
Preparatory Object Reorientation for Task-Oriented Grasping

Anh Nguyen, Dimitrios Kanoulas, Darwin G. Caldwell, and Nikos G. Tsagarakis

Abstract— This paper describes a new task-oriented grasping
method to reorient a rigid object to its nominal pose, which is
defined as the configuration that it needs to be grasped from,
in order to successfully execute a particular manipulation task.
Our method combines two key insights: (1) a visual 6 Degree-
of-Freedom (DoF) pose estimation technique based on 2D-3D
point correspondences is used to estimate the object pose in
real-time and (2) the rigid transformation from the current to
the nominal pose is computed online and the object is reoriented
over a sequence of steps. The outcome of this work is a novel
method that can be effectively used in the preparatory phase of
a manipulation task, to permit a robot to start from arbitrary
object placements and configure the manipulated objects to the
nominal pose, as required for the execution of a subsequent
task. We experimentally demonstrate the effectiveness of our
approach on a full-size humanoid robot (WALK-MAN) using
different objects with various pose settings under real-time
constraints.

I. INTRODUCTION

Robotic grasping has been extensively studied over the last
few years. Along with the manipulation trajectory planning
and control, exteroceptive perception is a key aspect of
autonomous grasping. Recent advances in visual perception
have mainly focused on detecting grasps for pick-and-place
tasks [1] [2] and localizing grasp affordances [3]. While this
area is well studied, it is only recently that the problem
of preparatory reorientation has been considered for object
manipulation [4]. This human-inspired strategy plays an im-
portant role in manipulation when the object is not oriented
in a pose that can be readily grasped.

Reachability limitations, a possibly infeasible starting ob-
ject pose configuration, or even the energy consumption of
the robot may prevent it from reaching and grasping an object
at once as it is usually assumed in the literature. There is not
yet any fully autonomous system that evaluates an object’s
pose and reorients it to a nominal pose such that it can be
later used appropriately. For instance, a drill needs to be
grasped in a particular way as shown in Fig. 1-(b) to be
used. Arguably, there is no alternative way to achieve such
a grasp starting from the configuration shown in Fig. 1-(a),
unless the robot reorients it through a sequence of pre-grasps.

Pre-grasping in robotic manipulation was originally stud-
ied in [5] [4] from the planning point of view, with objects
being rotated on a table using only a single grasp. In these
approaches exteroceptive perception was not used, while the
case where the final grasp is not reachable was also not

The authors are with the Department of Advanced Robotics, Istituto
Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy.
{Anh.Nguyen, Dimitrios.Kanoulas, Darwin.Caldwell,
Nikos.Tsagarakis}@iit.it

(a) (b)
Fig. 1. An example of a grasping scenario. (a) The original object pose.
(b) The nominal object pose after the reorientation.

considered. Moreover, the technique was limited to rotations
around a single axis per object.

In this work, we extend the idea of the preparatory object
reorientation by adding visual perception in the loop, and
more importantly by considering a sequence of grasps that
will orient an object to the right usable pose, starting from
any arbitrary one, and using only a flat support surface for
the transitions. We first study the problem of pose estimation,
which is challenging due to variations in the object geometric
characteristics and the real-time task requirements. Then, we
introduce a strategy for reorienting objects to their nominal
pose using a sequence of pre-grasps. Using this technique,
objects are placed in a kinematically reachable configuration,
ready for the final grasp.

In particular, given a set of object images observed from
various viewpoints, a database is generated offline with the
object poses. For every image, a set of features is extracted
along with their associated 3D correspondence points. These
correspondences are generated by defining and fitting a
bounding box on the object. Having defined the pose in
such a way, we also denote an image per object as its
nominal pose. After estimating the object pose, the rigid
transformation between the detected pose and its nominal
is calculated, considering only the rotation part. Finally, the
robot plans and performs a sequence of rotations on the
object, limited to the kinematic capabilities of the robot with
the goal of bringing the object to its nominal pose.

