
Computer Science BSc (Hons)
Dissertation

Verification for a Robotic Assistant

Author: Supervisors:
Paul Gainer Dr Clare Dixon

Student ID: 200867735 Dr Ullrich Hustadt

1

Abstract

The Care-O-Bot is an autonomous robotic assistant that is designed to provide com-
panionship for a person living in a typical domestic environment. Currently the industrial
development of the Care-O-Bot, and other robotic assistants, is inhibited by the absence of
a coherent framework that can ensure their safety. The EPSRC funded project Trustworthy
Robotic Assistants (TRA) aims to develop robots so that they can engage in advanced inter-
actions with humans in a safe and trustworthy manner; this incorporates the development of
new tools and techniques to verify and validate robotic assistants.

The functionality of the Care-O-Bot is determined by a set of control rules which are
grouped together to form behaviours, high level rules which determine how the robot acts
in its environment. This project is based on work undertaken as part of the TRA project in
which model checking techniques were applied to verify a set of Care-O-Bot behaviours.

In previous work models of the robot behaviours, and its environment, were constructed
by hand and used as input for the model checkers NuSMVand Spin, software tools that au-
tomate the model checking process. This report details the design, realisation and evaluation
of an automatic translation from sets of Care-O-Bot control rules into input for the model
checker NuSMV.

Initially an extensive analysis of a set of Care-O-Bot control rules is conducted. The
results of this analysis are used to design an initial translation from control rules into a
succinct intermediate form representation, then a second translation from this intermediate
form into NuSMV input. The realisation of the design is discussed and the resulting software
is tested and shown to be an e↵ective solution to the problem. Finally, conclusions are drawn
that determine a measure of success for the project.

2

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Aims and Objective . 6
1.3 Challenges . 6
1.4 Solution . 7

2 Background 7
2.1 Problem Background . 7
2.2 Research Conducted . 7

2.2.1 Temporal Logic . 8
2.2.2 Model Checking . 8
2.2.3 Semantics of Care-O-Bot Behaviours . 8
2.2.4 Practical Model Checking . 8
2.2.5 Additional Research . 8

2.3 Project Requirements. 8

3 Design 9
3.1 Intermediate Form . 9
3.2 Translation into Intermediate Form . 11

3.2.1 Grammar Rules . 11
3.2.2 Data Extraction Rules . 12
3.2.3 Parser Design . 13

3.3 Translation into NuSMV Input . 14
3.3.1 Main Module Variable Declarations . 15
3.3.2 Main Module Variable Assignments . 16
3.3.3 Main Module Macro Definitions . 18
3.3.4 The Behaviour Module . 19
3.3.5 Temporal Constraints . 19

3.4 Test Design . 19
3.5 Evaluation Design . 20

4 Realisation 21
4.1 Intermediate Form Implementation . 21
4.2 Translation into Intermediate Form . 21

4.2.1 Parsing Grammar Rules . 21
4.2.2 Parsing Data Extraction Rules . 22
4.2.3 Parsing Control Rules . 22
4.2.4 Intermediate Form Translation Testing . 23

4.3 Translation into NUSMV Input . 23
4.3.1 Behaviour Lists . 23
4.3.2 Time Constraints . 23
4.3.3 Main Module and Behaviour Module . 24
4.3.4 Been-in-State and Was-In-State Conditions 24
4.3.5 Non-Deterministic Behaviour Scheduling 26
4.3.6 NuSMV Input Testing . 27

3

4.4 Software Used . 27

5 Evaluation 28
5.1 Software Functionality . 28

5.1.1 Intermediate Form Translation . 28
5.1.2 NuSMVInput Translation . 29
5.1.3 Anticipated Flags . 31

5.2 Degree of Automation . 31
5.3 Comparison to Hand-Written Model 32
5.4 Flexibility . 34
5.5 Conclusion . 35

6 Learning Points 36

7 Professional Issues 37

8 Bibliography 38

9 Appendix A - NuSMV 39

10 Appendix B - Semantics of Care-O-Bot Control Rules 41
10.1 Introduction . 41
10.2 Behaviour Scheduling. 41
10.3 Precondition Rules . 42
10.4 Action Rules . 43
10.5 Nested Behaviour Executions . 43
10.6 Definitions . 43
10.7 Linear Temporal Logic Properties . 44

11 Appendix C - Additional Design Documentation 46
11.1 Identified Precondition Rule Features 46
11.2 Precondition Rules Grouped by Features 47
11.3 Categorization of Precondition Rules 48
11.4 Identified Action Rule Features . 49
11.5 Action Rules Grouped by Features . 50
11.6 Categorization of Precondition Rules 51
11.7 Predefined Non-Terminal Symbols . 53
11.8 Grammar Rules . 53
11.9 Data Extraction Rules . 54

11.9.1 Propositional Value Check Data Extraction Rule 54
11.9.2 Enumeration Value Check Data Extraction Rule 55
11.9.3 Time Constraint Data Extraction Rule . 55
11.9.4 Propositional Value Assignment Data Extraction Rule 56
11.9.5 Enumeration Value Assignment Data Extraction Rule 57
11.9.6 Non-Deterministic Behaviour Execution Data Extraction Rule 57
11.9.7 Behaviour Execution Data Extraction Rule 58
11.9.8 Delay Data Extraction Rule . 58

11.10 NuSMVVariable Assignments . 59

4

11.11 Main Module Macro Definitions . 62
11.12 The Behaviour Module . 65
11.13 Pseudocode for Key Parsing Methods 67

12 Appendix D - Test Results 69
12.1 Intermediate Form Translation Results 69

12.1.1 Control Rule File . 69
12.1.2 Grammar Rule File . 73
12.1.3 Data Extraction File . 73
12.1.4 Intermediate Form . 74

12.2 NuSMV Input Translation Results . 82
12.2.1 Generated NuSMV Input . 82
12.2.2 Testing of Expected Properties . 101

13 Appendix E - Selected Source Code Listings 108
13.1 The getByName Procedure .108
13.2 The parseGrammarFile Procedure .112
13.3 The buildBehaviourLists Procedure .116
13.4 The buildTimingConstraintMap Procedure.118
13.5 The vectorPowerSet Procedure. .122

14 Appendix F - Feedback 124

5

1 Introduction
Robot assistants are intelligent, autonomous robots that can help with home and work-oriented

activities. Of particular interest are personal care robots, whose purpose is to assist those who
might be vulnerable due to illness, age or disability. In 2014 a new ISO safety standard for personal
care robots was published, providing guidelines to manufacturers of personal care robots to ensure
the safety of their design, construction and application [10].

The EPSRC funded project Trustworthy Robotic Assistants1 (TRA) aims to enhance robot
assistants so that they can safely interact with humans. As part of this project, work was un-
dertaken at the University of Liverpool, in collaboration with the University of Hertfordshire, to
apply formal verification techniques to the Care-O-Bot, a commercially available robot assistant
developed at the Fraunhofer Institute for Manufacturing Engineering and Automation.

Formal verification is the application of mathematical techniques to determine whether or not
a system conforms exactly to its specification. These techniques are used in the development
of software and hardware systems, notably in the development of critical systems where system
failure can have drastic human or economic repercussions.

1.1 Motivation
Model checking is a technique that given a model of a system and a property, exhaustively

checks the property holds throughout every possible run of the system. In previous work models
were constructed by hand to specify the behaviours – high level rules which determine how the
robot acts in its environment – of the Care-O-Bot and the state of its environment. The Model
checking software Spin [8] and NuSMV [2] were used to prove a number of properties in these
models. The University of Hertfordshire provided a database populated with control rules for
the Care-O-Bot; when combined these control rules form behaviours. The information stored in
this database has changed over time, old behaviours have been removed and new behaviours have
been added as di↵erent aspects of the robot’s functionality have been studied. Further work is
now needed to apply verification techniques to these new sets of behaviours.

1.2 Aims and Objective
This project aims to facilitate the verification of new sets of robot behaviours by developing an

automated translation process that transforms control rules extracted from the database directly
into input models for the model checking software NuSMV. The behaviours represented in the
database will be first translated into a succinct intermediate form that adequately represents all
of the information extracted from the database. This intermediate form will then be used for
the final transformation into input for NuSMV, and could also prove useful for further work
conducted as part of the TRA project, where di↵erent model checkers and verification techniques
may be applied. Ideally full automation of the translation process will be realised, however in many
instances it may be necessary to prompt the user to disambiguate any conflicting interpretations
of the input.

1.3 Challenges
As there is no available formal specification defining the robot behaviours an in-depth analysis

of their functionality and interactions is needed to determine if models produced as a result of the
transformation process can be considered correct. Additional complications arise from the lack of
a defined syntax for the rules that populate the database. Parsing these rules is non-trivial and

1www.robosafe.org

6

a system must be developed which can accommodate the introduction of new syntactic forms for
rules.

A final consideration is the complexity of the NuSMVmodels produced by the transformation
process. The state space of these models grows exponentially as new variables are introduced,
therefore an appropriate level of abstraction is required to ensure that it is computationally feasible
to check properties of the systems.

1.4 Solution
CRutoN, the software tool produced as a result of this work, proves to be an e↵ective solution

to the problem. The introduction of new syntactic forms of control rule is accommodated by
allowing the user to define simple rules that describe both the syntax and semantics of each new
form of rule. Given these additional rules the software can automatically translate sets of control
rules into both the intermediate form and direct input for NuSMV, where input from the user is
only required should ambiguity arise during the parsing of the control rules. Additional command
line options facilitate the regulation of the complexity of the resultant models by allowing the user
to select the level of abstraction used to represent the temporal aspects of the robot behaviours.

2 Background

2.1 Problem Background
Temporal logics are formalisms that allow propositions to be represented and reasoned about

in terms of time. Given an underlying model describing the di↵erent states of a system in time,
represented as a Kripke structure [11], temporal logic can be used to reason about whether certain
properties hold in di↵erent states of the model. Model checking is the process by which this process
of checking a property in a state is exhaustively applied to every state in a model.

Model checking has already been applied to the Care-O-Bot in [5] and [18] using a set of control
rules provided by the University of Hertfordshire. These rules describe how the robot operates in a
test environment called the Robot House, a typical suburban house equipped with furnishings and
sensors to provide information on the state of the house and the activities of its occupant. This
sensory data is used by the robot to respond accordingly to these external events, for instance if
the doorbell rings the robot should notify the occupant of the house.

NuSMV is a popular model checker for temporal logic. A detailed description of NuSMV is
provided in Section 9. In [5] a set of control rules defining the behaviours of the Care-O-Bot
were translated into NuSMV input by hand and properties were proved using the model checker
NuSMV[2]. Similarly in [18] a model was constructed using Brahms [16], an agent-based modelling
language, and then translated into Promela, the input language for the model checker Spin [8].
The work in [18] included a more detailed model of the state of the robots environment, where
the state of the environment changed according to the daily routine of the occupant of the house.

Since these studies were conducted the available set of control rules has been expanded to
include new behaviours that have been developed for the robot. The software produced as a result
of this project should allow models of these new sets of control rules to be automatically generated.
These models can then be used to prove desirable properties of these new behaviours.

2.2 Research Conducted
The work presented in [5] and [18] was studied to fully understand the problem background

and the techniques that had already been applied to formally verify the Care-O-Bot. Additional
background research was conducted into temporal logics and model checking to develop a good

7

understanding of these principles in order to fully understand the problem, and to derive an
appropriate solution.

2.2.1 Temporal Logic

Information presented in [3], [6], and [9] was studied extensively to develop an understanding
of temporal logics, notably Linear Temporal Logic (LTL) which uses a discrete, linear model of
time in which the states of the model correspond directly to the natural numbers. This knowledge
of LTL was essential to understand the syntax and semantics of the properties expressed in [5]
and [18], and allowed the author to formulate their own temporal properties that could be tested
in the models produced as a result of the transformation process.

2.2.2 Model Checking

Model checking techniques detailed in [6] and [9] were studied extensively to develop a good
understanding of model checking techniques and applications. As the project aimed to produce
input for the model checker NuSMV, and if there was su�cient time for the model checker Spin,
research was conducted to learn how to use these software systems and how to construct models
in their respective input languages, SMV and Promela. In addition to reading the published
literature for these systems [1, 2, 8] a number of other freely available educational resources were
studied. Research papers describing translations of systems into NuSMV also helped to illustrate
the process by which a system could be modelled using SMV, for instance [17] which describes
the translation of Petri nets into NuSMVmodels. A significant proportion of the research into
model checking was conducted to learn more about the model checker Spin, though there was
insu�cient time to realise an additional translation from Care-O-Bot control rules into Promela.

2.2.3 Semantics of Care-O-Bot Behaviours

As there were no available formal semantics specifying the behaviours of the Care-O-Bot a full
analysis of both the set of control rules modelled in [5] and [18] was conducted in order to formulate
temporal logic properties that would be expected to hold in any NuSMVmodel resulting from the
translation process. Correspondence with the University of Hertfordshire helped to clarify aspects
of the Care-O-Bot’s functionality that were not fully understood. The functionality of the control
rules as understood by this author is described in detail in Section 10.

2.2.4 Practical Model Checking

Small models were constructed by hand to gain familiarity with the model checking software.
Initially, small state transition systems similar to that shown in Figure 15 were constructed by
hand then modelled using NuSMV. The model described in [5] was rigorously studied then a
small subset of the Care-O-Bot behaviours were selected and modelled by hand. A number of
simple LTL specifications were then checked in the resulting models.

2.2.5 Additional Research

A string matching algorithm was devised using [4] to determine the similarity of two given
strings, and was used to to automatically regulate inconsistency in the naming of variables and
behaviours in the text representing the control rules in the database. Parsing techniques in [7] and
[14] were studied, in particular left-recursive descent parsing. Due to an oversight made during
the initial design phase many of the techniques described in these sources were not used in the
final design.

2.3 Project Requirements
A software tool was expected that could translate sets of Care-O-Bot control rules into an

intermediate form and into input for the model checker NuSMV. The intermediate form was
required to be a succinct and adequate representation of the control rules. An intermediate form

8

representation of a set of control rules should then be translatable into input for the model checker
NuSMV. Given input generated by the software, NuSMVwas expected to generate a model in
which temporal properties corresponding to the behaviours of the robot could be checked.

The produced system needed be flexible, allowing the introduction of new syntactic forms of
rule. Flags to regulate the level of abstraction of temporal aspects of the Care-O-Bot behaviours
and the level of automation of the translation process were also anticipated.

3 Design

3.1 Intermediate Form
A complete list of Care-O-bot control rules was extracted from the provided database of Care-

O-bot control rules. The individual precondition rules and action rules were analysed and distinct
features of each type of rule were identified. Rules were then separated into groups where all rules in
any group shared the same features. Appropriate data structures were then designed to represent
each type of rule. The resulting class diagram is shown in Figure 1. The Intermediate Form
consists of a set of propositional variables, a set of enumerated variables, and a set of behaviours.
Each behaviour has a priority p with p 2 Z, a flag set to true i↵ the behaviour is interruptible,
and a flag set to true i↵ the behaviour is schedulable. Furthermore, each behaviour consists of a
(possibly empty) ordered list of actions and a (possibly empty) logical expression tree, where each
internal tree node corresponds to one of the boolean connectives AND, OR, or NOT, each leaf
node of the tree stores a reference to a precondition, and an expression evaluationg to true i↵ the
preconditions of the behaviour hold can be constructed by performing an in-order traversal of the
tree.

Preconditions Precondition rules are propositional statements that are either true or false. All
precondition rules for a behaviour are linked by Boolean AND and OR operators [5] to form a
logical expression that must evaluate to true for the behaviour to be scheduled for execution by
the robot. The rules extracted from the control rules database have a variety of syntactic forms.
An analysis was conducted to identify features of precondition rules that allowed the rules to be
compartmentalized into groups. The identified features of precondition rules extracted from the
database are detailed in Section 11.1. The precondition rules were then separated into disjoint
groups, where all rules in a group shared the same features. A full listing of these groups is shown
in Section 11.2.

Three categories of precondition rules were identified – propositional value checks, enumera-
tion value checks, and time constraints. Propositional value checks and enumeration value checks
should be constrainable by been-in-state and was-in-state conditions. Full details of these condi-
tions, and the categorisation of the precondition rules are given in Section 11.3. A propositional
value check evaluates to true i↵ for some Boolean variable b and some truth value t 2 {true, false}
we have that b = t. An enumeration value check evaluates to true i↵ for some set of named values
V = {v

1

, . . . , vn}, for some enumerated variable with a value v 2 V , and for some value v

0 2 V ,
we have that v = v

0. A Time constraint evaluates to true i↵ the current time of day is within a
given time interval. These distinct forms of precondition rules will be represented as subclasses of
a Precondition superclass.

Action Rules Each Care-O-bot control rule has an ordered list of action rules which are se-
quentially executed when the precondition rules hold. As stated in Section 3.1, the rules extracted
from the database have many di↵erent syntactic forms. An analysis of the action rules identified
distinct features of action rules which allowed the rules to be divided into groups. The identified

9

Figure 1: Structure of the Intermediate Form

features of action rules extracted from the database are detailed in Section 11.4. The precondition
rules were then separated into disjoint groups, where all rules in a group shared the same features.
A full listing of these groups is shown in Section 11.5.

Five categories of action rule were identified – propositional value assignments, enumeration
value assignments, behaviour executions, non-deterministic behaviour executions, and delays. Full
details of the categorisation of the precondition rules are given in Section 11.6. A propositional
value assignment assigns some truth value t 2 {true, false} to some Boolean variable. For some
set of named values V = {v

1

, . . . , vn}, an enumeration value assignment assigns some value v 2 V
to some enumerated variable over V . A behaviour execution transfers control from some scheduled
behaviour B to some other behaviour B0. If B still has actions to complete then control is returned
to B once all actions in B

0 have been performed. For some set of behaviours B = {B
1

, . . . , Bn}, a
non-deterministic behaviour execution transfers control from some scheduled behaviour B to some
behaviour B0 2 B, where B

0 is selected at random from B. If B still has actions to complete then
control is returned to B once all actions in B

0 have been performed. A delay forces the robot to
do nothing for a given number of seconds. These distinct forms of action rules will be represented
as subclasses of an Action superclass.

It is worth noting here that all actions represented in the intermediate form, and indeed in the
final translation into model checker input, are considered to be atomic. They are either enacted
in their entirety or not at all. The semantic implications of the su�x ’and wait for completion’,
which occurs multiples times in the set of control rules, will therefore be omitted entirely from the

10

intermediate form.

3.2 Translation into Intermediate Form
As shown in Section 3.1, preconditions and actions have many distinct forms but can be sepa-

rated into three distinct categories of precondition and five distinct categories of action. To ensure
that additional sets of new control rules can be translated correctly the parsing and extraction of
information from these rules is not hard coded into the resulting software. The translator takes as
input not only a set of control rules but also a file containing a set of grammar rules (rules defining
the syntax of control rules), and a file containing a set of data extraction rules (rules defining how
information should be extracted from the control rules).

For a new form of control rule to be recognised and parsed correctly new definitions must be
added to both the grammar rule file and the data extraction rule file. The grammar rule definition
for a new control rule allows an automaton to be constructed at run time that can be used to
parse this new form of rule. The data extraction rule definition for the new control rule describes
how meaningful information can be extracted from the text parsed by constructed automaton.
Figure 2 illustrates the process by which a set of control rules is translated into the intermediate
form.

Figure 2: The Intermediate Form Translation Process

3.2.1 Grammar Rules

Grammar rules allow the user of the system to define the syntax of control rules. When a new
syntactic form of control rule is encountered a new definition can be added which will allow the
system to recognise parsed control rules of this new form.

Grammar Rule Syntax The syntax of grammar rules is a simple variation on the Backus-Naur
Form notation <symbol> ::= expression, where symbol is the name of a non-terminal symbol, and
expression is a non-empty sequence of lexical elements, namely terminal symbols and non-terminal
symbols. Terminal symbols are of the form ’token’, where token corresponds to an actual token of
text expected in the control rule being parsed. For each symbol a deterministic finite automaton
[7] is constructed that accepts as input tokens of text. The automaton is deemed to be accepting
if after inputting some number of tokens the automaton is in an accepting state.

11

Grammar Rule Names For every distinct form of control rule there is an associated grammar
rule. The name of each grammar rule must consist of a predefined prefix determining the category
of precondition or action rule parsed by this grammar rule, su�xed with an integer. The pre-
defined prefixes for preconditions are pvc, evc and tc, respectively corresponding to precondition
value checks, enumeration value checks and time constraints. The predefined prefixes for actions
are pva, eva, exb, exbnd and del, respectively corresponding to propositional value assignments,
enumerated value assignments, behaviour executions, non-deterministic behaviour executions and
delays. No two grammar rules corresponding to control rules in the same category may have the
same identifying integer. The grammar rule definitions for the set of control rules used during the
design stage can be found in Section 11.8.

Additional Symbols Additional non-terminal symbols can be defined to avoid multiple defini-
tions in the grammar. For example, the non-terminal symbol <ott> ::= ’one’ ’two’ ’three’ could
be defined and then used in further definitions whenever the tokens one, two then three would be
expected as sequential tokens in the input. Several built-in non-terminal symbols are included to
increase the expressiveness of the grammar rules. Full details of these built-in symbols are given
in Section 11.7.

Prefixes Prefixing any additional non-terminal symbol, built-in non-terminal symbol or terminal
symbol with + indicates valid input for the constructed automaton may be repeated one or more
times.Prefixing any additional non-terminal symbol, built in non-terminal symbol or terminal
symbol with a positive integer n indicates that valid input for the constructed automaton should
be repeated exactly n times. For example, given the grammar definitions <a> ::= 2’one’ and
 ::= +<a> ’two’ the symbol b would be in an accepting state if accepted as input any of the
sequences one one two, one one one one two etc.

Limitations Symbols prefixed with + cannot be followed by any symbol that can accept more
than one token as the parser is designed to have a look ahead of at most one token. In addition,
any grammar rule defining a dynamically built automaton cannot be recursive, either directly or
indirectly.

3.2.2 Data Extraction Rules

Figure 3 illustrates how several control rules, each having a distinct lexical composition, can
all belong to a single category of control rule. As shown in Section 3.2.1, grammar rules can
be defined for each distinct form of control rule in a category. Each grammar rule should have a
corresponding data extraction rule. Data extraction rules describe how relevant information can be
retrieved from each form of control rule after they have been parsed, for instance a data extraction
rule for a propositional value check would include an indication of which of the (enumerated)
symbols in the corresponding grammar rule definition is to be used to determine the name of the
propositional variable.

12

Figure 3: Di↵erent Forms of Enumeration Value Assignment

1. Turn light on ::0::Care-O-Bot 3.2 to white

2. ::0::Care-O-Bot 3.2 says ’The fridge door is open!’

