the corresponding attention

weight. For efficiency, our attention inference network contains a

128-unit Fully Connected layer with the ReLU activation function

and a Softmax layer. Weights are shared across all the context regions
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4 Experiments

4.1 Datasets

CAER-S In this work, we only focus on static images with

background context as our input. Therefore, we choose the

static CAER (CAER-S) dataset [32] to validate our

method. The CAER-S dataset contains 70K static images

extracted from a total of 13201 video clips of 79 TV shows.

Each image is labeled with one of seven universal emo-

tions: anger, fear, disgust, happiness, neu-

tral, sadness and surprise. We follow the standard

split proposed by [32] for training, validation and testing,

respectively.

Novel CAER-S (NCAER-S) While experimenting with the

CAER-S dataset, we observe that there is a correlation

between images in the training and test sets, which can

make the model less robust to changes in data and may not

generalize well on unseen samples. More specifically,

many images in the training and the test set of the CAER-S

dataset are extracted from the same video, hence making

them look very similar to each other. To cope with this

issue, we propose a novel way to extract static frames from

the CAER video clips to create a new static image dataset

called Novel CAER-S (NCAER-S). In particular, frames

extracted from the training, validation, and test sets of the

CAER dataset are separately put into the corresponding

training, validation, and test sets of the new NCAER-S

dataset. In particular, for each video in the original CAER

dataset, we split the video into multiple parts, each part is

approximately 2s long. Then we randomly select one frame

of each part to include in the new NCAER-S dataset. Any

original video that provides frames for the training set will

be removed from the testing set. This process assures the

new dataset is novel while the training frames and testing

frames are never from one original input video.

With our selection method, we ensure that images in the

validation and test sets are independent of those in the

training set. We also make sure that the numbers of

extracted frames of each emotion category are approxi-

mately equal to tackle the imbalance problem of the CAER

dataset and prevent bias towards prominent emotions.

The statistics of the original CAER and the new

NCAER-S training sets are shown in Fig. 6 and Table 1.

The new split NCAER-S dataset can be downloaded at

https://bit.ly/NCAERS_dataset.

4.2 Experimental setup

Evaluation Metric Classification accuracy is the standard

evaluation metric that is widely used to measure the reli-

ability of automated emotion recognition systems in the

literature [13, 32, 34, 36, 40]. To compare our results with

previous approaches quantitatively, as in [32, 34] we use

the overall classification accuracy as the evaluation metric:

Accuracy ¼ 1

N

XN

i¼1
1fŷi ¼ yig ð9Þ

where 1 is the indicator function, N is the total number of

samples in the dataset, ŷi and yi is the network prediction

and ground-truth category of the i-th example, respectively.

Baselines We compare the results of our proposed Global-

Local Attention for Emotion Recognition network (GLA-

MOR-Net) with the following methods as baselines:

AlexNet [31], VGGNet [54], ResNet [25], CAER-Net-S

[32]. The results of AlexNet, VGGNet, and ResNet on the

CAER-S dataset are reported in two cases: using the

ImageNet dataset as the pre-trained model, and fine-tuning

these networks on this dataset. Note that, these results are

taken from [32] paper. On the CAER-S, we also compare

our method to several recent state-of-the-art approaches.

GRERN [22] utilized a multi-layer Graph Convolutional
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Fig. 5 The Fusion Module consists of two separate sub-networks,

each network computes the fusion weights for face branch and

context branch. The input vector of each branch is then scaled by its

corresponding weight and combined together into the final represen-

tation vector v. We use this vector v to estimate the emotion category

by feeding it into another sub-network (see Fig. 2)
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Network (GCN) to exploit the relationship among different

regions in the context. EfficientFace [60] proposed an

efficient lightweight network and utilized the label distri-

bution to handle the ambiguity of real-world emotions.

MA-Net [59] designed a highly complicated architecture

based on ensemble learning of multiple regions to handle

the occlusion and pose variation problems. We report the

results of our GLAMOR-Net with two different backbones:

the original encoding module introduced in Sect. 3.2.1 and

ResNet-18 [25].