Next we cover related work (Section II) followed by an
overview of our approach (Section III). We then describe
our pose estimation method in Section IV and introduce the
reorientation strategy in Section V. Finally, in Section VI
we present the experimental results on a full-size humanoid
robot, reorienting different objects in real-world scenarios.

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 893

Authorized licensed use limited to: University of Liverpool. Downloaded on May 25,2021 at 23:01:14 UTC from IEEE Xplore.  Restrictions apply. 



II. RELATED WORK

Object grasping has a long history in the area of robotic
manipulation [6] [7]. One of the main grasping approaches
is to localize an object in the environment and then plan
a grasp. For instance, the authors in [2] used a score
function to measure the quality of the graspable 3D points
on the surfaces of the object, achieving reliable grasps for
novel objects. Instead of localizing whole objects, many
works have focused on detecting grasp regions directly. A
method was introduced in [8] to localize antipodal grasps
in cluttered environments, by ranking all the possible grasps
based on constraints formed by the robot hand and its finger
configuration. The work of [3] proposed a method to detect
grasp affordances using a deep learning approach. A grasp
was defined as a rectangular box on the object that satisfies
the robot’s hand limitations, and its locations were learned
by two deep neuron networks. Recently, the authors in [9]
used a convolutional neural network to achieve high grasp
success rate in dense clutter, while in [10] object affordances
have been also used successfully for grasping.

Various other visual perception methods similar to those
described above mainly focus on detecting grasping locations
for pick-and-place tasks. They usually do not consider the
case where an object needs to be grasped in a particular
configuration that is not initially possible. The research that
has been done on preparatory manipulation is very limited.
Human pre-grasping strategies based on preparatory object
rotation have been studied initially in [5]. Later in [11] the
researchers from the same group developed this concept to
find stable grasps. Similarly in [4] a pre-grasping strategy
was used for completing transport tasks by planning object
rotations. Recently, in [12] the authors introduced a robotic
system that uses a gripping hand and external surfaces to
perform difficult reorientation tasks like flipping. All these
pre-grasping methods mainly focus on the planning aspect
of the problem, to improve the success rate of grasping or
transporting objects.

The method proposed in this paper, unlike [11] [4] and
other in-hand object manipulation system [13], implements
a fully autonomous system to estimate the pose of an object
in real-time. Based on the detected pose, the robot generates
online and in real-time a sequence of transformations to
move the object to the desired nominal state. While previous
methods focused mainly on improving the grasping success
rate or the effort of moving an object, in our approach we are
the first (to the best of our knowledge) to study the problem
of developing a pre-grasping strategy to reorient an object
to its nominal pose. This is a necessary strategy that allows
the robot to finally grasp the object while still being able to
reserve its kinematic reachability for other tasks.

III. AN OVERVIEW OF OUR APPROACH

As shown in Fig. 2, the perception and the planning
systems form a loop which repeats, until the final object
configuration has been achieved. First, the object pose is
estimated from an RGB-D image using a popular approach in
computer vision based on the concept of feature descriptors.

Pose Estimation Pose Validation
Reorientation

Planning
Nominal Pose

Executing a Reorientation Plan

Yes

No

Fig. 2. The pipeline of our approach.

The main idea is to extract meaningful features from 2D
images and establish the correspondence between them and
their associated coordinates in the 3D space. To create
these correspondences, we project the detected features onto
3D points using a predefined object bounding box. Each
correspondence is computed offline and saved in a database.
When a test image is acquired, its features are extracted and
matched with those stored in the database in real-time. The
geometric relationship between two matched features is then
used to estimate the 6DoF object pose in real-time.

After estimating the object pose, our system validates the
current pose of the object by comparing the found orientation
with the nominal one in the database. If the object is at
its nominal pose, the robot can perform the final grasp to
use the object. Otherwise, a number of reorientation steps
are planned to bring the object to the nominal pose. The
goal of each reorientation is to move the object to a new
configuration that is closer to the nominal. Each step is
validated to make sure that the robot can physically execute
it while keeping in the end the object steady on the table.
Our method uses vision in the loop after each reorientation
step to re-evaluate the current pose of the object and to plan
the next step. The whole process is repeated until the robot
successfully reorients the object to its nominal pose. The next
two sections give the details of these steps.

