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Abstract— We propose AffordanceNet, a new deep learning
approach to simultaneously detect multiple objects and their
affordances from RGB images. Our AffordanceNet has two
branches: an object detection branch to localize and classify
the object, and an affordance detection branch to assign each
pixel in the object to its most probable affordance label.
The proposed framework employs three key components for
effectively handling the multiclass problem in the affordance
mask: a sequence of deconvolutional layers, a robust resizing
strategy, and a multi-task loss function. The experimental
results on the public datasets show that our AffordanceNet
outperforms recent state-of-the-art methods by a fair margin,
while its end-to-end architecture allows the inference at the
speed of 150ms per image. This makes our AffordanceNet
well suitable for real-time robotic applications. Furthermore,
we demonstrate the effectiveness of AffordanceNet in different
testing environments and in real robotic applications. The
source code is available at https://github.com/nqanh/affordance-net.

I. INTRODUCTION

An object can be described by various visual properties
such as color, shape, or physical attributes such as weight,
volume, and material. Those properties are useful to rec-
ognize objects or classify them into different categories,
however they do not imply the potential actions that human
can perform on the object. The capability to understand
functional aspects of objects or object affordances has been
studied for a long time [1]. Unlike other visual or physical
properties that mainly describe the object alone, affordances
indicate functional interactions of object parts with humans.
Understanding object affordances is, therefore, crucial to let
an autonomous robot interact with the objects and assist
humans in various daily tasks.

The problem of modeling object affordances can be
considered in different ways. Castellini et al. [2] defined
affordances in terms of human hand poses during the inter-
action with objects, while in [3] the authors studied object
affordances in the context of human activities. In this work,
similar to [4], we consider object affordances at pixel level
from an image, i.e., a group of pixels which shares the same
object functionality is considered as one affordance. The
advantage of this approach is we can reuse the strong state of
the art from the semantic segmentation field, while there is no
extra information such as interactions with human is needed.
Detecting object affordances, however, is a more difficult
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Fig. 1. Simultaneous affordance and object detection. Some example
results of our AffordanceNet, which detects both objects and their multiple
affordance classes using an end-to-end architecture.

task than the classical semantic segmentation problem. For
example, two object parts with different appearances may
have the same affordance label. It is because the affordance
labels are based on the abstract concepts of human actions on
the object. Furthermore, it is also essential for an affordance
detection method to run in real-time and generalize well on
unseen objects.

In many robotic applications, recognizing object affor-
dances is essential, however the robot may still require more
information to complete tasks. For example, to pour the
water from a bottle into a bowl, the robot not only has to
detect object affordances such as grasp, contain, but also
be able to localize and recognize the relevant objects (i.e.,
bottle, bowl ) [5]. In order to address this, the work in [6]
proposed to use two sequential deep neural networks, one for
object detection and one for affordance detection. However,
by using two sequential deep networks, it is time consuming
during testing, meaning that approach may not be applicable
for real-time applications. In this work, we overcome this
limitation by using an end-to-end architecture. Our proposed
architecture jointly optimizes the object detection and the
affordance detection using a multi-task loss function. We
show that the proposed method reduces the complexity dur-
ing training and testing while improves the overall affordance
detection accuracy. Fig 1 shows some example results of our
network, which can simultaneously detect the objects and
their multiple affordance classes.
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In computer vision, simultaneous object detection and
object segmentation is becoming more popular [7]. Recent
advances in deep learning allow training the detection branch
and segmentation branch effectively together. The intuition
is that although the detection branch uses object bounding
boxes and the segmentation branch uses pixel labels, they
can share the same feature maps from the convolutional
backbone. The authors in [8] followed this methodology
to build a network for instance segmentation problem and
achieved state-of-the-art results. Our work is built upon
the works of [6] and [8]. However, we differ from [6] by
using an end-to-end architecture. We also differ from [8] by
having new components, i.e., a new loss function, a sequence
of deconvolutional layers, and a robust resizing strategy,
for handling the problem of multiple affordance classes.
We show that these new components are key factors to
achieve high affordance detection accuracy. The experimental
results on the public datasets show that our AffordanceNet
outperforms recent state-of-the-art methods by a fair margin,
while its end-to-end architecture allows inference on a test
image in just 150ms. We also demonstrate the effectiveness
of AffordanceNet in different testing environments, and in
real robotic applications.

