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Abstract— Master-slave systems for endovascular catheteri-
zation have brought major clinical benefits including reduced
radiation doses to the operators, improved precision and stabil-
ity of the instruments, as well as reduced procedural duration.
Emerging deep reinforcement learning (RL) technologies could
potentially automate more complex endovascular tasks with
enhanced success rates, more consistent motion and reduced
fatigue and cognitive workload of the operators. However,
the complexity of the pulsatile flows within the vasculature
and non-linear behavior of the instruments hinder the use of
model-based approaches for RL. This paper describes model-
free generative adversarial imitation learning to automate a
standard arterial catherization task. The automation policies
have been trained in a pre-clinical setting. Detailed validation
results show high success rates after skill transfer to a different
vascular anatomical model. The quality of the catheter motions
also shows less mean and maximum contact forces compared
to manual-based approaches.

I. INTRODUCTION

Endovascular intervention is increasingly adopted for the
treatment of various types of cardiovascular disease, which
is the major cause of death in the Western world [1].
Catheterization is the key technical component of these
interventions: surgeons manipulate pre-shaped instruments
such as catheters and guidewires to reach the target vas-
culature, enabling delivery of treatments such as stenting,
embolization and drugs. However, catheterization requires
complex maneuvers of elongated instruments; experience and
skill are crucial to the success of the procedure. Moreover,
the lack of 3D imaging for visualizing the tissue also presents
further difficulties. As these procedures are performed with
X-ray fluoroscopic guidance, both patients and operators are
exposed to radiation and its associated health risks. Potential
risks of instrument manipulation within blood vessels include
tissue dissection, thrombosis, and embolization [2].

In order to address the aforementioned challenges, com-
mercial robotic systems for endovascular intervention have
been developed. The Magellan system (Auris Health, Red-
wood city, CA, USA) features proprietary steerable catheters
with enhanced maneuverability and stability. Other com-
mercial platforms focus on remote control of off-the-shelf
catheters and guidewires, such as the CorPath R© GRX system
(Corindus Vascular Robotics, MA, USA) and the R-oneTM
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Fig. 1: The proposed shared autonomy scenario. Human phase: (a)
The guidewire is manually pre-loaded; (b) The catheter was inserted
by the operator using the master-slave robotic system. Supervised
autonomy phase: (c) The robot automatically cannulates to the
branch vessel under supervision of the surgeon. Annotation: (1)
robotic master manipulator. (2) robotic catheter manipulator. (3)
guidewire, and (4) blue part:catheter body; black part: pre-shaped
tip.

robot (Robocath, Rouen, France). These robotic platforms
offer reduced X-ray exposure to operators, and increase the
accuracy of the procedure, allowing precise control of the
instruments while reducing the cognitive workloads of the
operators [3]. However, one shortcoming of these platforms
is the suboptimal ergonomic design of the user interface.
The use of multiple Degree-of-Freedom (DoF) haptic devices
and buttons results in significant change of the behavioral
patterns when compared to that of manipulating conven-
tional endovascular instruments. Therefore, many research
platforms were designed to utilize natural catheter/guidewire
manipulation with ergonomic master devices [4], [5], [6].

In general, those robotic platforms offer low levels of
robotic autonomy [7] and the majority follow the master-
slave paradigm for instrument teleoperation. Surgical auton-
omy has attracted much attention in recent years. Its potential
advantages include reduced fatigue for clinicians, lower rates
of human error, faster integration of context-aware infor-
mation such as medical imaging and physiological signals,
as well as increased accuracy of instrument manipulation
[8]. However, as fully automated surgery is a long way
from becoming a reality, operator-centric and shared con-
trol frameworks are more practical approaches to combine
machine precision and human intelligence. In the field of
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endovascular intervention, Corindus has received Food and
Drug Administration (FDA) clearance for the first automated
robotic movement in its CorPath R© GRX system, with which
manipulation of the guidewire is partially automated in
response to the operators’ actions. In [9], the authors claim
that the automation feature offers shorter catheterization
times and enhanced precision. Several research efforts to
semi-automate catheterization showed promising results in
improved quality and safety of the procedure [10], [11], [12],
[13], and reduced procedural and radiation time [10].