IV. POSE ESTIMATION

The pre-grasping process in this work involves an inter-
mediate planar support surface like a tabletop. The nominal
object pose (denoted by N ) is the one that the object lies
in a stable configuration on the support surface and it is in
the right pose ready for the final grasp from its handle. To
estimate the 6DoF pose, we follow the standard approach for
textured objects introduced in [14]. However instead of using
the full 3D object model, we only use the 3D bounding box
to simplify the system. An overview of our pose estimation
approach can be found in Fig. 3.

A. 3D Bounding Box

The pose of an object is defined using a 3D rectangular
box that encapsulates it. For the nominal pose, an origin
root point is first selected manually in a particular corner of
the bounding box, while the local object frame is defined
as follows. The first axis is along the horizontal direction,
the second corresponds to the table’s normal vector (i.e. the
vertical direction), while the last axis is their cross product.
For example in the estimated pose in Fig. 3-b, the x-axis
(in red) aligns with the horizontal direction, while the y-
axis (in green) with the table’s normal vector. This frame is
manually picked for the nominal pose and its position always

894

Authorized licensed use limited to: University of Liverpool. Downloaded on May 25,2021 at 23:01:14 UTC from IEEE Xplore.  Restrictions apply. 



Image Features

Extract
Features

Database

Entry

RGB Image Image Features Object Pose

(a) Training (b) Testing

Extract
Features Matching

EPnP
RANSAC

Generate
Correspondences

Pose Database
RGB Image +

3D Bounding Box

Fig. 3. The pose estimation method. (a) Training: For each image the features are first extracted from the object, then the correspondences between the
2D features and their associated points in 3D space are generated using the predefined bounding box. (b) Testing: The detected features are matched with
all the features in the database. The matched correspondences will be used to compute the object pose.

remains consistent with the object position with respect to
the camera. During the training step, we manually define a
set S that stores the conditions for the axis directions in the
local object frame in which the object can stand steadily on
the support surface (e.g. in Fig. 3-b, S = {∠(y,nt) = 0}
since we only consider the object to be at its steadily standing
configuration on the support surface if the angle between its
y-axis and the table’s normal vector nt is 0 degree).

B. Pose Estimation

We use the pinhole camera model to estimate the 6DoF
pose of the object. In particular, given the camera intrinsic
parameters matrix M ∈ R3×3, the homogeneous representa-
tion of a 2D image points p ∈ R3 in the camera frame and its
corresponding 3D point P ∈ R4 in the local object frame.
The object pose [R, t] ∈ R3×4 is given by the following
equation:

p = M[R, t]P (1)

with R the rotation matrix and t the translation vector.
To estimate the 6DoF object pose, in the training phase,

we first extract n ORB [15] keypoints pi, i ∈ [1, n] for
each input image. These keypoints are projected onto the 3D
local object space using the Möller-Trumbore algorithm [16]
to establish the correspondences pi ↔ Pi. This algorithm
uses the mesh model of the predefined bounding box and the
detected keypoints pi as input, to compute their associated
3D coordinates Pi.

In the testing phase, the extracted keypoints are compared
with all the entries in the database using the FLANN match-
ing technique [17]. From the matched pair, the pi ↔ Pi

correspondences, that was established during the training,
can be extracted. Given those we estimated the object
pose [R, t] from Eq. 1 by using the non-iterative EPnP
technique introduced in [18]. Since outliers may exist in
the found correspondences due to wrong matches, we use
the RANSAC [19] algorithm to identify the set of inlier
correspondences and run the pose estimation only for this
set.

V. OBJECT REORIENTATION

The goal of our method is to detect visually the current
pose of an object and bring it to its nominal pose through
a set of reorientation steps. The central idea of our ap-
proach is based on the difference between the current and
the nominal pose that can be extracted from the database.
Given this information, we develop a reorientation strategy,
which incorporates perception to estimate the object’s pose
and an algorithm to reorient it to its nominal one. Visual
perception plays an important role in this loop, since after
each reorientation step it is used to evaluate the current pose
and plan the next step. The whole process is repeated until
the object reaches its nominal pose or the robot cannot grasp
the object from its handle anymore.