The remainder of this paper is organized as follows. We
review the related work in Section II. We then describe our
end-to-end architecture for jointly learning object detection
and affordance detection in Section III. In Section IV, we
present the extensive experimental results on the public
datasets and the robotic demonstration on a full-size hu-
manoid robot WALK-MAN. Finally, we conclude the paper
in Section V.

II. RELATED WORK

The problem of understanding affordances at the pixel
level has been termed “object part labelling” in the computer
vision community, while it is more commonly known as
“affordance detection” in robotics. In computer vision, the
concept of affordances is not restricted to objects, but covers
a wide range of applications, from understanding human
body parts [9] to environment affordances [10] [11], while
in robotics, researchers focus more on the real-world objects
that the robot can interact with [4]. In [12], the authors used
predefined primary tools to infer object functionalities from
3D point clouds. The work in [13] proposed to combine
the global object poses with its local appearances to detect
grasp affordances. In [14], the authors introduced a method
to detect object affordances via object-action interactions
from human demonstrations. In [4], the authors used hand-
designed geometric features to detect object affordances at
pixel level from RGB-D images.

With the rise of deep learning, recent works relied on deep
neural networks for designing affordance detection frame-
works. The work in [15] used two deep neural networks to
detect grasp affordances from RGB images. The work in [16]
used deep features from Convolutional Neural Networks
(CNN) for detecting affordances from RGB-D images. It

gained a significant improvement over hand-designed geo-
metric features [4]. Similar to [16], the work in [10] intro-
duced multi-scale CNN to localize environment affordances.
In [17], to avoid depending on costly pixel groundtruth
labels, a weakly supervised deep learning approach was
presented to segment object affordances. Recently, in [6], the
authors proposed to use a deep learning-based object detector
to improve the affordance detection accuracy on a real-world
dataset. A limitation of that work is that its architecture is
not end-to-end – i.e. two separate networks are used, one for
object detection and one for affordance detection – and this
is slow for both training and testing. Furthermore, by training
two networks separately, the networks are not jointly optimal.
In computer vision, the work of [18] introduced an end-to-
end architecture to simultaneously detect and segment object
instances. Recently, the authors in [8] improved over [18] by
proposing a region alignment layer which effectively aligns
the spatial coordinates of region of interests between the
input image space and the feature map space.

The goal of this work is to simultaneously detect the
objects (including the object location and object label) and
their associated affordances. We follow the same concept
in [6], however we use an end-to-end architecture instead of
a sequential one. Our object affordance detection network
can also be seen as a generalization of the recent state-of-
the-art instance segmentation networks [8] [18]. In particular,
our network can detect multiple affordance classes in the
object, instead of binary class as in instance segmentation
networks [8] [18].

III. JOINTLY AFFORDANCE AND OBJECT DETECTION

A. Problem Formulation

Inspired by [6] [8], our framework aims at simultaneously
finding the object positions, object classes, and object affor-
dances in images. Follow the standard design in computer
vision, the object position is defined by a rectangle with
respect to the top-left corner of the image; the object class
is defined over the rectangle; the affordances are encoded at
every pixel inside the rectangle. The region of pixels on the
object that has the same functionality is considered as one
affordance. Ideally, we want to detect all relevant objects in
the image and map each pixel in these objects to its most
probable affordance label.

