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Abstract— We present a novel and real-time method to detect
object affordances from RGB-D images. Our method trains
a deep Convolutional Neural Network (CNN) to learn deep
features from the input data in an end-to-end manner. The CNN
has an encoder-decoder architecture in order to obtain smooth
label predictions. The input data are represented as multiple
modalities to let the network learn the features more effectively.
Our method sets a new benchmark on detecting object affor-
dances, improving the accuracy by 20% in comparison with
the state-of-the-art methods that use hand-designed geometric
features. Furthermore, we apply our detection method on a
full-size humanoid robot (WALK-MAN) to demonstrate that
the robot is able to perform grasps after efficiently detecting
the object affordances.

I. INTRODUCTION

Humans have an astonishing capability to detect object
affordances using vision [1], as well as to using this infor-
mation to complete daily tasks such as picking up objects.
This capability has been studied by multiple disciplines such
as neuroscience and cognitive robotics. For instance, there is
neuroscientific evidence [2] which suggests that humans can
easily determine, from a priori experience, which is the best
way of grasping by selecting the appropriate grasp surface.
On the other hand, cognitive robotics such as imitation
learning [3] focuses on developing an architecture that allows
a robot to learn and reason about affordances and generate
complex intelligent behaviors.

In robotics, detecting object affordances is an essential ca-
pability that allows a robot to understand and autonomously
interact with objects in the environment. Most of the prior
works on affordances detection have focused on grasp de-
tection using RGB-D images [4] or point cloud [5] data.
While these methods can lead to successful grasping actions,
their failures in detecting other types of object affordances
prevents robots from completing real world human-like tasks,
such as using a tool. Man-made objects usually have many
parts, where each one has its own functionality. Thus, an
object may have more than one affordance (e.g. a knife
usually has two affordances, one for cutting and another
for grasping). Therefore, to achieve a human-like object
manipulation, the robot should be able to detect and localize
all the affordances in order to choose the right action for a
real world scenario.

From the visual perception point of view, however predict-
ing affordances from an image is not a trivial task, because
of variations in the shape, orientation, and appearance of
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Fig. 1. Affordance detection and its application. From left to right: Our
system uses an RGB-D image to detect object affordances. An example
of detection results for the grasp affordance. A grasp is defined as a
rectangular box based on the detected grasp affordance.

the objects in the environment. The problem becomes even
harder for cluttered scenes due to occlusions. However, an
efficient affordance detection method could enable the robot
to interact with an extensive variety objects, including novel
unseen ones, given that man-made objects often have a
similar set of affordances.

This paper addresses the problem of learning visual fea-
tures for affordance detection in RGB-D images as shown
in Fig. 1. Our goal, which is similar to the recent state-of-
the-art work in [6], is to detect affordances for object parts.
However, unlike [6] where hand-designed features are used,
we treat this problem as a pixel-wise labeling task and use
Convolutional Neural Networks (CNN) to learn deep features
from RGB-D images. We show that a large CNN can be
trained to detect object affordances from rich deep features.
Since the detection stage of our method runs in real-time, we
apply it to a real robotic grasping application using a full-size
humanoid robot (WALK-MAN), and show that by extracting
object affordances the robot can successfully perform grasp
actions in the environment.

The rest of the paper is organized as follows. We start with
a review of the related work in Section II, followed by the
description of our methodology in Section III. In Section IV
we present our experimental results on an affordance dataset.
Then, we describe a grasping method based on the detected
affordances and apply it on a real full-size humanoid robot
(WALK-MAN) in Section V. Finally, we present the future
work and conclude the paper in Section VI.
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II. RELATED WORK

The affordance detection problem has been extensively
studied in robotics and computer vision over the last few
years. Many works have focused on localizing grasp location
on objects using vision [7] [8]. In [9] the authors proposed
a method to detect grasp affordances by learning a mapping
from local visual descriptors to grasp parameters. In [10] a
set of the so-called 0-ordered affordances is detected from
the full 3D object mesh models. The authors in [11] proposed
a method to learn tool affordances by clustering the effects
of robot’s actions and applied it to a humanoid platform.
The work in [12] proposed a method to identify color,
shape, material, and name attributes of objects selected in
a bounding box from RGB-D data, while in [13] the authors
introduced the concept of relational affordances to search for
objects in occluded environments.