Implementation Details Our networks are implemented

using Tensorflow 2.0 framework [1]. For optimization, we

use the SGD optimization algorithm and standard cross-

entropy loss function:

L ¼ � 1

N

XN

i¼1
log p

ðyiÞ
i ð10Þ

where p
ðyiÞ
i is the predicted probability for the true emotion

category yi of the i-th sample and N is the total number of

samples in the dataset.

Given an input image, we first use the CNN based face

detector in the dlib library [28] to detect the face coordi-

nates. The detected face is then cropped and resized to 96

9 96 and fed to the Facial Encoding Module. To create

input for the Context Encoding Module, we mask the facial

region in the original image and resize it to 1289 171, then

we apply random crop during the training phase and center

crop during the inference phase to the final size of 112 9

112. We use a dropout layer before the final layer with a

dropout rate of 0.5 to reduce the effect of overfitting.

During training, we observe that the fusion network is very

unstable and easily affected by random factors. Specifi-

cally, the weights of the face branch or the context branch

in the Fusion Module can easily take a value near 0 or 1,

which means the model completely ignores information

extracted from one of the branches. To tackle this problem,

we first train the Facial Encoding Module and the Context

Encoding Module separately, then jointly train both mod-

ules and the fusion network in an end-to-end manner.

4.3 Results

4.3.1 Results on the CAER-S dataset

Table 2 summarizes the results of our network and other

recent state-of-the-art methods on the CAER-S dataset

[32]. This table clearly shows that integrating our GLA

module can significantly improve the accuracy perfor-

mance of the recent CAER-Net. In particular, our

(a) (b)

Fig. 6 Percentage of each emotion category in the CAER and the new NCAER-S training sets

Table 1 The number of images in each emotion category in the

NCAER-S training set

Emotion Number of images

Angry 2272

Disgust 3004

Fear 2902

Happy 1905

Neutral 3202

Sad 3084

Surprise 2186

Total 18,555
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GLAMOR-Net (original) achieves 77.90% accuracy,

which is a ? 4.38% improvement over the CAER-Net-S.

When compared with other recent state-of-the-art approa-

ches, the table clearly demonstrates that our GLAMOR-Net

(ResNet-18) outperforms all those methods and achieves a

new state-of-the-art performance with an accuracy of

89.88%. This result confirms our global-local attention

mechanism can effectively encode both facial information

and context information to improve the human emotion

classification results.

Figure 7 shows the confusion matrix of the GLAMOR-

Net (original) on the CAER-S dataset. Overall, the model

achieves the highest accuracy on the fear class with 0.96

accuracy. The neutral class has the lowest accuracy of

0.63 as there are many misclassifications from other

classes.

4.3.2 Results on the NCAER-S dataset

On the NCAER-S dataset, we compare our results with

three recent methods: VGG16 [54], ResNet50 [25], and

CAER-Net-S [32]. The results from the VGG16 and

ResNet50 models are reproduced as baseline methods. We

finetune the VGG16 and the ResNet50 from the pre-trained

models on VGG-Face and ImageNet, respectively. Our

GLAMOR-Net (original) and CAER-Net-S are trained

from scratch for a fair comparison.

Table 3 reports the comparative results of our GLA-

MOR-Net and other recent methods. This table shows that

the GLAMOR-Net architecture outperforms all other

architectures and achieves the highest performance. In

particular, our network increases classification accuracy by

2.77% compared to the second-highest model CAER-Net-

S. These results also validate the effectiveness of our

proposed global-local attention mechanism integrated into

the GLAMOR-Net. We note that the result of VGG16 pre-

trained on VGG-Face is surprisingly better than the result

of ResNet50 pre-trained on ImageNet dataset. This is

explainable as the pre-trained weight on VGG-Face carries

more meaningful information than the pre-trained weight

on ImageNet, which includes many non-face images.

