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Abstract: This technical report serves as a supplement to provide data support to our 
research article [1]. Therefore, this should be read in conjunction with that article and 
as such, this report is not self-contained. This report is about the work developed for 
the material science project1 aimed at design and discovery of materials for the 
development of human society and its environment. The work is specifically related to 
development of Explainable Artificial Intelligence (XAI) tools for the purpose. The 
Theory of Probabilistic Hierarchical Supervised Ensemble Learning (TPHSEL) is our first 
step in this direction. Having said that, we have also tested its generalisability outside 
the material science datasets.

The TPHSEL is built upon the theory of probabilistic hierarchical supervised learning 
(TPHSL), which says that any complex dataset can be learnt through hierarchy of simple 
models [1-8]. This is achieved by a constrained probability equation. In this equation a 
higher probability class is constrained by a certain margin called set partition, which it 
must overcome to win the instance in its fold, as shown in expression 1.

Pmax>Pmax 2+δ (1)

Where:

Pmax = largest value within the probability distribution of membership of the instance 
across the available classes of the dataset.
Pmax 2 = 2nd largest value within the probability distribution of membership of the 
instance across the available classes of the dataset.
δ  = Set partition – A trained parameter.

The expression 1 says that the largest probability must be larger by a certain margin δ  
than the 2nd runner up to win the medal of the instance. If this constraint is not 
overcome, then the instance will remain unclassified in the current hierarchy. Its 
classification will be considered again in the next hierarchy under some other model, 
but it must pass the test of expression 1 to get classified. This hierarchical process 
continues until realisation of classification of the instance. Figure-1 is a pictorial 
representation of expression 1.

Figure-1 shows two classes with their centroids at points X1 and X2, whereas centres of 
51-dimentional balls are at Y1 and Y2. The two classes are equidistant from a 
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hyperplane Z. The  ∆  represents the distance between the two class boundaries, which 
can be mapped onto the set partition δ  of expression 1. There are six instances a, b, c, 
d, e, and f. Class 1 contains instances ‘d’ and ‘e’, while class 2 contains instances ’a’ and 
‘f’. However, instances b and c are not contained by any of the classes because of class 
separation caused by the set partition δ  . Therefore, these instances will be tested on 
the model in the next hierarchy. They will continue to jump to the next hierarchy until 
classified.

Fig. 1. Classification with TPHSL

The TPHSL was ensembled, resulting in the theory of probabilistic hierarchical 
supervised ensemble learning (TPHSEL). This was done to improve the quality of 
solutions. To test its validity, it was applied on a dataset from the materials science 
domain, the Lithium-Ion Conductivity Dataset [9]. The dataset contained 405 entries of 
chemical compositions consisting of 252 non-conductors and 153 conductors. The 
results are compared with the Compositionally Restricted Attention-Based network 
(CrabNet) [10], which is a deep learning method especially designed to predict material 
properties. The results are produced in Table-1.

In Table-1 column 1 lists the name of the method, number of simulations are given in 
column 2, whereas column 3 provides method of x-validation, accuracy results are 
printed in column 4, and finally Mathews corelation coefficient is figured in column 5. 

TABLE I
Experimental Outcomes on Lithium-Ion Conductivity Dataset

Method # of Sims x-validation Accuracy MCC
(1) (2) (3) (4) (5)

TPHSEL 10 5-fold
0.818

0.611

CrabNet 5 5-fold 0.814 0.633

X2
Y2Y1

X1
ooo

o
f

oe

d

c

b

a
∆

Z

o

o

o

o

o



It can be seen in Table-1 that TPHSEL has performed slightly better in terms of accuracy 
but slightly worse w.r.t. MCC score. However, we found one interesting phenomenon 
when we looked at results of standard ML parameters against vote difference between 
the two classes. We found the quality of results proportional to vote difference. Figure-
2 is testimony to this statement.

