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Outline

Part I: Automated Reasoning for Knots (computational
topology)

Part II: Solution for the Erdős Discrepancy Problem,
C=2 (combinatorial number theory)

Part III: Exploration of the Andrews-Curtis Conjecture
(computational combinatorial group theory)
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Part II is based on

(KL2014) Boris Konev, Alexei Lisitsa: A SAT Attack on the
Erdős Discrepancy Conjecture. SAT 2014: 219-226

(KL2015) Boris Konev, Alexei Lisitsa: Computer-aided proof of
Erdős discrepancy properties. Artif. Intell. 224:
103-118 (2015)
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A very short version

The Erdős discrepancy conjecture is interesting (even for C = 2).
EDP2 can be settled by reduction to SAT.
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25



Longer version

The Erdős discrepancy conjecture is interesting (even for C = 2).
EDP2 can be settled by reduction to SAT.

Discrepancy Theory

Erdős Discrepancy Conjecture

SAT attack on the EDP

Results and Perspectives
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Discrepancy theory

Discrepancy theory is a branch of mathematics dealing with
inevitable irregularities of distributions
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25



Combinatorial discrepancy

d(H) = 1

A set U

Set of subsets S

A hypergraph H = (U, S)

Consider a colouring c : U → {+1,−1} of the elements of U
in blue (+1) and red (−1) colours;

Question: Is there a colouring such that in every element of
S colours are distributed uniformly or a discrepancy of
colours is always inevitable?
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Combinatorial number theory

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

U ⊆ N
S — ‘arithmetically interesting’
subsets of U

Theorem (Roth, 1964)

For Un = {1, 2, . . . , n} and Sn = {(a · i + b)}
the discrepancy grows at least as 1

20n
1/4.
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Erdős Discrepancy Conjecture (EDP)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

What about homogeneous arithmetic
progressions?

Un = {1, 2, . . . , n}

Sn = {(a · i)}

Conjecture ( Erdős, circa 1930)

For any C > 0 in any infinite ±1 sequence (xn) there exists a
subsequence xd , x2d , x3d , . . . , xkd such that |

∑k
i=1 xi ·d |> C .
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25
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Known results on the discrepancy of +1 -1 sequences

For random ±1 sequences the discrepancy grows as n1/2+o(1)

(folklore?);

An explicit constructions of a sequence with slowly growing
discrepancy log3 n [Borwein, Choi, Coons, 2010];

EDP holds for C = 1. [Mathias,1994]
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Example: C = 1

Conjecture ( Erdős, circa 1930)

For any C > 0 in any infinite ±1 sequence (xn) there exists a
subsequence xd , x2d , x3d , . . . , xkd such that |

∑k
i=1 xi ·d |> C .

1 2 3 4 5 6 7 8 9 10 11 12
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25



Example: C = 1

Conjecture ( Erdős, circa 1930)
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For any C > 0 in any infinite ±1 sequence (xn) there exists a
subsequence xd , x2d , x3d , . . . , xkd such that |

∑k
i=1 xi ·d |> C .

+ - - + - + + - - + - d = 6
1 2 3 4 5 6 7 8 9 10 11 12

Alexei Lisitsa
Automated Reasoning for Experimental Mathematics Part II: the Erdős Discrepancy Conjecture 10/
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Example: C = 1
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+ - - + - + + - - + + - d = 3
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But then x3 + x6 + x9 + x12 = −1 + 1− 1− 1 = −2
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Polymath and the EDP

A 2009-2010 topic of Polymath — ‘massively collaborative
maths’ project started and coordinated by T. Gowers

A computer attack
Discrepancy 2 sequences of length 1124 (backtracking search)

“. . . given how long a finite sequence can be, it seems
unlikely that we could answer this question just by a
clever search of all possibilities on a computer. . . ”
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Our contribution

There are ±1 sequences of length 1160 and discrepancy 2,

There are no ±1 sequences of length 1161 (or more) and
discrepancy 2.
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Automata encoding of discrepancy conditions

s0

start

. . . sC. . .s−C

sB

+1

−1

+1

−1

+1

−1

+1

−1

+1

−1

If for every d : 1 ≤ d ≤ b n
C+1c the automaton AC does not

accept the subsequence xd , x2d , . . . , xkd , where k = b nd c then
the discrepancy of the sequence x̄ does not exceed C
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SAT representation

s0

start

. . . sC. . .s−C

sB

+1

−1

+1

−1

+1

−1

+1

−1

+1

−1

pi is true if ⇐⇒ i-th letter is +1.

s
(i ,d)
j is true ⇐⇒ AC is in sj having read first (i − 1) letters.