Also from Table 3, we can see that the classification

accuracy of the models is much lower than those in

Table 2. The reason behind this is the new NCAER-S is

more challenging than the original CAER-S dataset. As

mentioned earlier, to construct the NCAER-S dataset, we

eliminate the correlation between the train and the test

samples as much as we can. Specifically, we separately

resample image frames from clips of the train and test sets

of the CAER dataset to mitigate the train and test depen-

dency. Moreover, note that the size of the new dataset is

only less than one-third of the original one, which also

limits the amount of information that the models can

exploit. However, our GLAMOR-Net still consistently

Table 2 Classification accuracy of baseline methods and our GLA-

MOR-Net on the CAER-S dataset (bold denotes the best result)

Methods Year Accuracy (%)

ImageNet-AlexNet [31] 2012 47.36

ImageNet-VGGNet [54] 2015 49.89

ImageNet-ResNet [25] 2016 57.33

Fine-tuned AlexNet [31] 2012 61.73

Fine-tuned VGGNet [54] 2015 64.85

Fine-tuned ResNet [25] 2016 68.46

CAER-Net-S [32] 2019 73.52

GRERN [22] 2020 81.31

EfficientFace [60] 2021 81.48

MA-Net [59] 2021 88.42

GLAMOR-Net (original) 2021 77.90

GLAMOR-Net (ResNet-18) 2021 89.88

Fig. 7 The confusion matrix of our GLAMOR-Net (original) results

on the CAER-S test set

Table 3 Classification accuracy of baseline methods and our GLA-

MOR-Net on the NCAER-S dataset (bold denotes the best result)

Methods Accuracy (%)

VGG16 [54] 42.85

ResNet50 [25] 41.41

CAER-Net-S [32] 44.14

GLAMOR-Net (original) 46.91
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outperforms other state-of-the-art methods despite the

challenges of the NCAER-S dataset and shows competitive

results.

The confusion matrix of our GLAMOR-Net evaluated

on the NCAER-S dataset is given in Fig. 8. The two cat-

egories with the highest accuracy are happy and neu-

tral while the disgust emotion has the lowest

accuracy of 0.28. It can also be inferred from the confusion

matrix that our model mostly confuses neutral with

other emotion categories as most of the misclassified

examples of the six categories: angry, disgust, fear,

happy, sad and surprise fall into the class neutral.

It may be because the facial emotion in the NCAER-S

dataset is weakly expressed, which makes it more difficult

to identify and distinguish other emotions from the neu-

tral class.

In summary, we can conclude that our method consis-

tently improves the results on both the original CAER-S

and the challenging NCAER-S datasets. Note that although

we follow the same procedure as in [32], our proposed

Global-Local Attention Module is the key difference that

helps enhance the accuracy of the emotion recognition

task. The results reported in Tables 2 and 3 verify that with

the assistance of our attention strategy, the classification

accuracy is significantly improved. We believe that if a

more sophisticated neural architecture is adopted, the per-

formance will be further boosted.

4.3.3 Analysis

To further analyze the contribution of each component in

our proposed method, we experiment with 4 different input

settings on the NCAER-S dataset: (i) face only, (ii) context

only with the facial region being masked, (iii) context only

with the facial region visible, and (iv) both face and context

(with masked face). When the context information is used,

we compare the performance of the model with different

context attention approaches (no attention, standard atten-

tion module in CAER-Net-S and our GLA module). Note

that to compute the saliency map with the proposed GLA in

the (ii) and (iii) setting, we extract facial features using the

Facial Encoding Module, however, these features are only

used as the input of the GLA module to guide the context

attention map learning process and not as the input of the

Fusion Network to predict the emotion category. The

performances of these settings are summarized in Table 4.

The results clearly show that our GLA consistently helps

improve performance in all settings. Specifically, in setting

(ii), using our GLA achieves an improvement of 1.06%

over method without attention, 0.97% over standard

attention module in CAER-Net-S [32]. It is also notewor-

thy that when the context with visible faces is utilized as in

setting (iii), using the attention module in the CAER-Net-S

achieves 41.94% accuracy, lower than the one using only

the cropped face in setting (i) by 0.64%, while using our

GLA module achieves higher accuracy (42.66% vs.