3. move ::0::Care-O-Bot 3.2 to ::31:: TV location in the Living Room

4. move tray on ::0::Care-O-Bot 3.2 to Lowered

5. move torso on ::0::Care-O-Bot 3.2 to the right

There are eight distinct formats of extraction rule, one for each of the categories of precondition
rules and action rules. Each format consists of a rule name, the name of the corresponding non-
terminal symbol in the set of grammar rules, then a number of variables to which di↵erent values
are assigned. The types of value that can be assigned to variables are boolean, which can be
true or false, string , which consists of any characters enclosed in quotation marks (”text”, for
example), and finally identifier. Identifiers are either a string value, or a list of integers in the
format [1, 5, 2 . . .] where each integer i in the list corresponds to any tokens accepted as input for
the i

th symbol on the right hand side of the corresponding grammar rule definition. If multiple
integers, say i, j and k are in the list then the parsed text for the i

th, jth and k

th symbols would
be concatenated with underscores to name a variable. Any variable type can be set to null as long
as this is permitted in the definition of the rule. An example is shown below:

Given the grammar rule shown below, where each right hand symbol is enumerated:

<tc2> ::= ’Time’
1

’is’
2

’between’
3

<time>
4

’and’
5

<time>
6

We have the corresponding data extraction rule:

tc2; start time = [4]; end time = [6];

Which has the format:

rule name; start time = identifier ; end time = identifier .

The above data extraction rule tells the parser that when parsing the time constraint grammar
rule tc2 , the fourth symbol <time> should be used as the value for start time, and the sixth
symbol <time> should be used as the value for end time.

A comprehensive list of the eight di↵erent formats of data extraction rule, and examples for
each using rule definitions for the set of control rules used during the design stage, can be found
in Section 11.9.

3.2.3 Parser Design

Input Files Input will consist of three separate files. The first file to be parsed will consist of
the grammar rules for each of the categories of precondition and action. If a non terminal symbol
appears in the right hand side of a grammar rule then it must have previously been defined in
the file, or must correspond to a ’built in’ symbol (see Section 11.7). The second input file should
contain the set of data extraction rules, with one rule present for each defined grammar rule. The
third input file will consist of tuples of data values extracted from the database of control rules,

13

one tuple per line. Each tuple has values corresponding to a singe control rule and consists of the
following:

• the name of the behaviour to which the rule belongs

• an integer p 2 N corresponding to the priority of the behaviour

• an integer i 2 {0, 1} where i = 1 if the behaviour can be interrupted

• an integer s 2 {0, 1} where s = 1 if the behaviour can be scheduled

• an integer determining the order in the which the rule appears in the behaviour

• a character c 2 {R,A}, with c = R if the control rule is a precondition rule or c = A if the
control rule is an action rule

• an integer a 2 {0, 1, 2}, where if this rule is a precondition rule then if a = 2 a disjunction
should be formed between this rule any any subsequent precondition rule in the behaviour,
or if a = 0 or a = 1 a conjunction should be formed between this rule and any subsequent
precondition rule in the behaviour

• an integer n 2 {0, 1} where if this rule is a precondition rule and a = 1 this rule should be
negated

• some text defining the control rule itself

Data Types An abstract superclass Automaton is defined, having as fields a name, an integer
giving the number of times to repeat (set to 0 for symbols prefixed with +, or set to the number
of times to repeat otherwise), and procedures to check if the automaton is in an accepting state,
to check if the automaton is in a dead state, to feed a token to the automaton, to get the input
the automaton received to reach an accepting state, and finally to reset the automaton back to its
initial state.

Two subclasses of Automaton are then defined, TerminalSymbol and NonTerminalSymbol.
The name of a TerminalSymbol corresponds to the input needed to move the automaton to an
accepting state. Each non-terminal symbol has a list of Automatons corresponding to the terminal
and non-terminal symbols on the right-hand side of the rule.

A class diagram illustrating the key fields and methods of these data structures and the parser
itself is shown in Figure 4. Pseudocode for key parsing methods is included in Section 11.13.

In the original design an addition class AutomataChain was also defined. This class was in-
cluded to allow the definition of grammar rules of the form <symbol> ::= expression1 | expression2
| expression3, where there is a choice of expressions for the symbol. It was decided to not allow
multiple expressions to appear on the right hand side of a rule to simplify the parsing process,
therefore the class AutomataChain is no longer factored into the design of the parser.

3.3 Translation into NuSMV Input
This section describes the process by which an intermediate form representation of a set of

control rules (see Section 3.1) is translated directly into model checker input. The translation
process produces as output a file defining a model that can be used as direct input for the model
checker NuSMV. Each produced model consists of two modules, the required module main and
an additional module behaviour.

14

Figure 4: Intermediate Form Parser Class Diagram

3.3.1 Main Module Variable Declarations

The VAR section of the main module contains a Boolean variable declaration for each propo-
sitional variable in the intermediate form, and an enumerated variable declaration for each enu-
merated variable in the intermediate form. Figure 5 shows the definitions that are added for a
propositional variable ::501::TrayIsLowered and an enumerated variable light with values blue,
yellow and red. All characters not part of the input language for NuSMV are replaced by under-
scores, as shown on line 1.

Figure 5: Variable Declarations

1. 501 TrayIsLowered: boolean;
2. light: {blue, yellow, red};

Declarations for three other enumerated variables are included in every model. The first of
these variables is step; this variable is used to record which action is being executed for any
scheduled behaviour. The second variables is schedule; this variable records which behaviour is
currently scheduled for execution. If a scheduled behaviour was executed by another behaviour
then the last schedule variable is used to ’remember’ the executing behaviour.

An additional variable time is included in the model if there at least one behaviour in the given
intermediate form that has a time constraint as a precondition. This variable is used to represent
the current time of day. This variable was not discussed in the initial design as research was still
being conducted as to how to represent the passing of time in the NuSMVmodels.

15

Given a set of intermediate form behaviours B the possible values for the variables are deter-
mined as follows:

• step

The step variable has a value step none in addition to another k distinct values
step 1 , . . . , step k , where k = max{numberOfActions(b) | b 2 B}.

• schedule

The schedule variable has a value schedule none in addition to another |B| distinct values,
where for each behaviour B 2 B there is a corresponding value schedule su�xed with the
name of B.

• last schedule

The set of values for the last schedule variable is equal to the set of values for the schedule
variable.

• time

Let T C be the set of all time constraint precondition rules in all behaviours in B, and for
each tc 2 T C define a function f that maps each tc 2 T C to a time interval [tcs, tce] where
tcs is the first moment in time in which tc holds, tce is the last moment in time in which tc

holds, tcs and tce correspond to some time of day in the 24 hour format, and tcs corresponds
to a time strictly earlier than tce. Given a time interval [tcs, tce] define s([tcs, tce]) to be tcs,
e([tcs, tce]) to be tce, and S([ts, te]) to be the set of time constraints such that S([ts, te]) =
{tc | tc 2 T C and ((s(f(tc)) ts and e(f(tc)) � ts) or (s(f(tc)) te and e(f(tc)) � te))}
The values for time are constructed by first finding a set of time intervals
I = {[i1s, i1e], . . . , [ins , ine]}, such that for every [ijs, i

j
e] 2 I there is no [iks , i

k
e] 2 I where 1 j

n, 1 k n and j 6= k such that S([ijs, i
j
e]) = S([iks , i

k
e]) 6= ;, and for every distinct time of

day t

0 there is some [ts, te] 2 I with ts t

0 te. Then for every interval [is, ie] 2 I where
S([is, ie]) 6= ; a value for time is added with the name is to ie. If there is some i 2 I
with S(i) = ; then the value no time constraints hold is added.

3.3.2 Main Module Variable Assignments

The ASSIGN section of the main module has two statements for each propositional variable
and enumerated variable in the intermediate form. The first statement assigns an initial value to
the variable in the model, and the second statement is a sequence of expressions that determine
the value that the variable will take in the next state.

The initial value for variables is set non-deterministically to one of the possible values for that
variable unless an explicit initial value is given for the variable.

If a variable is flagged as non-deterministic (i.e. the variable represents some non-deterministic
aspect of the Care-O-Bot’s environment, for details of this see Section 11.9) then in every state
the value of this variable in the next state is chosen non-deterministically.

The value of deterministic variables in the next state is determined by a sequence of expressions.
Every expression in the sequence corresponds to some propositional value assignment action if
the variable is a boolean, or some enumeration value assignment action if the variable is an
enumeration, that assigns a value to the variable. Given a set of intermediate form behaviours B
and some intermediate form variable var, for every assignment of some value to var in a behaviour
b 2 B an expression is added of the form:

16

(schedule = schedule N & step = step n): v;

where N is the name of b, n is the index of the assignment action in the sequence of actions for
b, and v is the value to assign to var. Intuitively this expression means that if behaviour b is
scheduled and is performing its nth action, then in the next step the value of var will be equal to
v. A final expression is added of the form:

TRUE: v.

As this expression is the last in the sequence it will only be evaluated should all other expressions
evaluate to false. This expression ensures that if no new value has been assigned to var then it
keeps its value in the next state.

Figure 6 shows the statements added to the model for two variables v1 and v2. v1 is a non-
deterministic boolean variable, v2 is a deterministic enumerated variable with possible values
value 1, value 2 and value 3, and b1 is a behaviour which has as its 3rd action an enumerated
value assignment that assigns the value value 1 to v2.

Figure 6: Variable Assignments

The following bullet points summarise how values are assigned to the variables step, schedule,
last schedule and time. A number of macro definitions are used that are described in detail in
later sections although their intuitive meaning is given here. Detailed descriptions of how these
variables are assigned values in the next state are shown in Section 11.10.

• step

The initial value for this variable is step none as no behaviour is performinag an action in
the initial state. When a behaviour is scheduled step starts with the value step 1, and then
increments to step 2 and so forth as consecutive actions are performed.

• schedule

The initial value for this variable is schedule none as no behaviour is scheduled in the initial
state. If a behaviour can be scheduled in the next moment in time as either no behaviour
is scheduled or the current behaviour can be interrupted, then in the next moment in time
schedule will have a value corresponding to this newly scheduled behaviour.

17

• last schedule

The initial value for this variable is schedule none as no behaviour has been scheduled in the
initial state. The value of this variable will always correspond to the value of the schedule
variable in the previous state unless a behaviour has been executed by another behaviour, in
which case the value keeps the value corresponding to the executing behaviour, allowing the
executing behaviour to be ’remembered’ so that control can be returned to this behaviour
once the executed behaviour has finished performing its actions.

• time

The time variable is assigned a random value initially and in the next moment in time.

3.3.3 Main Module Macro Definitions

The DEFINE section of the main module defines a number of macros that are used to succinctly
express more complex logical expressions, increasing the readability of the code, decreasing the size
of the code, and allowing properties checked in the model to be expressive yet easy to formulate.
Brief descriptions of these macros are given here an full descriptions of how these macros are
constructed are included in Section 11.11.

Preconditions For each behaviour in the intermediate form a macro is defined that evaluates
to true i↵ the preconditions the behaviour hold.

Interrupts Each behaviour has a priority value. For every distinct priority value present in the
intermediate form a macro is defined that evaluates to true i↵ a behaviour having that priority
can interrupt a currently scheduled behaviour in the next moment in time.

Behaviour Scheduling Macros Six additional macros that relate to the scheduling of be-
haviours are defined here. The macros an executed behaviour is ending as a last action,
executed behaviour execute next, and an executed behaviour is schedule were not described in
the original design.

• The executed behaviour execute next macro evaluates to true i↵ in the next moment in
time some behaviour will be executed by the currently scheduled behaviour.

• The a behaviour can be scheduled macro evaluates to true i↵ in the next moment in time
some behaviour can be scheduled for execution.

• The a behaviour is ending macro evaluates to true if some schedulable behaviour is per-
forming its final action.

• The an executed behaviour is ending as a last action macro evaluates to true i↵ some
some behaviour executed by another behaviour is performing its last action, and this executed
behaviour was executed as the executing behaviours final action.

• The an executed behaviour is ending macro evaluates to true i↵ some non-schedulable
behaviour is performing its final action.

• The an executed behaviour is scheduled macro evaluates to true i↵ some non-schedulable
behaviour is currently being executed.

18

3.3.4 The Behaviour Module
A brief description of the behaviour module is given here, and a more detailed decription is

given in Section 11.12. The parameterizable behaviour module, shown in Figure 7, instantiated
once for each behaviour in the set of intermediate form behaviours, consists of a number of macro
definitions. This purpose of this module is simply to provide macro definitions for individual
behaviours. These macro definitions can then be used to easily construct otherwise complex
expressions that are used both to define the state of variables in the ASSIGN section of the main
module, and to formulate properties to test in the model.

Each behaviour accepts as parameters an expression that is true i↵ the preconditions of the
behaviour hold, an expression that is true i↵ the behaviour can interrupt a currently scheduled be-
haviour, an expression that is true i↵ the behaviour can be interrupted in the next moment in time,
references to the schedule and step variables, and the values for schedule and step corresponding
to the behaviour and its final step respectively. Given these values the behaviour instance then
provides macro definitions that be used to determine if the preconditions of the behaviour hold,
the behaviour can be scheduled or interrupted, and if the behaviour is scheduled or executing its
last step.

Figure 7: The Behaviour Module

3.3.5 Temporal Constraints
As described in Sections 10.3 and 3.1, propositional value check rules and enumeration value

check rules can be additionally constrained by been-in-state and was-in-state conditions. These
additional conditions respectively require that the the precondition has held throughout a previous
period of time or has held at some point within a previous period of time.

Command line parameters are provided to allow the level of abstraction of temporal aspects of
the control rules to be regulated to some extent. If the user has chosen a high level of abstraction
then it is likely that many been-in-state and was-in-state conditions requiring a precondition to
have held during or within a small period of time will not be represented in the produced code.
For lower levels of abstraction additional lines of code are added to the model to correctly model
the semantics of precondition rules constrained by been-in-state or was-in-state conditions.

3.4 Test Design
At the design stage it was stated that standard testing techniques would be applied to all

classes and methods comprising unit testing, integration testing, component interface testing and

19

system testing. A set of grammar rules and data extraction rules corresponding to the set of
control rules used in [5] and [18] would be constructed and the software would be used to produce
an intermediate form representation of these rules. This intermediate form would then be checked
by hand to ensure that it adequately represents the control rules. NuSMV input would then be
generated using the intermediate form.

In [5] a sample of formal verification requirements were translated and their formalised prop-
erties were verified using NuSMV. These Linear Temporal Logic specifications were to be applied
to models generated from model checker input produced by the automatic translation process and
the results of the specifications were to be compared to those found in [5]. In addition to the
aforementioned specifications additional desirable properties were to be tested. Many of these
tests would correspond directly to the properties that are expected to hold in produced models,
as discussed in Section 10.

3.5 Evaluation Design
The functionality of the produced software was to be compared to the expected functionality

declared in the project requirements, and any extra features included in the software, and the
reasons that they were implemented, were to be discussed.

In the original design it was stated that ideally full automation of the translation process
would be realised however it may be necessary to prompt the user to disambiguate any conflicting
interpretations of parsed rules, therefore an analysis of the level of automation provided by the
software was to be conducted.

Model checker code produced by the translation from the intermediate form into model checker
input would be compared to the hand-written code produced in [5] and comparisons were to
be made to determine the e�ciency of the automated translation process. This was to include
a comparison between the size of the models produced using NuSMV input generated by the
software and the size of the model produced by the hand written code produced in [5].

Finally, the translation of an additional set of control rules to those used in the design of the
system was to be conducted to evaluate the flexibility of the software. If the new set of rules could
not be correctly translated by the software then an analysis of the extent of modification required
to correctly translate the additional rule set would be conducted.

20

4 Realisation
Standard testing techniques were applied to all classes and methods throughout the implemen-

tation of the software to identify and remove any errors in the code. This comprised unit testing,
integration testing and component interface testing. Only the most important test results will be
discussed later in this section.

4.1 Intermediate Form Implementation
The first step in the implementation of the design was to build the data structures constituting

the intermediate form representation of a set of behaviours. Nearly all classes defined in the original
intermediate form design were simple structures and their implementation was a straightforward
process.

It was important that the produced software should be able to recognize discrepancies in the
names of behaviours and variables in the input as there were some spelling errors present in the
control rules extracted from the database. Command line switches were provided to guide the
automatic identification of these spelling errors. Enabling automatic identifier matching tells the
parser to try and automatically match parsed identifiers for behaviours or variables with those of
behaviours and variables that have already been parsed, selecting the best match where multiple
matches are found. An identifier is considered to match another existing identifier if the similarity
of these two identifiers exceeds a given threshold. Enabling automatic case-insensitive parsing tells
the parser to ignore letter case when matching the names of identifiers for behaviours or variables
with those of identifiers that have already been parsed. These command line switches are shown
in Figure 8, -aim toggles automatic identifier matching, -smt sets the string matching threshold
(a required percentage of similarity), and -cim toggles automatic case-insensitive matching.

Section 13.1 lists the generic getByName procedure in the IntermediateForm class which, given
the identifier of a behaviour or variable and a list of existing behaviour or variables, returns any
corresponding behaviour or variable having that identifier or a null value if no match was found.
If case-insensitive identifier matching is disabled then the user is prompted to confirm that two
identifiers di↵ering only by case are the same. If automatic identifier matching is disabled then a
list of matches whose similarity exceeds a given threshold are displayed to the user who can then
choose which match to consider and whether the existing identifier should be replaced, the existing
identifier should be used instead of the parsed identifier, or to ignore the match and consider the
parsed identifier as a new value.

4.2 Translation into Intermediate Form
As the translation process involved the parsing of three separate input files a collection of small

helper functions was composed which facilitate the tokenizing and manipulation of the text to be
extracted from these files.

4.2.1 Parsing Grammar Rules

As described in Section 3.2.1 the grammar rule file allows the user to define the syntactic forms
of control rules using a simplfied and restricted Backus-Naur form notation. Parsing these gram-
mar files was one of the most challenging aspects of the implementation. Despite its limitations
the defined grammar was still very expressive and a lot of time was spent ensuring that the gen-
erated automata functioned correctly. The original design was reworked to simplify the construc-
tion of these automata, by disallowing syntax rules of the form <symbol> ::= expression

1

| . . . |
expressioni, where multiple expressions could appear on the right hand side of a rule. This change
to the design did not a↵ect the expressiveness of the grammar as separate rules could be defined

21

Figure 8: Command Line Parameters

for each separate expression, and allowed more time to be spent on other critical stages of the
project such as the translation into NuSMV input.

Section 13.2 lists the parseGrammarFile procedure that parses a set of grammar rules defined
in the file having the given name. For each rule in the file a new NonTerminalSymbol is constructed
by constructing a list of automata for each of the symbols appearing on the right hand side of the
rule. If an error occurs during the parsing of these rules, for instance if a rule is defined twice, or
if the rule itself does not conform to the syntax, then an appropriate error message is constructed
and then thrown to the calling procedure.

4.2.2 Parsing Data Extraction Rules

Each parsed data extraction rule corresponds directly to a grammar rule of one of the eight
types described in Section 3.2.1 and is validated to ensure that all expected parameters are present
and that the values given for these parameters are of the correct format. There should be one
data extraction rule defined for every grammar rule defined in the grammar rule file.

During this stage of the implementation it was noticed that a number of additional expected
parameters were needed in several data extraction rules to adequately represent the control rules.
Fortunately these oversights in the original design were noticed at any early stage where necessary
changes to the existing code base were relatively minor.

4.2.3 Parsing Control Rules

The control rule file consists of a set of tuples extracted from the database, where each tuple
is a set of values for a single control rule. Each value is parsed in the order in which they are
declared in Section 3.2.3. Adhering to the original design, the process of parsing precondition

22

rules was implemented using recursive descent parsing techniques, as it was initially believed
that a precondition rule could consists of several preconditions linked by boolean AND and OR
operators. Upon further examination of the database of rules it was noticed that two fields had
been overlooked. With each precondition rule was associated two values, andOrConnector and
notConnector. These fields respectively determined how each precondition rule was to be logically
linked with the subsequent precondition rule, forming either a conjunction or disjunction, and
whether a precondition should be negated.

This oversight in the original research resulted in a parsing solution that was both incorrect
and much more complex than required. The parsing process was reimplemented resulting in a
much simpler solution than before. In addition to the time spent reimplementing the parsing
process, the process by which logical expression trees were constructed also needed to be reimple-
mented. Previously one logical expression tree was associated with each individual precondition
rule, however in the amended design one logical expression tree was associated with each individual
behaviour.

Each control rule is parsed by tokenizing the text describing the rule and using each token as
input for each of the automata generated by either the precondition rule grammar definitions or
the action rule grammar definitions, according to the type of control rule being parsed. Once all
tokens in the text have been given as input to the corresponding precondition or action automata,
those automata which are in an accepting state are considered to be candidates to match this
parsed rule to some defined form of control rule. These candidates are then validated by checking
that the parsed data corresponds to the input expected by the data extraction rule corresponding
to the grammar rule used to generate the accepting automaton. If a single candidate remains after
the rules have been validated then the parsed rule is automatically matched to the corresponding
form of rule, otherwise the user is prompted to disambiguate the input.

4.2.4 Intermediate Form Translation Testing

A number of small handwritten control rules were used to test the process of translation into
the intermediate form during the implementation. In Section 12.1 the translation of the set of
control rules used in [5] and [18] is shown. First the three input files are listed followed by the string
representation of the generated intermediate form. This intermediate form output was checked by
hand to ensure that all information represented in the control rules was present.

4.3 Translation into NUSMV Input
4.3.1 Behaviour Lists

Given an intermediate form representation of a set of control rules the first step in the transla-
tion into NuSMV input is to build three lists of behaviours. The buildBehaviourLists procedure
listed in Section 13.3 builds a list of schedulable behaviours, a list of behaviours that execute
another behaviour, and a list of behaviours that are executed by another behaviour. These lists
facilitate the construction of many of the macros described in Section 3.3.

4.3.2 Time Constraints

Once the lists of behaviours have been constructed a list of possible values for the time variable
are built. The time variable is used to represent the current time of day. The buildTimingCon-
straintMap procedure listed in Section 13.4 builds the values for time and also constructs a map
in which time constraint precondition rules are mapped to the periods of time (possible values
for time) during which the precondition rule holds. Initially all time constraint rules are iden-
tified in the set of behaviours. If there is only a single rule then time simply has two values, a
value corresponding to the period during which this rule holds, and another corresponding to all

23

other times when the rule does not hold. If there are multiple time constraint rules in the set
of behaviours then the values for time are constructed by the process described in Section 3.3.1.
The map constructed by this procedure is used later to construct the macro definitions for the
preconditions of behaviours having a time constraint precondition rule.

The command line option -tod is provided (see Figure 8) to fix the time of day. If this
option is used then the time variable is omitted entirely from the output and instead expressions
corresponding to time constraint precondition rules are set directly to either TRUE or FALSE
according to whether the precondition holds at the fixed time of day.

4.3.3 Main Module and Behaviour Module

The VAR, ASSIGN and DEFINE sections of the main module are sequentially constructed
exactly as described in Section 3.3 where a definition and set of assignments are constructed for
every variable in the intermediate form. Then definitions and assignments are constructed for
the step, schedule, last schedule and time variables. Finally the behaviour module is added and
instances of this module are added to the main module, one for each of the behaviours in the
intermediate form input.

4.3.4 Been-in-State and Was-In-State Conditions

The original design gave some initial ideas of how been-in-state and was-in-state conditions
applied to precondition rules would be realised, and these ideas have now been expanded and
fully implemented. Figure 9 demonstrates how code added to the NuSMV file for a been-in-
state constrained precondition rule. The example first gives the precondition rules for the S1-
alertFridgeDoor behaviour. Line 1 of the NuSMV code shows the introduction of a new variable
which is added to the VAR section of the main module. The variable name is formed by prepending
the name of the variable whose value is being checked (Fridge Freezer In ON) to the name
of the value being checked (TRUE), then adding the su�x BEEN IN STATE.