B. AffordanceNet Architecture

We first describe three main components of our Af-
fordanceNet: the Region of Interest (RoI) alignment layer
(RoIAlign) [8] which is used to correctly compute the
feature for an RoI from the image feature map; a sequence
of convolution-deconvolution layers to upsample the RoI
feature map to high resolution in order to obtain a smooth
and fine affordance map; a robust strategy for resizing the
training mask to supervise the affordance detection branch.
We show that these components are the key factors to achieve
high affordance detection accuracy. Finally, we present the
whole AffordanceNet architecture in details. Fig. 2 shows an
overview of our approach.
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Fig. 2. An overview of our AffordanceNet framework. From left to right: A deep CNN backbone (i.e., VGG) is used to extract image features. The
RPN shares weights with the backbone and outputs RoIs. For each RoI, the RoIAlign layer extracts and pools its features (from the image feature map,
i.e., the conv5 3 layer of VGG) to a fixed size 7 × 7 feature map. The object detection branch uses two fully connected layers for regressing object
location and classifying object category. The object affordance detection branch consists of a sequence of convolutional-deconvolutional layers and ends
with a softmax layer to output a multiclass affordance mask.

1) RoIAlign: One of the main components in the recent
successful region-based object detectors such as Faster R-
CNN [19] is the Region Proposal Network (RPN). This net-
work shares weights with the main convolutional backbone
and outputs bounding boxes (RoI / object proposal) at various
sizes. For each RoI, a fixed-size small feature map (e.g., 7×7)
is pooled from the image feature map using the RoIPool
layer [19]. The RoiPool layer works by dividing the RoI
into a regular grid and then max-pooling the feature map
values in each grid cell. This quantization, however, causes
misalignments between the RoI and the extracted features
due to the harsh rounding operations when mapping the RoI
coordinates from the input image space to the image feature
map space and when dividing the RoI into grid cells.

In order to address this problem, the authors in [8]
introduced the RoIAlign layer which properly aligns the
extracted features with the RoI. Instead of using the rounding
operation, the RoIAlign layer uses bilinear interpolation to
compute the interpolated values of the input features at four
regularly sampled locations in each RoI bin, and aggregates
the result using max operation. This alignment technique
plays an important role in tasks based on pixel level such
as image segmentation. We refer the readers to [8] for a
detailed analysis of the RoIAlign layer.

2) Deconvolution for High Resolution Affordance Mask:
In recent state-of-the-art instance segmentation methods such
Mask-RCNN [8] and FCIS [18], the authors used a small
fixed size mask (e.g. 14×14 or 28×28) to represent the object
segmentation mask. This is feasible since the pixel value in
each predicted mask of RoI is binary, i.e., either foreground
or background. We empirically found that using small mask
size does not work well in the affordance detection problem
since we have multiple affordance classes in each object.
Hence, we propose to use a sequence of deconvolutional
layers for achieving a high resolution affordance mask.

Formally, given an input feature map with size Si, the
deconvolutional layer performs the opposite operation of the
convolutional layer to create a bigger output map with size
So, in which Si and So are related by:

So = s ∗ (Si − 1) + Sf − 2 ∗ d (1)

where Sf is the filter size; s and d are stride and padding
parameters, respectively.

In practice, the RoIAlign layer outputs a feature map
with size 7 × 7. We use three deconvolutional layers to

RoIAlign Deconv Deconv Deconv

7x7 30x30 122x122 244x244

Fig. 3. A sequence of three deconvolutonal layers to gradually upsample
a 7× 7 fixed size feature map to 244× 244.

upsample this map to higher resolution (see Fig. 3). The
first deconvolutional layer has the padding d = 1, stride
s = 4, and kernel size Sf = 8 to create the map with
size 30× 30. Similarly, the second layer has the parameters
(d = 1, s = 4, Sf = 8), and the third one has (d = 1,
s = 2, Sf = 4) to create the final high resolution map
with the size of 244 × 244. It is worth noting that before
each deconvolutional layer, a convolutional layer (together
with ReLu) is used to learn features which will be used
for the deconvolution. This convolutional layer can be seen
as an adaptation between two consecutive deconvolutional
layers. We analyze the effect of the affordance map size in
Section IV-C.