It can be seen from Figure-2 that as vote difference increases the quality of ML 
performance parameters also increase. Keeping this in mind and since the conductor 
class is the class of our interest, we also built the graph of accuracy against the vote in 
the favour of conductor class. The results are shown in Figure-3. In Figure-3 we see 
accuracy as a confidence level that we have in the material for belonging to the 
conductor class. Therefore, this is not a crisp decision on whether material is conductor 
or non-conductor but tells us rather probabilistically that the material in question is a 
conductor. The graph in Figure-3, shows that our confidence in the material being a 
conductor increases as vote in favour of conductor class increases.
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Fig. 2. Machine Learning Parameters across clusters of vote difference
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Fig. 3. Confidence level across clusters of the vote in favour of the conductor class

Encouraged by results of TPHSEL, we also applied it on the 21 general machine 
learning datasets from UCI machine learning repository [11]. The details of datasets 
are given in Table II.

In Table II, column 1 belongs to serial number, whereas dataset name and its acronym 
are listed in columns 2-3 respectively. Finally, dimensions of the dataset in terms of 
number of instances, number of features, and number of classes are mentioned in 
columns 4-6 respectively.

The TPHSEL was applied on the datasets of Table II. The code was run on a local HPC 
system with only one node and one core assigned to the program. Only 9.6 GB 
memory per core is allocated. The results are presented in Table III. 

In Table III, column1 presents serial number, the name of the dataset is in column 2, 
whereas columns 3-5 provide Average accuracy, standard deviation and execution time 
in second respectively.

Table II
Information of General ML Datasets

Sr. 
#

Name Acronym # of 
instances

# of 
feature

s

# of 
classe

s
(1) (2) (3) (4) (5) (6)
1 Acute Inflammations Nephritis AIN 120 6 2
2 Acute Inflammations Urinary AIU 120 6 2
3 Balance Scale BS 625 4 3
4 Banknote Authentication BA 1372 4 2
5 Breast Cancer Wisconsin 

Diagnostic
BCWD 569 30 2



6 Car Evaluation CE 1728 6 4
7 Chess King Rook vs King Pawn CKRKP 3196 36 2
8 Climate Model Simulation 

Crashes
CMSC 540 18 2

9 Iris - 150 4 3
10 Monks 1 - 432 6 2
11 Monks 2 - 432 6 2
12 Monks 3 - 432 6 2
13 Seeds - 210 7 3
14 Seismic Bumps SB 2584 18 2
15 Thyroid Disease ANN Thyroid TDAT 7200 21 3
16 Thyroid Disease New Thyroid TDNT 215 5 3
17 User Knowledge Modelling UKM 403 5 4
18 Wall Following Robot Navigation 

Sensor Readings 2
WFRNSR2 5456 2 4

19 Wall Following Robot Navigation 
Sensor Readings 4

WFRNSR4 5456 4 4

20 Wall Following Robot Navigation 
Sensor Readings 24

WFRNSR24 5456 24 4

21 Wine - 178 13 3

It can be seen in Table III that TPHSEL has achieved an average accuracy of 96.75% with 
average standard deviation of less than 0.5 in the average execution time of less than 
an hour. The results of TPHSEL were compared with random forest (RF) [12], optimal 
classification trees (OCT) [13], and support vector machines (SVM) [14]. The 
experimental setup of all the methods is given in Table IV. 

In Table IV, column 1 gives the serial number; name of method is in column 2. Column 
3 mentions number of simulations whereas the last column provides details about the 
train-test split.

It can be seen from Table IV that TPHSEL has the least training data in comparison to 
other methods. Finally, the comparative results are presented in Table V. Column 1, 
gives name of the dataset. Columns 2-5 give average accuracy of TPHSEL, OCT, RF and 
SVM respectively. The last column presents the best results among OCT, RF and SVM.