Define S to be the number of seconds during which the precondition rule must have held.
Depending on the level of abstraction used to represent timing constraints, each state in the
model is considered to correspond to a fixed number of seconds s. The been-in-state variable
therefore has values of the form s

0

, sn, s2n, . . . , sS�n, sfinal, where n = S
s . The initial value for

the variable is always s
0

. In any state if the precondition does not hold the variable resets to s

0

,
otherwise if the variable has the value si then in the next state the variable will have the value
si+n until the variable has the value sfinal .

The macro definition of the expression that is true i↵ the precondition rules of behaviour S1-
alertFridgeDoor hold is shown on line 13 in Figure 9, where an additional expression checks that
the Fridge Freezer In ON TRUE BEEN IN STATE variable has the value sfinal i.e. this
precondition rule has remained true within the past 30 seconds.

24

Figure 9: been-in-state Example

Figure 9 demonstrates how code added to the NuSMV file for a was-in-state constrained
precondition rule. The example first gives the precondition rules for the checkbell behaviour.
Line 1 of the NuSMV code shows the introduction of a new variable which is added to the VAR
section of the main module. The variable name is formed by prepending the name of the variable
whose value is being checked (Fridge Freezer In ON) to the name of the value being checked
(TRUE), then adding the su�x WAS IN STATE.

Values for the was-in-state variable are constructed similarly to those for been-in-state variables
and the initial value s

0

remains the same. The values for was-in-state variables in the next state
di↵er from those of been-in-state variables as follows: In any state where the variable has the value
si, if the precondition holds then in the next state the variable will have the value si+n. If the
variable has the value sfinal then in the next state the variable will reset to the value s

0

.
The macro definition of the expression that is true i↵ the precondition rules of behaviour S1-

checkbell hold is shown on line 13 in Figure 9, where an additional expression checks that the
Doorbell Last Wattage 1 TRUE WAS IN STATE variable does not have the value s

0

i.e.
this precondition rule has been true at some point within the last 10 seconds.

25

Figure 10: was-in-state Example

In both previous examples the number of seconds during which the precondition must have
either remained true, or have evaluated to true at least once, is quite small, resulting in a small
number of possible values for the been-in-state and was-in-state variables. The fixed number of
seconds corresponding to a single state in the model can be set using the -sps command line
option (see Figure 8) and an upper bound on the number of seconds during which a precondition
must have held or held at least once can be given using the -sms command line option. If the
-mos command line switch is enabled then at least once previous state must be considered for
been-in-state and was-in-state constraints, otherwise a constraint of s seconds, where s is less than
half the number of seconds per state, will be ignored.

4.3.5 Non-Deterministic Behaviour Scheduling

In the set of control rules used in both [5] and [18], and during the development of this software,
there were no two (or more) behaviours B

1

and B

2

such that the preconditions of B
1

held i↵ B

2

held, therefore true non-determinism was not needed in the NuSMV input as there would always
be some possible state in which the preconditions of B

1

hold and the preconditions of B
2

did not
hold, and vice versa. It may be the case that some other set of control rules may indeed have two
(or more) behaviours B

1

and B

2

such that the preconditions of B
1

hold i↵ the preconditions of B
2

hold.
The command line switch -tnd allows true non-deterministic behaviour scheduling to be en-

abled. For a set of behaviours B = {B
1

, . . . , Bn} where for any 1 i n and 1 j n,
priority(Bi) = priority(Bj) and for every distinct subset B0 ✓ B, an expression is added to deter-
mine the value of schedule in the next state such that if the preconditions to every behaviour in B0

hold then in the next state schedule will have a value corresponding to some non-deterministically

26

chosen behaviour in B0. These expressions are then added in order such that the subset B0 = B is
considered first, and all singletons are considered last.

The generic procedures vectorPowerSet and filterVectorByCharacteristicVector listed in Sec-
tion 13.5 are used to calculate the power set of all behaviours of equal priority in a set. The
vectorPowerSet procedure generates all possible characteristic vectors for the given set of values.
Each characteristic vector is used by the filterVectorByCharacteristicVector procedure to generate
a subset of these values and then the list of all possible subsets of values, sorted into ascending or
descending order of size, are returned by the vectorPowerSet procedure.

4.3.6 NuSMV Input Testing

Section 12.2.1 lists the NuSMV input generated using the intermediate form shown in Sec-
tion 12.1.4. The command line switch -mod was enabled when constructing the NuSMV input.
Additionally the command line option -ii specified a file containing a set of explicit values to
assign to variables in the initial state of the model. The file consists of a number of lines each of
the form variable name = ”value”.

A number of LTL properties were formulated and tested in the resultant model. Details of
all conducted tests are provided in Section 12.2.2. Many of these test specifications corresponded
directly to the expected properties defined in Section 10.7.

4.4 Software Used
All code was implemented in C++ 11 using the Eclipse CDT 8.5.0 Integrated Develop-

ment Environment for Eclipse Luna, and was compiled using the Cygwin v4.9.0 g++ compiler.
NuSMV v2.5.4 was used to construct models using the generated NuSMV input files and to test
properties in the models.

27

5 Evaluation

5.1 Software Functionality
The software produced as a result of this project was expected to translate a set of Care-O-Bot

control rules into a succinct and adequate intermediate form representation. This intermediate
form should then be translated into input for the model checker NuSMV in which it should be
possible to check Linear Temporal Logic properties. Flags were also anticipated to regulate the
abstraction of temporal aspects of the control rules.

5.1.1 Intermediate Form Translation

Section 12.1 lists the intermediate form and the control rule file, data extraction rule file,
and grammar rule files used in its generation. This intermediate form was checked by hand and
analysed to ensure that it correctly represented the set of control rules from which it was generated.

Variables Lines 4-22 of the intermediate form show the propositional variables identified in the
set of control rules. The variable shown on line 9 was correctly identified as a non-deterministic
variable by grammar rule <pvc3> and its corresponding data extraction rule. Those shown on
lines 5 and 15 were correctly identified as non-deterministic variables by grammar rule pvc2 and
its corresponding data extraction rule. All other propositional variables correspond to internal
flags of the robot and were correctly identified by grammar rules pvc1 and pva1 and their
corresponding data extraction rules.

Lines 26-31 of the intermediate form show the enumerated variables identified in the set of
control rules. Each enumerated variable was identified as expected and had all expected values,
for instance the says variable shown on line 26 has all of the values identified for the variable on
lines 3, 25, 71, 79 and 147, and has an addition none value as the variable as the data extraction
rule eva2 flags the variable as being resetting (see Section 11.9.5.

Behaviours All behaviours were present and each individual precondition rule and action rule
was correctly identified. The rules defined on lines 133-135 of the set of control rules form the S1-
WaitHere behaviour. Lines 269-278 of the intermediate form show the corresponding behaviour
in the intermediate form. The behaviour is correctly identified as being both interruptible and
schedulable, and has the expected priority of 40. The single precondition rule is correctly identified,
checking that the variable ::512::Goal-waitHere is true. The final action in this behaviour in the
intermediate form corresponds directly to that in the control rule file, where the robot should
non deterministically execute one of the S1-Set-Waithere, S1-Set-ReturnHome or S1-Set-Continue
behaviours; this represents the user selecting one of the options shown on the robot’s graphical
user interface. Line 134 of the control rule file describes the second action of the S1-WaitHere
behaviour with this behaviour executes another action, namely the S1-sleep behaviour. As both
behaviours are interruptible the actions of the S1-sleep behavior are substituted into the S1-
WaitHere behaviour, replacing the execute behaviour action, as described in Section 10.5.

Lines 44 and 74 of the intermediate form corresponding to lines 5 and 20 of the set of control
rules show that been-in-state and was-in-state conditions are correctly identified. Lines 282-
294 of the intermediate form show the logical expression tree constructed for the S1-WatchTV
behaviour. Internal AND and OR nodes are represented by && and || respectively. Figure 11
shows the precondition rules with the andOrConnector field highlighted in red. A value of 2
signifies that a precondition should form a disjunction with the next and a value of 0 signifies
that a conjunction should be formed. For simplicity we will refer to the seven preconditions
as p

1

, . . . , p

7

. We would then expect a logical expression tree to be constructed of the form

28

((((((p
1

_ p

2

) _ p

3

) _ p

4

) _ p

5

) ^ p

6

) ^ p

7

). In the implementation the preconditions are in fact
considered in reverse order giving the equivalent expression (p

7

^(p
6

^(p
5

_(p
4

_(p
3

_(p
2

_p
1

)))))).

Figure 11: S1-WatchTV Precondition Rules

The generated intermediate form fully represents all aspects of the behaviours defined in the set
of control rules, albeit in a more succinct, legible form. The questionnaire listed in Section 14 was
completed by a postdoctoral Research Associate who will be using the software for further work
relating to the Trustworthy Robotic Assistants project. The response to question 5 states that
the intermediate form will be very useful for translation from sets of control rules into languages
for other model checkers.
5.1.2 NuSMVInput Translation

Section 12.2 shows the NuSMV file generated from the intermediate form discussed in the
previous section, and demonstrates how properties that were expected to hold in a model produced
as a result of the transformation do indeed hold in this generated model. The following properties
are analogous to those checked in the hand-coded model produced in [5] and for each property
tested the result is identical to that stated in [5].

Property 1 If the fridge door is open and ::514::GOAL fridgeUserAlerted is false then at some
time in the future the Care-O-Bot will be in the living room and at some time after that it will
say the fridge door is open. This is expected to be false as even though the preconditions for the
behaviour S1-alertFridgeDoor hold the preconditions to a behaviour with a higher priority may
hold and this behaviour will instead be scheduled.

Result

Property 2 If the fridge door is open and ::514::GOAL fridgeUserAlerted is false and the S1-
alertFridgeDoor behaviour has been scheduled then at some time in the future the Care-O-Bot
will be in the living room and at some time after that it will say the fridge door is open. This
is expected to be true as the S1-alertFridgeDoor behaviour is interruptible and should therefore
execute all of its actions.

Result

29

Property 3 If the person selects the Care-O-Bot GUI choice ’Goto Kitchen’, then at some time
in the future it will be in the kitchen. This is expected to be false. Selecting this GUI options
sets the internal flag ::505::GOAL-gotoKitchen to be true which is the precondition for the S1-
gotoKitchen behaviour, however the preconditions to a behaviour having a higher priority may
hold or the S1-gotoKitchen behaviour may be interrupted.

Result

Property 4 If the person selects the Care-O-Bot GUI choice ’Goto Kitchen’ and this behaviour
is scheduled, then at some time in the future it will be in the kitchen. This is expected to be false.
Selecting this GUI options sets the internal flag ::505::GOAL-gotoKitchen to be true which is the
precondition for the S1-gotoKitchen behaviour, however again the S1-gotoKitchen behaviour may
be interrupted.

Result

Property 5 If one of the sofa seats is occupied, the television is on, and the goal to watch
television has been false for at least an hour, then at some point in the future the Care-O-Bot will
be at the sofa and at some point after that it will say ’Shall we watch Tv?’. This is expected to be
false as although the preconditions to the S1-watchTV behaviour hold the preconditions to some
other behaviour with a higher priority may hold, or if the S1-watchTV behaviour is scheduled it
may be interrupted before completion.

Result

Property 6 If the raiseTray behaviour is executed then at some point in the future the physical
tray is raised and at some pointer after that the robot’s internal flag indiciating that the tray is
raised should be true. This is expected to be true as the raiseTray behaviour is uninterruptible.

Result

30

Property 7 If the S1-gotoKitchen behaviour is scheduled and the preconditions to the S1-
alertFridgeDoor behaviour hold then in the next moment in time the S1-gotoKitchen behaviour
will not be scheduled. This is expected to be true as the S1-gotoKitchen behaviour is interruptible
and the preconditions to at least one behaviour with a higher priority (namely S1-alertFridgeDoor
hold.

Result

5.1.3 Anticipated Flags

Section 4.3.4 gives details of the -sps , -sms and -mps command line options. These options
can be used to regulate the level of abstraction used to represent temporal aspects of the Care-
O-Bot’s behaviours, allowing larger models to be constructed from generated code when a higher
granularity of abstraction is required.

There was su�cient time during the implementation stage of the project to include additional
functionality, notable the inclusion of the -tnd and -tod command line options which respectively
enable true non-determinism for behaviour scheduling (Section 4.3.5) and set a fixed time of day
(Section 4.3.2).

5.2 Degree of Automation
The project requirements stated that ideally full automation of the translation process would

be realised, however it may be necessary for the user to disambiguate input. Figure 12 shows a
selection of the output generated by the software when translating the set of control rules into the
intermediate form, then into NuSMV input.

During the entire transformation process user input was required only once, where a behaviour
having no preconditions was found in the input. In all other cases small discrepancies in the
naming of variables in the input were automatically regulated and corrected. The answer provided
for question 1 in the completed questionnaire found in Section 14 rates the degree of automation
as 9.5 out of 10 and states that only minimal user input is required during translation.

31

Figure 12: Automation of the Translation Process

5.3 Comparison to Hand-Written Model
In [5] as NuSMV input was constructed by hand and an NuSMVmodel was constructed

using this input. Here a number of comparisons between this model and models generated from
the automated translation process are made.

Firstly, a comparison between the sizes of the models is made. Figure 13 shows the size of the
models respectively generated from the handwritten code produced [5], the code produced from
translating the set of control rules using this software using the default settings, and the code
produced by translating using the -mos command line switch.

32

Figure 13: Comparison of Generated NuSMVModels

Handwritten Code

Generated Code (default settings)

Generated Code (-mos enabled)

The code generated using the default settings resulted in a model that was⇠8x smaller than the
model produced using the handwritten code, and the code generated with -mos enabled resulted
in a model that was ⇠2x the size of the model produced using the handwritten code. States
in an NuSMV model are defined as n-tuple where each element of the tuple corresponds to the
value of some variable in the model. The code generated using the default settings had fewer
variables than the handwritten model, resulting in a smaller model, while the code generated
with -mos enabled had more variables than the handwritten model as additional variables were
introduced to correctly model the been-in-state and was-in-state constraints that were ignored
when generating code using the default abstraction settings. In both instances the handwritten
code resulted in a model that had fewer reachable states than the model resulting from generated
code. This is because the handwritten code uses additional abstraction to model certain aspects
of the Care-O-Bot behaviours.

A number of behaviours of the form S1-Set-. . . are present in the set of control rules. These
behaviours are scheduled for execution by the Care-O-Bot when the occupant of the house selects
an option on its graphical user interface, and when executed set the value of a number of variables
corresponding to the Care-O-Bot’s internal flags. In the handwritten code a variable gui choice
was used to represent the choices made by the occupant of the house. When a choice is made
in the next state all variable assignments shown in the corresponding S1-Set. . . behaviour in the
control rules occur simultaneously In the generated models these behaviours are considered no
di↵erently than other executed behaviours, therefore when a GUI option is chosen the currently
scheduled behaviour executes the corresponding S1-Set-. . . behaviour, which then assigns a value
to each variable in turn before control is returned to the original behaviour.

33

5.4 Flexibility
It was essential that the produced software provided was capable of translating new sets of

control rules, as its primary function is to be used as a tool for further formal verification of new
sets of Care-O-Bot behaviour. A new set of control rules was made available by the University of
Hertfordshire which were used to evaluate the performance of the software when translating new
syntactic forms of control rule.

Examples of new syntactic forms of control rule present in the new set of rules are shown in
Figure 14. For each new form of control rule the corresponding grammar rule and data extraction
rule are also given. It was possible to construct grammar rules and data extraction rules for
every new form of control rule. Although the construction of these rules takes time it takes
considerable less time than would be required to produce NuSMV code corresponding to these
sets of behaviours by hand. The feedback for question 3 in the questionnaire shown in Section 14
states that the software has been able to successfully translate all investigate control rules so far.

Figure 14: The Behaviour Module

Although the software can successfully translate all control rules tested so far it does have
its limitations. It was assumed during the implementation that behaviours executed by non-
determinstic behaviour execution action rules would have no preconditions, as this was always
found to be the case when both sets of control rules were investigated. Any model constructed
from NuSMV code generated for a set of control rules where this is the case would not accurately
represent the Care-O-Bot behaviours.

34

5.5 Conclusion
This project has successfully met all of its aims and objectives. All essential features have

been fully implemented and a number of additional features have also been included. A high
level of automation has been achieved with the user only prompted for input when critical issues
need to be addressed. The software produces models of a reasonable size in which it is feasible to
check LTL properties. It has been shown that all properties that were expected to hold in models
produced as a result of this translation process do indeed hold. Furthermore, the software proves
to be flexible enough to correctly translate a di↵erent set of control rules to those used during the
design and implementation.

The primary purpose of this project was to produce a tool that can be used in further work
conducted as part of the Trustworthy Robotic Assistants project. The completed questionnaire
shown in Section 14 gives details on the future applications of CRutoN. For this project to be
truly deemed a success the software should prove to be an e�cient and powerful tool when used
for further formal verification of the Care-O-Bot.

Further work that could be conducted to extend the functionality of the software could include
additional automatic translations into input for other model checkers.

35

6 Learning Points
My interest in the formalisms and applications of logic was first instilled by logic-based modules

undertaken as part of my Computer Science degree. I chose this project as it would give me the
opportunity to further my knowledge of logic and its applications, and to apply this knowledge to
solve a challenging problem. As I intend to pursue a career in academic research this project also
provided a unique opportunity to be involved in active research work whilst gaining experience of
reading academic papers and developing my technical writing and analytical skills.

During the summer of 2014 I began reading about model checking and its applications. ”Logic
in Computer Science: Modelling and Reasoning about Systems” by Michael Huth and Mark Ryan
[9] and ”Practical Formal Methods Using Temporal Logic” by Michael Fisher [6] provided essential
foundational knowledge of modal logics, linear temporal logics and model checking. Having only
previously studied propositional and first-order logic this initial research was challenging but re-
warding. This foundational knowledge allowed me to develop a good understanding of the problem
background and to comprehend the research papers that related to this project.

I anticipated that the implementation stage would be challenging, and that a lot of code needed
to be produced in order to meet the requirements stated in the specification document. I therefore
decided to spend a significant amount of time designing both the translation into the intermediate
form, and the translation into NuSMV input. The extra work conducted during the design stage
of this project proved to be fruitful. The basic requirements were completed slightly ahead of
schedule allowing more time to implement extra software functionality, reinforcing my belief that
a good design can often lead to an easier implementation.

Having mainly used Java throughout my degree I decided to implement CRutoN using C++
to gain additional experience with this less familiar language. I believe that I have a much better
understanding of this language than before and now feel as confident programming in C++ as I
had in Java. I had never maintained a code base of the size before and as such I had to ensure that
my code was coherent, structured and e�ciently compartmentalised and documented. The insight
I have gained into the management of large collections of code, and its corresponding version
control, will prove to be invaluable in any future projects that I may undertake.

Planning the individual stages of this project was vital to its success. Several deadlines had
to be met throughout the project’s life cycle and it was essential that the project remained on
or ahead of schedule so that there was time to deal with any unexpected delays and setbacks.
I believe that I now have greatly improved my ability to manage my workload and to e�cient
allocate my time to di↵erent tasks.

Undertaking this project reinforced my desire to purse a career in academic research and led to
me applying for postgraduate study relating to formal verification. Over the last year I have greatly
developed my understanding of model checking and temporal logics and how these techniques and
formalisms are used to address real problems, skills that are directly transferrable to my intended
postgraduate research.

36

7 Professional Issues
The British Computer Society (BCS) Code of Conduct and Code of Practice respectively define

expected professional standards and guidelines for the development of software systems.
Section 2a of the Code of Conduct states that work should only be undertaken if it is within

your professional competence, while section 2b states that you should not claim any level of
competence that you do not possess. I adhered to these principles as I believed that I had the
necessary skills required to successfully complete this challenging project. Section 2c state that
professionals should develop their professional knowledge, skills and competence on a continuing
basic. This project has given me the unique opportunity to develop a deeper understanding of
model checking and to develop the skill of applying these techniques to solve real problems. In
accordance with section 2e of the Code of Conduct, which states that alternate viewpoints of
work should be respected and honest criticisms of work should be sought out, I was in regular
contact with the postdoctoral Research Associate who would be using my software. He provided
me with invaluable criticisms and suggestions throughout the final stage of the implementation of
my software.

The Code of Practice states that when research work is being conducted, work produced by
other people and organisations should be investigated, analysed and acknowledged. All sources
used when researching work relevant to this project have been fully cited and acknowledgement
has been given where appropriate. Additionally, the Code of Practice states that all code produced
should be well-structured and should be easy for other programmers to maintain by using mean-
ingful naming conventions and avoiding unnecessarily complex programming techniques. All of
the code produced as a result of this project is well-structured, documented and appropriate vari-
able names have been used throughout to maintain clarity. Technial work should be documented
such that others may take over the work if needed. As the produced software will be indeed be
extended by others, as mentioned in the questionnaire, all code produced has been documented
and this report gives detailed descriptions of how the software was designed and implemented.

Professionals are expected to manage their workload e�ciently and should not commit them-
selves to work that they feel they cannot complete in time. Time management has been an integral
part of this project and only through e↵ective time management has this project been completed
successfully.

While it was important to adhere to all standards given in Code of Conduct some sections
of the Code of Practice were not applicable at all to this project, for instance sections 5.4 and
5.6 of the Code of Practice which respectively give guidelines for designing training courses and
establishing support and maintenance services.

37

8 Bibliography
[1] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model

checker. International Journal on Software Tools for Technology Transfer, 2(4):410–425, 2000.
[2] A. Cimatti, E. D. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,

and A. Tacchella. NuSMV 2: An opensource tool for symbolic model checking. In Com-
puter Aided Verification, volume 2404 of Lecture Notes in Computer Science, pages 359–364.
Springer Berlin Heidelberg, 2002.

[3] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, et al. Introduction to algorithms,

volume 2. MIT press Cambridge, 2001.
[5] C. Dixon, M. Webster, J. Saunders, M. Fisher, and K. Dautenhahn. The fridge door is

open–temporal verification of a robotic assistant’s behaviours. In Advances in Autonomous
Robotics Systems, pages 97–108. Springer, 2014.

[6] M. Fisher. An introduction to practical formal methods using temporal logic. Wiley, 2011.
[7] D. Grune and C. H. Jacobs. Parsing techniques : a practical guide. Springer, 2008.
[8] G. J. Holzmann. The Spin model checker: primer and reference manual. Addison-Wesley,

2004.
[9] M. Huth and M. Ryan. Logic in computer science: modelling and reasoning about systems.

Cambridge University Press, 2004.
[10] ISO. Robots and robotic devices – safety requirements for personal care robots. ISO

13482:2014, International Organization for Standardization, Geneva, Switzerland, 2014.
[11] S. A. Kripke. Semantical considerations on modal logic. In Proceedings of a Colloquium on

Modal and Many-Valued Logics, 1963.
[12] K. L. McMillan. Symbolic model checking. Springer, 1993.
[13] K. L. McMillan. The smv language. Technical report, Cadence Berkeley Labs, 1999.
[14] R. C. Moore. Removing left recursion from context-free grammars. In Proceedings of the 1st

North American chapter of the Association for Computational Linguistics conference, pages
249–255. Association for Computational Linguistics, 2000.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng.
Ros: an open-source robot operating system. In ICRA workshop on open source software,
volume 3, page 5, 2009.