A. Grasp Selection

To reorient an object, the first problem to consider is where
it should be grasped from. In our application, the robot has
to successfully grasp an object in such a way that it is not
changing its original pose during the grasping, since this
will cause an unwanted error to the reorientation result. This
is particularly challenging in our system since we use an
underactuated hand, and it appears that the object usually is
shifted during the grasps. Even though a lot of methods have
been developed for detecting grasp affordances [2] [3] [8],
they do not guarantee to always find such a robust grasp,
where an object is not moved using an underactuated hand.

In this work, we assume that the objects have a handle
on which we manually define the grasp frame in each
object’s nominal pose. In particular, given the root frame of
the estimated pose Of , a rigid transformation is manually
defined to transform this frame to the grasp frame Gf .
The origin of Gf is chosen on the surface of the handle,
while its orientation is defined as follows. The x-axis co-
aligns with the object’s handle axis and the y-axis points
towards the handle axis, so that the hand can encapsulate
more robustly the object. For each reorientation step, the
grasp frame Gf co-aligns with the end-effector frame to
generate the trajectory for the arm. In this way, we allow the
grasps to be only around the object’s handle, which reduces
the chance of unwanted object rotations during the grasping.
These frames are shown in Fig. 4.

895

Authorized licensed use limited to: University of Liverpool. Downloaded on May 25,2021 at 23:01:14 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)
Fig. 4. Grasping frames. (a) The estimated object pose. (b) The grasp
frame transformed from the estimated pose. (c) The end-effector frame that
needs to be coaligned with the grasp frame on the object.

B. Trajectory Planning

The motion planning has been used as a black box in
our reorientation system. To plan the trajectory for the end
effector, we first find a grasp frame Gf as described in
the previous section. The orientation of the end effector
is matched with the grasp frame Gf in order to perform
the actual grasping. In practice, we use the Stack-of-Task
(SoT) [20] method combined with OpenSoT [21] library
to control the whole-body motion of the robot. The SoT
method solves the inverse kinematics by employing cas-
caded Quadratic Programming solvers to efficiently find an
optimum, in the least-square sense with a description of
hierarchical tasks and constraints.

C. Reorientation Strategy

Given an input image including the object, the 2D features
are extracted and matched with the right entry E in the
database. Then, using the found 3D correspondences, the
rotation matrix RCE that represents the current pose of the
object in the camera frame C, is computed. Furthermore,
the nominal pose N orientation is pre-computed as RCN ,
giving the object’s goal configuration in the camera frame.
The rigid transformation REN between these two rotation
matrices defines the reorientation action to be applied on the
object to bring it in the nominal pose, and can be estimated
as follows:

REN = REC .RCN = RT
CE .RCN (2)

The estimated matrix REN provides the visual rotational
information to reorient the object. However, due to the
kinematic limitations of the robot arm, it might not be
possible to reorient the object to its nominal pose in a single
step. To deal with this problem, we propose a new algorithm
(Algorithm 1) to generate a plan that is feasible for execution
in each reorientation step.

In Algorithm 1, we first decompose the rotation matrix
REN to its roll, pitch, yaw values and represent them as a set
Ar,p,y . To reorient the object to its nominal pose, the robot
has to use its hand to manipulate the object along its three
axes until all values in the set Ar,p,y reach zero (in practice,
we use a small threshold ε close to zero). Now the problem
of rotating an object from the current pose to the nominal
pose has become that of choosing the order along the three

Algorithm 1 Generate Reorientation Plan
Input: Matrix REN , grasp frame Gf , standing axis set S
Output: Reorientation plan P

1: P = ∅
2: Decompose Ar,p,y = REN

3: while P = ∅ and Ar,p,y > ε do
4: for each Ai ∈ Ar,p,y do
5: Pi = Generate(Gf ,Ai)
6: b = Evaluate(Pi,S)
7: if b then
8: P = Pi

