Automated Reasoning for Experimental Mathematics Part III: AR for the Andrews-Curtis Conjecture

Alexei Lisitsa¹

¹ Department of Computer Science, The University of Liverpool

28 June 2019

Alexei Lisitsa Automated Reasoning for Experimental Mathematics Part

- Part I: Automated Reasoning for Knots (computational topology)
- Part II: Solution for the Erdős Discrepancy Problem, C=2 (combinatorial number theory)
- Part III: Exploration of the Andrews-Curtis Conjecture (computational combinatorial group theory)

・ 同 ト ・ ヨ ト ・ ・ ヨ ト ……

- (L18) Lisitsa: The Andrews-Curtis Conjecture, Term Rewriting and First-Order Proofs. ICMS 2018: 343-351
- (L19) A. Lisitsa Automated Reasoning for the Andrews-Curtis Conjecture. AITP 2019: 3pp

• • • • • • • • •

Groups and their presentations

- Groups are algebraic structures which satisfy the following axioms
 - $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - $x \cdot e = x$
 - $e \cdot x = x$
 - $x \cdot x' = e$

A B > A B >

Groups and their presentations

- Groups are algebraic structures which satisfy the following axioms
 - $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - $x \cdot e = x$
 - $e \cdot x = x$
 - $x \cdot x' = e$
- Groups can be defined in different ways, including by presentations (x₁,..., x_n; r₁,..., r_m), where x₁,..., x_n are generators and r₁,..., r_m are relators

- Groups are algebraic structures which satisfy the following axioms
 - $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - $x \cdot e = x$
 - $e \cdot x = x$
 - $x \cdot x' = e$
- Groups can be defined in different ways, including by presentations (x₁,..., x_n; r₁,..., r_m), where x₁,..., x_n are generators and r₁,..., r_m are relators
- Intuitively, the presentation above defines a group the elements of which are words in the alphabet x₁,..., x_n, x'₁,..., x'_n taken up to the equivalence defined by r₁ = e,..., r_m = e

伺下 イヨト イヨト

• $\langle a, b \mid ab, b \rangle$ (trivial example of the trivial group presentation)

- $\langle a, b \mid ab, b \rangle$ (trivial example of the trivial group presentation)
- $\langle a, b \mid abab'a'b', aaab'b'b'b'$ (not so trivial example of the trivial groups presentation)

For a group presentation $\langle x_1, \ldots, x_n; r_1, \ldots, r_m \rangle$ with generators x_i , and relators r_j , consider the following transformations.

- AC1 Replace some r_i by r_i^{-1} . AC2 Replace some r_i by $r_i \cdot r_j$, $j \neq i$. AC3 Replace some r_i by $w \cdot r_i \cdot w^{-1}$ where w is any word
 - in the generators.

Andrews-Curtis Conjecture

- Two presentations g and g' are called Andrews-Curtis equivalent (AC-equivalent) if one of them can be obtained from the other by applying a finite sequence of transformations of the types (AC1) - (AC3).
- A group presentation g = ⟨x₁,...,x_n; r₁,...r_m⟩ is called balanced if n = m, that is a number of generators is the same as a number of relators. Such n we call a dimension of g and denote by Dim(g).

Conjecture (1965)

if $\langle x_1, \ldots, x_n; r_1, \ldots, r_n \rangle$ is a balanced presentation of the trivial group it is AC-equivalent to the trivial presentation $\langle x_1, \ldots, x_n; x_1, \ldots, x_n \rangle$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• $\langle a, b \mid ab, b \rangle \rightarrow \langle a, b \mid ab, b^{-1} \rangle \rightarrow \langle a, b \mid a, b^{-1} \rangle \rightarrow \langle a, b \mid a, b^{-1} \rangle$

• AC-conjecture is open

- AC-conjecture is open
- AC-conjecture may well be false (prevalent opinion of experts?)

- AC-conjecture is open
- AC-conjecture may well be false (prevalent opinion of experts?)
- Series of potential counterexamples; smallest for which simplification is unknown is AK-3:
 ⟨x, y|xyxy⁻¹x⁻¹y⁻¹, x³y⁻⁴⟩

- AC-conjecture is open
- AC-conjecture may well be false (prevalent opinion of experts?)
- Series of potential counterexamples; smallest for which simplification is unknown is AK-3: ⟨x, y|xyxy⁻¹x⁻¹y⁻¹, x³y⁻⁴⟩
- How to find simplifications, algorithmically?