Emerging development of deep reinforcement learning
(RL) has facilitated task autonomy for robotics in general,
including Alpha Go that can perform self-optimization of
game policies without any expert demonstration [14]. Recent
advances in deep RL have resulted in an ability to perform
imitation learning purely based on human demonstration with
unknown dynamics of the environment [15], which is useful
for tasks that require complex skills in a dynamic envi-
ronment, for example, surgical tasks in dynamic anatomies.
Such imitation learning frameworks have been successfully
demonstrated to perform real-world tasks by robotic systems,
such as navigation, locomotion and object manipulation
[16], [17], [18]. It also has been used for skill training
of minimally invasive surgery [19]. The level of surgical
autonomy can potentially shift towards task autonomy with
the input from deep RL, where the robot can take over part
of the decision making when executing a surgical task under
human supervision [7].

In this paper, a collaborative robot-assisted endovascular
catheterization framework is proposed. An example clinical
scenario is illustrated in Fig. 1, where a human operator has
advanced an angiographic catheter to the ascending aorta
with the CathBot platform [4]. At this stage the proposed
automation system will take over the control of the robotic
catheter manipulator to cannulate the target branch artery
of the aorta. A model-free generative adversarial imitation
learning (GAIL) method was implemented to acquire a
catheterization technique from multiple demonstrations by
an expert vascular surgeon. The catheterization policies were
trained in the real world with a pre-clinical setting that facil-
itates in-vivo implementation. Our approaches successfully
imitate the task with unknown dynamics of simulated blood
flows, tissue-tool interactions and the flexible instruments.

It is important to establish the distinction between the
work presented in this paper and the previous work of
the authors. The current framework has closed-loop control
of the robot, where the robot executes action trajectories
taking into account to the position and orientation of the
catheter within the vasculature. For this, an electromagnetic
(EM) tracking sensor is attached to the tip of the catheter,
which has been used for automation and navigation of
endovascular catheterization in pre-clinicial settings [10].
In contrast, [12] and [13] described execution of prepro-
grammed robotic trajectories without perceiving the state of
the task. Hence the proposed approach has greater adaptation
to different initial conditions and dynamic environment when
collaborating with a human operator. Moreover, the proposed

Fig. 2: (a) Overview of the proposed imitation learning strategy.
(b) Left: Orange points: the target, 5mm upper to the origin of
BCA; Red points: the target, 5mm upper to the origin of LCCA;
Colored bands: the starting positions of the catheter in the training
phase, red bands: the starting positions for the user studies. Right:
A VanSchie2 catheter (top). A Headhunter1 catheter (bottom). (c)
Three different angles where the catheter tip is pointing to.

imitation learning extracts the latent skills from the expert
demonstration and are transferable to different catheters,
anatomies and flow conditions with a relatively small amount
of demonstration data.

II. MATERIALS AND METHODS

This section includes the methodologies for expert demon-
stration collection and motion segmentation, the GAIL and
Proximal Policy Optimization (PPO) agents training (was
originally introduced in [21]), and the experiments.

A. Task Demonstration

To obtain training sets for the proposed imitation learning
approach, an expert surgeon (> 700 cases) performed a
selective catheterization task (8 times) to the brachiocephalic
artery (BCA) (Fig. 2(b)), using the CathBot system in a
silicone-based, transparent, anthropomorphic phantom, of
a Type-I aortic arch model (Elastrat Sarl, Switzerland).
A catheter (Beacon Tip 5 Fr VanSchie2, Cook Medical,
Bloomington, IN) was used in the task. The CathBot system,
introduced in [4], is a robotic platform featuring a master
manipulator (Fig. 3) that mimics and maps the natural
manual intra-procedural handling of standard catheters and
guidewires. Hence the maneuvers and the skills of the
surgeon can be preserved. The catheter is driven by a robotic
slave manipulator (Fig. 3) that has been introduced in [11].