[16] M. Sierhuis and W. J. Clancey. Modeling and simulating work practice: A method for work
systems design. IEEE Intelligent Systems, 17(5):32 – 41, 2002.

[17] M. Szpyrka, A. Biernacka, and J. Biernacki. Methods of Translation of Petri Nets to NuSMV
Language. In Proceedings of the 23rd International Workshop on Concurrency Specification
and Programming (CSP 2014), volume 1269 of CEUR Workshop Proceedings, pages 245–256,
2014.

[18] M. Webster, C. Dixon, M. Fisher, M. Salem, J. Saunders, K. Koay, and K. Dautenhahn.
Formal verification of an autonomous personal robotic assistant. In Formal Verification and
Modeling in Human-Machine Systems, pages 74–79. AAAI, 2014.

38

9 Appendix A - NuSMV
NuSMV[2] is a popular model checker for temporal logic and is a reimplementation and

extension of SMV. SMV is a binary decision diagram based model checker developed at Carnegie
Mellon University [12]. Given a model of a system, and a property to test in the model, NuSMV
exhaustively explores the possible runs of the system to check whether the property remains true.
If it does then the checker returns true and we can say that the model satisfies the property, if
not false will be returned and a counterexample can be generated showing a run of the system
where the property does not remain true.

The model checker accepts as input a finite state transition system defined using the modelling
language SMV [13]. A model can be represented as a tuple M = hS, I,R,Li, where S is a set
of states, I ✓ S is a set of initial states, R ✓ S ⇥ S is a relation that specifies the transitions
between states, and L is a labelling function that maps a state to a set of atomic propositions
that are valid in that state [1]. States in an NuSMV model are defined as an n-tuple where each
element of the tuple corresponds to the value of some variable in the model.

Figure 15: A State Transition System M

M = hS, I,R,Li
S = {s

0

, s

1

, s

2

, s

3

}
I = {s

0

}
R = {(s

0

, s

1

), (s
0

, s

2

), (s
1

, s

3

), (s
2

, s

3

), (s
3

, s

3

)}
L = {s

1

7! {p}, s
2

7! {q}, s
3

7! {p, q}}

Figure 16: An NuSMVModel of M

1. MODULE main
2.
3. VAR
4. state: {s0, s1, s2, s3};
5.
6. ASSIGN
7. init(state):= s0;
8.
9. next(state):=

10. case
11. state = s0: {s1, s2};
12. state = s1: s3;
13. state = s2: s3;
14. state = s3: s3;
15. esac;
16.
17. DEFINE
18. p:= (state = s1 | state = s3);
19. q:= (state = s2 | state = s3);
20.
21. LTLSPEC
22. F(G(p & q));

NuSMV allows the system to be decomposed into modules which can be instantiated multiple
times. Every model has at least one module, the main module, and some number of additional
parameterizable modules. Each model usually consists of two main sections, VAR and ASSIGN.
The VAR section defines variables and instances of modules; variables can be Booleans, symbolic
enumerated types or bounded integer ranges. The ASSIGN section defines the initial states (initial

39

values for the variables) and transitions between the states (assignments of values to variables).
A third section DEFINE can also be included, where macros of the form identifier := expression
can be defined.

Figure 15 shows a simple state transition system M. M has four states, s

0

, s

1

, s

2

and s

3

,
an initial state s

0

, and some transitions between states. States are labelled with the names of
propositions that are true in that state. Beginning with the initial state s

0

a transition can be
made to either s

1

or s
2

, then from here to s

3

, where self-transition occurs.
Figure 16 shows the NuSMVmodel describing this state transition system shown in Figure 15.

This model consists of a single module, the required module main. On line 4 an enumerated
variables state is declared, having a named value for each of the states in M. Line 7 assigns the
initial value s0 to state (s

0

is the initial state in M). Lines 9-15 define the transitions from one
state to another. The statements on lines 11-14 in the case-esac block are of the form logical
expression: value, and are sequentially evaluated in the order that they appear in the code. If
the logical expression evaluates to true then the variable has the given value in the next state, for
instance line 12 says that if state is equal to s1 then in the next state state will be equal to
s3. If the logical expression evaluates to false then the next statement in the case-esac block
is evaluated. Line 11 shows how non-determinism in a system can be modelled; here if state is
equal to s0 then in the next state state will be non-deterministically assigned one of the values
s1 or s2. In the DEFINE section two macros are defined. Line 18 declares a macro p which
evaluates to true if state has the value s1 or s3 (as p 2 L(s

1

) and p 2 L(s
3

)).
Propositional logic operators are represented in NuSMVby: -> (implies), <-> (equivalence),

& (and), | (or) and ! (not). Temporal operators are represented as G (always), F (sometimes),
X (next) and U (until). On line 22 the Linear Temporal Logic property ⌃ (2 (p ^ q)) is given.
The model satisfies the property as in every state there is always some future state (namely s

3

),
where in all future states both p and q hold.

40

10 Appendix B - Semantics of Care-O-Bot Control Rules

10.1 Introduction
The University of Hertfordshire provided a database populated with control rules for the Care-

O-Bot. These rules are grouped together to form behaviours, high level rules which determine
how the robot acts in its environment. There are two types of control rule: precondition rules
and action rules. Precondition rules are propositional statements and action rules correspond to
actual actions performed by the robot, including the setting of variables. Precondition rules are
implemented as SQL queries and action rules are implemented as Robot Operating System [15]
scripts.

A behaviour consists of a sequence of precondition rules linked by boolean operators, and a
sequence of actions rules. A behaviour can be scheduled for execution by the robot if all of the
behaviour’s precondition rules hold. If a behaviour is scheduled for execution then the robot
will execute the sequence of actions for that behaviour. Figure 17 shows the answerDoorBell
behaviour. Rule 0 is a precondition rule and rules 1 and 2 are action rules. For each control rule
in the database there is a field determining if the control rule is a precondition or action. These are
omitted here for simplicity. Rule 0 is a precondition rule requiring the ::515::Goal-AnserDoorBell
flag to be true. When this precondition rule holds, and this behaviour is scheduled for execution,
the robot will sequentially execute action rules 1 and 2, first saying the word ”Doorbell” then
waiting for 5 seconds.

Figure 17: The answerDoorBell behaviour

0 ::515::GOAL-AnserDoorBell is true
1 ::0::Care-O-Bot 3.2 says ’Doorbell’ and wait for completion
2 Wait for 5 seconds on ::0::Care-O-Bot 3.2

10.2 Behaviour Scheduling
Algorithm 1 describes the process by which behaviours are scheduled for execution. An integer

value is associated with each behaviour, the behaviour’s priority. Should the preconditions to two
or more behaviours hold at any moment in time, the behaviour having the highest priority will be
scheduled for execution next.

Each behaviour is flagged as being either interruptible or non-interruptible, and either schedu-
lable or non-schedulable. The sequence of actions executed by an interruptible behaviour bi can
be interrupted by another behaviour bj if the priority of bj is greater than the priority of bi and the
preconditions of bj hold. Behaviours flagged as non-schedulable cannot be scheduled for execution.
Non-schedulable behaviours are instead executed directly by actions in other behaviours.

41

Algorithm 1 Care-O-bot behaviour scheduling.
1: procedure BehaviourScheduling
2: let B be a set of behaviours
3: scheduled = none
4: while true do
5: S {b 2 B : preconditions hold(b) and schedulable(b)}
6: if (scheduled = none or scheduled has no other action to perform) and S 6= ; then
7: scheduled = b 2 S s.t. priority(b) = max{priority(s) : s 2 S}
8: else if 9b 2 S.(priority(b) > priority(scheduled)) and interruptible(scheduled) then
9: scheduled = b

10: end if
11: if scheduled has another action to perform then
12: perform the next action in scheduled
13: else
14: scheduled = none
15: end if
16: end while
17: end procedure

10.3 Precondition Rules
Each robot behaviour has a possibly empty sequence of precondition rules (propositional state-

ments) linked by boolean AND and OR operators; this sequence must evaluate to true for the
behaviour to be scheduled. If the set of precondition rules for a behaviour is empty then the
sequence of precondition rules is automatically satisfied.

Each propositional statement checks the state of the robot or the state of the environment
in which the robot operates. Precondition rules may be su�xed with an additional constraint
requiring the condition to have evaluated to true throughout a previous period of time, or requiring
the condition to have evaluated to true at least once within a previous period of time.

Figure 18 shows some examples of precondition rules taken directly from The University of
Hertfordshire database.

Figure 18: Examples of Precondition Rules

1. Living room sofa seat 1 is occupied

This precondition rule is satisfied if a sensor in the Robot House is indicating that the
occupier is sitting in one of the seats in the living room.

2. ::503:: 5PM-MedicineReminder is true AND has been in this state
for more than 60 seconds

This precondition rule is satisfied if the internal flag ::503::5PM-MedicineReminder is true,
and has been true throughout the last 60 seconds. Intuitively when this rule is satisfied this
indicates that the robot believes that it is time to remind the occupier to take their medicine.

42

10.4 Action Rules
Each robot behaviour has a non-empty sequence of action rules where each action rule corre-

sponds to an actual action performed by the robot. When the precondition rules of a behaviour
are satisfied, and that behaviour is scheduled for execution, the first action in the sequence of
actions for that behaviour is performed. Upon completion of the action the subsequent action (if
any) in the sequence is performed and so forth, until either there are no more actions to perform
or the behaviour is interrupted by another behaviour.

Figure 19 shows some examples of action rules taken directly from The University of Hertford-
shire database.

Figure 19: Examples of Action Rules

1. Turn light on ::0::Care-O-Bot 3.2 to yellow

The Care-O-Bot is equipped with a light which can display a number of di↵erent colours.
This action changes the colour of this light to yellow.

2. Execute sequence ’lowerTray’ on ::0::Care-O-Bot 3.2

This action directly executes the behaviour ’lowerTray’. If the preconditions to the lower-
Tray behaviour hold then control passes to this behaviour then returns when the executed
behaviour terminates.

10.5 Nested Behaviour Executions
A behaviour B

1

may pass control to another behaviour B

2

as the result of performing a
behaviour execution action. When B

2

has performed all of its actions control returns to B

1

. In
many instances this execution of another behaviour is in fact a macro expansion where the action
rules of the executed behaviour are substituted for the behaviour execution rule in the original
behaviour. As a behaviour may execute a second behaviour, which may in turn execute another
behaviour and so forth, this process of macro expansion is applied iteratively to each behaviour
until no more behaviour execution rules in a behaviour can be expanded.

If B
1

is flagged as being uninterruptible then the action rules of B
2

are substituted into B

1

,
replacing the behaviour execution action in B

1

’s sequence of action rules. If both B

1

and B

2

are
flagged as being interruptible then again the action rules of B

2

are substituted into B

1

. If B
1

is
flagged as being interruptible, and B

2

is flagged as being non-interruptible then no substitutions
are performed and control will instead pass to behaviour B

2

.
It is worth nothing that as a result of this substitution process that for any remaining behaviour

execution rules where a behaviour B
1

executes another behaviour B
2

it is always the case that B
2

is an uninterruptible behaviour.

10.6 Definitions
Let a Care-O-bot behaviour be a pair Bi = hprecon i,Aii where precon i is a proposition that

is true i↵ the preconditions of Bi hold, and Ai = (A1

i , . . . , A
ni
i) is an ordered sequence of action

rules where each action is executed sequentially should precon i hold and Bi be scheduled for
execution. Each action rule Aj

i , 1 j ni is either a propositional value assignment, enumeration
value assignment, behaviour execution, non-deterministic behaviour execution or a delay. Let
pre(Bi) = precon i, actionk(Bi) = A

k
i , and num actions(Bi) = |Ai|. Given a set of n behaviours

S = {B
1

, . . . , Bn} define the following:

43

1. Let priority : S ! N
0

be a unary function that maps a behaviour Bi 2 S to some p 2 N
0

,
where p is the priority of Bi.

2. Let interruptible(Bi) be a unary predicate which is true at all times i↵ Bi is flagged as being
interruptible.

3. Let schedulable(Bi) be a unary predicate which is true at all times i↵ Bi is flagged as being
schedulable.

4. Let isExecution(A) be a unary predicate which is true at all times i↵ the action A executes
another behaviour, as described in Section 10.5.

5. For every Bi 2 S define scheduled i to be a proposition that is true i↵ behaviour Bi has been
scheduled for execution and is executing one of its actions.

6. Define stepk to be a proposition that is true if there is some behaviour Bi 2 S such that
scheduled i holds and Bi is executing actionk(Bi).

7. Define scheduled noneS to be a proposition that is true i↵ (¬scheduled
1

^ . . .^¬scheduledn)
holds.

8. Define interrupted next i to be a proposition that is true if

(scheduled i ^ interruptible(Bi) ^ 9Bj 2 S.(pre(Bj) ^ schedulable(Bj)
^ (priority(Bj) > priority(Bi))))

holds.

9. Define is final action i to be a proposition that is true i↵ scheduled i holds and Bi is exe-
cuting action actionk(Bi) where k = num actions(Bi).

10.7 Linear Temporal Logic Properties
Given a set of n behaviours S = {B

1

, . . . , Bn}, and using the definitions from Section 10.6, the
following LTL properties would be expected to hold in any NuSMVmodel produced for a set of
behaviours.

1. Only one action can be executed by the robot at any point in time:

2(stepi) (8j, 1 j n.(j 6= i) ¬stepj))

2. Only one behaviour can be scheduled by the robot at any point in time:

2(scheduled i) (8j, 1 j n.(j 6= i) ¬scheduled j))

3. If no behaviour is scheduled, and the preconditions to one or more schedulable behaviours
hold, then in the next moment in time the schedulable behaviour with the highest priority
will be executing its first action:

2((scheduled noneS ^ 9j.(pre(Bj) ^ schedulable(Bj) ^ 8k 6= j.((pre(Bk) ^
schedulable(Bk))) (priority(Bk) priority(Bj)))))) #(scheduled)j ^ step

1

))

44

4. If a behaviour Bi is interruptible, and the preconditions to one or more schedulable be-
haviours in S with a higher priority hold, then in the next moment in time the schedulable
behaviour having the highest priority of all these behaviours will interrupt Bi and will be
executing its first action:

2((scheduledi ^ interruptible(Bi) ^ 9j 6= i.(pre(Bj) ^ schedulable(Bj) ^
(priority(Bj) > priority(Bi)) ^ 8k 6= j.((pre(Bk) ^ schedulable(Bk))) (priority(Bk)
priority(Bj))))) #(scheduled j ^ step

1

))

5. If a behaviour Bi is scheduled and is executing its k

th action, this action does not execute
another behaviour (see Section 10.5) and is not the final action for Bi, and in the next
moment in time behaviour Bi will not be interrupted by another behaviour, then in the next
moment in time behaviour Bi will be executing its (k + 1)th action:

2((scheduledi ^ stepk ^ ¬isExecution(actionk(Bi)) ^
¬is final action i ^ ¬interrupted next i)) #(stepk+1

))

6. If a behaviour Bi is scheduled and is executing its kth action, this action executes another
behaviour Bj whose preconditions hold, and in the next moment in time behaviour Bi will
not be interrupted by another behaviour, then in the next moment in time behaviour Bj

will be scheduled and will be executing its first action:

2((scheduledi ^ stepk ^ isExecution(actionk(Bi)) ^ pre(Bj) ^ ¬interrupted next i)
) #(scheduled j ^ step

1

))

7. If a behaviour Bi is scheduled and is executing its kth action, this action executes another
behaviour Bj whose preconditions hold, this action is not the final action for Bi, and in the
next moment in time behaviour Bi will not be interrupted by another behaviour, then in the
next moment in time behaviour Bj will be scheduled and will be executing its first action,
and at some time after that behaviour Bi will again be scheduled and will be performing its
(k + 1)th action.

2((scheduledi ^ stepk ^ isExecution(actionk(Bi)) ^ pre(Bj) ^ isf inalaction i

^ ¬interrupted next i)) #(scheduled j ^ step
1

^ ⌃(scheduled i ^ stepk+1

)))

8. If a schedulable behaviour Bi is executing its final action, this action does not execute another
behaviour and the preconditions to no other behaviour hold then in the next moment in time
no behaviour will be executing.

2((scheduledi ^ is final actioni ^ ¬isExecution(action
num actions(Bi)(Bi)) ^

schedulable(Bi) ^ 8j 6= i.¬pre(Bj))) #(scheduled noneS))

9. When an uninterruptible behaviour Bi has been scheduled it is expected to execute all of its
actions.

2((scheduled i ^ ¬interruptible(Bi) ^ stepi)) ⌃(scheduled i ^ step
num actions(Bi)

))

45

11 Appendix C - Additional Design Documentation

11.1 Identified Precondition Rule Features
The following features of precondition rules were identified:

• Propositional Value Check

The value of a propositional variable is compared to a given truth value.

Example: ::502:: 5PM-MedicineDue is false

• Been in State

A su�x applied to preconditions stating that the precondition must also have held for more
than n seconds.

Example: has been in this state for more than 60 seconds

• Was in State

A su�x applied to preconditions stating that the precondition must also have held at some
point within the last n seconds.

Example: was in this state within the last 10 seconds

• Relational Comparison

Compares the value of an integer variable to an integer value.

Example: Television Wattage>10

• Location Check

Checks the location of the Care-O-bot .

Example: ::0::Care-O-Bot 3.2 location is ::7:: Kitchen Entrance
in the Dining Room

• Time Between

A time constraint stating that the current time must within a given range.

Example: Time is between 00:00:00 and 16:59:00

• Time After

A time constraint stating that the current time must be at or after a given time.

Example: Time is on or after 17:00:00

• Seat Sensor Check

Determines if a (numbered) sofa seat in the Robot House is occupied.

Example: Living room sofa seat 1 is occupied

46

11.2 Precondition Rules Grouped by Features
Propositional Value Check

::512:: GOAL-waitHere is true
::502:: 5PM-MedicineDue is false
::500:: TrayIsRaised is true
::504:: TrayIsEmpty is true
::506:: GOAL-gotoCharger is true
::502:: 5PM-MedicineDue is true
::501:: TrayIsLowered is true
::509:: GOAL-waitAtKitchen is true
::508:: GOAL-gotoSofa is true
::511:: GOAL-waitAtTable is true
::510:: GOAL-waitAtSofa is true
::507:: GOAL-gotoTable is true
::513:: GOAL-watchTV is true
::515:: GOAL-AnswerDoorBell is true
::505:: GOAL-gotoKitchen is true
::514:: GOAL-fridgeUserAlerted is false

Propositional Value Check, Been in State

::503:: 5PM-MedicineReminder is true AND has been in this state for more
than 60 seconds
::513:: GOAL-watchTV is false AND has been in this state for more than
3600 seconds
::515:: GOAL-AnswerDoorBell is true AND has been in this state for more
than 10 seconds

Propositional Value Check 2, Been in State

Fridge Freezer Is *ON* AND has been in this state for more than 30 seconds

Relational Comparison, Was in State

Doorbell Last Wattage > 1 AND was in this state within the last 10 seconds

Relational Comparison

Television Wattage > 10

Location Check

::0::Care-O-Bot 3.2 location is ::7:: Kitchen Entrance in the Dining Room
::0::Care-O-Bot 3.2 location is ::14:: Living Room Sofa Area in the Living
Room
::0::Care-O-Bot 3.2 location is ::23:: Living Room Table in the Living
Room Sofa Area of the Living Room

Time Between

Time is between 00:00:00 and 16:59:00
2The second identified form of a propositional value check

47

Time After

Time is on or after 17:00:00

Seat Sensor Check

Living room sofa seat 1 is occupied
Living room sofa seat 2 is occupied
Living room sofa seat 3 is occupied
Living room sofa seat 4 is occupied
Living room sofa seat 5 is occupied

11.3 Categorization of Precondition Rules
Propositional Value Checks The following distinct forms of propositional value checks were
identified:

1. ::502:: 5PM-MedicineDue is false

2. Fridge Freezer Is *ON*

3. Television Wattage > 10

Form 1 consists of a propositional variable name and a truth value, and form 2 consists of a
proposition variable name and a value *ON* or *OFF*. Form 3, a relational comparison, has been
identified as a propositional variable check. The comparison references some variable external to
the Care-O-bot and as such could be toggled non-deterministically in any produced model.

Enumeration Value Checks The following distinct forms of enumeration value checks were
identified:

1. ::0::Care-O-Bot 3.2 location is ::14:: Living Room Sofa Area in
the Living Room

2. Living room sofa seat 1 is occupied

In form 1 the location of the robot is checked and in form 2 the occupancy of a numbered seat is
tested. As the robot can only be in one location at once, and as the robot’s environment is designed
to accommodate only a single person (who can sit on only one seat at a time), enumerations
adequately represent the semantics of these statements.

Time Constraints The following distinct form of time constraint were identified:

1. Time is on or after 17:00:00

2. Time is between 00:00:00 and 16:59:00

Form 1 sets a lower bound on the current time, and form 2 sets both a lower and upper bound
on the current time. As the behaviour database is periodically updated with new control rules it
is assumed that a similar rule might eventually be defined which only imposes an upper bound on
the current time.

48

11.4 Identified Action Rule Features
The following features of action rules were identified:

• Propositional Value Assignment

A truth value is assigned to a given propositional variable.

Example: SET ::506::GOAL-gotoCharger TO false

• Turn on Light

The light on the Care-O-bot is set to the given colour.

Example: Turn light on ::0::Care-O-Bot 3.2 to yellow

• Say Something

The robot speaks a phrase to the occupier of the house.

Example: ::0::Care-O-Bot 3.2 says ’Doorbell’ and wait
for completion

• Wait

Tells the robot to wait for n seconds.

Example: Wait for 1 seconds on ::0::Care-O-Bot 3.2

• Move to Location

Moves the robot from its current location to the given location.

Example: move ::0::Care-O-Bot 3.2 to ::999:: Current user
Location

• Change Tray Position

Changes the position of the robot’s tray.

Example: move tray on ::0::Care-O-Bot 3.2 to Raised

• Set GUI Options

Displays a given list of selectable options to be displayed on the robot’s graphical user
interface.

Example: ::0::Care-O-Bot 3.2 GUI,S1-Set-ReturnHome,S1-Set-Continue

• Execute Behaviour

Executes the given behaviour on the robot.

Example: Execute sequence ’S1-sleep’ on ::0::Care-O-Bot 3.2

• Move Robot Torso

Changes the position of the torso of the robot.

Example: move torso on ::0::Care-O-Bot 3.2 to the right

• Wait for Completion

A su�x applied to actions to indicate that the robot should wait for the action to complete
before continuing.