- AC-conjecture is open
- AC-conjecture may well be false (prevalent opinion of experts?)
- Series of potential counterexamples; smallest for which simplification is unknown is AK-3: $\langle x, y | xyxy^{-1}x^{-1}y^{-1}, x^3y^{-4} \rangle$
- How to find simplifications, algorithmically?
- If a simplification exists, it could be found by the exhaustive search/total enumeration (iterative deepening)
- The issue: simplifications could be very long (Bridson 2015; Lishak 2015)

・ 同 ト ・ ヨ ト ・ ・ ヨ ト ……

Search of trivializations and elimination of counterexamples

- Genetic search algorithms (Miasnikov 1999; Swan et al. 2012)
- Breadth-First search (Havas-Ramsay, 2003; McCaul-Bowman, 2006)
- Todd-Coxeter coset enumeration algorithm (Havas-Ramsay,2001)
- Generalized moves and strong equivalence relations (Panteleev-Ushakov, 2016)

• . . .

Search of trivializations and elimination of counterexamples

- Genetic search algorithms (Miasnikov 1999; Swan et al. 2012)
- Breadth-First search (Havas-Ramsay, 2003; McCaul-Bowman, 2006)
- Todd-Coxeter coset enumeration algorithm (Havas-Ramsay,2001)
- Generalized moves and strong equivalence relations (Panteleev-Ushakov, 2016)

• . . .

Our approach: apply generic automated reasoning instead of specialized algorithms **Our Claim:** generic automated reasoning is (very) competitive

ACT rewriting system, dim =2

Equational theory of groups T_G :

•
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

•
$$x \cdot e = x$$

•
$$e \cdot x = x$$

•
$$x \cdot r(x) = e$$

For each $n \ge 2$ we formulate a term rewriting system modulo T_G , which captures AC-transformations of presentations of dimension n. For an alphabet $A = \{a_1, a_2\}$ a term rewriting system ACT_2 consists the following rules:

R1L
$$f(x, y) \rightarrow f(r(x), y)$$
)
R1R $f(x, y) \rightarrow f(x, r(y))$
R2L $f(x, y) \rightarrow f(x \cdot y, y)$
R2R $f(x, y) \rightarrow f(x, y \cdot x)$
R3L_i $f(x, y) \rightarrow f((a_i \cdot x) \cdot r(a_i), y)$ for $a_i \in A, i = 1, 2$
R3R_i $f(x, y) \rightarrow f(x, (a_i \cdot y) \cdot r(a_i))$ for $a_i \in A, i = 1, 2$

The rewrite relation $\rightarrow_{ACT/G}$ for ACT modulo theory T_G : $t \rightarrow_{ACT/G} s$ iff there exist $t' \in [t]_G$ and $s' \in [s]_G$ such that $t' \rightarrow_{ACT} s'$. Reduced term rewriting system $rACT_2$ consists of the following rules:

R1L
$$f(x, y) \rightarrow f(r(x), y)$$
)
R2L $f(x, y) \rightarrow f(x \cdot y, y)$
R2R $f(x, y) \rightarrow f(x, y \cdot x)$
R3L_i $f(x, y) \rightarrow f((a_i \cdot x) \cdot r(a_i), y)$ for $a_i \in A, i = 1, 2$

Proposition

Term rewriting systems ACT₂ and rACT₂ considered modulo T_G are equivalent, that is $\rightarrow^*_{ACT_2/G}$ and $\rightarrow^*_{rACT_2/G}$ coincide.

Proposition

For ground t_1 and t_2 we have $t_1 \rightarrow^*_{ACT_2/G} t_2 \Leftrightarrow t_2 \rightarrow^*_{ACT_2/G} t_1$, that is $\rightarrow^*_{ACT_2/G}$ is symmetric.