Selective Catheterization: The task to be automated was
selective catheterization of, or advancement of an angio-
graphic catheter into, the 2 major branches of the aortic
arch, namely the brachiocephalic artery (BCA) and left
common carotid artery (LCCA). This was to be achieved
with the catheter having been advanced retrograde from the
descending thoracic aorta, which is generally the case in real
clinical situations. For the task, the starting position of the
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Fig. 3: Experimental setup of the proposed robotic platform: (1)
Pulsatile and continuous flow pumps, (2) Force Sensor, (3) Vascular
phantom, (4) Webcam, (5) NDI Aurora field generator, (6) Catheter
manipulator, (7) Simulated X-ray Screening, and (8) Master device.

catheter tip was defined at a position in the aorta beyond
(proximal to) the major branches.

Motion Signal Collection: Catheter tip pose (position
and rotation) and CathBot manipulator linear/rotary motions
were recorded during the catherization tasks. A six DoF EM
tracking sensor (Aurora, NDI) was attached to the tip of
the catheter. Velocities of the linear and rotary motors of
the manipulator were acquired, and synchronized with the
catheter pose provided by the EM tracking system. Rigid
point set registration between the EM tracking system and
the CT scan of the vascular phantom is performed using CT
markers. Therefore, mapping between catheter tip poses with
respect to the registered anatomy can be calculated.

State-Action Pair Segmentation: The operator’s hand
motions are defined as five motion primitives, which are:
1) push; 2) pull; 2) rotation clockwisely; 4) rotation anti-
clockwisely; 5) stand-by. Due to the damping forces caused
by the motors in the master device, we observed nearly
constant speed when the operator is using the device. For
simplification, we assumed constant speed for each action
taken by the operator. The velocities of the linear and angular
motions were averaged accordingly as v and ω , so the action
set {a} = {v ,-v ,ω , -ω , 0}, information of tip of the catheter
is st= (xt , yt , zt , σx, σy, σz), where the first three components
represent the positions of the tip while the rest represents
the Euler angles of the EM sensor with respect to frame
of the field generator. Manual discretization is performed to
segment the motion trajectories into state-action pairs, based
on the average time taken to complete a translational or
rotational movement. Anatomical information is integrated
into the training sets, relative positions of the catheter tip to
the target vessels are calculated. This is done by subtracting
a reference point at the blood vessel, which is the central
point at the origin of the BCA (Fig. 2(b)).

B. GAIL and PPO Agents Training

The policy for cannulation to BCA are generated from
GAIL agents training. The main objective of the train-
ing is to extract underlying motion patterns from expert

Fig. 4: Overview of the proposed GAIL and PPO agents training
architecture. "act" is the abbreviation of word "activation".

demonstration. GAIL is a model-free algorithm for imitation
learning [15], which is suitable in the catheterization task
where the dynamics of both the vasculature and the flexible
instruments are complex. Compared to the traditional inverse
optimal control approach [20], GAIL directly generates poli-
cies instead of reward functions, which is much simpler
to be implemented by robotic systems. The principle of
GAIL is inspired by the Generative Adversarial Networks
(GAN), which consists of a discriminator Dw and a policy
generator Gw′ , where w denotes the parameters associated
with each network. The policy network generates exploration
trajectories which are used by the discriminator to separate
the generator policy from the expert policy. The discriminator
is trained to minimize the loss function:

LD = Eτi [log(Dw(st ,a))]+EτE [log(1−Dw(st ,a))] (1)

where τi are the trajectories generated by Gw′ and τE are the
expert trajectories. The policy generator Gw′ is trained by
PPO which consists of a policy network and a value network;
the update rule can be found in [21].