Deep learning methods have shown impressive results in
computer vision. The authors in [14] applied a CNN for
image classification, while in [15] a deep CNN and fully
connected CRF were combined to segment images. Similarly
to [15], the authors in [16] proposed a deep convolutional
encoder-decoder architecture for semantic image segmen-
tation. The success of deep learning methods in computer
vision, has led recently to an interest in understanding their
feature learning capabilities for the grasp detection problem.
For example, deep learning has been used in [4] to detect
grasp affordances, while a rectangle-based grasp technique
was applied for real robotic applications. A similar grasping
concept has been also used in [17] for object reorientation.

In [6], the authors used a traditional machine learning
approach to detect the affordances of tool parts from RGB-
D images. The extracted features were geometrically mean-
ingful and were learned using the classifiers. Additionally,
the authors released the RGB-D Affordance dataset, which
we subsequently use in this work. The main challenge with
this approach is to decide which visual cues should be used
as features. Designing features, however, is not a trivial
task and all hand-designed ones can only capture low-level
information from the data [18]. More recently, the work
in [19] used human pose as the context to weekly supervised
learn the affordances using a deep CNN. Both approaches
in [6] [19] were visually tested over the dataset, but were
never applied in a real-world robotic application.

Unlike the work in [6], which focuses on choosing hand-
designed features to detect affordances and then generalize
this knowledge for novel objects, we focus on detecting affor-
dances from deep features and in this way aim to understand
the relationship between each part of the object. Similar
to [19], our method uses a deep CNN to automatically
learn depth features from the training data, however we use
the novel encoder-decoder architecture and remove the fully
connected layer in our network to enable real-time inference.
Based on the detected affordances, we develop a grasping
application to be tested with a full-size humanoid robot,
showing that object affordances can be used in real-world
robotic applications such as grasping.

III. AFFORDANCE DETECTION

Inspired by the results from the computer vision commu-
nity, we train a large CNN on RGB-D images to generate
rich features for affordance detection. To allow the network
to effectively learn the features from the input data, we
represent them as multiple modalities. Next, we explain in
details the introduced data representation and architecture, as
well as the way to train the network.

A. Data Representation

Recently, many works in computer vision and machine
learning have investigated the effectiveness of using multiple
modalities as inputs to a deep network, such as video and
audio [20] or RGB-D data [21]. However, the problem of
picking the best combination of these modalities for a new
task is still an open problem. Ideally, they should represent
important properties of the data so that the network can
effectively learn deep features from them.

Fig. 2. Data representation. Top row: The original RGB image, its depth
image, and the ground-truth affordances, respectively. Bottom row: The
HHA representation of a depth image.

In this paper, we focus on detecting affordances from
RGB-D images. Intuitively, we can either use only RGB im-
ages or combine both RGB and their associated depth images
as the input to our network. In this work we also investigate
other ways of data representation that may improve further
the performance. In [21], the authors showed that when the
training data is limited (which is true in our case since
the affordance dataset [6] that we use for training has only
30,000 images, compared to other ones that are deep learning
oriented with million of images [14]), it is unlikely that the
CNN would automatically learn important depth properties.
To deal with this problem a new method [21] was proposed
to encode the depth images into three channels at each pixel:
the horizontal disparity, the height above the ground, and
the angle between each pixel’s surface normal and direction
of inferred gravity (denote as HHA). The HHA encoder
is calculated based on an assumption that the direction
of gravity would impose important information about the
environment structure. We adapted this representation since
the experimental results in [21] have shown that the features
can be learned more effectively for object recognition tasks
in indoor scenes. We show an example of different data
representations for our network in Fig. 2.
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Fig. 3.

An illustration of our affordance detection method. From left to right: The input data are represented as multiple modalities and learned by

a CNN with an encoder-decoder architecture. The CNN produces a k channel image of probabilities, where k is the number of affordance classes. Each

channel is visualized as an image in this figure.