42.58%). Our GLA also improves the performance of the

model when both facial and context information is used to

predict emotion. Specifically, our model with GLA

achieves the best result with an accuracy of 46.91%, which

is higher than the method with no attention 3.72% and

standard attention module in [32] 2.77%. The results from

Table 4 show the effectiveness of our Global-Local

Attention module for the task of emotion recognition. They

also verify that the use of both the local face region and

Fig. 8 The confusion matrix of our GLAMOR-Net (original) results

on the NCAER-S test set

Table 4 Ablation study of our proposed method on the NCAER-S

dataset (bold denotes the best result)

Settings w/F w/mC w/fC w/CA w/GLA Accuracy (%)

(i) U 42.58

(ii) U 41.18

U U 41.27

U U 42.24

(iii) U U 41.94

U U 42.66

(iv) U U 43.19

U U U 44.14

U U U 46.91

‘w/F’, ‘w/mC’, ‘w/fC’, ‘w/CA’, ‘w/GLA’ denote using the output of

the Facial Encoding Module, the Context Encoding Module with

masked faces as input, the Context Encoding Module with visible

faces as input, the standard Context Attention in CAER-Net-S [32]

and our Global-Local Attention Module, respectively, as input to the

Fusion Network
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global context information is essential for improving

emotion recognition accuracy.

In order to emphasize the contribution of the Attention

module to the final results, we conduct Stuart-Maxwell test

for each pair of methods that are used in the setting (iv) of

Table 4.The Stuart-Maxwell test is the generalized version

of McNemar test [14] which is generally used for testing

the significant difference of multi-class classification

models. The resulted p-values of the tests are shown in

Table 5. Note that the lower p value indicates stronger

statistical disagreement between the two compared meth-

ods. Overall, we can see that all of the models have sig-

nificant different error rates. Furthermore, the higher value

on the main diagonal would imply stronger agreement

between the model prediction and the observed data, which

means the performance is better. In conjunction with the

results in Table 4, we can statistically confirm that our

GLA module performs better than other attention

mechanisms.

4.3.4 Fusion methods comparison

To study the effectiveness of the information obtained from

multiple modalities via different fusion strategies, we

conduct experiment by alternatively changing the Fusion

Module with multiple Fusion operators while keeping other

components of the system unchanged. Specifically, the

Element-wise Addition (Fusion Add), Element-wise Max-

imum (Fusion Max)) and our Fusion Net are studied in our

experiment. Furthermore, we also compare our method

with recent work by Dubey et al. [17]. Table 6 summarizes

the results from our experiment. As shown in this table, the

performance of our network using Fusion Net is superior to

other fusion strategies. However, we notice that the results

from other fusion techniques are also very competitive.

This shows that the fusion strategy is also an important

module in the emotion recognition task, however the final

result is also affected by the extracted features from the

feature extraction and attention modules.

4.3.5 Backbone architectures

We further study the effect of different Encoding network

architectures. Specifically, the MobileNetV2 [48] and

ResNet-18 [25] are adopted as the backbone network to

extract features for both face and context branches in our

study. We use the output of the last convolutional layer as

the represented feature maps. These feature maps are then

fed into the GLA module and processed as in Sect. 3. We

summarize the total amount of network parameters and the

classification results on CAER-S and NCAER-S in Table 7.

We observe that the ResNet-18 significantly outperforms

other shallower architectures (Original and MobileNetV2)

and yields the best performance with 89.88% and 48.40%

accuracy on CAER-S and NCAER-S. However, using such

complex model resulted in more memory footprint as well

as computational cost. Additionally, the MobileNetV2 can

balance the trade-off between accuracy and the speed of the

model, which is a considerable option for deploying in

environments with limited resources such as mobile

devices.

4.3.6 Visualization

Figure 9 shows the qualitative visualization with learned

attention maps obtained by our method GLAMOR-Net in

comparison with CAER-Net-S. It can be seen that our

Global-Local attention mechanism produces better saliency

maps and helps the model attend to the right discriminative

regions in the surrounding background than the attention

map produced by CAER-Net-S [32]. As we can see, our

model is able to focus on the gesture of the person (Fig. 9f)

and also the face of surrounding people (Fig. 9c, d) to infer

the emotion accurately.