The GAIL agents are trained directly in real-world with
the CathBot system in a pre-clinical setting, the protocol
is similar to previous work [13]. The setup contains soft
vascular phantoms, blood flow simulation, and off-the-shelf
surgical instruments (Beacon Tip 5 Fr VanSchie2, Cook
Medical, Bloomington, IN), as shown in Fig. 3. Compared
to training in virtual simulation platform, our approach
facilitates the implementation of the learned policies to real
robotic systems. For one training rollout, the state st is
recorded from the EM tracking system, then the relative
position of the tip to the origin of the target vessel is
calculated, hence target vessel can be changed by substituting
the origin. The action is generated by the policy generator
Gw′ , it is then executed by the slave robot with velocities
of v and ω , the on/off time of the motor was set to be
0.3s and 0.5s for rotation and linear translation respectively,
the magnitudes are manually defined in the discretization
process. Finally, the state-action pairs are collected and
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sent to the discriminator Dw. After each rollout, the initial
positions of the catheter tip are reset manually, illustrated
as the colored bands in the aortic models (Fig. 2(a)). The
initial catheter tip position is chosen randomly, aiming to
explore more different states in the training. Virtual boundary
planes were created inside the 3D model of the aortic arch
at 5mm above the origin of the BCA, set as the target of
the cannulation. The models are saved after 10 consecutive
completions of cannulation to the BCA. There is a limit for
each rollout, which is 40 steps for the BCA cannulation.

Fig. 2(a) shows the policy training strategy of the proposed
work. The policy for BCA cannulation is then used to
cannulate LCCA, an optimization step is performed to ensure
higher success rates. This is done by a following RL training
phase using PPO, the reward function is manually defined as:

r (t) =−k1n̂ · ||xt − xi| |+ k2e−n̂·||xt−xi|| (2)

where n̂ is the normal vector to the boundary plane where
xi is an index point on the plane. k1 and k2 are the weights
of the reward function. In this work, they are 1 and 0.5
respectively based on empirical selection. The exponential
part of the rewards function encourages faster training. The
relative position of the state is set to be the origin of
the LCCA (Fig. 2(b)). The training terminates after 10
consecutive successes. The time limit for the cannulation
is 60 steps, longer than BCA policy training due to longer
procedure length in practice. The architecture for GAIL and
PPO training is shown in Fig. 4.

C. Success Rate Test

The success rates of the generated policy were evaluated at
first. In this project, the skills of selective catheterization are
transferred to cannulate the same blood vessels in a Type-II
aortic arch phantom (ElastratSarl, Switzerland). The aortic
arch can be classified based on the position of its major
branches, with a Type-II arch requiring a more tortuous path
to be negotiated in order to catheterize its branches, and
therefore presenting the operator with a greater technical
challenge when compared to a Type-I arch [22]. One catheter
(Beacon Tip 5 Fr VanSchie2, Cook Medical, Bloomington,
IN) was used with the Type-I arch cases, and one with a
different tip shape (Impress 5 Fr Headhunter1, Merit Med-
ical, South Jordan, UT) for the Type-II arch case, as these
were considered the most appropriate choices by our expert
clinical advisor. Catheter shapes are shown in Fig. 2(b). The
polices learned from Type-I were applied to Type-II arches
with no changes. The success rate experiment is designed
to test at different initial position/orientation of the tip of
catheters. Due to the space constraints in the phantom and the
tool limitation, the initial positions/orientations are simplified
as four different levels at the ascending aorta with three
different tip orientations at each level. The spacing between
each level is 5mm. For each initial position/orientation, there
are three runs of automated cannulation. The starting levels
are shown as colored bands in Fig. 2(b) whereas the initial
orientations of the catheter tips are shown in Fig. 2(c).
A total of 36 cannulations were executed for each blood

vessel, considered successful if the tip of the catheter passed
the boundary planes mentioned in the previous section.
The time limits for BCA and LCCA are 60 and 80 steps
respectively. The proposed GAIL/PPO approaches performed
the cannulation of the BCA and the LCCA in both the Type-I
and the Type-II aortic arches.