From the comparative results given in Table V, it can be seen that TPHSEL has got 
better average accuracy by the margin of 1.76% as compared to the results of the best 
of the three methods OCT, RF and SVM. 

Table III
Experimental Results

Sr. # Name Avg. Acc. Std. Dev. Ex. Time



(1) (2) (3) (4) (5)
1 AIN 100.00 0.00 0.16
2 AIU 100.00 0.00 0.20
3 BS 99.89 0.21 21.25
4 BA 99.51 0.19 723.84
5 BCWD 96.73 0.53 898.37
6 CE 96.49 0.45 4398.97
7 CKRKP 98.53 0.20 37557.10
8 CMSC 92.15 0.91 556.93
9 Iris 95.47 0.42 3.88
10 Monks 1 100.00 0.00 111.34
11 Monks 2 91.32 1.38 200.99
12 Monks 3 99.00 0.74 114.61
13 Seeds 92.95 1.76 47.08
14 SB 91.18 0.31 48735.80
15 TDAT 98.71 0.11 159796.00
16 TDNT 96.33 0.83 12.70
17 UKM 94.99 0.64 190.55
18 WFRNSR2 99.93 0.04 12286.70
19 WFRNSR4 99.96 0.03 18919.30
20 WFRNSR24 94.42 0.45 464780.00
21 Wine 94.27 1.12 39.28
- Average 96.75 0.49 35685.48

Table IV
Experimental Setup of Methods under Comparison

Sr. # Method # of Sims Configuration
(1) (2) (3) (4)

1 OCT 5 50%-25%-25% (train-valid-test)
2 RF 10 10-fold x-validation
3 SVM 100 80%-20% (train-test)
4 TPHSEL 10 3-fold x-validation

Conclusions and Future work:

This report presents a theory of probabilistic hierarchical supervised ensemble learning 
(TPHSEL). The theory proposes a new paradigm of learning i.e., hierarchical learning. 
The TPHSEL has not only produced competitive results on 21 general machine learning 
datasets, but it has also matched its performance with a black box method called 
CrabNet on the very difficult Lithium-Ion conductivity dataset from studies in materials 
science. The work has also produced a relationship between the quality of standard ML 
parameters and the pattern of voting to classes within an ensemble. This relationship 
would help to develop new comparison criteria among the algorithms. This in turn will 



also help to assign a confidence level to classification decisions and thus will be helpful 
in picking the instances that are most promising for the objective at hand. We believe 
that future extensions lie in large sized ensembles whereby statistical analysis of their 
results will have potential to aid achieving various objectives in the same way as we 
obtain different statistical objectives based on a big data.

Table V
Comparison of Results

Dataset TPHSEL OCT RF SVM Best of 3
(1) (2) (3) (4) (5) (6)

AIN 100.00 100.00 100.00 - 100.00
AIU 100.00 100.00 100.00 - 100.00
BS 99.89 89.60 82.76 - 89.60
BA 99.51 98.70 99.34 - 99.34
BCWD 96.73 94.00 - - 94.00
CE 96.49 87.50 94.70 - 94.70
CKRKP 98.53 95.60 99.46 - 99.46
CMSC 92.15 92.90 - - 92.90
Iris 95.47 95.10 95.07 - 95.10
Monks 1 100.00 93.50 100.00 - 100.00
Monks 2 91.32 75.80 72.86 - 75.80
Monks 3 99.00 94.20 98.92 - 98.92
Seeds 92.95 91.30 93.71 - 93.71
SB 91.18 93.30 93.39 - 93.39
TDAT 98.71 95.60 - - 95.60
TDNT 96.33 95.80 - - 95.80
UKM 94.99 91.31 90.79 - 90.79
WFRNSR2 99.93 100.00 - 97.81 100.00
WFRNSR4 99.96 - - 96.28 96.28
WFRNSR24 94.42 - - 91.10 91.10
Wine 94.27 94.20 97.74 - 97.74
Average 96.75 - - - 94.99
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