3) Robust Resizing Affordance Mask: Similar to Mask-
RCNN [8] and FCIS [18], our affordance detection branch
requires a fixed size (e.g., 244 × 244) target affordance
mask to supervise the training. During training, the authors
in [8] [18] resized the original groundtruth mask of each
RoI to the pre-defined mask size to compute the loss. This
resizing step outputs a mask with values ranging from 0 to 1,
which is thresholded (e.g., at 0.4) to determine if a pixel is
background or foreground. However, using single threshold
value does not work in our affordance detection problem
since we have multiple affordance classes in each object.
To address this problem, we propose a resizing strategy
with multi-thresholding. Given an original groundtruth mask,
without loss of generality, let P = {c0, c1, ..., cn−1} be set
of n unique labels in that mask, we first linearly map the
values in P to P̂ = {0, 1, ..., n− 1} and convert the original
mask to a new mask using the mapping from P to P̂ . We
then resize the converted mask to the pre-defined mask size
and use the thresholding on the resized mask as follows:

ρ(x, y) =

{
p̂, if p̂− α ≤ ρ(x, y) ≤ p̂+ α

0, otherwise
(2)



where ρ(x, y) is a pixel value in the resized mask; p̂ is one
of values in P̂ ; α is the hyperparameter and is set to 0.005
in our experiments.

Finally, we re-map the values in the thresholded mask
back to the original label values (by using the mapping
from P̂ to P ) to achieve the target training mask. Note
that there is another way to achieve the fixed size target
training mask. We can apply the resizing for each affordance
label in the original groundtruth mask separately, i.e., when
considering a label, that label is treated as foreground and
other labels are treated as background. Then, we can combine
the multiple resized masks to achieve the target training
mask. However, from the practical point of view, this strategy
is time consuming due to the multiple resizing for affordance
classes in RoI.

4) End-to-End Architecture: Fig. 2 shows an overview
of our end-to-end affordance detection network. The net-
work is composed of two branches for object detection
and affordance detection. Given an input image, we use
the VGG16 [20] network as the backbone to extract deep
features from the image. A RPN that shares the weights
with the convolutional backbone is then used to generate
candidate bounding boxes (RoIs). For each RoI, the RoIAlign
layer extracts and pools its corresponding features (from the
image feature map — the conv5 3 layer of VGG16) into
a 7 × 7 feature map. In the object detection branch, we
use two fully connected layers, each with 4096 neurons,
followed by a classification layer to classify the object
and a regression layer to regress the object location. In
the affordance detection branch, the 7 × 7 feature map is
gradually upsampled to 244×244 to achieve high resolution
map. The affordance branch uses a softmax layer to assign
each pixel in the 244 × 244 map to its most probable
affordance class. The whole network is trained end-to-end
using a multi-task loss function.

C. Multi-Task Loss

In our aforementioned end-to-end architecture, the clas-
sification layer outputs a probability distribution p =
(p0, ..., pK) over K + 1 object categories, including the
background. As in [19], p is the output of a softmax
layer. The regression layer outputs K + 1 bounding box
regression offsets (each offset includes box center and box
size): tk = (tkx, t

k
y , t

k
w, t

k
h). Each offset tk corresponds to

each class k. Similar to [21] [19] we parameterize for tk,
in which tk specifies a scale-invariant translation and log-
space height/width shift relative to an anchor box of the RPN.
The affordance detection branch outputs a set of probability
distributions m = {mi}i∈RoI for each pixel i inside the RoI,
in which mi = (mi

0, ...,m
i
C) is the output of a softmax layer

defined on C+1 affordance labels, including the background.
We use a multi-task loss L to jointly train the bounding

box class, the bounding box position, and the affordance map
as follows:

L = Lcls + Lloc + Laff (3)

where Lcls is defined on the output of the classification layer;

Lloc is defined on the output of the regression layer; Laff
is defined on the output of the affordance detection branch.