Figure 10 shows some emotion recognition results of

different approaches on the NCAER-S dataset. More

specifically, the first two rows (i) and (ii) contain predic-

tions of the CAER-Net-S while the last two rows (iii) and

(iv) show the results of our GLAMOR-Net. In some cases,

our model was able to exploit the context effectively to

perform inference accurately. For instance, with the same

Table 5 p value of the Stuart-Maxwell test for each pair of methods

that are used in the setting (iv) of Table 4

Methods w/GLA w/CA w/o Attention

w/GLA 3:0� 10�2 1:69� 10�14 1:38� 10�53

w/CA 1:33� 10�10 3:33� 10�14

w/o Attention 2:81� 10�38

Each element on the main diagonal is the test result of the agreement

between the model prediction and the observed data (ground-truth

label)

Table 6 Results of different fusion strategies on the NCAER-S

dataset (bold denotes the best result)

Methods Accuracy (%)

Dubey et al. [17] 44.33

GLAMOR-Net ? Fusion Add 45.62

GLAMOR-Net ? Fusion Max 46.26

GLAMOR-Net ? Fusion Net 46.91
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sad image input (shown on the (i) and (iii) rows), the

CAER-Net-S misclassified it as neutral while the

GLAMOR-Net correctly recognized the true emotion cat-

egory. It might be because our model was able to identify

that the man was hugging and appeasing the woman and

inferred that they were sad. Another example is shown on

the (i) and (iii) rows of the fear column. Our model

classified the input accurately, while the CAER-Net-S

might be confused between the facial expression and the

wedding surrounding, thus incorrectly predicted the emo-

tion as happy.

On the other hand, we can also see on the (iv) rows of

Fig. 10, the GLAMOR-Net misclassified the disgust

and the surprise images as happy and the neutral

image as sad. The reason might be that these images look

quite confusing even to humans. Our model also failed to

recognize emotions in the anger, fear, happy and sad

images on the (iv) rows and predicted them as neutral

instead. It can be because the facial expression in these

images does not manifest clearly enough, which makes it

difficult to distinguish between the neutral class and

these emotion categories. This uncertainty was previously

shown in the confusion matrix in Fig. 8.

4.3.7 Emotion recognition in the wild

As both the CAER-S dataset and its new split NCAER-S

dataset contain only images from movie settings, they have

Table 7 Accuracy of different

encoding network

architectures (bold denotes the

best result)

Method Backbone #Params CAER-S NCAER-S

GLAMOR-Net Original 2.23M 77.90 46.91

GLAMOR-Net MobileNetV2 [48] 5.83M 85.44 47.52

GLAMOR-Net ResNet-18 [25] 22.90M 89.88 48.40

(a) Anger (b) Disgust (c) Fear (d) Happy (e) Sad (f) Surprise

Fig. 9 Visualization of the attention maps. From top to bottom: original image in the NCAER-S dataset, image with masked face, attention map

of the CAER-Net-S, and attention map of our GLAMOR-Net
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(i)

(ii)

(iii)

(iv)
(a)Anger (b)Disgust (c) Fear (d)Happy (e)Neutral (f) Sad (g) Surprise

Fig. 10 Predictions on the NCAER-S test set. The first two rows (i) and (ii) show the results of the CAER-Net-S while the last two rows (iii) and
(iv) demonstrate predictions of our GLAMOR-Net. The columns’ names from (a) to (g) denote the ground-truth emotion of the images

Fig. 11 Human emotion detection results in the wild setting
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a very limited number of people in a constrained envi-

ronment. Therefore, the model trained using these datasets

potentially do not work well on real-world image setting.

Despite this challenge, Fig. 11 shows that our GLAMOR-

Net can successfully detect and recognize human emotion

in these challenging settings. Note that, the input images in

this setup do not share any overlap with the movie settings

as in the training set. This again confirms the generalization

ability of our proposed method.

5 Conclusions and future work

In this work, we presented a novel method to exploit

context information more efficiently by using the proposed

global-local attention model. We have shown that our

approach can considerably improve the emotion classifi-

cation accuracy compared to the current state-of-the-art

result in the context-aware emotion recognition task. The

results on the CAER-S and the NCAER-S dataset consis-

tently demonstrate the effectiveness and robustness of our

method.

Our approach currently only takes static images as input,

which limits the amount of knowledge that can be

exploited. We are planning to utilize temporal information

in dynamic videos and other modalities such as audio in

order to further improve the performance. We also consider

releasing a more challenging emotion recognition dataset

that contains rich background contexts with multiple faces

in the same frame and take advantage of our attention

model to extract the context saliency map for each face in a

more effective manner. We hope that our work will pave

the way for future work in which predicting the emotions

of different people simultaneously is tackled.

Availability of data and material The NCAER-S dataset can be

downloaded at https://bit.ly/NCAERS_dataset.
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