D. User Study Design

To evaluate the performance of the proposed automated
robotic framework, a study was carried out to compare
with manual catheterization, and robotic teleoperation. Three
vascular surgeons were recruited as operators, all of whom
had performed more than 300 endovascular procedures but
had no formal training in robotic endovascular intervention.
In addition, one medical student, with no formal training in
vascular procedures, participated. Each operator was asked to
perform catheterization of the BCA and LCCA in the Type-
I aortic arch phantom, and of the BCA in a Type-II aortic
arch phantom. The phantoms were connected to a pulsatile
pump to simulate normal human blood flow and optimize the
level of realism for tool-tissue interactions. To simulate a real
angiography setup, a camera was placed above the phantom,
and its live video feed displayed on a monitor in front of
the operator. A 6 DoF force sensor was directly placed
underneath the vascular phantom (Mini40, ATI) to record
forces exerted on the phantom during the catheterization. The
root-mean-square forces were calculated from the forces in
three dimensions. The setup of the experiment can be seen in
Fig. 3. To reduce the effect of a learning curve, the operator
was given a familiarization period of 6 min to manipulate the
catheter within the setup both manually and with the robot.
A single guidewire was used throughout the experiment.
For each artery, the operator performed the catheterization
maneuver 4 times manually, and 4 times with robotic tele-
operation. Prior to commencement of each maneuver, the
catheter was placed such that its tip was at a pre-defined
band in the ascending aorta (Fig. 2), and the guidewire
was advanced through the catheter to provide mechanical
support but retracted just far enough to allow the catheter
tip to take its shape. The robot with supervised automation
activated was then used to catheterize each artery 3 times.
For each maneuver, the video feed from the camera and the
time taken for the maneuver were recorded. Force-torque
sensor readings were recorded at a frequency of 25 Hz.
The vascular surgeon who had provided the demonstration
training sets for the imitation learning approach was asked to
view the recorded videos of the automated catheterizations,
and provide qualitative assessment of the maneuvers. Data
analysis was performed within each sequence of 4 human-
controlled arterial cannulations, the first maneuver was ex-
cluded from analysis, to minimize the effect of learning
curves. Performance metrics of the catheterization tasks were
calculated from the catheter tip motion trajectories, including
mean/max tip motion speed, standard deviations of the speed,
catheter path length. The Wilcoxon Rank-Sum tests on the
metrics were performed.
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Fig. 5: Loss graph of the proposed GAIL agents training. Bold line
is the mean loss and the purple shade is its standard deviation.

TABLE I: Success rate of cannulation of the BCA and LCCA in
the Type-I and Type-II aortic arch model with GAIL/PPO policies
and Behavior Clone policies

Type-I Aortic Arch Type-II Aortic Arch
BCA LCCA BCA LCCA

GAIL/PPO 94.4% 88.9% 69.4% 72.2%
Behavior Clone 72.2% - 5.6% -

III. RESULTS AND DISCUSSION

Table. I shows the results of the success rate test. The
proposed learning approach successfully cannulated both the
BCA and LCCA in the Type-I aortic arch model in the
majority of the trials. Behavior Cloning (BC) policies were
trained from the same demonstration data for comparison,
it is for BCA cannulation only. The BC approach achieves
a higher success rate when cannulating the BCA, the failed
cases are mostly due to that the policies are unable to adapt
to the difference in orientation while executing rotation.
As for the more technically demanding tasks in the Type-
II aortic arch model, the proposed GAIL/PPO approaches
achieved reasonably high catheterization success rates, and
thus demonstrates that the proposed learning methods can
adapt to different vascular models. In comparison, the BC
approach failed in most trials, the catheter either stuck at the
arch or left with its tip incorrectly rotated. Moreover, due to
the expensive nature of training in real-world settings as well
as hardware limitations, future works include optimizing of
the networks taking into account success rates.

Fig. 5 is the loss graph of the proposed GAIL policy
training, based on six training with 110 rollouts for each.
It shows decreasing mean and standard deviation of the loss
function over the number of rollouts. However, fluctuation of
the loss was observed, and there is no trend of convergence
after 60 rollouts. There are potentially several limitations
that may contribute: 1) The robotic driver has different
mechanism of manipulating catheter when compared to a
human operator, and the hardware may degrade over time;
2) Limited action sets and bang-bang control; 3) Errors in
EM tracking sensors such as magnetic interference.