B. Architecture

In 2012, the authors of [14] used CNN for classifying RGB
images and showed substantially higher accuracy over the
state-of-the-art. Many works have applied CNN to different
vision problems since then [22] [23]. Nonetheless, the design
of a CNN for image segmentation still remains challenging.
More recently, the work of [24] proposed an encoder-decoder
architecture for pixel-wise image labeling. However, the
encoder of this work includes the fully connected layers
that make the training very difficult due to a huge amount
of parameters (approximately 134M), and also significantly
increases the inference time. The authors in [16] pursued
the same idea but they discarded the fully connected layers
to reduce the number of parameters. They showed that the
encoder-decoder architecture without fully connected layers
can still be trained end-to-end effectively without sacrificing
the performance and enabling real-time reference.

In this paper, we use the state-of-the-art deep convolutional
network described in [16]. In particular, the network contains
two basic components: the encoder and the decoder network.
The encoder network has 13 convolutional layers that were
originally designed in the VGG16 network [22] for object
classification. Each encoder has one or more convolutional
layers that perform batch normalization, ReLU non-linearity,
followed by a non-overlapping max-pooling with a 2 x 2
window to produce a dense feature map. Each decoder layer
is associated with an encoder one, ending up in a 13 layers
decoder network. In each one, the input feature map is
upsampled using the memorized pooled indices and convoled
with a trainable filter bank. The final decoder layer produces
the high dimensional features that are fed to a multi-class
soft-max layer, which classifies each pixel independently.
The output of the softmax layer is a k channel image of
probabilities, where k is the number of classes.

We adapt the above architecture to detect object affor-
dances at pixel level. Fig. 3 shows an overview of our
approach. The data layer is modified to handle multiple
modalities as input, while each image in the training set is
center cropped on all channels to 240 x 320 size from its
original 480 x 640 size. In testing step, we don’t crop the
images but use the sliding window technique to move the
detected window over the test images. The final predicted
result corresponds to the class with the maximum probability
at each pixel over all the sliding windows. Finally, since the

dataset that we use has a large variation in the number of
pixels for each class in the training set, we weigh the loss
differently based on this number.

C. Training

For the training, we generally follow the procedure de-
scribed in [16] using the Caffe library [25]. Given that the
gradient instability in the deep network can stall the learning,
the initialization of the network weights is very important.
In particular, we initialized the network using the technique
described in [23]. The network is end-to-end trained using
stochastic gradient descent with a fixed 0.1 learning rate
and 0.9 momentum. The cross-entropy loss [26] is used as
the objective function for the network. The batch size was
set to 10 while the learning rate was initialized to 0.001,
and decreased by a factor of 10 every 50,000 iterations.
The network is trained from scratch until convergence with
no further reduction in training loss. The training time is
approximately 3 days on an NVIDIA Titan X GPU.

IV. EXPERIMENTS

A. Dataset and Baseline

Fig. 4. Example images from the UMD dataset [6].

We used the UMD dataset that was recently introduced
in [6] for our experiments. This dataset contains around
30,000 RGB-D image pairs of 105 kitchen, workshop, and
garden tools. The tools were collected from 17 different
categories, while the ground-truth images are annotated with
7 affordance labels: contain, support, cut, w—grasp,
scoop, grasp, and pound. Fig. 4 shows some example
images from this dataset.
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Fig. 5. Detection results on UMD dataset using our CNN-RGBD method. Top row: The original input image. Bottom row: The prediction results of an

object affordance.

TABLE I
PERFORMANCE OVER UMD DATASET

CNN-  CNN- CNN-

HMP  SRF  Deeplab  gpGg  RGBD RGBHHA
grasp 0.367 0314 0.620 0.719 0.714 0.673
w-grasp 0373  0.285 0.730 0.769 0.767 0.652
cut 0415 0412 0600 0737 0723  0.685
contain 0.810 0.635 0.900 0.817 0.819 0.716
support  0.643  0.429 0.600 0.780 0.803 0.663
scoop 0.524 0.481 0.800 0.744 0.757 0.635
pound  0.767  0.666 0.880 0.794 0.806 0.701
Average  0.557  0.460 0.733 0.766 0.770 0.675

As a comparison, we baseline our approach with the
hand-designed features approach combined with Hierarchical
Matching Pursuit (HMP) and Structured Random Forests
(SRF) classifiers as described in [6]. We followed the training
and testing procedures described in this work for a fair com-
parison. To train our network three different kinds of input
data are used. First, we use only the RGB images (CNN-
RGB), then we use both the RGB and their corresponding
depth images (CNN-RGBD), and last we encode the depth
images into the HHA representation and use them with their
RGB ones (CNN-RGBHHA) as input to our deep network.
To compare with other deep learning methods, we benchmark
our method with DeepLab [15]. This method was recently
applied by [19] for the affordance detection problem.