Example: and wait for completion

49

11.5 Action Rules Grouped by Features
Propositional Value Assignment

SET ::506::GOAL-gotoCharger TO false
SET ::506::GOAL-gotoCharger TO false
SET ::508::GOAL-gotoSofa TO true
SET ::507::GOAL-gotoTable TO false
SET ::505::GOAL-gotoKitchen TO true
SET ::512::GOAL-waitHere TO false
SET ::509::GOAL-waitAtKitchen TO true
SET ::511::GOAL-waitAtTable TO false
SET ::510::GOAL-waitAtSofa TO true
SET ::513::GOAL-watchTV TO true
SET ::500::TrayIsRaised TO false
SET ::501::TrayIsLowered TO true
SET ::504::TrayIsEmpty TO true
SET ::502::5PM-MedicineDue TO true
SET ::503::5PM-MedicineReminder TO false
SET ::514::GOAL-fridgeUserAlerted TO false
SET ::515::GOAL-AnserDoorBell TO false

Turn on Light

Turn light on ::0::Care-O-Bot 3.2 to white
Turn light on ::0::Care-O-Bot 3.2 to yellow

Turn on Light, Wait for Completion

Turn light on ::0::Care-O-Bot 3.2 to white and wait for completion
Turn light on ::0::Care-O-Bot 3.2 to yellow and wait for completion

Say Something, Wait for Completion

::0::Care-O-Bot 3.2 says ’Shall we watch TV together?’ and wait for
completion
::0::Care-O-Bot 3.2 says ’Have you taken your medicine’ and wait for
completion
::0::Care-O-Bot 3.2 says ’Its time for your medicine’ and wait for
completion
::0::Care-O-Bot 3.2 says ’Doorbell’ and wait for completion
::0::Care-O-Bot 3.2 says ’The fridge door is open!’ and wait for
completion

Wait

Wait for 5 seconds on ::0::Care-O-Bot 3.2
Wait for 1 seconds on ::0::Care-O-Bot 3.2

Move to Location

move ::0::Care-O-Bot 3.2 to ::31:: TV location in the Living Room
move ::0::Care-O-Bot 3.2 to ::999:: Current user Location

50

Move to Location, Wait for Completion

move ::0::Care-O-Bot 3.2 to ::14:: Living Room Sofa Area in the Living
Room and wait for completion
move ::0::Care-O-Bot 3.2 to ::7:: Kitchen Entrance in the Dining Room
and wait for completion
move ::0::Care-O-Bot 3.2 to ::5:: ChargingStation Area in the Dining Room
and wait for completion
move ::0::Care-O-Bot 3.2 to ::2:: Living Room and wait for completion
move ::0::Care-O-Bot 3.2 to ::23:: Living Room Table in the Living Room
Sofa Area of the Living Room and wait for completion

Change Tray Position, Wait for Completion

move tray on ::0::Care-O-Bot 3.2 to Lowered and wait for completion
move tray on ::0::Care-O-Bot 3.2 to Raised and wait for completion

Set GUI Options

::0::Care-O-Bot 3.2 GUI,S1-Set-GoToKitchen,S1-Set-ReturnHome,
S1-Set-WaitHere
::0::Care-O-Bot 3.2 GUI,S1-Set-WaitHere,S1-Set-ReturnHome,S1-Set-Continue
::0::Care-O-Bot 3.2 GUI,S1-set-gotoSofa,S1-set-gotoTable,S1-Set-Continue,
S1-Set-WaitHere
::0::Care-O-Bot 3.2 GUI,S1-Set-ReturnHome,S1-Set-WaitHere,S1-Set-Continue
::0::Care-O-Bot 3.2 GUI,S1-Set-GoToKitchen,S1-Set-WaitHere
::0::Care-O-Bot 3.2 GUI,S1-Set-ReturnHome,S1-Set-Continue
::0::Care-O-Bot 3.2 GUI,S1-Set-Watch-TV,S1-Set-ReturnHome,S1-Set-Continue

Execute Behaviour

Execute sequence ’lowerTray’ on ::0::Care-O-Bot 3.2
Execute sequence ’S1-sleep’ on ::0::Care-O-Bot 3.2
Execute sequence ’raiseTray’ on ::0::Care-O-Bot 3.2
Execute sequence ’T-moveTo-person’ on ::0::Care-O-Bot 3.2

Move Robot Torso, Wait for Completion

move torso on ::0::Care-O-Bot 3.2 to the right and wait for completion
move torso on ::0::Care-O-Bot 3.2 to the back position and wait for
completion

11.6 Categorization of Precondition Rules
Propositional Value Assignment The following form of propositional value checks was iden-
tified:

1. SET ::506::GOAL-gotoCharger TO false

A truth value is assigned to a given propositional variable.

51

Enumeration Value Assignment The following distinct forms of enumeration value assign-
ments were identified:

1. Turn light on ::0::Care-O-Bot 3.2 to white

2. ::0::Care-O-Bot 3.2 says ’The fridge door is open!’

3. move ::0::Care-O-Bot 3.2 to ::31:: TV location in the Living Room

4. move tray on ::0::Care-O-Bot 3.2 to Lowered

5. move torso on ::0::Care-O-Bot 3.2 to the right

Form 1 sets the state of the light on the Care-O-bot , form 2 states that the robot should
vocalize a statement, form 3 tells the robot to move to a given location, form 4 changes the
position of the robot’s tray and form 5 moves the torso of the robot to a given position. All of
these forms can be adequately represented using an enumerated type for the following reasons:
the robot has a single light which can be at most one colour at a time, only one statement can be
vocalized at any time, the robot can only move to one location at any time, the tray can only be
in one position at any time, and the robot’s torso can only be moved to one new position at any
time.

Non-Deterministic Behaviour Executions The following form of non-deterministic behaviour
execution was identified:

1. ::0::Care-O-Bot 3.2 GUI,S1-Set-WaitHere,S1-Set-ReturnHome,
S1-Set-Continue

Here a list of behaviours represent the choices that are displayed on the robot’s GUI. In any
constructed model the behaviour to be executed will be assigned non-deterministically as the house
occupant may chose any of the options.

Behaviour Executions The following form of behaviour executions was identified:

1. Execute sequence ’S1-sleep’ on ::0::Care-O-Bot 3.2

Here control is transferred from one behaviour to another, and then returned upon completion
of the executed behaviour.

Delays The following form of delays was identified:

1. Wait for 5 seconds on ::0::Care-O-Bot 3.2

The robot is told to wait for a given number of seconds.

52

11.7 Predefined Non-Terminal Symbols
These predefined symbols are included in the grammar decribed in Section 3.2.3:

• hintegeri
Accepts any integer as input.

• hfloati
Accepts any real floating-point number as input.

• hrelational operatori
Accepts any of >, <, =, ==, >= and <= as input.

• htimei
Accepts as input any valid time in one of the formats HH:MM:SS, HH:MM, or HH.

• hany texti
This symbol accepts any token of text as valid input.

11.8 Grammar Rules
Figures 20 and 21 show the grammar rules used to respectively parse the precondition rule and

action rules extracted from the University of Hertfordshire database.

Figure 20: Backus-Naur Form Definitions for Preconditions

hpvc1 i ::= +hany texti ’is’ hany texti
hpvc2 i ::= +hany texti hrelational operatori hintegeri
hpvc3 i ::= +hany texti ’IN’ hany texti
hevc1 i ::= ’::0::Care-O-Bot’ ’3.2’ ’location’ ’is’ +hany texti
hevc2 i ::= ’Living’ ’room’ ’sofa’ ’seat’ hintegeri ’is’ ’occupied’
htc1 i ::= ’Time’ ’is’ ’on’ ’or’ ’after’ htimei
htc2 i ::= ’Time’ ’is’ ’between’ htimei ’and’ htimei

53

Figure 21: Backus-Naur Form Definitions for Actions

hpva1 i ::= ’SET’ +hany texti ’TO’ hany texti
heva1 i ::= ’Turn’ ’light’ ’on’ ’::0::Care-O-Bot’ ’3.2’ ’to’ hany texti
heva2 i ::= ’::0::Care-O-Bot’ ’3.2’ ’says’ +hany texti
heva3 i ::= ’move’ ’::0::Care-O-Bot’ ’3.2’ ’to’ +hany texti
heva4 i ::= ’move’ ’tray’ ’on’ ’::0::Care-O-Bot’ ’3.2’ ’to’ hany texti
heva5 i ::= ’move’ ’torso’ ’on’ ’::0::Care-O-Bot’ ’3.2’ ’to’ +hany texti
hebnd1 i ::= ’::0::Care-O-Bot’ ’3.2’ ’GUI’ +hany texti
hexb1 i ::= ’Execute’ ’sequence’ hany texti ’on’ ’::0::Care-O-Bot’ ’3.2’

hd1 i ::= ’Wait’ ’for’ hintegeri ’seconds’ ’on’ ’::0::Care-O-Bot’ ’3.2’

11.9 Data Extraction Rules
Eight di↵erent formats of data extraction rule are given here, one for each of the three types

of precondition rule and one for each of the five types of action rule.

11.9.1 Propositional Value Check Data Extraction Rule

Format
rule name; prop name = identifier ; truth value = identifier ; true = string ; false = string ;

non deterministic = boolean.

Variable Definitions

1. prop name: a name for the propositional variable

2. truth value: the symbol denoting the truth value

3. true: a string denoting the representation of true for the rule.

4. false: a string denoting the representation of false for the rule.

5. non deterministic: this is set to true if this propositional variable represents the state of
something external to the robot. Setting this to true implies that the truth value and
definitions for true and false should be set to null.

Examples

1. Grammar Rule
hpvc1 i ::= +hany texti ’is’ hany texti
Data Extraction Rule
pvc1; prop name = [1]; truth value = [3]; true = ”true”; false = ”false”; non deterministic
= false.

For rule pvc1 we have the propositional variable name as the first symbol in the rule defini-
tion, the truth value as the third symbol, true as ”true”, false as ”false” and non-determinism
set to false.

54

2. Grammar Rule
hpvc2 i ::= +hany textihrelational operatorihintegeri
Data Extraction Rule
pvc2; prop name = [1, 2, 3]; truth value = null; true = null; false = null; non deterministic
= true;

For rule pvc2 we have the propositional variable name as the concatenation of symbols 1, 2
and 3, the truth value as null, true as null, false as null, and non-determinism set to true.

11.9.2 Enumeration Value Check Data Extraction Rule
Format
rule name; enum name = identifier ; enum value = identifier ; has none value = boolean;

non deterministic = boolean;

Variable Definitions

1. enum name: a name for the enumerated type

2. enum value: a name for the enumeration value

3. has none value: set to true if an extra value none should be added to the list of possible
values for the enumerated type.

4. non deterministic: this is set to true if this enumerated variable represents the state of
something external to the robot.

Examples

1. Grammar Rule
hevc1 i ::= ’::0::Care-O-Bot’ ’3.2’ ’location’ ’is’ +hany texti
Data Extraction Rule
evc1; enum name = [3]; enum value = [5]; has none value = false; non deterministic =
false;

For rule evc1 we have the enumeration name as ’location’ and the enumeration value as any
number of hany texti symbols. The enumerated variable should have no additional value
and does not represents the state of something external to the robot.

2. Grammar Rule
hevc2 i ::= ’Living’ ’room’ ’sofa’ ’seat’ hintegeri ’is’ ’occupied’
Data Extraction Rule
evc2; enum name = [4, 7]; enum value = [5]; has none value = true; non deterministic
= true;

For rule evc2 we have the enumeration name as the concatenation of the ’seat’ and ’occupied’,
and the enumeration value as the symbol hintegeri. This enumerated variable does represent
the state of something external to the robot and additional possible value, none, as no living
room sofa seats may be occupied.

11.9.3 Time Constraint Data Extraction Rule
Format
rule name; start time = identifier ; end time = identifier .

55

Variable Definitions

1. start time: the start time.

2. end time: the end time.

Examples

1. Grammar Rule
htc1 i ::= ’Time’ ’is’ ’on’ ’or’ ’after’ htimei
Data Extraction Rule
tc1; start time = [6]; end time = null.

For rule tc1 we have the start time as the symbol htimei, and a null value for end time. This
would imply that we are checking to see if the time is after a certain point.

2. Grammar Rule
htc2 i ::= ’Time’ ’is’ ’between’ htimei ’and’ htimei.
Data Extraction Rule
tc2; start time = [4]; end time = [6].

For rule t2 we have the start time as the htimei symbol at position 4, and the end time as
the htimei symbol at position 6. This would imply that we are checking to see if the time is
within a given range.

If a rule is defined as having an end time but no start time this would imply that we are checking
to see if the time is before a certain point.

11.9.4 Propositional Value Assignment Data Extraction Rule

Format
rule name; prop name = identifier ; truth value = identifier ; true = string ; false = string ;

Variable Definitions

1. prop name: the name of the propositional variable

2. truth value: the symbol denoting the truth value

3. true: a string denoting the representation of true for the rule.

4. false: a string denoting the representation of false for the rule.

Examples

1. Grammar Rule
hpva1 i ::= ’SET’ +hany texti ’TO’ hany texti
Data Extraction Rule
pva1; prop name = [2]; truth value = [4]; true = ”true”; false = ”false”.

For rules pva1 we have the propositional variable name as the second symbol in the rule
definition (any number of hany texti symbols which will be concatenated with underscores),
the truth value as the fourth symbol, true as ”true” and false as ”false”.

56

11.9.5 Enumeration Value Assignment Data Extraction Rule

Format
rule name; enum name = identifier ; enum value = identifier ; resets = boolean.

Variable Definitions

1. enum name: the name of the enumerated type

2. enum value: the name of the enumeration value

3. resets: this is set to true if whenever the value of the enumeration is set to any value, it
should then reset back to an additional none value in the next state. For instance if in the
next state the robot says ”Hello!”, then in the following state the robot should not be saying
”Hello!”, unless of course this is intentional.

Examples

1. Grammar Rule
heva1 i ::= ’Turn’ ’light’ ’on’ ’::0::Care-O-Bot’ ’3.2’ ’to’ hany texti
Data Extraction Rule
eva1; enum name = [2]; enum value = [7]; resets = false.

For rule eva1 we have the enumeration name as ’light’ and the enumeration value as the
seventh symbol, hany texti.

2. Grammar Rule
heva3 i ::= ’move’ ’::0::Care-O-Bot’ ’3.2’ ’to’ +hany texti
Data Extraction Rule
eva3; enum name = ”location”; enum value = [5]; resets = false.

For rule eva3 we have the enumeration name as the given string ”location”, and the enu-
meration value as the fifth symbol (any number of hany texti symbols).

11.9.6 Non-Deterministic Behaviour Execution Data Extraction Rule

Format
rule name; behaviour values = identifier ; split character = string

Variable Definitions

1. behaviour values: the list of behaviours.

2. split character: the string by used to split the list of behaviours into separate behaviours.

Examples

1. Grammar Rule
hebnd1 i ::= ’::0::Care-O-Bot’ ’3.2’ ’GUI’ +hany texti
Data Extraction Rule
evand1; behaviour values = [4]; split character = ’,’.

For rule ebnd1 we have the list of behaviours as symbol 4 (any number of hany texti
symbols), and the separating character as ’,’.

57

11.9.7 Behaviour Execution Data Extraction Rule

Format
rule name; behaviour name = identifier ;

Variable Definitions

1. behaviour name: the name of the behaviour to be executed

Examples

1. Grammar Rule
hexb1 i ::= ’Execute’ ’sequence’ hany texti ’on’ ’::0::Care-O-Bot’ ’3.2’

Data Extraction Rule
exb1; behaviour name = [3].

For rule exb1 we have the behaviour name as the third symbol, hany texti.

11.9.8 Delay Data Extraction Rule

Format
rule name; seconds = identifier ;

Variable Definitions

1. seconds: the number of seconds to delay

Examples

1. Grammar Rule
hd1 i ::= ’Wait’ ’for’ hintegeri ’seconds’ ’on’ ’::0::Care-O-Bot’ ’3.2’

Data Extraction Rule
d1; seconds = [3].

For rule d1 we have the number of seconds as the third symbol, hintegeri.

58

11.10 NuSMVVariable Assignments
The following section gives full definitions of how values will be assigned to each of the step,

schedule and last schedule variables. Given a set of intermediate form beaviours B:

step

The initial value for step is always set to step none as no behaviour is scheduled in the
initial state of the model.

The value for step in the next state is determined by the following ordered sequence of
expressions. First the expression:

a behaviour can be scheduled: step 1

states that if the macro a behaviour can be scheduled evaluates to true, then in the next
state step has the value step 1. Intuitively, a behaviour can be scheduled evaluates to true
if in the next state a behaviour can be scheduled for execution, either because no behaviour
can be scheduled or because a behaviour can interrupt the currently scheduled behaviour.

For each behaviour b 2 B that has a behaviour execution action or non-deterministic be-
haviour execution action as its nth action an expression of the form:

(b N.is executing & step = step n): step 1

is added, where N is the name of b and n is the index of the executing action in the list
of actions. The macro b N.is executing evaluates to true if b is currently scheduled for
execution, therefore the expression intuitively means that if b is scheduled and is performing
its n

th action, then in the next state step will have the value step 1 as control will have
been passed to some executed behaviour b0 6= b 2 B which will then be performing its first
action.

For each pair of behaviours b, b0 2 B where b

0 is executed by b, an expression of the form:

(b N’.is last step & last schedule = schedule N): step n

is added, where N is the name of b, N’ is the name of b0 and n is the index of some action in
b, where the (n � 1)th action in b executed the behaviour b0. The macro b N’.is last step
evaluates to true if b0 is performing its final action. This expression intuitively means that
if the executed behaviour b0 is performing its last action then in the next state control will
have passed back to the executing behaviour b which will then be performing its next action.

The expressions:

a behaviour is ending: step none

and

an executed behaviour is ending as a last action: step none

are then added. The macro a behaviour is ending evaluates to true if the scheduled be-
haviour is performing its last action and in the next moment of time no other behaviour
is scheduled. The macro an executed behaviour is ending as a last action evaluates to
true if some behaviour b0 2 B executed by some other behaviour b 2 B is performing its last
action, and b has no more actions to perform. In either case in the next state no behaviour
is scheduled so the value of step is set to step none.

59

As stated in Section 3.3.1 step has values step none plus valus step 1,. . . ,step k, where
k = max{numberOfActions(b) | b 2 B}. For each 2 i k an expression is added of the
form:

step = step (i - 1): step i;

then finally an expression of the form:

step = step i: step none;.

These expressions increment the current step until the last step is reached.

schedule

The initial value for schedule is always set to schedule none as no behaviour is scheduled in
the initial state of the model.

The value for schedule in the next state is determined by the following ordered sequence of
expressions. For every schedulable behaviour b 2 B an expression of the form:

b N.can be executed: schedule N

is added, where N is the name of b. The macro b N.can be executed evaluates to true
if b can be scheduled in the next state as either no behaviour is currently scheduled or b

can interrupt the currently scheduled behaviour. These expressions are ordered such that
the first expression corresponds to the schedulable behaviour with the highest priority and
the last expression corresponds to the schedulable behaviour with the lowest priority. This
ensures that if two or more candidate behaviours can be scheduled for execution in the next
moment in time then the behaviour having the highest priority of all candidate behaviours
will be scheduled.

For every behaviour b 2 B if the n

th action of b is a non-deterministic behaviour execution
action then an expression of the form:

(b N.is executing & step = step n): {value list}
is added, where N is the name of b and value list is the comma separated list of all
behaviours that can be non-deterministically selected for execution by the n

th action of b.

For every behaviour b 2 B if the n

th action of b is a non-deterministic behaviour execution
action then an expression of the form:

(b N.is executing & step = step n): {value list}
is added, where N is the name of b and value list is the comma separated list of all
behaviours that can be non-deterministically selected for execution by the n

th action of b.

For every behaviour b 2 B if the n

th action of b is a behaviour execution action then an
expression of the form:

(b N.is executing & step = step n
& b N’.preconditions hold): schedule N’

is added, where N is the name of b and N’ is the name of b0. The macro
b N’.preconditions hold evaluates to true if the precondition rules for b hold. Intuitively this
statement means that when b executes b0 in the next state b0 is scheduled i↵ the precondition
rules for b0 hold.

60

Finally the expressions shown in Figure 22 are added. Lines 1, 2 and 4 reset schedule to
schedule none if no behaviour will be scheduled in the next moment in time. Line 3 sets
the value of schedule to the value of last schedule if some executed behaviour b 2 B is
ending, returning control to the behaviour that executed b. Line 6 ensures that if none of
the previous expressions evaluate to true then schedule keeps its value in the next moment
in time.

Figure 22: schedule Assignments

1. a behaviour is ending: schedule none;
2. an executed behaviour is ending as a last action: schedule none;
3. an executed behaviour is ending & last schedule != schedule):

last schedule;
4. an executed behaviour is ending: schedule none;
5.
6. TRUE: schedule;

last schedule

The initial value for last schedule is always set to schedule none as no behaviour has been
scheduled in the initial state of the model.

The expressions shown in Figure 23 determine the value of last schedule in the next moment
in time. The expression on line 5 assigns the value of schedule to last schedule in the next
moment in time, ’remembering’ what behaviour was scheduled in the previous state. Lines
3 and 4 force last schedule to retain its value in any state where some behaviour is being
executed in this moment in time by the current behaviour and will be scheduled in the next
moment in time, or if some executed behaviour is already scheduled. This ensures that when
a behaviour is executed the executing behaviour is remembered.

Figure 23: last schedule Assignments

1. next(last schedule):=
2. case
3. executed behaviour execute next: last schedule;
4. an executed behaviour is executing: last schedule;
5. TRUE: schedule;
6. esac;

61

11.11 Main Module Macro Definitions
These macros are used to succinctly express more complex logical expressions, increasing the

readability of the code, decreasing the size of the code, and allowing properties checked in the
model to be expressive yet easy to formulate.

Preconditions Given a set of intermediate form behaviours B, for each behaviour b 2 B a macro
is added of the form:

pre N:= expression

where N is the name of b and expression is a logical expression that evaluates to true i↵ the
precondition rules for b hold at some moment in time. If a behaviour b has no preconditions then
a macro of the form:

pre N:= TRUE

is added instead, as the preconditions of b will always hold. Figure 24 shows the logical expression
tree for the lowerTray behaviour. The corresponding macro for this behaviour is:

pre lowerTray:= (504 TrayIsEmpty & 500 TrayIsRaised

Explicit value checks of the form variable = value are omitted for propositional variable checks,
instead using variable for variable = true and !variable for variable = false. Expressions corre-
sponding to time constraints are of the form:

time = t
1

| . . . | tn

where each ti corresponds to a period of time during which the precondition rule holds.

Figure 24: Logical expression tree for the lowerTray behaviour

p1: ::500::TrayIsRaised is true
p2: ::504::TrayIsEmpty is true

Interrupts Given a set of intermediate form behaviours B, and a set of behaviour priorities
P = {priority(b) | b 2 B and schedulable(b)}, for every p 2 P a macro of the form:

can interrupt p

is defined; intuitively each macro evaluates to true if any behaviour b 2 B with priority(b) = p

could interrupt any currently scheduled behaviour, as long as its preconditions hold. Initially a
macro is defined for p = min(P) of the form:

62

can interrupt p:= FALSE

For any schedulable behaviour b 2 B with priority(b) = min(P) it will never be the case that b can
interrupt any other behaviour in B. Then, given an ordered list of all priority values p

1

, . . . , pn 2 P ,
where p

1

is the lowest priority, for every pi with 2 i n a macro is defined of the form:

can interrupt pi:= (can interrupt pi�1 | expression)

where expression is a (possibly empty) disjunction of the form:

(schedule = schedule N1 | . . . | schedule = schedule Nk)

where each Nj with 1 j k, is the name of some interruptible behaviour bj 2 B with
priority(bj) = pi�1

.