The prediction target for each RoI is a groundtruth object
class u, a groundtruth bounding box offset v, and a target
affordance mask s. The values of u and v are provided with
the training datasets. The target affordance mask s is the
intersection between the RoI and its associated groundtruth
mask. For pixels inside the RoI which do not belong to the
intersection, we label them as background. Note that the
target mask is then resized to a fixed size (i.e., 244 × 244)
using the proposed resizing strategy in Section III-B.3.
Specifically, we can rewrite Equation 3 as follows:

L(p, u, tu, v,m, s) =Lcls(p, u) + I[u ≥ 1]Lloc(t
u, v)

+ I[u ≥ 1]Laff (m, s) (4)

The first loss Lcls(p, u) is the multinomial cross entropy loss
for the classification and is computed as follows:

Lcls(p, u) = −log(pu) (5)

where pu is the softmax output for the true class u.
The second loss Lloc(t

u, v) is Smooth L1 loss [22]
between the regressed box offset tu (corresponding to the
groundtruth object class u) and the groundtruth box offset v,
and is computed as follows:

Lloc(t
u, v) =

∑
i∈{x,y,w,h}

SmoothL1(t
u
i − vi) (6)

where

SmoothL1(x) =

{
0.5x2 if |x| < 1
|x− 0.5| otherwise

The Laff (m, s) is the multinomial cross entropy loss for
the affordance detection branch and is computed as follows:

Laff (m, s) =
−1
N

∑
i∈RoI

log(mi
si) (7)

where mi
si is the softmax output at pixel i for the true label

si; N is the number of pixels in the RoI.
In Equation (4), I[u ≥ 1] is an indicator function which

outputs 1 when u ≥ 1 and 0 otherwise. This means that we
only define the box location loss Lloc and the affordance
detection loss Laff only on the positive RoIs. While the
object classification loss Lcls is defined on both positive and
negative RoIs.

It is worth noting that our loss for affordance detection
branch is different from the instance segmentation loss in
[8] [18]. In those works, the authors rely on the output of
the classification layer to determine the object label. Hence
the segmentation in each RoI can be considered as a binary
segmentation, i.e., foreground and background. Thus, the
authors use per-pixel sigmoid layer and binary cross entropy
loss. In our affordance detection problem, the affordance
labels are different from the object labels. Furthermore, the
number of affordances in each RoI is not binary, i.e., it is
always bigger than 2 (including the background). Hence, we
rely on a per-pixel softmax and a multinomial cross entropy
loss.



TABLE I
PERFORMANCE ON IIT-AFF DATASET

ED-RGB
[16]

ED-RGBD
[16]

DeepLab
[24]

DeepLab-
CRF [24]

BB-CNN
[6]

BB-CNN-
CRF [6]

AffordanceNet
(ours)

contain 66.38 66.00 68.84 69.68 75.60 75.84 79.61
cut 60.66 60.20 55.23 56.39 69.87 71.95 75.68

display 55.38 55.11 61.00 62.63 72.04 73.68 77.81
engine 56.29 56.04 63.05 65.11 72.84 74.36 77.50
grasp 58.96 58.59 54.31 56.24 63.72 64.26 68.48
hit 60.81 60.47 58.43 60.17 66.56 67.07 70.75

pound 54.26 54.01 54.25 55.45 64.11 64.86 69.57
support 55.38 55.08 54.28 55.62 65.01 66.12 69.81
w-grasp 50.66 50.42 56.01 57.47 67.34 68.41 70.98

Average 57.64 57.32 58.38 59.86 68.57 69.62 73.35

D. Training and Inference

We train the network in an end-to-end manner using
stochastic gradient descent with 0.9 momentum and 0.0005
weight decay. The network is trained on a Titan X GPU
for 200k iterations. The learning rate is set to 0.001 for the
first 150k and decreased by 10 for the last 50k. The input
images are resized such that the shorter edge is 600 pixels,
but the longer edge does not exceed 1000 pixels. In case the
longer edge exceeds 1000 pixels, the longer edge is set to
1000 pixels, and the images are resized based on this edge.
Similar to [8], we use 15 anchors in the RPN (5 scales and 3
aspect ratios). Top 2000 RoIs from RPN (with a ratio of 1:3
of positive to negative) are subsequently used for computing
the multi-task loss. An RoI is considered positive if it has IoU
with a groundtruth box of at least 0.5 and negative otherwise.