φ(n,C ,d) = s
(1,d)
0

b n
d
c∧

i=1

[ ∧
−C≤j<C

(
s
(i ,d)
j ∧ pi ·d → s

(i+1,d)
j+1

)
∧∧

−C<j≤C

(
s
(i ,d)
j ∧ ¬pi ·d → s

(i+1,d)
j−1

)
∧(

s
(i ,d)
C ∧ pi ·d → B

)
∧(

s
(i ,d)
−C ∧ ¬pi ·d → B

)]
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Adequacy and correctness of encoding

Let

φ(n,C) = ¬B ∧
b n
C+1
c∧

d=1

φ(n,C ,d) ∧ frame(n,C),

where frame(n,C) is a Boolean formula encoding that the
automaton state is correctly defined.

Proposition

The formula φ(n,C) is satisfiable if, and only if, there exists a ±1
sequence x̄ = x1, . . . , xn of length n of discrepancy C . Moreover, if
φ(n,C) is satisfiable, the sequence x̄ = x1, . . . , xn of discrepancy C
is uniquely identified by the assignment of truth values to
propositions p1, . . . pn.
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Disclaimer

In fact we have used more “economical” encoding, where a state si
of automaton is encoded not by a separate propositional variable
pi , but by the propositional variables encoding i in binary
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Experiments and Results

In our experiments we used

the Lingeling SAT solver, the winner of the SAT-UNSAT
category of the SAT’13 competition, and

the Glucose solver version, the winner of the certified UNSAT
category of the SAT’13 competition.

All experiments were conducted on PCs equipped with an Intel
Core i5-2500K CPU running at 3.30GHz and 16GB of RAM.
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Experiments and Results

By iteratively increasing the length of the sequence, we
establish precisely that the maximal length of a ±1 sequence
of discrepancy 2 is 1160.

On our system it took Plingeling, the parallel version of the
Lingeling solver, about 800 seconds to generate a sequence of
discrepancy 2 and length 1160.

On the other hand, when we increased the length of the
sequence to 1161, Plingeling reported unsatisfiability.

We also used Glucose: It took the solver about 21 500 seconds
to compute a Delete Reverse Unit Propagation (DRUP)
certificate of unsatisfiability (∼ 13Gb).

The certificate has been independently verified by the
drup-trim tool
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25



EDP2 is done!

Theorem

Any ±1 sequence of length 1161 has discrepancy at least 3.

Corollary

The Erdős discrepancy conjecture holds true for C = 2.
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Deep asymmetry

It is easy to check, either by a simple program, or even by
hands that a 1160 sequence has discrepancy 2;

It is computationally difficult to obtain a certificate of
unsatisfiability. It is even more difficult to come up with a
human comprehensible proof;

13GB!

Challenge: Give a human understandable proof of
non-existence of 1161 sequences of discrepancy 2.
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25



EDP3 ?

We have applied the same methodology to the case C=3.

Proposition

There exists a sequence of length ≈ 14, 000 of discrepancy 3.
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Life after SAT:

Better SAT encodings

Tuned search strategy

850Mb RUP certificate for EDP2

Multiplicative and completely multiplicative sequences for
EDP3

xm·n = xm · xn
Longest completely multiplicative EDP3 sequences contains
127 645 elements

(independently reported by La Bras, Gomes and Selman,
CoRR abs/1407.2510)

Longest multiplicative EDP3 sequences also contains 127 645
elements!

Not so for C = 1 and C = 2

New lower bound for EDP3 of 130 000
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Life after SAT, 2015

Terence Tao, September 2015
Proof of general case of EDP.

Conjecture ( Erdős, circa 1930)

For any C > 0 in any infinite ±1 sequence (xn) there exists a
subsequence xd , x2d , x3d , . . . , xkd such that |

∑k
i=1 xi ·d |> C .

Not SAT solving or automated reasoning, but full power of Fields
prize laureate’s mind!

Alexei Lisitsa
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For any C > 0 in any infinite ±1 sequence (xn) there exists a
subsequence xd , x2d , x3d , . . . , xkd such that |

∑k
i=1 xi ·d |> C .

Not SAT solving or automated reasoning, but full power of Fields
prize laureate’s mind!

Alexei Lisitsa
Automated Reasoning for Experimental Mathematics Part II: the Erdős Discrepancy Conjecture 23/
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Conclusion

Another example of the power of SAT

Outperforms bespoke tools

Reignited the debate on what a mathematical proof is

Further development

Challenge: Give a human understandable proof of EDP2,
EDP3, . . .

EDP
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A sequence of length 1160 and discrepancy 2

- + + - + - - + + - + + - + - - + - - + + - + - - + - - + + - + - - + + - + + -

+ - + + - - + + - + - - - + - + + - + - - + - - + + + + - - + - - + + - + - - +

+ - + + - - - - + + - + + - + - + + - - + + - + - + - - - + + - + - - + + - + +

- + - - + + - + - - + - - - + - + + - + - - + + - + + - + - - + - - + + - + + -
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