Examples of the catheter tip paths are illustrated in Fig. 6.
The proposed automation approach has a similar tip pathway
compared to that from expert manual and teleoperation

approaches in the Type-I arch for both the BCA and the
LCCA. As for the Type-II arch, tip pathways from the
proposed approach were similar to those from the expert
manual approach. Also, an example catheter tip path from
the novice, where manipulation issues during the cannulation
can be seen, such as recurrent retractions. Example plots of
displacement of the catheter tip against time are also shown.
The top right figure depicts the displacement for cannulation
of the BCA in the Type-I arch, where the displacement
profiles have similar shapes, although in the automated case
there is a prolonged initial period of small displacement. The
bottom right figure shows displacements of the catheter tip
when cannulating the BCA in the Type-II arch. Compared
to both the manual and teleoperation cases with the expert
surgeon, the automation approach took approximately two
times longer. The novice user produced a very different
displacement profile, indicating a different behavior due to
lack of experience. Those results show that the proposed
methods can reasonably imitate the skills of a vascular
surgeon.

Table II and Table III present the performance metrics
when comparing manual, teleoperation and the proposed
automation approaches. In general, lower speed and longer
duration of tasks can be seen with the proposed robotic
approach. However, with both vascular models, the phantoms
were subjected to lower mean and maximum forces with the
proposed robotic approach when compared to the manual
approach. In clinical practice, lower forces exerted on the
arterial walls may imply a lower risk of tissue damage
and better clinical outcomes, although there is no generally
agreed limit as to a maximum acceptable force. There were
higher task duration with the robotic approach, but as inter-
action forces were less, this cost is outweighed by the benefit
of improved overall safety of the procedure; additionally,
future works are planned to increase the robot velocities,
that potentially improve procedure times while maintaining
an acceptable safety profile. Moreover, the standard deviation
of the speed is also significantly lower when compared to the
expert manual and teleoperation approaches. This is because
robot velocities are constant while executing policies. Less
variation in speed may lead to lower risk of vessel damage
and embolization from instrument manipulation. Further-
more, in the Type-II arch model, large standard deviation
(up to 6 times) of total path length can be seen with the
expert manual and teleoperation approaches, suggesting less
consistent catheter motions across the trials. This highlights
the potential benefits of proposed robotic approaches in being
consistent and repeatable. Although the number of human
participants in this study is small, the data obtained were
sufficient to demonstrate significant differences in metrics
between the human-controlled and automated approaches.

For qualitative assessment of automated catheterizations,
the vascular surgeon who assessed videos of the automated
catheterizations noted that, in the successful cases, the selec-
tion of movements was generally appropriate and efficient,
and there was not a large amount of "overshooting" in
the movements. Overall, the movements were noted to be
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Fig. 6: Examples of catheter tip motion trajectories with different cannulation approaches. Top right: Displacement over time graph for
the BCA in the Type-I arch model. Bottom right:Displacement over time graph for the BCA in the Type-II arch model.

TABLE II: Mean value ± std of performance metrics for different cannulation approaches in the Type-I aortic arch

BCA LCCA
Expert Manual *Expert Teleoperation Automation Expert Manual *Expert Teleoperation Automation

Mean force (N) 1.13±0.56 0.58±0.11 0.34±0.07 0.78±0.13 0.55±0.09 0.51±0.26
Maximum force (N) 2.61±0.96 1.49±0.22 0.76±0.12 2.04±0.53 1.48±0.67 1.12±0.35
Mean speed (mm/s) 8.32±1.9 3.29±0.23 1.03±0.03 8.25±1.6 3.09±0.28 1.39±0.09
STDEV speed (mm/s) 26.5±7.4 9.03±1.8 1.37±0.23 22.0±4.0 7.59±3.8 1.22±0.18
Path length (mm) 51.4±8.3 105.0±27.0 55.7±9.4 81.7±29.7 76.3±16.2 106.1±28.7
Procedure Duration (s) 6.36±1.4 32.1±9.1 52.1±9.9 9.85±2.6 25.0±6.7 76.5±24.1

*Missing one user data; Bold represents statistically significant results comparing to the automation approach (p<0.05)