During the inference phase, we select the top 1000 RoIs
produced by the RPN and run the object detection branch on
these RoIs, followed by a non-maximum suppression [23].
From the outputs of the detection branch, we select the
outputted boxes that have the classification score higher than
0.9 as the final detected objects. In case there are no boxes
satisfying this condition, we select the one with highest
classification score as the only detected object. We use the
detected objects as the inputs for affordance detection branch.
For each pixel in the detected object, the affordance branch
predicts C + 1 affordance classes. The output affordance
label for each pixel is achieved by taking the maximum
across the affordance classes. Finally, the predicted 244×244
affordance mask of each object is resized to the object (box)
size using the resizing strategy in Section III-B.3. In case
there is the overlap between detected objects, similar to [6],
the final affordance label is decided based on the affordance
priority. For example, the “contain” affordance is considered
to have low priority than other affordances since there may
have other objects laid on it.

IV. EXPERIMENTS
A. Dataset and Baseline

IIT-AFF Dataset The IIT-AFF dataset is recently intro-
duced in [6] and consists of 8, 835 real-world images. This
dataset is suitable for deep learning methods and robotic
applications since around 60% of the images are from

TABLE II
PERFORMANCE ON UMD DATASET

HMP
[4]

SRF
[4]

DeepLab
[24]

ED-RGB
[16]

ED-RGBD
[16]

ED-RGB
HHA [16]

AffordanceNet
(ours)

grasp 0.367 0.314 0.620 0.719 0.714 0.673 0.731
w-grasp 0.373 0.285 0.730 0.769 0.767 0.652 0.814

cut 0.415 0.412 0.600 0.737 0.723 0.685 0.762
contain 0.810 0.635 0.900 0.817 0.819 0.716 0.833
support 0.643 0.429 0.600 0.780 0.803 0.663 0.821
scoop 0.524 0.481 0.800 0.744 0.757 0.635 0.793
pound 0.767 0.666 0.880 0.794 0.806 0.701 0.836

Average 0.557 0.460 0.733 0.766 0.770 0.675 0.799

ImageNet dataset [25], while the rest images are taken by
the authors from cluttered scenes. In particular, this dataset
contains 10 object categories, 9 affordance classes, 14, 642
object bounding boxes, and 24, 677 affordance regions at
pixel level. We use the standard split as in [6] to train our
network (i.e. 70% for training and 30% for testing).

UMD Dataset The UMD dataset [4] contains around
30, 000 RGB-D images of daily kitchen, workshop, and
garden objects. The RGB-D images of this dataset were
captured from a Kinect camera on a rotating table in a
clutter-free setup. This dataset has 7 affordance classes and
17 object categories. Since there is no groundtruth for the
object bounding boxes, we compute the rectangle coordinates
of object bounding boxes based on the affordance masks. We
use only the RGB images of this dataset and follow the split
in [4] to train and test our network.

Baseline As the standard practice, we use the Fwβ met-
ric [26] to evaluate the affordance detection results. We com-
pare our AffordanceNet with the following state-of-the-art
approaches: DeepLab [24] with and without post processing
with CRF (denoted as DeepLab and DeepLab-CRF), CNN
with encoder-decoder architecture [16] on RGB and RGB-D
images (denoted as ED-RGB and ED-RGBD), CNN with
object detector (BB-CNN) and CRF (BB-CNN-CRF) [6].
For the UMD dataset, we also report the results from the
geometric features-based approach (HMD and SRF) [4] and
a deep learning-based approach that used both RGB and
depth images as inputs (ED-RGBHHA) [16]. Note that, all
the deep learning-based methods use the VGG16 as the main
backbone for a fair comparison.

B. Results

IIT-AFF Dataset Table I summarizes results on the IIT-
AFF dataset. The results clearly show that AffordanceNet
significantly improves over the state of the art. In particular,
AffordanceNet boosts the Fwβ score to 73.35, which is 3.7%
improvement over the second best BB-CNN-CRF. It is worth
noting that AffordanceNet achieves this result using an end-
to-end architecture, and no further post processing step such
as CRF is used. Our AffordanceNet also achieves the best
results for all 9 affordance classes. We also found that for
the dataset containing cluttered scenes such as IIT-AFF,
the approaches that combine the object detectors with deep
networks to predict the affordances (AffordanceNet, BB-



Fig. 4. Examples of affordance detection results by AffordanceNet on the IIT-AFF dataset.