9: break
10: end if
11: end for
12: if P = ∅ then
13: Ar,p,y = Ar,p,y/2
14: end if
15: end while

axes to bring it closer to its nominal pose. To increase the
successful rate of the real motion planning, we assume that
in each reorientation step the robot will rotate the object
based only on one axis. In particular, given a value Ai ∈
Ar,p,y , the robot will call the real motion planning function
Generate that takes the grasp frame Gf and the expected
angle to be rotated Ai as input, and generates the physical
trajectory Pi for its arm. To make sure that the object after
each reorientation step doesn’t fall into an unexpected or
a more complicated configuration due to unstable standing
on the support surface, we evaluate every plan Pi using the
Evaluate function. This function uses the predefined stable
standing set S to check if the object pose after executing the
plan Pi has any axis of its local object frame satisfying the
conditions in S. Intuitively, the accepted plan must satisfy
two conditions: first to be physically executable and second
to have the object stand steadily on its support surface after
each reorientation step.

In the case that there are no kinematically feasible solu-
tions for all three axes, we heuristically divide all the values
in Ar,p,y in half, to look for a new less ambitious plan. The
Algorithm 1 will stop when a feasible reorientation plan Pi

is found. If the robot cannot find any feasible plan while
all the values in Ar,p,y are divided repeatedly to less than
ε, it means that due to kinematic constraints there are no
solutions to grasp and rotate the object in any direction given
the grasp frame Gf , even with a small angle. This problem
can only be solved by searching for the a new grasp frame
Gf at a different location on the object. The execution of
each reorientation plan Pi will bring the object to the new
configuration that is closer to its nominal pose, assuring
that the object can stand steadily on the support surface.
After each reorientation step, we again use the visual pose
estimation method to re-estimate the object’s pose and plan
the next step. The use of vision in the loop is necessary since
the object may be in a different unexpected pose after each
grasp by the underactuated hand.

896

Authorized licensed use limited to: University of Liverpool. Downloaded on May 25,2021 at 23:01:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
POSE ESTIMATION RESULTS AND ERRORS (IN DEG)

Positions Average Errors

P1 P2 P3 P4 P5 P1 → P3 P4 → P5

Exp. Values
Ar,p,y (0.0, 0.0, 22.5) (0.0, 0.0, 50.0) (0.0, 0.0, 75.5) (30.0, 0.0, 30.0) (60.0, 0.0, 30.0)

Est. Values
Juice Box (3.1, 5.3, 28.7) (1.5, 2.5, 53.3) (2.2, 3.5, 72.2) (24.3, 4.6, 36.7) (69.1, 6.3, 35.1) (2.3, 3.8, 3.3) (7.4, 5.5, 5.9)

Chair (6.2, 3.2, 23.1) (3.2, 4.6, 55.7) (3.6, 5.1, 71.8) (22.6, 5.3, 38.5) (67.1, 4.7, 37.2) (3.3, 3.2, 3.0) (7.3, 5.0, 7.9)

Drill (6.1, 3.3, 31.0) (3.2, 0.3, 44.5) (5.6, 0.8, 78.0) (36.5, 3.5, 33.4) (53.4, 1.8, 21.6) (5.0, 1.5, 4.5) (6.6, 2.7, 5.9)

Hammer (4.3, 6.1, 31.1) (2.6, 0.8, 47.6) (4.2, 3.9, 69.2) (38.5, 6.7, 25.7) (53.2, 5.1, 22.6) (3.7, 3.6, 4.8) (7.7, 5.9, 5.9)

Watering Can (7.2, 4.2, 33.6) (2.4, 5.4, 56.7) (3.5, 4.3, 81.1) (34.5, 2.3, 37.3) (66.4, 2.1, 36.4) (4.4, 4.6, 6.8) (5.5, 2.2, 6.9)

VI. EXPERIMENTS

To validate the introduced method, we run experiments
on the WALK-MAN full-size humanoid robot. We design
different sets of experiments in order to verify all the
components of our framework. We demonstrate that using
our approach, WALK-MAN is able to reorient the objects
in real life scenarios through one or multiple reorientation
steps using its underactuated hand.