Equational Translation

Denote by E_{ACT_2} an equational theory $T_G \cup rACT^=$ where $rACT^=$ includes the following axioms (equality variants of the above rewriting rules):

E-R1L
$$f(x, y) = f(r(x), y)$$
)
E-R2L $f(x, y) = f(x \cdot y, y)$
E-R2R $f(x, y) = f(x, y \cdot x)$
E-R3L_i $f(x, y) = f((a_i \cdot x) \cdot r(a_i), y)$ for $a_i \in A, i = 1, 2$

Proposition

For ground terms
$$t_1$$
 and t_2 $t_1 o_{{\sf ACT}_2/{\sf G}}^* t_2$ iff ${\sf E}_{{\sf ACT}_2} dash t_1 = t_2$

A variant of the equational translation: replace the axioms $\mathbf{E} - \mathbf{R3L}_i$ by "non-ground" axiom $\mathbf{E} - \mathbf{RLZ}$: $f(x, y) = f((z \cdot x) \cdot r(z), y)$ Denote by I_{ACT_2} the first-order theory $T_G \cup rACT_2^{\rightarrow}$ where $rACT_2^{\rightarrow}$ includes the following axioms:

I-R1L
$$R(f(x, y)) \rightarrow R(f(r(x), y)))$$

I-R2L $R(f(x, y)) \rightarrow R(f(x \cdot y, y))$
I-R2R $R(f(x, y)) \rightarrow R(f(x, y \cdot x))$
I-R3L_i $R(f(x, y)) \rightarrow R(f((a_i \cdot x) \cdot r(a_i), y))$ for
 $a_i \in A, i = 1, 2$

Proposition

For ground terms t_1 and t_2 $t_1 \rightarrow^*_{ACT_2/G} t_2$ iff $I_{ACT_2} \vdash R(t_1) \rightarrow R(t_2)$

伺 と く ヨ と く ヨ と …

Higher Dimensions

• An equational translation for n = 3 ("non-ground" variant): f(x, y, z) = f(r(x), y, z) f(x, y, z) = f(x, r(y), z) f(x, y, z) = f(x, y, r(z)) $f(x, y, z) = f(x \cdot y, y, z)$ $f(x, y, z) = f(x \cdot z, y, z)$ $f(x, y, z) = f(x, y \cdot x, z)$ $f(x, y, z) = f(x, y \cdot z, z)$ $f(x, y, z) = f(x, y, z \cdot x)$ $f(x, y, z) = f(x, y, z \cdot y)$ $f(x, y, z) = f((v \cdot x) \cdot r(v), y, z)$ $f(x, y, z) = f(x, (v \cdot y) \cdot r(v), z)$ f(x, y, z) = $f(x, y, (v \cdot z) \cdot r(v)).$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

For any pair of presentations p_1 and p_2 , to establish whether they are AC-equivalent one can formulate and try to solve first-order theorem proving problems

•
$$E_{ACT_n} \vdash t_{p_1} = t_{p_2}$$
, or

•
$$I_{ACT_n} \vdash R(t_{p_1}) \rightarrow R(t_{p_2})$$

OR, theorem disproving problems

•
$$E_{ACT_n}
earrow t_{p_1} = t_{p_2}$$
, or

•
$$I_{ACT_n} \not\vdash R(t_{p_1}) \rightarrow R(t_{p_2})$$

For any pair of presentations p_1 and p_2 , to establish whether they are AC-equivalent one can formulate and try to solve first-order theorem proving problems

•
$$E_{ACT_n} \vdash t_{p_1} = t_{p_2}$$
, or

•
$$I_{ACT_n} \vdash R(t_{p_1}) \rightarrow R(t_{p_2})$$

OR, theorem disproving problems

•
$$E_{ACT_n} \not\vdash t_{p_1} = t_{p_2}$$
, or

•
$$I_{ACT_n} \not\vdash R(t_{p_1}) \rightarrow R(t_{p_2})$$

Our proposal: apply automated reasoning: ATP and finite model building.

Elimination of potential counterexamples

• Known cases: We have applied automated theorem proving using Prover9 prover to confirm that all cases eliminated as potential counterexamples in all known literature can be eliminated by our method too.

Theorem Proving for AC-Simplifications (cont.)