B. Evaluation Metric

We evaluate our experimental results using the Fj3’ metric.
This metric was recently introduced in [27] to extend the
well-known Fé measure. The novelty of this measure is that
it weighs the errors of the pixels by taking into account their
location and neighborhood information to overcome three
flawed assumptions: interpolation, dependency and equal
importance of the prediction map.

C. Results

Table I summarizes the Fj3’ results on the UMD dataset for
single objects. We notice that the detection results are signif-
icantly improved using the deep learning approach compared
to the baseline. In particular, our CNN-RGBD achieves
the highest average detection accuracy, outperforming the
HMP and SRF method by 21.3% and 31.0%, respectively. It

demonstrates that our deep network is able to learn deep fea-
tures from the data and therefore boost the performance sig-
nificantly over the baseline methods that used hand-designed
features. Moreover, we notice that another limitation of the
hand-designed features method is that it only performs well
with some specific classes, while in others it fails to capture
important properties of the data. For instance, the HMP
method showed good results for the contain, pound, and
support classes (FBw = 0.810,0.767,0.643, respectively),
while its accuracy was dramatically dropped for the grasp,
w—grasp, and cut classes (Fg’ = 0.367,0.373,0.415,
respectively). This limitation does not occur in our approach
since the deep network learns the features of all classes
through its layers independently, and hence there is not
much fluctuation in our results. We also achieve the same
improvement in cluttered scenes.

Within deep learning methods, while our CNN-RGBD
gives the highest accuracy on average, DeepLab also achieves
better results in 3 classes. We notice that even though
DeepLab combined a fully connected CRF at the final layer
of the network, its results seem to be more fluctuated than
ours. Surprisingly the CNN-RGB performance is close to that
for the CNN-RGBD and outperforms the CNN-RGBHHA.
We also notice that even though the CNN-RGBHHA gives
reasonable results, it turns out that encoding the depth
image to HHA representation doesn’t improve the accuracy
compared to the original depth one. This is because the HHA
encoding process mainly depends on the step that estimates
the gravity direction from a single depth image. Due to the
nature of the UMD dataset, where all the objects lie on
a tabletop, it appears that the introduced algorithm [21] is
unable to estimate the gravity direction using only the depth
image in many scenes. Therefore, the HHA representation
fails to capture important properties from the depth image.
Fig. 5 shows some detection results on UMD dataset using
our CNN-RGBD method.

To conclude, our approach outperforms the baseline meth-
ods and the results show that integrating multimodal informa-
tion improves the resultant accuracy. The depth information
is very useful in challenging scenarios, but at the same time
its representation plays a significant role in the performance.
Our method is suitable for real-time robotic application since
the testing time for an input image is approximately 90
milliseconds on an NVIDIA Titan X GPU.
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A pipeline of our grasping method. From left to right: The RGB-D image is captured by the vision system of the robot and a CNN-RGBD is

used to detect the affordances in the image (e.g. the grasp affordance as in the second image). All the points of the detected affordances are then grouped
into clusters using the Mean Shift algorithm to eliminate the noisy points. Finally, a grasp is represented as a rectangular box [4] by fitting a minimum

rectangle to each cluster.

V. ROBOTICS APPLICATION

In order to evaluate the performance of our affordance
detection method in real world scenarios, we train our CNN-
RGBD network on both the RGB-D Affordance dataset and
our additional data, and then run an extensive series of
experiments on WALK-MAN, a full-size humanoid robot.
We show that object affordances can be used by the robot to
perform manipulation tasks such as grasping.