A. Robotic Platform

WALK-MAN [22] [23] is a 31DoF full-size humanoid
robot which is 1.85 meters tall and weighs 118kg. It is
designed to operate in man-made environments to assist
or replace humans in damaged sites after natural or civil
disasters. WALK-MAN is equipped with human-like un-
deractuated hands (IIT-Pisa Soft Hand [24]), including five
fingers that are driven by a single motor and are designed to
adapt to the shape of the objects to be grasped. Each arm has
7DoF and the wrist is equipped with a 6DoF force/torque
sensor. For the visual sensing a MultiSense-SL system is
used, which can capture lidar and stereo data. The stereo
vision, which we use in the work, acquires 1024 × 1024
RGB-D data in 15 frames per second. The communication
with the robot is done with the use of the YARP middleware
framework [25] that provides and delivers the high-level
commands for motion primitives to the low-level torque
controller. The control system runs on a computer with a
Core i5 3.2GHz x 4 processor and 12GB RAM.

B. Experimental Setup

For the experiments, we used six objects as shown in
Fig. 5. Throughout the experiments, the robot is positioned
in front of a table, on which we place the object in a
right-hand reachable position. The robot only uses its right
hand to manipulate the object, while using the OpenSoT
library [21] its Center-of-Mass is always kept in the convex
hull guaranteeing stable balancing during the manipulation
task. A preparatory reorientation is successful if the robot
can finally bring an object to its nominal pose of up to 5
degrees error.

For each object, the local object frame is defined at the
right bottom part of its bounding box in the nominal position.
To create the database pose, we rotated the object by 5

degrees along its handle axis from each starting position. In
the implementation the RANSAC outliers removal process
runs in a loop of 1000 times, with the maximum inline
distance and the successful confidence to be 2.5 and 0.95%
respectively, while the minimum number of correspondences
that are needed to estimate the object pose is set to 12. The
threshold ε that indicates the acceptance error of the rotation
angle in Algorithm 1 is set to 5 degrees.

C. Evaluating the Pose Estimation Method

To evaluate the efficiency of the visual system, we run
our pose estimation method on all the test objects (except
the clothes stand) in various positions. We first place the
object in its nominal pose and we then manually rotate it to
a known position. For each of them, the robot uses its vision
system to estimate the pose of the object and calculates the
difference Ar,p,y between the estimated and the nominal
one. Table I summarizes the results. The first row of the
table shows the expected values for each position, while the
last two columns show the absolute average errors when the
test objects are rotated around one (position P1 → P3) or
two axes (position P4 → P5). The performance of our pose
estimation method when the objects are rotated around one
axis has approximately 5 degrees of error, while it becomes
less accurate when the objects start from a more complicated
configuration. We noticed that the main reason that decreases
the quality of our pose estimation method is the existence
of the outliers that cannot be removed by the RANSAC
algorithm.

D. Reorienting with Underactuated Hand

To validate the full system, we run two different types
of experiments. In the first case (Case 1), we position each
object on the table standing on its support surface and the
goal is to bring it to its nominal pose. The robot will have to
rotate it only around its rotational axis which is perpendicular
to the table in one or more steps. In the second case (Case
2), the object is placed in an arbitrary position on the table
and the goal is to bring it in such a configuration that it
stands on its support surface (not the nominal one which is
studied in the first case). Table II shows the reorientation
success rate (in %) for both cases for 10 trials. Overall, we
achieve a 72% success rate on the first case and a 46.7%

897

Authorized licensed use limited to: University of Liverpool. Downloaded on May 25,2021 at 23:01:14 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
REORIENTATION SUCCESS RATE (IN %)

Case 1 Case 2

Juice Box 60 40
Chair 60 40

Clothes Stand n/a 80
Drill 80 40

Hammer 80 40
Watering Can 80 40

Average 72% 46.7%

success rate on the second one. We notice two main reasons
that make the reorientations unsuccessful: (1) The estimated
pose usually has around 5 degrees of error (as tested in the
above section), and (2) since we use the underactuated hand
with multiple contact points, the geometry of the object also
affects the success rate. In the case that the object has a
large support standing surface (e.g. the clothes stand) it is
easier to bring it to its stable standing configuration, while
it becomes more difficult when we reorient the object with a
small standing support surface. For each reorientation plan,
the total execution time is around 1 minute, and the time
that is needed to estimate the object pose and search for a
reorientation plan is approximately 45 milliseconds.