New cases (from Edjvet-Swan, 2005-2010):

- **T14** $\langle a, b \mid ababABB, babaBAA \rangle$
- **T28** $\langle a, b \mid aabbbbABBBB, bbaaaaBAAAA \rangle$
- **T36** $\langle a, b \mid aababAABB, bbabaBBAA \rangle$
- **T62** $\langle a, b \mid aaabbAbABBB, bbbaaBaBAAA \rangle$
- **T74** $\langle a, b \mid aabaabAAABB, bbabbaBBBAA \rangle$
- **T16** $\langle a, b, c \mid ABCacbb, BCAbacc, CABcbaa \rangle$
- **T21** $\langle a, b, c \mid ABCabac, BCAbcba, CABcacb \rangle$
- **T48** $\langle a, b, c \mid aacbcABCC, bbacaBCAA, ccbabCABB \rangle$
- **T88** (*a*, *b*, *c* | *aacbAbCAB*, *bbacBcABC*, *ccbaCaBCA*)
- **T89** $\langle a, b, c | aacbcACAB, bbacBABC, ccbaCBCA \rangle$

T96 $\langle a, b, c, d | adCADbc, baDBAcd, cbACBda, dcBDCab \rangle$ **T97** $\langle a, b, c, d | adCAbDc, baDBcAd, cbACdBa, dcBDaCb \rangle$ [ICMS 2018]

くロト く得ト くヨト くヨト 二日

AC-trivialization for T16

(ABCacbb, BCAbacc, CABcbaa) $\xrightarrow{x,y,z \to x,y,azA} \langle ABCacbb, BCAbacc, aCABcba \rangle$ $\xrightarrow{x,y,z \to x,y,zx} \langle ABCacbb, BCAbacc, aCABacbb \rangle$ $\xrightarrow{x,y,z \rightarrow x,y,bzB} \langle \textit{ABCacbb},\textit{BCAbacc},\textit{baCABacb} \rangle$ $\xrightarrow{x,y,z \to x,y,zy} \langle ABCacbb, BCAbacc, bac \rangle$ $\xrightarrow{x,y,z \rightarrow x,y,czC} \langle ABCacbb, BCAbacc, cba \rangle$ $\xrightarrow{x,y,z \rightarrow x',y,z} \langle \textit{BBCAcba},\textit{BCAbacc},\textit{cba} \rangle$ $\xrightarrow{x,y,z \rightarrow x,y,z'} \langle \textit{BBCAcba},\textit{BCAbacc},\textit{ABC} \rangle$ $\xrightarrow{x,y,z \to xz,y,z} \langle BBCA, BCAbacc, ABC \rangle$ $\xrightarrow{x,y,z \rightarrow x',y,z} \langle \textit{acbb},\textit{BCAbacc},\textit{ABC} \rangle \xrightarrow{x,y,z \rightarrow x,y,z'}$ (acbb, BCAbacc, cba) $\xrightarrow{x,y,z \to x,y,azA} \langle acbb, BCAbacc, acb \rangle \xrightarrow{x,y,z \to x,y,z'}$ (acbb, BCAbacc, BCA) $\xrightarrow{x,y,z \to x,y,zx} \langle acbb, BCAbacc, b \rangle \xrightarrow{x,y,z \to x,y,z'} \langle acbb, BCAbacc, B \rangle$ $x, y, z \rightarrow xz, y, z$ / ach <u>PC</u> $x, y, z \rightarrow xz, y, z \triangleleft P \vdash \triangleleft P$ Automated Reasoning for Experimental Mathematics Part Alexei Lisitsa

AC-trivialization for T16 (cont.)

$$\begin{array}{c} \xrightarrow{x,y,z \to x,y',z} \\ \xrightarrow{x,y,z \to x,y',z} \\ \langle ac, CABacb, B \rangle \xrightarrow{x,y,z \to x,y,z'} \\ \langle ac, CABac, B \rangle \\ \xrightarrow{x,y,z \to x,y',z} \\ \langle ac, CAbacc, B \rangle \\ \xrightarrow{x,y,z \to x',y,z} \\ \langle CA, CAbacc, b \rangle \\ \xrightarrow{x,y,z \to x,yx,z} \\ \langle CA, CAbacA, b \rangle \xrightarrow{x,y,z \to x,y',z} \\ \langle CA, aCABac, b \rangle \\ \xrightarrow{x,y,z \to x,yx,z} \\ \langle CA, aCAB, b \rangle \xrightarrow{x,y,z \to x,yz,z} \\ \langle CA, aCA, b \rangle \\ \xrightarrow{x,y,z \to x,y',z} \\ \langle ac, aCA, b \rangle \xrightarrow{x,y,z \to x,yx,z} \\ \langle ac, a, b \rangle \\ \xrightarrow{x,y,z \to x,y',z} \\ \langle ac, C, b \rangle \xrightarrow{x,y,z \to x,y',z} \\ \langle ac, C, b \rangle \\ \xrightarrow{x,y,z \to x,y',z} \\ \langle a, C, b \rangle \xrightarrow{x,y,z \to x,y',z} \\ \langle a, C, b \rangle \\ \xrightarrow{x,y,z \to x,y',z} \\ \langle a, C, b \rangle \xrightarrow{x,y,z \to x,y',z} \\ \langle a, Bc, b \rangle \\ \xrightarrow{x,y,z \to x,y',z} \\ \langle a, B, C \rangle \xrightarrow{x,y,z \to x,y,z'} \\ \langle a, B, c \rangle \\ \xrightarrow{x,y,z \to x,y',z} \\ \langle a, b, c \rangle \end{array}$$