Behaviour Scheduling Macros Six additional macros that relate to the scheduling of be-
haviours are defined here. Given a set of intermediate form behaviours B:

• The executed behaviour execute next macro evaluates to true i↵ in the next moment in
time some behaviour in B will be executed by the currently scheduled behaviour in B. The
macro is of the form:

executed behaviour execute next:= expression

where expression is a (possibly empty) disjunction of expressions of the form E

1

| . . . | En

and each E

1in is an expression of the form:

(!b N.can be interrupted & b N.is executing & step = step k)

where N is the name of some behaviour b 2 B that has a behaviour execution action or
non-deterministic behaviour execution action as its kth action. An expression is included for
every distinct behaviour execution action in every behaviour in B. The (negated) macro
!b N.can be interrupted evaluates to true if the behaviour having the name N cannot be
interrupted by some other behaviour in the next moment in time.

• The a behaviour can be scheduled macro evaluates to true i↵ in the next moment in time
some behaviour in B can be scheduled for execution. The macro is of the form:

a behaviour can be scheduled:= expression

where expression is a disjunction of expressions of the form E

1

| . . . | En and each E

1in

is an expression of the form:

b N.can be scheduled

where N is the name of some schedulable behaviour b 2 B. An expression is included for
every distinct schedulable behaviour in B. The macro b N.can be scheduled evaluates to
true if the behaviour having the name N can be scheduled for execution in the next moment
in time.

• The a behaviour is ending macro evaluates to true i↵ some schedulable behaviour in B is
performing its final action. The macro is of the form:

a behaviour is ending:= expression

where expression is a disjunction of expressions of the form E

1

| . . . | En and each E

1in

is an expression of the form:

b N.is last step

63

where N is the name of some schedulable behaviour b 2 B. An expression is included for
every distinct schedulable behaviour in B.

• The an executed behaviour is ending as a last action macro evaluates to true i↵ some
some behaviour b 2 B, executed by another behaviour b0 2 B, is performing its last action,
and b

0 executed b as its final action. The macro is of the form:

an executed behaviour is ending as a last action:=
expression

where expression is a disjunction of expressions of the form E

1

| . . . | En and each E

1in

is an expression of the form:

(b N1.is last step & last schedule = schedule N2)

where N1 is the name of some executed behaviour b
1

2 B and N2 is the name of the behaviour
b

2

2 B that executed b

1

. An expression is included for every distinct pair of behaviours
where one behaviour executes the other as a final action.

• The an executed behaviour is ending macro evaluates to true i↵ some non-schedulable
behaviour in B is performing its final action. The macro is of the form:

an executed behaviour is ending:= expression

where expression is a disjunction of expressions of the form E

1

| . . . | En and each E

1in

is an expression of the form:

b N.is last step

where N is the name of some non-schedulable behaviour b 2 B. An expression is included
for every distinct non-schedulable behaviour in B.

• The an executed behaviour is scheduled macro evaluates to true i↵ some non-schedulable
behaviour in B is currently scheduled. The macro is of the form:

an executed behaviour is scheduled:= expression

where expression is a disjunction of expressions of the form E

1

| . . . | En and each E

1in

is an expression of the form:

b N.is scheduled

where N is the name of some non-schedulable behaviour b 2 B. The macro b N.is scheduled
evaluates to true if the behaviour having the name N is currently scheduled. An expression
is included for every distinct non-schedulable behaviour in B.

64

11.12 The Behaviour Module
The parameterizable behaviour module, shown in Figure 25, is instantiated once for each be-

haviour in the set of intermediate form behaviours B, and consists of a number of macro definitions.
This purpose of this module is simply to provide macro definitions for individual behaviours. These
macro definitions can then be used to easily construct otherwise complex expressions that are used
both to define the state of variables in the ASSIGN section of the main module, and to formulate
properties to test in the model.

For each behaviour b 2 B a statement is added to the VAR section of the main module of the
form:

b N: behaviour(parameter list)

where N is the name of b and parameter list is a comma separated list of values passed as
parameters to the module.

Figure 25: The Behaviour Module

1. MODULE behaviour(preconditions, can interrupt, can be int, schedule,
this schedule, step, last step)

2.
3. DEFINE
4. preconditions hold:= preconditions;
5. can be scheduled:= ((schedule = schedule none | can interrupt)

& preconditions hold);
6. can be interrupted:= can be int;
7. is last step:= (is scheduled & step = last step);
8. is scheduled:= (schedule = this schedule);

Parameters For an instance of the behaviour module corresponding to a behaviour b 2 B the
following values are passed as parameters:

• preconditions

The macro definition pre N, corresponding to the expression that evaluates to true i↵ the
preconditions of b hold, where N is the name of b.

• can interrupt

If b is schedulable:

The macro definition can interrupt n, corresponding to the expression that evaluates
to true i↵ b can interrupt a currently scheduled behaviour, where n is the priority of b.

If b is not schedulable:

FALSE

• can be int

If b is interruptible:

A disjunction E

1

| . . . | En where each E

1in is an expression of the form:

65

b N.can be scheduled

where N is the name of some b0 2 B with priority(b0) > priority(b). An expression is included
for every distinct behaviour in B having a higher priority than b.

If b is not interruptible:

FALSE

• schedule

A direct reference to the schedule variable defined in the main module.

• this schedule

A value for the enumerated variable schedule:

schedule N

where N is the name of b.

• step

A direct reference to the step variable defined in the main module.

• last step

A value for the enumerated variable step:

step k

where k is the number of actions in b.

Macro Definitions For an instance of the behaviour module corresponding to a behaviour
b 2 B the following macros are defined:

• preconditions hold

This macro evaluates to true i↵ the value passed as the parameter for precondition holds.

• can be executed

This macro evaluates to true i↵ the preconditions of b hold, and either no behaviour is
currently scheduled or b can interrupt some scheduled behaviour.

• can be interrupted

This macro evaluates to true i↵ the value passed as the parameter for can be int holds.

• is last step

This macro evaluates to true i↵ b is scheduled and the value of step is equal to step k.

• is scheduled

This macro evaluates to true i↵ the value of schedule is equal to this schedule.

66

11.13 Pseudocode for Key Parsing Methods
Algorithm 2 shows the procedure for parsing the file containing the grammar rules for each

rule. After opening the file a set of non-terminal symbols N is created and any ’built-in’ non-
terminal symbol definitions are added to N . For each line of input in the file the name of the
non-terminal symbol is read, the next token ’::-’ is then skipped, then a new NonTerminalSymbol
is created. The next token on the line is then read, and is checked to see if it is prefixed with
’+’ or an integer. If it is then the number of repetitions of valid input required for the resultant
automaton is set to either 0 for ’+’, or the number itself if the prefix is an integer. If the token is
a terminal symbol (in quotation marks) then a new TerminalSymbol is created and added to the
end of the list of automata for the new NonTerminalSymbol. If the token is a non-terminal symbol
then we know that this has been previously defined; as previously stated in Section 3.2.3, if a non-
terminal symbol appears in the right side of a rule then it must have been previously defined. The
non-terminal symbol is then refactored if necessary and added to the new NonTerminalSymbol.

Algorithm 2 Parses a file containing the grammatical forms of rules.
1: procedure ParseGrammarRules(F)
2: open(F)
3: N predefined nonterminal symbols
4: while hasInput(F) do
5: L getNextLine(F)
6: non t getNextToken(L)
7: getNextToken(L)
8: new new NonTerminalSymbol
9: while hasNextToken(L) do

10: t getNextToken(L)
11: p getSymbolPrefix(t)
12: if p = ” + ” then
13: repeat 0
14: else if isInteger(p) then
15: repeat parseInteger(p)
16: else
17: repeat 1
18: end if
19: if isTerminalSymbol(t) then
20: terminal newTerminalSymbol(getText(t), repeat)
21: addAutomaton(new , terminal)
22: else
23: non terminal getNonTerminalByName(N , getText(t))
24: addAutomaton(new , copyAutomaton(non terminal , repeat))
25: end if
26: end while
27: N N [{new}
28: end while
29: close(F)
30: returnN
31: end procedure

67

The copyAutomaton procedure takes as input a non-terminal symbol and a value, repeat and
returns a copy of the given automaton with the new value for repeat

Once a line has been fully parsed the new NonTerminalSymbol is added to N . Finally, the file
is closed and the set of non-terminal symbols is returned.

Algorithm 3 Parses a file containing a set of control rules.
1: procedure ParseControlRules(F)
2: open(F)
3: B ;
4: while hasInput(F) do
5: L getNextLine(F)
6: behaviour name getNextToken(L)
7: rule order getNextToken(L)
8: rule type getNextToken(L)
9: if rule type = ”R” then

10: if existsBehaviourWithName(B, behaviour name) then
11: b getBehaviourByName(B, behaviour name)
12: addPrecondition(b, parsePrecondition(L))
13: else
14: new newBehaviour(behaviour name)
15: addPrecondition(new , parsePrecondition(L))
16: B B [{new}
17: end if
18: else
19: if existsBehaviourWithName(B, behaviour name) then
20: b getBehaviourByName(B, behaviour name)
21: addAction(b, parseAction(L))
22: else
23: new newBehaviour(behaviour name)
24: addAction(new , parseAction(L))
25: B B [{new}
26: end if
27: end if
28: end while
29: close(F)
30: end procedure

Algorithm 3 describes the procedure for parsing a file containing a set of control rules. After
opening the file an empty set of behaviours B is created. Then for each line of input the name
of the behaviour, the rule order and the rule type is read. If the rule is a precondition then the
rest of the line is parsed as a precondition, and then either added to an existing behaviour having
the parsed name, or a new behaviour is created, the precondition is added, then the behaviour is
added to B. The process is similar for actions, where the rest of the line is instead parsed as an
action. The addPrecondition and addAction methods will correctly insert each precondition and
action into the corresponding lists in the behaviour according to the parsed rule order.

68

12 Appendix D - Test Results

12.1 Intermediate Form Translation Results
12.1.1 Control Rule File

1 name priority interruptable schedulable ruleOrder ruleType
andOrConnector notConnector ruleActionText

2 answerDoorBell 70 0 1 0 R 0 0 ::515:: GOAL-AnserDoorBell is true
3 answerDoorBell 70 0 1 1 A 0 0 ::0::Care-O-Bot 3.2 says ’Doorbell’ and

wait for completion
4 answerDoorBell 70 0 1 2 A 0 0 Wait for 5 seconds on ::0::Care-O-Bot 3.2
5 checkBell 80 0 1 1 R 0 0 Doorbell Last Wattage > 1 AND was in this state

within the last 10 seconds
6 checkBell 80 0 1 2 A 0 0 SET ::515::GOAL-AnserDoorBell TO true
7 lowerTray 0 0 0 9 R 0 0 ::500:: TrayIsRaised is true
8 lowerTray 0 0 0 10 R 0 0 ::504:: TrayIsEmpty is true
9 lowerTray 0 0 0 11 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to yellow
10 lowerTray 0 0 0 12 A 0 0 move tray on ::0::Care-O-Bot 3.2 to Lowered and

wait for completion
11 lowerTray 0 0 0 13 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to white and

wait for completion
12 lowerTray 0 0 0 14 A 0 0 SET ::500::TrayIsRaised TO false
13 lowerTray 0 0 0 15 A 0 0 SET ::501::TrayIsLowered TO true
14 raiseTray 0 0 0 13 R 0 0 ::501:: TrayIsLowered is true
15 raiseTray 0 0 0 14 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to yellow
16 raiseTray 0 0 0 15 A 0 0 move tray on ::0::Care-O-Bot 3.2 to Raised and

wait for completion
17 raiseTray 0 0 0 16 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to white and

wait for completion
18 raiseTray 0 0 0 17 A 0 0 SET ::500::TrayIsRaised TO true
19 raiseTray 0 0 0 18 A 0 0 SET ::501::TrayIsLowered TO false
20 S1-alertFridgeDoor 60 0 1 27 R 0 0 Fridge Freezer In *ON* AND has been

in this state for more than 30 seconds
21 S1-alertFridgeDoor 60 0 1 31 R 0 0 ::514:: GOAL-fridgeUserAlerted is

false
22 S1-alertFridgeDoor 60 0 1 32 A 0 0 Turn light on ::0::Care-O-Bot 3.2

to yellow
23 S1-alertFridgeDoor 60 0 1 34 A 0 0 move ::0::Care-O-Bot 3.2 to ::2::

Living Room and wait for completion
24 S1-alertFridgeDoor 60 0 1 35 A 0 0 Turn light on ::0::Care-O-Bot 3.2

to white and wait for completion
25 S1-alertFridgeDoor 60 0 1 36 A 0 0 ::0::Care-O-Bot 3.2 says ’The

fridge door is open!’ and wait for completion
26 S1-alertFridgeDoor 60 0 1 37 A 0 0 SET ::506::GOAL-gotoCharger TO

false
27 S1-alertFridgeDoor 60 0 1 38 A 0 0 SET ::507::GOAL-gotoTable TO false
28 S1-alertFridgeDoor 60 0 1 39 A 0 0 SET ::508::GOAL-gotoSofa TO false
29 S1-alertFridgeDoor 60 0 1 40 A 0 0 ::0::Care-O-Bot 3.2

GUI,S1-Set-GoToKitchen,S1-Set-WaitHere
30 S1-alertFridgeDoor 60 0 1 41 A 0 0 SET ::514::GOAL-fridgeUserAlerted

TO true
31 S1-continueWatchTV 35 1 1 11 R 0 0 ::513:: GOAL-watchTV is true
32 S1-continueWatchTV 35 1 1 12 R 0 0 Television Wattage > 10
33 S1-continueWatchTV 35 1 1 13 A 0 0 Turn light on ::0::Care-O-Bot 3.2

to yellow

69

34 S1-continueWatchTV 35 1 1 21 A 0 0 Execute sequence ’lowerTray’ on
::0::Care-O-Bot 3.2

35 S1-continueWatchTV 35 1 1 22 A 0 0 move ::0::Care-O-Bot 3.2 to ::31::
TV location in the Living Room

36 S1-continueWatchTV 35 1 1 23 A 0 0 Turn light on ::0::Care-O-Bot 3.2
to white

37 S1-continueWatchTV 35 1 1 24 A 0 0 move torso on ::0::Care-O-Bot 3.2
to the right and wait for completion

38 S1-continueWatchTV 35 1 1 25 A 0 0 move torso on ::0::Care-O-Bot 3.2
to the back position and wait for completion

39 S1-continueWatchTV 35 1 1 26 A 0 0 ::0::Care-O-Bot 3.2
GUI,S1-Set-ReturnHome,S1-Set-Continue

40 S1-goToKitchen 40 1 1 31 R 0 0 ::505:: GOAL-gotoKitchen is true
41 S1-goToKitchen 40 1 1 32 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to

yellow
42 S1-goToKitchen 40 1 1 43 A 0 0 Execute sequence ’lowerTray’ on

::0::Care-O-Bot 3.2
43 S1-goToKitchen 40 1 1 44 A 0 0 move ::0::Care-O-Bot 3.2 to ::7::

Kitchen Entrance in the Dining Room and wait for completion
44 S1-goToKitchen 40 1 1 45 A 0 0 Execute sequence ’raiseTray’ on

::0::Care-O-Bot 3.2
45 S1-goToKitchen 40 1 1 46 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to

white
46 S1-goToKitchen 40 1 1 47 A 0 0 SET ::505::GOAL-gotoKitchen TO false
47 S1-goToKitchen 40 1 1 48 A 0 0 SET ::509::GOAL-waitAtKitchen TO true
48 S1-gotoSofa 40 1 1 12 R 0 0 ::508:: GOAL-gotoSofa is true
49 S1-gotoSofa 40 1 1 13 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to yellow
50 S1-gotoSofa 40 1 1 14 A 0 0 Execute sequence ’lowerTray’ on

::0::Care-O-Bot 3.2
51 S1-gotoSofa 40 1 1 15 A 0 0 move ::0::Care-O-Bot 3.2 to ::14:: Living

Room Sofa Area in the Living Room and wait for completion
52 S1-gotoSofa 40 1 1 16 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to white

and wait for completion
53 S1-gotoSofa 40 1 1 17 A 0 0 SET ::508::GOAL-gotoSofa TO false
54 S1-gotoSofa 40 1 1 18 A 0 0 SET ::510::GOAL-waitAtSofa TO true
55 S1-gotoTable 40 1 1 8 R 0 0 ::507:: GOAL-gotoTable is true
56 S1-gotoTable 40 1 1 9 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to yellow
57 S1-gotoTable 40 1 1 10 A 0 0 Execute sequence ’lowerTray’ on

::0::Care-O-Bot 3.2
58 S1-gotoTable 40 1 1 11 A 0 0 move ::0::Care-O-Bot 3.2 to ::23:: Living

Room Table in the Living Room Sofa Area of the Living Room and wait
for completion

59 S1-gotoTable 40 1 1 12 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to
white and wait for completion

60 S1-gotoTable 40 1 1 13 A 0 0 SET ::507::GOAL-gotoTable TO false
61 S1-gotoTable 40 1 1 14 A 0 0 SET ::511::GOAL-waitAtTable TO true
62 S1-kitchenAwaitCmd 40 1 1 14 R 0 0 ::0::Care-O-Bot 3.2 location is

::7:: Kitchen Entrance in the Dining Room
63 S1-kitchenAwaitCmd 40 1 1 15 R 0 0 ::509:: GOAL-waitAtKitchen is true
64 S1-kitchenAwaitCmd 40 1 1 16 A 0 0 ::0::Care-O-Bot 3.2

GUI,S1-set-gotoSofa,S1-set-gotoTable,S1-Set-Continue,S1-Set-WaitHere
65 S1-kitchenAwaitCmd 40 1 1 17 A 0 0 SET ::509::GOAL-waitAtKitchen TO

false
66 S1-Med-5PM 50 1 0 42 R 0 0 Time is on or after 17:00:00
67 S1-Med-5PM 50 1 0 43 R 0 0 ::502:: 5PM-MedicineDue is true
68 S1-Med-5PM 50 1 0 44 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to yellow

70

69 S1-Med-5PM 50 1 0 45 A 0 0 move ::0::Care-O-Bot 3.2 to ::14:: Living
Room Sofa Area in the Living Room and wait for completion

70 S1-Med-5PM 50 1 0 46 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to white
and wait for completion

71 S1-Med-5PM 50 1 0 47 A 0 0 ::0::Care-O-Bot 3.2 says ’Its time for your
medicine’ and wait for completion

72 S1-Med-5PM 50 1 0 48 A 0 0 ::0::Care-O-Bot 3.2
GUI,S1-Set-GoToKitchen,S1-Set-ReturnHome,S1-Set-WaitHere

73 S1-Med-5PM 50 1 0 49 A 0 0 SET ::502::5PM-MedicineDue TO false
74 S1-Med-5PM 50 1 0 50 A 0 0 SET ::503::5PM-MedicineReminder TO true
75 S1-Med-5PM-Remind 50 1 1 11 R 0 0 ::503:: 5PM-MedicineReminder is true

AND has been in this state for more than 60 seconds
76 S1-Med-5PM-Remind 50 1 1 12 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to

yellow
77 S1-Med-5PM-Remind 50 1 1 13 A 0 0 move ::0::Care-O-Bot 3.2 to ::14::

Living Room Sofa Area in the Living Room and wait for completion
78 S1-Med-5PM-Remind 50 1 1 14 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to

white and wait for completion
79 S1-Med-5PM-Remind 50 1 1 15 A 0 0 ::0::Care-O-Bot 3.2 says ’Have you

taken your medicine’ and wait for completion
80 S1-Med-5PM-Remind 50 1 1 16 A 0 0 SET ::503::5PM-MedicineReminder TO

false
81 S1-Med-5PM-Reset 90 0 1 7 R 0 0 Time is between 00:00:00 and 16:59:00
82 S1-Med-5PM-Reset 90 0 1 10 R 0 0 ::502:: 5PM-MedicineDue is false
83 S1-Med-5PM-Reset 90 0 1 11 A 0 0 SET ::502::5PM-MedicineDue TO true
84 S1-Med-5PM-Reset 90 0 1 12 A 0 0 SET ::503::5PM-MedicineReminder TO

false
85 S1-remindFridgeDoor 80 0 1 0 R 0 0 ::514:: GOAL-fridgeUserAlerted is

true AND has been in this state for more than 300 seconds
86 S1-remindFridgeDoor 80 0 1 1 A 0 0 SET ::514::GOAL-fridgeUserAlerted TO

false
87 S1-ResetAllGoals 0 0 0 19 A 0 0 SET ::500::TrayIsRaised TO false
88 S1-ResetAllGoals 0 0 0 20 A 0 0 SET ::501::TrayIsLowered TO true
89 S1-ResetAllGoals 0 0 0 21 A 0 0 SET ::502::5PM-MedicineDue TO true
90 S1-ResetAllGoals 0 0 0 22 A 0 0 SET ::503::5PM-MedicineReminder TO

false
91 S1-ResetAllGoals 0 0 0 23 A 0 0 SET ::504::TrayIsEmpty TO true
92 S1-ResetAllGoals 0 0 0 24 A 0 0 SET ::505::GOAL-gotoKitchen TO false
93 S1-ResetAllGoals 0 0 0 25 A 0 0 SET ::506::GOAL-gotoCharger TO false
94 S1-ResetAllGoals 0 0 0 26 A 0 0 SET ::507::GOAL-gotoTable TO false
95 S1-ResetAllGoals 0 0 0 27 A 0 0 SET ::508::GOAL-gotoSofa TO false
96 S1-ResetAllGoals 0 0 0 28 A 0 0 SET ::509::GOAL-waitAtKitchen TO false
97 S1-ResetAllGoals 0 0 0 29 A 0 0 SET ::510::GOAL-waitAtSofa TO false
98 S1-ResetAllGoals 0 0 0 30 A 0 0 SET ::511::GOAL-waitAtTable TO false
99 S1-ResetAllGoals 0 0 0 31 A 0 0 SET ::512::GOAL-waitHere TO false

100 S1-ResetAllGoals 0 0 0 32 A 0 0 SET ::513::GOAL-watchTV TO false
101 S1-ResetAllGoals 0 0 0 33 A 0 0 SET ::514::GOAL-fridgeUserAlerted TO

false
102 S1-ReturnHome 40 1 1 15 R 0 0 ::506:: GOAL-gotoCharger is true
103 S1-ReturnHome 40 1 1 16 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to

yellow
104 S1-ReturnHome 40 1 1 17 A 0 0 Execute sequence ’lowerTray’ on

::0::Care-O-Bot 3.2
105 S1-ReturnHome 40 1 1 18 A 0 0 move ::0::Care-O-Bot 3.2 to ::5::

ChargingStation Area in the Dining Room and wait for completion
106 S1-ReturnHome 40 1 1 19 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to