Using our approach, WALK-MAN can also reorient ob-
jects around more than one axis starting from a more
complicated position. It is notable that with our method the
robot can rotate objects to their nominal position with a
relatively high success rate given the unstable grasping by
its underactuated hand. This advantage is mainly achieved
by using vision in the loop to re-estimate the pose after
each step, where rotational errors were detected online and
corrected during the next step’s rotation planning. In the
case that an object does not originally stand on its support
surface, it is very important to successfully bring the object
to its stable standing position in one step to guarantee
that it doesn’t fall into positions that are not kinematically
reachable. Fig. 6 shows an example sequence of successful
reorientation steps from an arbitrary pose to its nominal. The
experimental video with all the objects from various stating
poses can be found in the following link:

https://sites.google.com/site/preparatoryreorientation/

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel strategy to reorient
objects to their nominal pose using a visual perception
approach. The main goal of our framework is to bring the
object to a better configuration so it can be used in later tasks.
The contribution of the paper is the use of the current visually
detected object pose to find the rigid transformation that is
needed to reach the predefined nominal pose. A sequence
of pre-grasps is planned and applied on the object, having
the visual estimation always in the loop. To our knowledge,
we are the first to use visual perception along with planning
and control in a fully autonomous manner, where the goal
position is visually determined and reached with a sequence
of reorientation steps.

Fig. 5. Objects used in our experiments. Top row: A drill, a juice box,
and a watering can. Bottom row: A chair, a hammer, and the lower part of
a clothes stand.

The main limitation of our approach is the need to
predefine a grasp frame for each object. In future work,
we aim to overcome this limitation by developing an au-
tomated grasp-choosing system for the underactuated hands
that can minimize the unwanted rotation during the grasps.
Another interesting problem is to extend our approach to
more difficult scenarios, where the objects may be in clutter
environments or cases where the objects cannot be rotated
into their stable standing positions in one reorientation step.

ACKNOWLEDGMENT

This work is supported by the European Union Sev-
enth Framework Programme [FP7-ICT-2013-10] under grant
agreement no 611832 (WALK-MAN).

The authors would like to thank Luca Muratore for helping
with the experiments, and the anonymous reviewers for their
useful comments.

REFERENCES

[1] R. Detry, C. Ek, M. Madry, J. Piater, and D. Kragic, “Generalizing
Grasps Across Partly Similar Objects,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2012, pp. 3791–3797.

[2] I. Gori, U. Pattacini, V. Tikhanoff, and G. Metta, “Ranking the Good
Points: A Comprehensive Method for Humanoid Robots to Grasp
Unknown Objects,” in 16th International Conference on Advanced
Robotics (ICAR), Nov 2013, pp. 1–7.

[3] I. Lenz, H. Lee, and A. Saxena, “Deep Learning for Detecting Robotic
Grasps,” International Journal of Robotics Research (IJRR), vol. 34,
pp. 705–724, 2015.

[4] L. Y. Chang, S. Srinivasa, and N. Pollard, “Planning Pre-Grasp Manip-
ulation for Transport Tasks,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2010.

[5] L. Chang, G. Zeglin, and N. Pollard, “Preparatory Object Rotation as
a Human-Inspired Grasping Strategy,” in 8th IEEE-RAS International
Conference on Humanoid Robots (Humanoids), 2008, pp. 527–534.

[6] A. Sahbani, S. El-Khoury, and P. Bidaud, “An Overview of 3D Object
Grasp Synthesis Algorithms,” Robotics and Autonomous Systems,
vol. 60, no. 3, pp. 326–336, 2012.

[7] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-Driven Grasp
Synthesis A Survey,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289–309, April 2014.