→ 《문》 《문

Proposition

To simplify AK-3 (if at all it is possible) one really needs conjugation with both generators a and b.

Mace4 finite model builder finds countermodels of sizes 12 and 6 for the cases where either of the conjugation rules is omitted.

Proposition

To simplify AK-3 (if at all it is possible) one really needs conjugation with both generators a and b.

Mace4 finite model builder finds countermodels of sizes 12 and 6 for the cases where either of the conjugation rules is omitted.

Can we disprove AC-conjecture by building a finite countermodel witnessing non-trivialization for one of the open cases (e.g. AK-3)?

Proposition

To simplify AK-3 (if at all it is possible) one really needs conjugation with both generators a and b.

Mace4 finite model builder finds countermodels of sizes 12 and 6 for the cases where either of the conjugation rules is omitted.

Can we disprove AC-conjecture by building a finite countermodel witnessing non-trivialization for one of the open cases (e.g. AK-3)?

No, unfortunately (Borovik et al, *The Finitary Andrews-Curtis Conjecture*, 2005)

(Panteleev-Ushakov, 2016): add automorphisms of F_2 to the set of AC-moves

- AT1 Replace \bar{r} by $\phi_1(\bar{r})$, where $\phi_1(...)$ is an automorphism defined by $a \mapsto a$ and $b \mapsto b^{-1}$.
- AT2 Replace \bar{r} by $\phi_2(\bar{r})$, where $\phi_2(...)$ is an automorphism defined by $a \mapsto a$ and $b \mapsto b * a$.
- AT3 Replace \bar{r} by $\phi_3(\bar{r})$, where $\phi_3(...)$ is an automorphism defined by $a \mapsto b$ and $b \mapsto a$.

Adding Automorphic moves to AC does not increase the sets of reachable presentations when:

- applied to AC-trivializable presentations (easy to see);
- applied to Akbulut-Kirby presentations AK(n), n ≥ 3 (not known to be trivializable) (Panteleev-Ushakov, 2016)

Adding Automorphic moves to AC does not increase the sets of reachable presentations when:

- applied to AC-trivializable presentations (easy to see);
- applied to Akbulut-Kirby presentations AK(n), n ≥ 3 (not known to be trivializable) (Panteleev-Ushakov, 2016)

The general case was left open in Op.cit.:

It is not known if adding these transformations to AC-moves results in an equivalent system of transformations or not ...

We answer the question negatively and show that adding *any* AT move to AC transformations does indeed lead to a non-equivalent system of transformations:

Theorem

A group presentation $g = \langle a, b \mid aba, bba \rangle$ is not AC -equivalent to either of

•
$$g_1 = \langle a, b \mid \phi_1(aba), \phi_1(bba) \rangle \equiv \langle a, b \mid ab^{-1}a, b^{-1}b^{-1}a \rangle$$

•
$$g_2 = \langle a, b \mid \phi_2(aba), \phi_2(bba)
angle \equiv \langle a, b \mid abaa, babaa
angle$$

A group presentation $g' = \langle a, b \mid aaba, bba \rangle$ is not AC -equivalent to

•
$$g_3 = \langle a, b \mid \phi_3(aaba), \phi_3(bba) \rangle \equiv \langle a, b \mid bbab, aab \rangle$$

Proof using AR

Apply equational translation and show that $\tilde{E}_{ACT_2} \not\vdash t_{g} = t_{g_i}$ i = 1, 2 and $\tilde{E}_{ACT_2} \not\vdash t_{g'} = t_{g_3}$. Mace4 has found the following countermodels 1) For $\tilde{E}_{ACT_2} \not\vdash f((a * b) * a, (b * b) * a) = f((a * r(b)) * a, (r(b) * r(b)) * a)$ interpretation(3, [number = 1, seconds = 0], [function(*(_,_). [2,0,1,0, 1, 2,1,2,0]),function(a, [0]), function(b, [0]), function(e, [1]), function(r(_), [2,1,0]), $function(f(_,_), [$ 0,0,0, 0, 1, 0,0.0.01)1).