CNN) significantly outperform over the methods that use
deep networks alone (DeepLab, ED-RGB).

UMD Dataset Table II summarizes results on the UMD
dataset. On the average, our AffordanceNet also achieves
the highest results on this dataset, i.e., it outperforms the
second best (ED-RGBD) 2.9%. It is worth noting that the
UMD dataset only contains clutter-free scenes, therefore the
improvement of AffordanceNet over compared methods is
not as high as the one in the real-world IIT-AFF dataset.
We recall that the AffordanceNet is trained using the RGB
images only, while the second best (ED-RGBD) uses both
RGB and the depth images. The Table II also clearly shows
that the deep learning-based approaches such as Affor-
danceNet, DeepLab, ED-RGB significantly outperform the
hand-designed geometric feature-based approaches (HMP,
SRF).

To conclude, our AffordanceNet significantly improves
over the state of the art, while it does not require any extra
post processing or data augmentation step. From the robotic
point of view, AffordanceNet can be used in many tasks
since it provides all the object locations, object categories,
and object affordances in an end-to-end manner. The running
time of AffordanceNet is around 150ms per image on a Titan
X GPU, making it is suitable for robotic applications. Our
implementation is based on Caffe deep learning library [27].
The source code and trained models that allow reproducing
the results in this paper will be released upon acceptance.

C. Effect of Affordance Map Size

In this section, we analyze the effect of the affordance
map size. Follow the setup in Mask-RCNN, we use only
one deconvolutional layer with parameters (d = 1, s = 2,
Sf = 4) to create 14 × 14 affordance map from the 7 × 7
feature map (denoted as AffordanceNet14). Similarly, we
change the parameters to (d = 1, s = 4, Sf = 6) to create
the 28 × 28 affordance map (denoted as AffordanceNet28).
Furthermore, we also setup networks which use two decon-
volutional layers to create 56×56 affordance map (denoted as
AffordanceNet56), and three deconvolutional layers to create
112 × 112 affordance map (denoted as AffordanceNet112).
Finally, to check the effect of the convolutional layers, we
also setup a network with 6 convolutional layers (together
with ReLu), follow by a deconvolutional layer that up-
sampling the 7 × 7 feature map to 14 × 14 (denoted as
AffordanceNet14 6Conv).

Table III summarizes the average Fwβ score of the afore-
mentioned networks on the IIT-AFF dataset. The results show
that the affordance detection accuracy is gradually increasing
when the bigger affordance map is used. In particular, the
AffordanceNet14 gives very poor results since the map size
of 14 × 14 is too small to represent multiclass affordances.
The accuracy is significantly improved when we use the
28 × 28 affordance map. However, the improvement does
not linearly increase with the affordance map size, it slows
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Fig. 5. Examples of predicted affordance masks using different mask sizes. The predicted mask is smoother and finer when a bigger mask size is used.

(a) (b) (c)

Fig. 6. Affordance detection in the wild. (a) and (b): We use AffordanceNet
to detect the objects in Gazebo simulation. (c) AffordanceNet also performs
well when the input is an artwork.

TABLE III
EFFECT OF MASK SIZE

Fwβ

AffordanceNet14 57.71
AffordanceNet28 66.13
AffordanceNet56 71.54

AffordanceNet112 72.52
AffordanceNet14 6Conv 60.27

AffordanceNet 73.35

down when the bigger mask sizes are used. Note that using
the big affordance map can improve the accuracy, but it also
increases the number of parameters of the network. In our
work, we choose the 244× 244 map size for AffordanceNet
since it both gives the good accuracy and can be trained with
a Titan X GPU. We also found that using more convolutional
layers (as in AffordanceNet14 6Conv) can also improve the
accuracy, but it still requires to upsample the affordance map
to high resolution in order to achieve good results. Fig 5
shows some example results when different affordance map
sizes are used.