TABLE III: Mean value ± std of performance metrics for different
cannulation approaches in the Type-II aortic arch

BCA
Expert Manual Expert Tele. Automation

Mean force (N) 0.65±0.27 0.49±0.32 0.18±0.02
Maximum force (N) 1.95±0.83 1.56±1.9 0.65±0.15
Mean speed (mm/s) 9.83±2.5 6.00±0.71 1.16±0.26
STDEV speed (mm/s) 27.6±8.7 12.1±4.2 0.91±0.22
Path length (mm) 184.8±116.2 408.2±302.9 201.6±45.5
Procedure Duration (s) 17.5±7.1 68.7±54.1 172.3±18.0

Bold represents statistically significant results (p<0.05); "Tele." is
the abbreviation of "Teleoperation"

quite slow. In some instances, inappropriate moves were
made, seemingly due to real-time position sensing only being
available for the tip of the catheter and not other parts of
it. Finally, in unsuccessful cases, less adequate behaviors
were noted, such advancement of the catheter when its tip
was already beyond the target artery, or continuation of
withdrawal when the tip was already short of it. Further
improvements on the frameworks must include tracking of
the entire catheter body.

IV. CONCLUSION AND FUTURE WORK

This work proposes a semi-automated framework for
robot-assisted endovascular catheterization. Imitation learn-
ing is used to extract underlying skill patterns from ex-
pert demonstration when performing selective catheterization
tasks. Experiments show high success rates with different
catheters and vascular models. User studies were conducted
with the proposed approach, manual catheterization and
robotic teleoperation. The results show fewer interaction
forces, more controlled catheter motions, and more consistent
catheter paths compared to the manual approach. These
suggest less damage to the tissue, and reduced chance
of complications. Future works include tracking the entire
bodies of the catheter and the guidewire through imaging
[23], integration of automated guidewire movements and
more complicated catheter actions, as well as prior software
simulation for fine-tuning hyperparameters. The proposed
framework can be transferred to different catheterization
tasks, different vasculature and instruments. The learned
tasks and skills can potentially pave the way to next-
generation, versatile robot-assisted catheterization platforms.

2419

Authorized licensed use limited to: University of Liverpool. Downloaded on May 25,2021 at 22:32:47 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] S-L Lee, M Constantinescu, W Chi, G-Z Yang, "Devices for Endovas-
cular Interventions: technical advances and translational challenges".
NIHR white paper, 2017.

[2] Hausegger KA, Schedlbauer P, Deutschmann HA, and Tiesenhausen
K (2001) "Complications in endoluminal repair of abdominal aortic
aneurysms". Eur J Radiol 39:22-33. https://doi.org/10.1016/S0720-
048X(01)00339-4

[3] C. V. Riga, C. D. Bicknell, A. Rolls, N. J. Cheshire, and M. S. Hamady,
"Robot-assisted fenestrated endovascular aneurysm repair (FEVAR)
using the Magellan system," J Vasc Interv Radiol, vol. 24, pp. 191-6,
Feb 2013.

[4] M. E. M. K. Abdelaziz, D. Kundrat, Marco Pupillo, G. Dagnino, T. M.
Y. Kwok, W. Chi, V. Groenhuis, F. J Siepel, C. Riga, S. Stramigioli and
G. -Z. Yang, "Toward a Versatile Robotic Platform for Fluoroscopy
and MRI-Guided Endovascular Interventions: A Pre-Clinical Study,"
IROS 2019, pp. 5411-5418.

[5] H.-J. Cha, B.-J Yi, J.Y Won "An assembly-type master-slave catheter
and guidewire driving system for vascular intervention" Proceedings of
the Institution of Mechanical Engineers, Part H: Journal of Engineering
in Medicine Vol 231, Issue 1, pp. 69 - 79, 2016

[6] Z. Q. Feng, G. B. Bian, X. L. Xie, Z. G. Hou and Jian-Long Hao,
"Design and evaluation of a bio-inspired robotic hand for percutaneous
coronary intervention," 2015 ICRA, Seattle, WA, 2015, pp. 5338-5343.