伺 ト イヨ ト イヨ ト ・ ヨ ・ ク ۹ ()

Proof using AR (cont.)

2) For $\tilde{E}_{ACT_2} \not\vdash f((a * (b * a)) * a, ((b * a) * (b * a)) * a)$: the same as above. 3) For $\tilde{E}_{ACT_2} \not\vdash f((a * (a * b)) * a, (b * b) * a) =$ f((a * (a * b)) * a, (b * b) * a) = f((b * (b * a)) * b, (a * a) * b)interpretation(5, [number = 1, seconds = 0], [$function(*(_,_), [$ 4.3.0.2.1. 3.0.1.4.2. 0.1.2.3.4. 2.4.3.1.0. 1.2.4.0.3]). function(a, [0]), function(b, [1]). function(e, [2]), function(r(_), [3,4,2,0,1]),

PU algorithmic approach vs AR

(Panteleev-Ushakov, 2016):

. . .

- Powerful algorithmic approach to AC-transformations based on generalized moves and strong equivalence relations;
- 12 novel AC-trivializations for presentations:

(XyyxYYY,xxYYYXYxYXY) (XyyxYYY,xxyyyXYYXyxY) (XyyxYYY,xxYXyxyyyXY) (XyyxYYY,xxYXyXyyxyy)

• • = • • = •

(Panteleev-Ushakov, 2016):

. . .

. . .

- Powerful algorithmic approach to AC-transformations based on generalized moves and strong equivalence relations;
- 12 novel AC-trivializations for presentations:

(XyyxYYY,xxYYYXYxYXY) (XyyxYYY,xxyyyXYYXyxY) (XyyxYYY,xxYXyxyyyXY) (XyyxYYY,xxYXyXyyxyy)

All confirmed by our AR method!

• 16 presentations are shown to be AC-equivalent to F₂ automorphic images:

(xxxyXXY,xyyyyXYYY) (xxxyXXY,xyyyXYYYY) (xyyyXYY,xxxyyXXY) (xxxyXXY,xxyyyXYY)

・ 同 ト ・ ヨ ト ・ ヨ ト

(Panteleev-Ushakov, 2016):

. . .

. . .

- Powerful algorithmic approach to AC-transformations based on generalized moves and strong equivalence relations;
- 12 novel AC-trivializations for presentations:

(XyyxYYY,xxYYYXYxYXY) (XyyxYYY,xxyyyXYYXyxY) (XyyxYYY,xxYXyxyyyXY) (XyyxYYY,xxYXyXyyxyy)

All confirmed by our AR method!

• 16 presentations are shown to be AC-equivalent to F₂ automorphic images:

(xxxyXXY,xyyyyXYYY) (xxxyXXY,xyyyXYYYY) (xyyyXYY,xxxyyXXY) (xxxyXXY,xxyyyXYY)

Our AR method failed for all cases!

・ 同 ト ・ ヨ ト ・ モ ト …

- Automated Proving and Disproving is an interesting and powerful approach to AC-conjecture exploration;
- Source of interesting challengeing problems for ATP/ATD;
- Can ML help to guide the proofs?

- Automated Proving and Disproving is an interesting and powerful approach to AC-conjecture exploration;
- Source of interesting challengeing problems for ATP/ATD;
- Can ML help to guide the proofs?

Thank you!

	T14	T28	T36	T62	T74	T16	T21	T48	T88	Т89	Т96	97
Dim	2	2	2	2	2	3	3	3	3	3	4	4
Equational	6.02s	6.50s	7.18s	24.34s	57.17s	12.87s	11.98s	34.63s	57.69s	17.50s	114.05s	115.10s
Implicational	1.57s	2.46s	1.34s	22.50s	6.29s	1.61s	1.45s	2.17s	1.97s	2.14s	102.34s	89.65s
Implicational GC	t/o	t/o	t/o	t/o	t/o	3.76s	1.61s	t/o	0.86s	0.75s	t/o	t/o

"t/o" stands for timeout in 200s; "GC" means encoding with ground conjugation rules; all other encodings are with non-ground conjugation rules.