A. Hardware

WALK-MAN [28] is an 1.85m high full-size humanoid
robot. It has two underactuated hands with five fingers [29]
driven by a single motor. The arm has 7DoF and the vision
sensing is equipped with a MultiSense-SL camera that can
capture point cloud and stereo vision data. The stereo vision
system returns 1024 x 1024 RGB-D images. The YARP
middleware framework [30] is used to communicate with
the robot while the OpenSoT [31] library is used to plan the
whole-body motion. The robot is controlled by a computer
with a Core 15 3.2GHz x 4 processor and 12GB RAM.

B. Grasping Objects using Affordances

Since the affordances from the dataset that we used to train
our network are manually annotated by human, it provides
meaningful information about the functionality of each object
part. For example, the grasp and w—grasp ones indicate
the region on an object that usually be grasped by human.
Based on the detected affordances, we develop a method that
allow the robot to grasp different objects. Fig. 6 shows the
details of our framework.

In particular, we use the Mean Shift algorithm [32] to
group all the points of the detected map into separated clus-
ters. Mean Shift is a centroid based clustering algorithm that
works by updating candidates for centroids to be the mean
of the points within a given region and can automatically
determine the number of clusters from the input. Given that
noisy points may exist in the detected map, we only consider
a cluster to be valid if it has more than 100 points. For
each cluster, we find its convex hull which is the smallest
polygon that encloses all the points where all internal angles
are less than 180°, and fit a minimum rectangular bounding
box around the cluster based on this convex hull [33]. From
this rectangle, we use the rectangle-based grasp strategy
introduced in [4] to find the grasp frame on the object for
the end-effector.

Fig. 7. Objects used in our robotics experiments.
TABLE II
GRASP SUCCESS RATE (IN %)
Accuracy  Affordance
Bottle 100 w-grasp
Comb 95 grasp
Cup 75 contain
Hammer 100 grasp
Headphone 80 grasp
Ruler 90 grasp
Scissors 100 grasp
Saw 90 grasp
Turner 100 support

Average 92.2

C. Grasping Results

While the detected affordance provides information about
the functionality of an object part, its rectangle bounding box
provides all the details about the grasp location, orientation,
and the physical size of the grasping region on the object.
From this information, the robot can easily determine if an
object is graspable from its affordances. For the experiments,
we selected 9 different objects as shown in Fig. 7. For each
one, we perform 20 trials and a grasp is considered successful
if the robot can grasp, raise, and hold the object in the air
for 15 seconds. Table II summarizes the success rate and
the detected affordance that the robot used to grasp for each
object. From the results, we can see that affordances usually
lead to successful grasps, but with some cases of failure.
We notice that the grasping success depends on the physical
size of the detected affordances with respect to the robotic
hand as well as the geometry of the hand-closing region. For
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contain

Fig. 8. Example of successful grasps based on the detected affordances.

instance, if all the detected affordances are too big compared
with robotic hand limitation, the robot will unable to grasp

[6]

[7]

[9]

[10]

(11]

the object. For each object, the total execution time is around  [12]
45 seconds, and the time that is needed to detect the object [13]
affordances and fit the rectangular box is approximately 1
second. Fig. 8 shows an example of successful grasps based  [14]
on the detected affordances. The experimental video with all
objects can be found in the following link: [15]
https://sites.google.com/site/affordancecnn/
VI. CONCLUSIONS AND FUTURE WORK [16]
In this paper, we present a novel method to detect object
affordances using a deep convolutional neuron network. We  [17]
have demonstrated that a large deep network can significantly
improve the detection results compared to the state-of-the-art  [1g)
methods. Moreover, we have tested our method on grasping
experiments with a full-size humanoid robot. Using our [19]
method, the inference procedure is real-time and the robot is
able to perform grasping tasks using the detected affordances.  [20]
Currently, our grasping method based on the object af- 21]
fordances is limited to surfaces that fit in the robotic hand.
We aim to develop a more general approach to overcome
this limitation. Another interesting problem is to study the  [22]
semantic relationship between object affordances that enables (23]
the completion of more types of tasks. Finally, we plan to
release our new affordance dataset that has more challenging o
scenes and covers more types of objects. [24]
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