D. Affordance Detection in The Wild

The experimental results on the simple constrained envi-
ronment UMD dataset and the real-world IIT-AFF dataset
show that the AffordanceNet performs well on public re-
search datasets. However, real-life images may be more
challenging. In this study, we show some qualitative results
to demonstrate that the AffordanceNet can generalize well
in other testing environments. As illustrated in Fig 6, our
AffordanceNet can successfully detect the objects and their
affordances from artwork images or images from a simulated
camera in Gazebo simulation [28]. Although this result is
qualitative, it shows that AffordanceNet is applicable for
wide ranges of applications, including in simulation environ-
ment which is crucial for developing robotic applications.

Fig. 7. WALK-MAN is performing a pouring task. The outputs of the
object detection branch help the robot to recognize and localize the objects
(i.e., bottle, pan) while the outputs of the affordance detection branch help
the robot to perform the task (i.e., where on the bottle the robot should
grasp and where on the pan the water should be poured).

E. Robotic Applications

Since the AffordanceNet can detect both the objects and
their affordances at the speed of 150ms per image, it is quite
suitable for robotic applications. To demonstrate that, we use
the humanoid robot WALK-MAN [29] to perform different
manipulation experiments. The robot is controlled in real-
time using the XBotCore framework [30]. The whole-body
motion planning is generated by OpenSoT library [31], while
the AffordanceNet is used to provide visual information for
the robot. Note that, from the 2D information outputted by
AffordanceNet, we use the corresponding depth image to
project it into 3D space, to be used in the real robot. Using
this setup, the robot can perform different tasks such as
grasping, pick-place, and pick-pouring. It is worth noting
that all information produced by the AffordanceNet, i.e. the
object locations, object labels, and object affordances are
very useful for the tasks. For example, the robot knows where
to grasp a bottle via the bottle’s grasp affordance, and
where to pour the water into a pan via the pan’s contain
affordance (see Fig. 7). Our experimental video can be found
at the following link: https://sites.google.com/site/affordancenetwork/

V. CONCLUSION

We have proposed AffordanceNet, an end-to-end deep
learning framework that can simultaneously detect the ob-
jects and their affordances. Different from state-of-the-art
network architectures for instance segmentation, we pro-
posed three components to address the problem of multiple
affordance classes in affordance detection task: a sequence of
deconvolutional layers, a robust resizing strategy, and a new
loss function. We showed that these components are the key
factors to achieve high affordance detection accuracy. The
extensive experimental results show that our AffordanceNet
not only achieves state-of-the-art results on public datasets,
but can also be used in various robotic applications.

https://sites.google.com/site/affordancenetwork/


ACKNOWLEDGMENT

Thanh-Toan Do and Ian Reid are supported by the
Australian Research Council through the Australian Centre
for Robotic Vision (CE140100016). Ian Reid is also sup-
ported by an ARC Laureate Fellowship (FL130100102). Anh
Nguyen is supported by the European Union Seventh Frame-
work Programme (FP7-ICT-2013-10) under grant agreement
no 611832 (WALK-MAN). The authors would like to thank
Darwin G. Caldwell and Nikos G. Tsagarakis for the useful
discussion.

REFERENCES

[1] J. J. Gibson, The Ecological Approach to Visual Perception. Boston:
Houghton Mifflin, 1979.

[2] C. Castellini, T. Tommasi, N. Noceti, F. Odone, and B. Caputo, “Using
object affordances to improve object recognition,” IEEE Transactions
on Autonomous Mental Development, 2011.

[3] H. S. Koppula and A. Saxena, “Anticipating human activities using
object affordances for reactive robotic response,” TPAMI, 2016.

[4] A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos, “Affordance
Detection of Tool Parts from Geometric Features,” in ICRA, 2015.

[5] A. Nguyen, D. Kanoulas, L. Muratore, D. G. Caldwell1, and N. G.
Tsagarakis, “Translating videos to commands for robotic manipulation
with deep recurrent neural networks,” in ICRA, 2018.

[6] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Object-based affordances detection with convolutional neural net-
works and dense conditional random fields,” in IROS, 2017.
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