898

Authorized licensed use limited to: University of Liverpool. Downloaded on May 25,2021 at 23:01:14 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Sequence of reorientation steps demonstrated on WALK-MAN. From top to bottom: Each row represents one reorientation step. The first row
is the pre-grasp step when WALK-MAN rotates the drill around its yaw axis. The last two rows show the pre-grasp steps when WALK-MAN rotates the
drill around its roll axis in two steps. From left to right: Five main states in each step: detect, grasp, lift up and rotate in the air, lift down, and leave the
object.

[8] A. ten Pas and R. Platt, “Using Geometry to Detect Grasp Poses in
3D Point Clouds,” in International Symposium on Robotics Research
(ISRR), 2015.

[9] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt, “High Precision
Grasp Pose Detection in Dense Clutter,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016.

[10] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Detecting Object Affordances with Convolutional Neural Networks,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016.

[11] D. Kappler, L. Chang, M. Przybylski, N. S. Pollard, T. Asfour,
and R. Dillmann, “Representation of Pre-Grasp Strategies for Object
Manipulation,” in IEEE/RAS International Conference on Humanoid
Robots (Humanoids), 2010.

[12] W. Wan and K. Harada, “Reorientating Objects with a Gripping Hand
and a Table Surface,” in IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), Nov 2015, pp. 101–106.

[13] K. Hertkorn, M. A. Roa, and C. Borst, “Planning in-hand object
manipulation with multifingered hands considering task constraints,” in
Robotics and Automation (ICRA), 2013 IEEE International Conference
on, May 2013, pp. 617–624.

[14] K. Pauwels and D. Kragic, “SimTrack: A Simulation-Based Frame-
work for Scalable Real-Time Object Pose Detection and Tracking,” in
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, Sept 2015, pp. 1300–1307.

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An
efficient alternative to SIFT or SURF,” in Computer Vision (ICCV),
2011 IEEE International Conference on, Nov 2011, pp. 2564–2571.

[16] T. Möller and B. Trumbore, “Fast, Minimum Storage Ray-triangle
Intersection,” J. Graph. Tools, vol. 2, no. 1, pp. 21–28, Oct 1997.

[17] M. Muja and D. G. Lowe, “Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration,” in International Conference on

Computer Vision Theory and Application (VISSAPP). INSTICC Press,
2009, pp. 331–340.

[18] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An Accurate O(n)
Solution to the PnP Problem,” International Journal of Computer
Vision, vol. 81, no. 2, pp. 155–166, 2009.

[19] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
Jun 1981.

[20] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical Quadratic
Programming: Fast Online Humanoid-Robot Motion Generation,” In-
ternational Journal of Robotics Research (IJRR), vol. 33, no. 7, pp.
1006–1028, June 2014.

[21] A. Rocchi, E. Hoffman, D. Caldwell, and N. Tsagarakis, “OpenSoT: A
Whole-Body Control Library for the Compliant Humanoid Robot CO-
MAN,” in IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 6248–6253.

[22] N. G. Tsagarakis et al., “WALK-MAN: A High Performance Hu-
manoid Platform for Realistic Environments,” Journal of Field
Robotics (JFR), 2016.

[23] F. Negrello, M. Garabini, M. G. Catalano, P. Kryczka, W. Choi,
D. G. Caldwell, A. Bicchi, and N. G. Tsagarakis, “WALK-MAN
Humanoid Lower Body Design Optimization for Enhanced Physical
Performance,” in IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 414–420.

[24] M. Catalano, G. Grioli, A. Serio, E. Farnioli, C. Piazza, and A. Bicchi,
“Adaptive synergies for a humanoid robot hand,” in 12th IEEE-RAS
International Conference on Humanoid Robots (Humanoids), Nov
2012, pp. 7–14.

[25] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot
Platform,” International Journal on Advanced Robotics Systems,
vol. 3, no. 1, pp. 043–048, 2006.

899

Authorized licensed use limited to: University of Liverpool. Downloaded on May 25,2021 at 23:01:14 UTC from IEEE Xplore.  Restrictions apply. 