[7] G.-Z. Yang, J. Cambias, K. Cleary, E. Daimler, J. Drake, P. E. Dupont,
et al., ”Medical robotics Regulatory, ethical, and legal considerations
for increasing levels of autonomy,” Science Robotics, vol. 2, pp.8638,
2017.

[8] M. Yip and N. Das,”Robot autonomy for surgery”, The Encyclopedia
of Medical Robotics. October 2018, pp.281-313.

[9] A. Al Nooryani and W. Aboushokka, ”Rotate-on-Retract Procedural
Automation for Robotic-Assisted Percutaneous Coronary Intervention:
First Clinical Experience,” Case Reports in Cardiology, vol. 2018, p.
3, 2018.

[10] Adeline Schwein, Benjamin Kramer, Ponraj Chinnadurai, Neha Vir-
mani, Sean Walker, Marcia O’Malley, Alan B. Lumsden, Jean Bis-
muth, "Electromagnetic tracking of flexible robotic catheters enables
"assisted navigation" and brings automation to endovascular navigation
in an in vitro study",Journal of Vascular Surgery, Volume 67, Issue 4,
2018, Pages 1274-1281, ISSN 0741-5214,

[11] H. Rafii-Tari, J. Liu, S.-L. Lee, C. Bicknell, and G.-Z. Yang,
"Learning-Based Modeling of Endovascular Navigation for Collab-
orative Robotic Catheterization," MICCAI, 2013, pp. 369-377.

[12] W. Chi, J. Liu, H. Rafii-Tari, C. Riga, C. Bicknell, and G.-Z. Yang,
"A learning based Learning-based endovascular navigation through the
use of non-rigid registration for collaborative robotic catheterization"
Int. J. Computer Assisted Radiology and Surgery 13(6): 855-864
(2018)

[13] W. Chi et al., ”Trajectory Optimization of Robot-Assisted Endovas-
cular Catheterization with Reinforcement Learning,” IROS 2018, pp.
3875-3881.

[14] D. Silver et al., ”Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354-359, 2017.

[15] J. Ho and S. Ermon, "Generative adversarial imitation learning," in
Proc. Adv. Neural Inf. Process. Syst. Conf., 2016, pp. 4565-4573.

[16] L. Tai, J. Zhang, M. Liu and W. Burgard, "Socially Compliant
Navigation Through Raw Depth Inputs with Generative Adversarial
Imitation Learning," ICRA 2018 pp. 1111-1117.

[17] J. Tan et al., ”Sim-to-real: Learning agile locomotion for quadruped
robots,” 2018, arXiv:1804.10332.

[18] C. Finn, S. Levine, and P. Abbeel, ”Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. Int. Conf. Mach.
Learn., 2016, pp. 49-58

[19] X. Tan, C. Chng, Y. Su, K. Lim and C. Chui, "Robot-Assisted
Training in Laparoscopy Using Deep Reinforcement Learning," in
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 485-492,
April 2019.

[20] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, "Maximum
entropy inverse reinforcement learning," in 23rd AAAI Conf. Artif.
Intell., Chicago, IL, USA, 2008, vol. 8, pp. 1433 1438.

[21] ] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
"Proximal policy optimization algorithms," 2017, arXiv:1707.06347.

[22] Hicks CW, Malas MB. Cerebrovascular disease: carotid artery stenting.
In: Sidawy AN, Perler BA, editors. Rutherford’s vascular surgery and
endovascular therapy. 9th ed. Philadelphia: Elsevier; 2019:1215-33.

[23] A. Nguyen, D. Kundrat, G. Dagnino, W. Chi, M. E. M. K. Abdelaziz,
Y. Ma, T. M. Y. Kwok, C. Riga and G. -Z. Yang,"End-to-End Real-
time Catheter Segmentation with Optical Flow-Guided Warping during
Endovascular Intervention," ICRA 2020.

2420

Authorized licensed use limited to: University of Liverpool. Downloaded on May 25,2021 at 22:32:47 UTC from IEEE Xplore.  Restrictions apply. 