71

white and wait for completion
107 S1-ReturnHome 40 1 1 20 A 0 0 SET ::506::GOAL-gotoCharger TO false
108 S1-Set-Continue 0 0 0 1 A 0 0 SET ::512::GOAL-waitHere TO false
109 S1-Set-Continue 0 0 0 2 A 0 0 SET ::513::GOAL-watchTV TO false
110 S1-Set-GoToKitchen 0 0 0 3 A 0 0 SET ::505::GOAL-gotoKitchen TO true
111 S1-Set-GoToKitchen 0 0 0 4 A 0 0 SET ::512::GOAL-waitHere TO false
112 S1-Set-GoToSofa 0 0 0 2 A 0 0 SET ::508::GOAL-gotoSofa TO true
113 S1-Set-GoToTable 0 0 0 2 A 0 0 SET ::507::GOAL-gotoTable TO true
114 S1-Set-ReturnHome 0 0 0 6 A 0 0 SET ::506::GOAL-gotoCharger TO true
115 S1-Set-ReturnHome 0 0 0 7 A 0 0 SET ::512::GOAL-waitHere TO false
116 S1-Set-ReturnHome 0 0 0 8 A 0 0 SET ::513::GOAL-watchTV TO false
117 S1-Set-WaitHere 0 0 0 1 A 0 0 SET ::512::GOAL-waitHere TO true
118 S1-Set-Watch-TV 0 0 0 2 A 0 0 SET ::513::GOAL-watchTV TO true
119 S1-Set-Watch-TV 0 0 0 3 A 0 0 SET ::512::GOAL-waitHere TO false
120 S1-sleep 10 1 1 0 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to white
121 S1-sleep 10 1 1 5 A 0 0 Wait for 1 seconds on ::0::Care-O-Bot 3.2
122 S1-sleep 10 1 1 6 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to yellow
123 S1-sleep 10 1 1 7 A 0 0 Wait for 1 seconds on ::0::Care-O-Bot 3.2
124 S1-sleep 10 1 1 8 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to white
125 S1-sofaAwaitCmd 40 1 1 15 R 0 0 ::0::Care-O-Bot 3.2 location is ::14::

Living Room Sofa Area in the Living Room
126 S1-sofaAwaitCmd 40 1 1 16 R 0 0 ::510:: GOAL-waitAtSofa is true
127 S1-sofaAwaitCmd 40 1 1 17 A 0 0 ::0::Care-O-Bot 3.2

GUI,S1-Set-ReturnHome,S1-Set-WaitHere,S1-Set-Continue
128 S1-sofaAwaitCmd 40 1 1 18 A 0 0 SET ::510::GOAL-waitAtSofa TO false
129 S1-tableAwaitCmd 40 1 1 8 R 0 0 ::0::Care-O-Bot 3.2 location is ::23::

Living Room Table in the Living Room Sofa Area of the Living Room
130 S1-tableAwaitCmd 40 1 1 9 R 0 0 ::511:: GOAL-waitAtTable is true
131 S1-tableAwaitCmd 40 1 1 10 A 0 0 ::0::Care-O-Bot 3.2

GUI,S1-Set-ReturnHome,S1-Set-WaitHere,S1-Set-Continue
132 S1-tableAwaitCmd 40 1 1 11 A 0 0 SET ::511::GOAL-waitAtTable TO false
133 S1-WaitHere 40 1 1 14 R 0 0 ::512:: GOAL-waitHere is true
134 S1-WaitHere 40 1 1 15 A 0 0 Execute sequence ’S1-sleep’ on

::0::Care-O-Bot 3.2
135 S1-WaitHere 40 1 1 16 A 0 0 ::0::Care-O-Bot 3.2

GUI,S1-Set-WaitHere,S1-Set-ReturnHome,S1-Set-Continue
136 S1-watchTV 30 1 1 32 R 2 0 Living room sofa seat 1 is occupied
137 S1-watchTV 30 1 1 33 R 2 0 Living room sofa seat 2 is occupied
138 S1-watchTV 30 1 1 34 R 2 0 Living room sofa seat 3 is occupied
139 S1-watchTV 30 1 1 35 R 2 0 Living room sofa seat 4 is occupied
140 S1-watchTV 30 1 1 36 R 0 0 Living room sofa seat 5 is occupied
141 S1-watchTV 30 1 1 37 R 0 0 Television Wattage > 10
142 S1-watchTV 30 1 1 44 R 0 0 ::513:: GOAL-watchTV is false AND has been

in this state for more than 3600 seconds
143 S1-watchTV 30 1 1 45 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to yellow
144 S1-watchTV 30 1 1 47 A 0 0 Execute sequence ’lowerTray’ on

::0::Care-O-Bot 3.2
145 S1-watchTV 30 1 1 48 A 0 0 move ::0::Care-O-Bot 3.2 to ::14:: Living

Room Sofa Area in the Living Room and wait for completion
146 S1-watchTV 30 1 1 49 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to white
147 S1-watchTV 30 1 1 50 A 0 0 ::0::Care-O-Bot 3.2 says ’Shall we watch TV

together?’ and wait for completion
148 S1-watchTV 30 1 1 51 A 0 0 SET ::513::GOAL-watchTV TO true
149 S1-watchTV 30 1 1 52 A 0 0 ::0::Care-O-Bot 3.2

GUI,S1-Set-Watch-TV,S1-Set-ReturnHome,S1-Set-Continue
150 T-medicine 0 0 0 0 R 0 0 Time is on or after 17:00:00

72

151 T-medicine 0 0 0 1 A 0 0 Execute sequence ’T-moveTo-person’ on
::0::Care-O-Bot 3.2

152 T-moveTo-person 0 0 0 0 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to
yellow and wait for completion

153 T-moveTo-person 0 0 0 1 A 0 0 move ::0::Care-O-Bot 3.2 to ::999:: Current
user Location

154 T-moveTo-person 0 0 0 2 A 0 0 Turn light on ::0::Care-O-Bot 3.2 to white
and wait for completion

155 unCheckBell 80 0 1 0 R 0 0 ::515:: GOAL-AnserDoorBell is true AND has
been in this state for more than 10 seconds

156 unCheckBell 80 0 1 1 A 0 0 SET ::515::GOAL-AnserDoorBell TO false

12.1.2 Grammar Rule File

1 <pvc1> ::= +<any_text> ’is’ <any_text>
2 <pvc2> ::= +<any_text> <relational_operator> <integer>
3 <pvc3> ::= +<any_text> ’In’ <any_text>
4 <evc1> ::= ’::0::Care-O-Bot’ ’3.2’ ’location’ ’is’ +<any_text>
5 <evc2> ::= ’Living’ ’room’ ’sofa’ ’seat’ <integer> ’is’ ’occupied’
6 <tc1> ::= ’Time’ ’is’ ’on’ ’or’ ’after’ <time>
7 <tc2> ::= ’Time’ ’is’ ’between’ <time> ’and’ <time>
8 <sns1> ::= ’has’ ’been’ ’in’ ’this’ ’state’ ’for’ ’more’ ’than’ <integer>

’seconds’
9 <sns2> ::= ’was’ ’in’ ’this’ ’state’ ’within’ ’the’ ’last’ <integer>

’seconds’
10 <pva1> ::= ’SET’ +<any_text> ’TO’ <any_text>
11 <eva1> ::= ’Turn’ ’light’ ’on’ ’::0::Care-O-Bot’ ’3.2’ ’to’ <any_text>
12 <eva2> ::= ’::0::Care-O-Bot’ ’3.2’ ’says’ +<any_text>
13 <eva3> ::= ’move’ ’::0::Care-O-Bot’ ’3.2’ ’to’ +<any_text>
14 <eva4> ::= ’move’ ’tray’ ’on’ ’::0::Care-O-Bot’ ’3.2’ ’to’ <any_text>
15 <eva5> ::= ’move’ ’torso’ ’on’ ’::0::Care-O-Bot’ ’3.2’ ’to’ +<any_text>
16 <exbnd1> ::= ’::0::Care-O-Bot’ ’3.2’ +<any_text>
17 <exb1> ::= ’Execute’ ’sequence’ <any_text> ’on’ ’::0::Care-O-Bot’ ’3.2’
18 <del1> ::= ’Wait’ ’for’ <integer> ’seconds’ ’on’ ’::0::Care-O-Bot’ ’3.2’

12.1.3 Data Extraction File

1 pvc1; prop_name = [1]; truth_value = [3]; true = "true"; false = "false";
non_deterministic = false;

2 pvc2; prop_name = [1,2,3]; truth_value = null; true = null; false = null;
non_deterministic = true;

3 pvc3; prop_name = [1,2,3]; truth_value = null; true = null; false = null;
non_deterministic = true;

4 evc1; enum_name = [3]; enum_value = [5]; has_none_value = false;
non_deterministic = false;

5 evc2; enum_name = [4, 7]; enum_value = [4,5]; has_none_value = true;
non_deterministic = true;

6 tc1; start_time = [6]; end_time = null;
7 tc2; start_time = [4]; end_time = [6];
8 pva1; prop_name = [2]; truth_value = [4]; true = "true"; false = "false";
9 eva1; enum_name = [2]; enum_value = [7]; resets = false;
10 eva2; enum_name = [3]; enum_value = [4]; resets = true;
11 eva3; enum_name = "location"; enum_value = [5]; resets = false;
12 eva4; enum_name = [2]; enum_value = [7]; resets = false;
13 eva5; enum_name = [2]; enum_value = [7]; resets = true;
14 exbnd1; behaviour_values = [3]; split_character = ","; ignore_entries =

[1];
15 exb1; behaviour_name = [3];

73

16 del1; seconds = [3];
17 sns1; seconds = [9]; been_in_state = true; was_in_state = false;
18 sns2; seconds = [8]; been_in_state = false; was_in_state = true;

12.1.4 Intermediate Form

1 ==
2 Propositional Variables
3 ==
4 ::515::GOAL-AnserDoorBell [deterministic]
5 Doorbell Last Wattage_>_1 [non-deterministic]
6 ::500::TrayIsRaised [deterministic]
7 ::504::TrayIsEmpty [deterministic]
8 ::501::TrayIsLowered [deterministic]
9 Fridge Freezer_In_*ON* [non-deterministic]
10 ::514::GOAL-fridgeUserAlerted [deterministic]
11 ::506::GOAL-gotoCharger [deterministic]
12 ::507::GOAL-gotoTable [deterministic]
13 ::508::GOAL-gotoSofa [deterministic]
14 ::513::GOAL-watchTV [deterministic]
15 Television Wattage_>_10 [non-deterministic]
16 ::505::GOAL-gotoKitchen [deterministic]
17 ::509::GOAL-waitAtKitchen [deterministic]
18 ::510::GOAL-waitAtSofa [deterministic]
19 ::511::GOAL-waitAtTable [deterministic]
20 ::502::5PM-MedicineDue [deterministic]
21 ::503::5PM-MedicineReminder [deterministic]
22 ::512::GOAL-waitHere [deterministic]
23 ==
24 Enumerated Type Variables
25 ==
26 says [does reset][values: none, ’Doorbell’, ’The fridge door is open!’,

’Its time for your medicine’, ’Have you taken your medicine’, ’Shall
we watch TV together?’][deterministic]

27 light [does not reset][values: yellow, white][deterministic]
28 tray [does not reset][values: Lowered, Raised][deterministic]
29 location [does not reset][values: ::2:: Living Room, ::31:: TV location

in the Living Room, ::7:: Kitchen Entrance in the Dining Room, ::14::
Living Room Sofa Area in the Living Room, ::23:: Living Room Table in
the Living Room Sofa Area of the Living Room, ::5:: ChargingStation
Area in the Dining Room, ::999:: Current user Location][deterministic]

30 torso [does reset][values: none, the right, the back
position][deterministic]

31 seat_occupied [does not reset][values: no_value, seat_1, seat_2, seat_3,
seat_4, seat_5][non-deterministic]

32 ==
33 Behaviours
34 ==
35 answerDoorBell [not interruptible][schedulable][priority: 70]
36 [preconditions]
37 prop_value_check: [variable: ::515::GOAL-AnserDoorBell][value: true]
38 [actions]
39 enum_value_assignment: [order: 1][variable: says][value: ’Doorbell’]
40 delay: [order: 2][wait_seconds: 5]
41
42 checkBell [not interruptible][schedulable][priority: 80]
43 [preconditions]

74

44 prop_value_check: [variable: Doorbell Last Wattage_>_1][value:
true](was_in_state_within: 10)

45 [actions]
46 prop_value_assignment: [order: 2][variable:

::515::GOAL-AnserDoorBell][value: true]
47
48 lowerTray [not interruptible][not schedulable][priority: 0]
49 [preconditions]
50 prop_value_check: [variable: ::504::TrayIsEmpty][value: true]
51 &&--+
52 prop_value_check: [variable: ::500::TrayIsRaised][value: true]
53 [actions]
54 enum_value_assignment: [order: 11][variable: light][value: yellow]
55 enum_value_assignment: [order: 12][variable: tray][value: Lowered]
56 enum_value_assignment: [order: 13][variable: light][value: white]
57 prop_value_assignment: [order: 14][variable:

::500::TrayIsRaised][value: false]
58 prop_value_assignment: [order: 15][variable:

::501::TrayIsLowered][value: true]
59
60 raiseTray [not interruptible][not schedulable][priority: 0]
61 [preconditions]
62 prop_value_check: [variable: ::501::TrayIsLowered][value: true]
63 [actions]
64 enum_value_assignment: [order: 14][variable: light][value: yellow]
65 enum_value_assignment: [order: 15][variable: tray][value: Raised]
66 enum_value_assignment: [order: 16][variable: light][value: white]
67 prop_value_assignment: [order: 17][variable:

::500::TrayIsRaised][value: true]
68 prop_value_assignment: [order: 18][variable:

::501::TrayIsLowered][value: false]
69
70 S1-alertFridgeDoor [not interruptible][schedulable][priority: 60]
71 [preconditions]
72 prop_value_check: [variable:

::514::GOAL-fridgeUserAlerted][value: false]
73 &&--+
74 prop_value_check: [variable: Fridge Freezer_In_*ON*][value:

true](been_in_state_for: 30)
75 [actions]
76 enum_value_assignment: [order: 32][variable: light][value: yellow]
77 enum_value_assignment: [order: 34][variable: location][value: ::2::

Living Room]
78 enum_value_assignment: [order: 35][variable: light][value: white]
79 enum_value_assignment: [order: 36][variable: says][value: ’The fridge

door is open!’]
80 prop_value_assignment: [order: 37][variable:

::506::GOAL-gotoCharger][value: false]
81 prop_value_assignment: [order: 38][variable:

::507::GOAL-gotoTable][value: false]
82 prop_value_assignment: [order: 39][variable:

::508::GOAL-gotoSofa][value: false]
83 execute_behaviour_non_d: [order: 40][behaviours: S1-Set-GoToKitchen,

S1-Set-WaitHere]
84 prop_value_assignment: [order: 41][variable:

::514::GOAL-fridgeUserAlerted][value: true]

75

85
86 S1-continueWatchTV [interruptible][schedulable][priority: 35]
87 [preconditions]
88 prop_value_check: [variable: Television Wattage_>_10][value: true]
89 &&--+
90 prop_value_check: [variable: ::513::GOAL-watchTV][value: true]
91 [actions]
92 enum_value_assignment: [order: 13][variable: light][value: yellow]
93 execute_behaviour: [order: 21][behaviour: lowerTray]
94 enum_value_assignment: [order: 22][variable: location][value: ::31:: TV

location in the Living Room]
95 enum_value_assignment: [order: 23][variable: light][value: white]
96 enum_value_assignment: [order: 24][variable: torso][value: the right]
97 enum_value_assignment: [order: 25][variable: torso][value: the back

position]
98 execute_behaviour_non_d: [order: 26][behaviours: S1-Set-ReturnHome,

S1-Set-Continue]
99

100 S1-goToKitchen [interruptible][schedulable][priority: 40]
101 [preconditions]
102 prop_value_check: [variable: ::505::GOAL-gotoKitchen][value: true]
103 [actions]
104 enum_value_assignment: [order: 32][variable: light][value: yellow]
105 execute_behaviour: [order: 43][behaviour: lowerTray]
106 enum_value_assignment: [order: 44][variable: location][value: ::7::

Kitchen Entrance in the Dining Room]
107 execute_behaviour: [order: 45][behaviour: raiseTray]
108 enum_value_assignment: [order: 46][variable: light][value: white]
109 prop_value_assignment: [order: 47][variable:

::505::GOAL-gotoKitchen][value: false]
110 prop_value_assignment: [order: 48][variable:

::509::GOAL-waitAtKitchen][value: true]
111
112 S1-gotoSofa [interruptible][schedulable][priority: 40]
113 [preconditions]
114 prop_value_check: [variable: ::508::GOAL-gotoSofa][value: true]
115 [actions]
116 enum_value_assignment: [order: 13][variable: light][value: yellow]
117 execute_behaviour: [order: 14][behaviour: lowerTray]
118 enum_value_assignment: [order: 15][variable: location][value: ::14::

Living Room Sofa Area in the Living Room]
119 enum_value_assignment: [order: 16][variable: light][value: white]
120 prop_value_assignment: [order: 17][variable:

::508::GOAL-gotoSofa][value: false]
121 prop_value_assignment: [order: 18][variable:

::510::GOAL-waitAtSofa][value: true]
122
123 S1-gotoTable [interruptible][schedulable][priority: 40]
124 [preconditions]
125 prop_value_check: [variable: ::507::GOAL-gotoTable][value: true]
126 [actions]
127 enum_value_assignment: [order: 9][variable: light][value: yellow]
128 execute_behaviour: [order: 10][behaviour: lowerTray]
129 enum_value_assignment: [order: 11][variable: location][value: ::23::

Living Room Table in the Living Room Sofa Area of the Living Room]
130 enum_value_assignment: [order: 12][variable: light][value: white]

76

131 prop_value_assignment: [order: 13][variable:
::507::GOAL-gotoTable][value: false]

132 prop_value_assignment: [order: 14][variable:
::511::GOAL-waitAtTable][value: true]

133
134 S1-kitchenAwaitCmd [interruptible][schedulable][priority: 40]
135 [preconditions]
136 prop_value_check: [variable: ::509::GOAL-waitAtKitchen][value:

true]
137 &&--+
138 enum_value_check: [variable: location][value: ::7:: Kitchen

Entrance in the Dining Room]
139 [actions]
140 execute_behaviour_non_d: [order: 16][behaviours: S1-Set-GoToSofa,

S1-Set-GoToTable, S1-Set-Continue, S1-Set-WaitHere]
141 prop_value_assignment: [order: 17][variable:

::509::GOAL-waitAtKitchen][value: false]
142
143 S1-Med-5PM [interruptible][not schedulable][priority: 50]
144 [preconditions]
145 prop_value_check: [variable: ::502::5PM-MedicineDue][value: true]
146 &&--+
147 timing_constraint: [start_time: 17:00:00][end time: 23:59:00]
148 [actions]
149 enum_value_assignment: [order: 44][variable: light][value: yellow]
150 enum_value_assignment: [order: 45][variable: location][value: ::14::

Living Room Sofa Area in the Living Room]
151 enum_value_assignment: [order: 46][variable: light][value: white]
152 enum_value_assignment: [order: 47][variable: says][value: ’Its time for

your medicine’]
153 execute_behaviour_non_d: [order: 48][behaviours: S1-Set-GoToKitchen,

S1-Set-ReturnHome, S1-Set-WaitHere]
154 prop_value_assignment: [order: 49][variable:

::502::5PM-MedicineDue][value: false]
155 prop_value_assignment: [order: 50][variable:

::503::5PM-MedicineReminder][value: true]
156
157 S1-Med-5PM-Remind [interruptible][schedulable][priority: 50]
158 [preconditions]
159 prop_value_check: [variable: ::503::5PM-MedicineReminder][value:

true](been_in_state_for: 60)
160 [actions]
161 enum_value_assignment: [order: 12][variable: light][value: yellow]
162 enum_value_assignment: [order: 13][variable: location][value: ::14::

Living Room Sofa Area in the Living Room]
163 enum_value_assignment: [order: 14][variable: light][value: white]
164 enum_value_assignment: [order: 15][variable: says][value: ’Have you

taken your medicine’]
165 prop_value_assignment: [order: 16][variable:

::503::5PM-MedicineReminder][value: false]
166
167 S1-Med-5PM-Reset [not interruptible][schedulable][priority: 90]
168 [preconditions]
169 prop_value_check: [variable: ::502::5PM-MedicineDue][value: false]
170 &&--+
171 timing_constraint: [start_time: 00:00:00][end time: 16:59:00]

77

172 [actions]
173 prop_value_assignment: [order: 11][variable:

::502::5PM-MedicineDue][value: true]
174 prop_value_assignment: [order: 12][variable:

::503::5PM-MedicineReminder][value: false]
175
176 S1-remindFridgeDoor [not interruptible][schedulable][priority: 80]
177 [preconditions]
178 prop_value_check: [variable: ::514::GOAL-fridgeUserAlerted][value:

true](been_in_state_for: 300)
179 [actions]
180 prop_value_assignment: [order: 1][variable:

::514::GOAL-fridgeUserAlerted][value: false]
181
182 S1-ResetAllGoals [not interruptible][not schedulable][priority: 0]
183 [actions]
184 prop_value_assignment: [order: 19][variable:

::500::TrayIsRaised][value: false]
185 prop_value_assignment: [order: 20][variable:

::501::TrayIsLowered][value: true]
186 prop_value_assignment: [order: 21][variable:

::502::5PM-MedicineDue][value: true]
187 prop_value_assignment: [order: 22][variable:

::503::5PM-MedicineReminder][value: false]
188 prop_value_assignment: [order: 23][variable: ::504::TrayIsEmpty][value:

true]
189 prop_value_assignment: [order: 24][variable:

::505::GOAL-gotoKitchen][value: false]
190 prop_value_assignment: [order: 25][variable:

::506::GOAL-gotoCharger][value: false]
191 prop_value_assignment: [order: 26][variable:

::507::GOAL-gotoTable][value: false]
192 prop_value_assignment: [order: 27][variable:

::508::GOAL-gotoSofa][value: false]
193 prop_value_assignment: [order: 28][variable:

::509::GOAL-waitAtKitchen][value: false]
194 prop_value_assignment: [order: 29][variable:

::510::GOAL-waitAtSofa][value: false]
195 prop_value_assignment: [order: 30][variable:

::511::GOAL-waitAtTable][value: false]
196 prop_value_assignment: [order: 31][variable:

::512::GOAL-waitHere][value: false]
197 prop_value_assignment: [order: 32][variable:

::513::GOAL-watchTV][value: false]
198 prop_value_assignment: [order: 33][variable:

::514::GOAL-fridgeUserAlerted][value: false]
199
200 S1-ReturnHome [interruptible][schedulable][priority: 40]
201 [preconditions]
202 prop_value_check: [variable: ::506::GOAL-gotoCharger][value: true]
203 [actions]
204 enum_value_assignment: [order: 16][variable: light][value: yellow]
205 execute_behaviour: [order: 17][behaviour: lowerTray]
206 enum_value_assignment: [order: 18][variable: location][value: ::5::

ChargingStation Area in the Dining Room]
207 enum_value_assignment: [order: 19][variable: light][value: white]

78

208 prop_value_assignment: [order: 20][variable:
::506::GOAL-gotoCharger][value: false]

209
210 S1-Set-Continue [not interruptible][not schedulable][priority: 0]
211 [actions]
212 prop_value_assignment: [order: 1][variable:

::512::GOAL-waitHere][value: false]
213 prop_value_assignment: [order: 2][variable: ::513::GOAL-watchTV][value:

false]
214
215 S1-Set-GoToKitchen [not interruptible][not schedulable][priority: 0]
216 [actions]
217 prop_value_assignment: [order: 3][variable:

::505::GOAL-gotoKitchen][value: true]
218 prop_value_assignment: [order: 4][variable:

::512::GOAL-waitHere][value: false]
219
220 S1-Set-GoToSofa [not interruptible][not schedulable][priority: 0]
221 [actions]
222 prop_value_assignment: [order: 2][variable:

::508::GOAL-gotoSofa][value: true]
223
224 S1-Set-GoToTable [not interruptible][not schedulable][priority: 0]
225 [actions]
226 prop_value_assignment: [order: 2][variable:

::507::GOAL-gotoTable][value: true]
227
228 S1-Set-ReturnHome [not interruptible][not schedulable][priority: 0]
229 [actions]
230 prop_value_assignment: [order: 6][variable:

::506::GOAL-gotoCharger][value: true]
231 prop_value_assignment: [order: 7][variable:

::512::GOAL-waitHere][value: false]
232 prop_value_assignment: [order: 8][variable: ::513::GOAL-watchTV][value:

false]
233
234 S1-Set-WaitHere [not interruptible][not schedulable][priority: 0]
235 [actions]
236 prop_value_assignment: [order: 1][variable:

::512::GOAL-waitHere][value: true]
237
238 S1-Set-Watch-TV [not interruptible][not schedulable][priority: 0]
239 [actions]
240 prop_value_assignment: [order: 2][variable: ::513::GOAL-watchTV][value:

true]
241 prop_value_assignment: [order: 3][variable:

::512::GOAL-waitHere][value: false]
242
243 S1-sleep [interruptible][schedulable][priority: 10]
244 [actions]
245 enum_value_assignment: [order: 0][variable: light][value: white]
246 delay: [order: 5][wait_seconds: 1]
247 enum_value_assignment: [order: 6][variable: light][value: yellow]
248 delay: [order: 7][wait_seconds: 1]
249 enum_value_assignment: [order: 8][variable: light][value: white]
250

79

251 S1-sofaAwaitCmd [interruptible][schedulable][priority: 40]
252 [preconditions]
253 prop_value_check: [variable: ::510::GOAL-waitAtSofa][value: true]
254 &&--+
255 enum_value_check: [variable: location][value: ::14:: Living Room

Sofa Area in the Living Room]
256 [actions]
257 execute_behaviour_non_d: [order: 17][behaviours: S1-Set-ReturnHome,

S1-Set-WaitHere, S1-Set-Continue]
258 prop_value_assignment: [order: 18][variable:

::510::GOAL-waitAtSofa][value: false]
259
260 S1-tableAwaitCmd [interruptible][schedulable][priority: 40]
261 [preconditions]
262 prop_value_check: [variable: ::511::GOAL-waitAtTable][value: true]
263 &&--+
264 enum_value_check: [variable: location][value: ::23:: Living Room

Table in the Living Room Sofa Area of the Living Room]
265 [actions]
266 execute_behaviour_non_d: [order: 10][behaviours: S1-Set-ReturnHome,

S1-Set-WaitHere, S1-Set-Continue]
267 prop_value_assignment: [order: 11][variable:

::511::GOAL-waitAtTable][value: false]
268
269 S1-WaitHere [interruptible][schedulable][priority: 40]
270 [preconditions]
271 prop_value_check: [variable: ::512::GOAL-waitHere][value: true]
272 [actions]
273 enum_value_assignment: [order: 15][variable: light][value: white]
274 delay: [order: 16][wait_seconds: 1]
275 enum_value_assignment: [order: 17][variable: light][value: yellow]
276 delay: [order: 18][wait_seconds: 1]
277 enum_value_assignment: [order: 19][variable: light][value: white]
278 execute_behaviour_non_d: [order: 21][behaviours: S1-Set-WaitHere,

S1-Set-ReturnHome, S1-Set-Continue]
279
280 S1-watchTV [interruptible][schedulable][priority: 30]
281 [preconditions]
282 prop_value_check: [variable: ::513::GOAL-watchTV][value:

false](been_in_state_for: 3600)
283 &&--+
284 | prop_value_check: [variable: Television Wattage_>_10][value:

true]
285 &&--+
286 | enum_value_check: [variable: seat_occupied][value: seat_5]
287 ||--+
288 | enum_value_check: [variable: seat_occupied][value:

seat_4]
289 ||--+
290 | enum_value_check: [variable:

seat_occupied][value: seat_3]
291 ||--+
292 | enum_value_check: [variable:

seat_occupied][value: seat_2]
293 ||--+
294 enum_value_check: [variable:

80

seat_occupied][value: seat_1]
295 [actions]
296 enum_value_assignment: [order: 45][variable: light][value: yellow]
297 execute_behaviour: [order: 47][behaviour: lowerTray]
298 enum_value_assignment: [order: 48][variable: location][value: ::14::

Living Room Sofa Area in the Living Room]
299 enum_value_assignment: [order: 49][variable: light][value: white]
300 enum_value_assignment: [order: 50][variable: says][value: ’Shall we

watch TV together?’]
301 prop_value_assignment: [order: 51][variable:

::513::GOAL-watchTV][value: true]
302 execute_behaviour_non_d: [order: 52][behaviours: S1-Set-Watch-TV,

S1-Set-ReturnHome, S1-Set-Continue]
303
304 T-medicine [not interruptible][not schedulable][priority: 0]
305 [preconditions]
306 timing_constraint: [start_time: 17:00:00][end time: 23:59:00]
307 [actions]
308 enum_value_assignment: [order: 1][variable: light][value: yellow]
309 enum_value_assignment: [order: 2][variable: location][value: ::999::

Current user Location]
310 enum_value_assignment: [order: 3][variable: light][value: white]
311
312 T-moveTo-person [not interruptible][not schedulable][priority: 0]
313 [actions]
314 enum_value_assignment: [order: 0][variable: light][value: yellow]
315 enum_value_assignment: [order: 1][variable: location][value: ::999::

Current user Location]
316 enum_value_assignment: [order: 2][variable: light][value: white]
317
318 unCheckBell [not interruptible][schedulable][priority: 80]
319 [preconditions]
320 prop_value_check: [variable: ::515::GOAL-AnserDoorBell][value:

true](been_in_state_for: 10)
321 [actions]
322 prop_value_assignment: [order: 1][variable:

::515::GOAL-AnserDoorBell][value: false]

81

12.2 NuSMV Input Translation Results
12.2.1 Generated NuSMV Input

1 --
2 -- file generated Tue May 01 12:14:39 2015 using CRuToN v1.0.0
3 --
4 -- true non-determinism: no
5 -- minimum one state for state_n_seconds: yes
6 -- seconds per state: 600
7 -- max seconds for state_n_seconds: 5000
8 --
9 -- behaviours:
10 --
11 -- answerDoorBell [priority: 70][not interruptible][schedulable]
12 -- checkBell [priority: 80][not interruptible][schedulable]
13 -- lowerTray [priority: 0][not interruptible][not schedulable]
14 -- raiseTray [priority: 0][not interruptible][not schedulable]
15 -- S1_alertFridgeDoor [priority: 60][not

interruptible][schedulable]
16 -- S1_continueWatchTV [priority: 35][interruptible][schedulable]
17 -- S1_goToKitchen [priority: 40][interruptible][schedulable]
18 -- S1_gotoSofa [priority: 40][interruptible][schedulable]
19 -- S1_gotoTable [priority: 40][interruptible][schedulable]
20 -- S1_kitchenAwaitCmd [priority: 40][interruptible][schedulable]
21 -- S1_Med_5PM [priority: 50][interruptible][not schedulable]
22 -- S1_Med_5PM_Remind [priority: 50][interruptible][schedulable]
23 -- S1_Med_5PM_Reset [priority: 90][not interruptible][schedulable]
24 -- S1_remindFridgeDoor [priority: 80][not

interruptible][schedulable]
25 -- S1_ResetAllGoals [priority: 0][not interruptible][not

schedulable]
26 -- S1_ReturnHome [priority: 40][interruptible][schedulable]
27 -- S1_Set_Continue [priority: 0][not interruptible][not schedulable]
28 -- S1_Set_GoToKitchen [priority: 0][not interruptible][not

schedulable]
29 -- S1_Set_GoToSofa [priority: 0][not interruptible][not schedulable]
30 -- S1_Set_GoToTable [priority: 0][not interruptible][not

schedulable]
31 -- S1_Set_ReturnHome [priority: 0][not interruptible][not

schedulable]
32 -- S1_Set_WaitHere [priority: 0][not interruptible][not schedulable]
33 -- S1_Set_Watch_TV [priority: 0][not interruptible][not schedulable]
34 -- S1_sleep [priority: 10][interruptible][schedulable]
35 -- S1_sofaAwaitCmd [priority: 40][interruptible][schedulable]
36 -- S1_tableAwaitCmd [priority: 40][interruptible][schedulable]
37 -- S1_WaitHere [priority: 40][interruptible][schedulable]
38 -- S1_watchTV [priority: 30][interruptible][schedulable]
39 -- T_medicine [priority: 0][not interruptible][not schedulable]
40 -- T_moveTo_person [priority: 0][not interruptible][not schedulable]
41 -- unCheckBell [priority: 80][not interruptible][schedulable]
42 --
43 MODULE main
44 --
45 -- Variables
46 --
47 VAR

82

48 time: {_00_00_00_to_16_59_00, _17_00_00_to_23_59_00};
49 step: {step_none, step_1, step_2, step_3, step_4, step_5, step_6,

step_7, step_8, step_9, step_10, step_11, step_12, step_13,
step_14, step_15};

50 schedule: {schedule_none, schedule_answerDoorBell,
schedule_checkBell, schedule_lowerTray, schedule_raiseTray,
schedule_S1_alertFridgeDoor, schedule_S1_continueWatchTV,
schedule_S1_goToKitchen, schedule_S1_gotoSofa,
schedule_S1_gotoTable, schedule_S1_kitchenAwaitCmd,
schedule_S1_Med_5PM, schedule_S1_Med_5PM_Remind,
schedule_S1_Med_5PM_Reset, schedule_S1_remindFridgeDoor,
schedule_S1_ResetAllGoals, schedule_S1_ReturnHome,
schedule_S1_Set_Continue, schedule_S1_Set_GoToKitchen,
schedule_S1_Set_GoToSofa, schedule_S1_Set_GoToTable,
schedule_S1_Set_ReturnHome, schedule_S1_Set_WaitHere,
schedule_S1_Set_Watch_TV, schedule_S1_sleep,
schedule_S1_sofaAwaitCmd, schedule_S1_tableAwaitCmd,
schedule_S1_WaitHere, schedule_S1_watchTV,
schedule_T_medicine, schedule_T_moveTo_person,
schedule_unCheckBell};

51 last_schedule: {schedule_none, schedule_answerDoorBell,
schedule_checkBell, schedule_lowerTray, schedule_raiseTray,
schedule_S1_alertFridgeDoor, schedule_S1_continueWatchTV,
schedule_S1_goToKitchen, schedule_S1_gotoSofa,
schedule_S1_gotoTable, schedule_S1_kitchenAwaitCmd,
schedule_S1_Med_5PM, schedule_S1_Med_5PM_Remind,
schedule_S1_Med_5PM_Reset, schedule_S1_remindFridgeDoor,
schedule_S1_ResetAllGoals, schedule_S1_ReturnHome,
schedule_S1_Set_Continue, schedule_S1_Set_GoToKitchen,
schedule_S1_Set_GoToSofa, schedule_S1_Set_GoToTable,
schedule_S1_Set_ReturnHome, schedule_S1_Set_WaitHere,
schedule_S1_Set_Watch_TV, schedule_S1_sleep,
schedule_S1_sofaAwaitCmd, schedule_S1_tableAwaitCmd,
schedule_S1_WaitHere, schedule_S1_watchTV,
schedule_T_medicine, schedule_T_moveTo_person,
schedule_unCheckBell};

52
53 --
54 -- Behaviour Module Instances
55 --
56 b_answerDoorBell: behaviour(pre_answerDoorBell, can_interrupt_70,

FALSE, schedule, schedule_answerDoorBell, step, step_2);
57 b_checkBell: behaviour(pre_checkBell, can_interrupt_80, FALSE,

schedule, schedule_checkBell, step, step_1);
58 b_lowerTray: behaviour(pre_lowerTray, FALSE, FALSE, schedule,

schedule_lowerTray, step, step_5);
59 b_raiseTray: behaviour(pre_raiseTray, FALSE, FALSE, schedule,

schedule_raiseTray, step, step_5);
60 b_S1_alertFridgeDoor: behaviour(pre_S1_alertFridgeDoor,

can_interrupt_60, FALSE, schedule,
schedule_S1_alertFridgeDoor, step, step_9);

61 b_S1_continueWatchTV: behaviour(pre_S1_continueWatchTV,
can_interrupt_35, (b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |

83

b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled |
b_S1_goToKitchen.can_be_scheduled |
b_S1_gotoSofa.can_be_scheduled |
b_S1_gotoTable.can_be_scheduled |
b_S1_kitchenAwaitCmd.can_be_scheduled |
b_S1_ReturnHome.can_be_scheduled |
b_S1_sofaAwaitCmd.can_be_scheduled |
b_S1_tableAwaitCmd.can_be_scheduled |
b_S1_WaitHere.can_be_scheduled), schedule,
schedule_S1_continueWatchTV, step, step_7);

62 b_S1_goToKitchen: behaviour(pre_S1_goToKitchen, can_interrupt_40,
(b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled), schedule,
schedule_S1_goToKitchen, step, step_7);

63 b_S1_gotoSofa: behaviour(pre_S1_gotoSofa, can_interrupt_40,
(b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled), schedule,
schedule_S1_gotoSofa, step, step_6);

64 b_S1_gotoTable: behaviour(pre_S1_gotoTable, can_interrupt_40,
(b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled), schedule,
schedule_S1_gotoTable, step, step_6);

65 b_S1_kitchenAwaitCmd: behaviour(pre_S1_kitchenAwaitCmd,
can_interrupt_40, (b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled), schedule,
schedule_S1_kitchenAwaitCmd, step, step_2);

66 b_S1_Med_5PM: behaviour(pre_S1_Med_5PM, FALSE,
(b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled), schedule,
schedule_S1_Med_5PM, step, step_7);

84

67 b_S1_Med_5PM_Remind: behaviour(pre_S1_Med_5PM_Remind,
can_interrupt_50, (b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled), schedule,
schedule_S1_Med_5PM_Remind, step, step_5);

68 b_S1_Med_5PM_Reset: behaviour(pre_S1_Med_5PM_Reset,
can_interrupt_90, FALSE, schedule, schedule_S1_Med_5PM_Reset,
step, step_2);

69 b_S1_remindFridgeDoor: behaviour(pre_S1_remindFridgeDoor,
can_interrupt_80, FALSE, schedule,
schedule_S1_remindFridgeDoor, step, step_1);

70 b_S1_ResetAllGoals: behaviour(pre_S1_ResetAllGoals, FALSE, FALSE,
schedule, schedule_S1_ResetAllGoals, step, step_15);

71 b_S1_ReturnHome: behaviour(pre_S1_ReturnHome, can_interrupt_40,
(b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled), schedule,
schedule_S1_ReturnHome, step, step_5);

72 b_S1_Set_Continue: behaviour(pre_S1_Set_Continue, FALSE, FALSE,
schedule, schedule_S1_Set_Continue, step, step_2);

73 b_S1_Set_GoToKitchen: behaviour(pre_S1_Set_GoToKitchen, FALSE,
FALSE, schedule, schedule_S1_Set_GoToKitchen, step, step_2);

74 b_S1_Set_GoToSofa: behaviour(pre_S1_Set_GoToSofa, FALSE, FALSE,
schedule, schedule_S1_Set_GoToSofa, step, step_1);

75 b_S1_Set_GoToTable: behaviour(pre_S1_Set_GoToTable, FALSE, FALSE,
schedule, schedule_S1_Set_GoToTable, step, step_1);

76 b_S1_Set_ReturnHome: behaviour(pre_S1_Set_ReturnHome, FALSE,
FALSE, schedule, schedule_S1_Set_ReturnHome, step, step_3);

77 b_S1_Set_WaitHere: behaviour(pre_S1_Set_WaitHere, FALSE, FALSE,
schedule, schedule_S1_Set_WaitHere, step, step_1);

78 b_S1_Set_Watch_TV: behaviour(pre_S1_Set_Watch_TV, FALSE, FALSE,
schedule, schedule_S1_Set_Watch_TV, step, step_2);

79 b_S1_sleep: behaviour(pre_S1_sleep, can_interrupt_10,
(b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled |
b_S1_goToKitchen.can_be_scheduled |
b_S1_gotoSofa.can_be_scheduled |
b_S1_gotoTable.can_be_scheduled |
b_S1_kitchenAwaitCmd.can_be_scheduled |
b_S1_ReturnHome.can_be_scheduled |
b_S1_sofaAwaitCmd.can_be_scheduled |
b_S1_tableAwaitCmd.can_be_scheduled |
b_S1_WaitHere.can_be_scheduled |
b_S1_continueWatchTV.can_be_scheduled |

85

b_S1_watchTV.can_be_scheduled), schedule, schedule_S1_sleep,
step, step_5);

80 b_S1_sofaAwaitCmd: behaviour(pre_S1_sofaAwaitCmd,
can_interrupt_40, (b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled), schedule,
schedule_S1_sofaAwaitCmd, step, step_2);

81 b_S1_tableAwaitCmd: behaviour(pre_S1_tableAwaitCmd,
can_interrupt_40, (b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled), schedule,
schedule_S1_tableAwaitCmd, step, step_2);

82 b_S1_WaitHere: behaviour(pre_S1_WaitHere, can_interrupt_40,
(b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled), schedule,
schedule_S1_WaitHere, step, step_6);

83 b_S1_watchTV: behaviour(pre_S1_watchTV, can_interrupt_30,
(b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled |
b_S1_goToKitchen.can_be_scheduled |
b_S1_gotoSofa.can_be_scheduled |
b_S1_gotoTable.can_be_scheduled |
b_S1_kitchenAwaitCmd.can_be_scheduled |
b_S1_ReturnHome.can_be_scheduled |
b_S1_sofaAwaitCmd.can_be_scheduled |
b_S1_tableAwaitCmd.can_be_scheduled |
b_S1_WaitHere.can_be_scheduled |
b_S1_continueWatchTV.can_be_scheduled), schedule,
schedule_S1_watchTV, step, step_7);

84 b_T_medicine: behaviour(pre_T_medicine, FALSE, FALSE, schedule,
schedule_T_medicine, step, step_3);

85 b_T_moveTo_person: behaviour(pre_T_moveTo_person, FALSE, FALSE,
schedule, schedule_T_moveTo_person, step, step_3);

86 b_unCheckBell: behaviour(pre_unCheckBell, can_interrupt_80,
FALSE, schedule, schedule_unCheckBell, step, step_1);

87
88 --
89 -- Boolean Variables

86

90 --
91 __515__GOAL_AnserDoorBell: boolean;
92 Doorbell_Last_Wattage___1: boolean;
93 __500__TrayIsRaised: boolean;
94 __504__TrayIsEmpty: boolean;
95 __501__TrayIsLowered: boolean;
96 Fridge_Freezer_In__ON_: boolean;
97 __514__GOAL_fridgeUserAlerted: boolean;
98 __506__GOAL_gotoCharger: boolean;
99 __507__GOAL_gotoTable: boolean;

100 __508__GOAL_gotoSofa: boolean;
101 __513__GOAL_watchTV: boolean;
102 Television_Wattage___10: boolean;
103 __505__GOAL_gotoKitchen: boolean;
104 __509__GOAL_waitAtKitchen: boolean;
105 __510__GOAL_waitAtSofa: boolean;
106 __511__GOAL_waitAtTable: boolean;
107 __502__5PM_MedicineDue: boolean;
108 __503__5PM_MedicineReminder: boolean;
109 __512__GOAL_waitHere: boolean;
110
111 --
112 -- Enumerated Types
113 --
114 says: {none, _Doorbell_, _The_fridge_door_is_open__,

_Its_time_for_your_medicine_, _Have_you_taken_your_medicine_,
_Shall_we_watch_TV_together__};

115 light: {yellow, white};
116 tray: {Lowered, Raised};
117 location: {__2___Living_Room,

__31___TV_location_in_the_Living_Room,
__7___Kitchen_Entrance_in_the_Dining_Room,
__14___Living_Room_Sofa_Area_in_the_Living_Room,
__23___Living_Room_Table_in_the_Living_Room_Sofa_Area_of_the_Living_Room,
__5___ChargingStation_Area_in_the_Dining_Room,
__999___Current_user_Location};

118 torso: {none, the_right, the_back_position};
119 seat_occupied: {no_value, seat_1, seat_2, seat_3, seat_4, seat_5};
120
121 --
122 -- Been in State/Was in State Counters
123 --
124 Fridge_Freezer_In__ON__TRUE_BEEN_IN_STATE: {s_0, s_final};
125 __503__5PM_MedicineReminder_TRUE_BEEN_IN_STATE: {s_0, s_final};
126 __514__GOAL_fridgeUserAlerted_TRUE_BEEN_IN_STATE: {s_0, s_final};
127 __513__GOAL_watchTV_FALSE_BEEN_IN_STATE: {s_0, s_600, s_1200,

s_1800, s_2400, s_3000, s_final};
128 __515__GOAL_AnserDoorBell_TRUE_BEEN_IN_STATE: {s_0, s_final};
129 Doorbell_Last_Wattage___1_TRUE_WAS_IN_STATE: {s_0, s_final};
130
131 --
132 -- Assignments
133 --
134 ASSIGN
135 init(time):= {_00_00_00_to_16_59_00, _17_00_00_to_23_59_00};
136

87

137 init(step):= step_none;
138 next(step):=
139 case
140 a_behaviour_can_be_scheduled: step_1;
141
142 (b_S1_alertFridgeDoor.is_scheduled & step = step_8):

step_1;
143 (b_S1_continueWatchTV.is_scheduled & step = step_2 &

b_lowerTray.preconditions_hold): step_1;
144 (b_S1_continueWatchTV.is_scheduled & step = step_7):

step_1;
145 (b_S1_goToKitchen.is_scheduled & step = step_2 &

b_lowerTray.preconditions_hold): step_1;
146 (b_S1_goToKitchen.is_scheduled & step = step_4 &

b_raiseTray.preconditions_hold): step_1;
147 (b_S1_gotoSofa.is_scheduled & step = step_2 &

b_lowerTray.preconditions_hold): step_1;
148 (b_S1_gotoTable.is_scheduled & step = step_2 &

b_lowerTray.preconditions_hold): step_1;
149 (b_S1_kitchenAwaitCmd.is_scheduled & step = step_1):

step_1;
150 (b_S1_Med_5PM.is_scheduled & step = step_5): step_1;
151 (b_S1_ReturnHome.is_scheduled & step = step_2 &

b_lowerTray.preconditions_hold): step_1;
152 (b_S1_sofaAwaitCmd.is_scheduled & step = step_1): step_1;
153 (b_S1_tableAwaitCmd.is_scheduled & step = step_1): step_1;
154 (b_S1_WaitHere.is_scheduled & step = step_6): step_1;
155 (b_S1_watchTV.is_scheduled & step = step_2 &

b_lowerTray.preconditions_hold): step_1;
156 (b_S1_watchTV.is_scheduled & step = step_7): step_1;
157 (b_S1_Set_GoToKitchen.is_last_step & last_schedule =

schedule_S1_alertFridgeDoor): step_9;
158 (b_S1_Set_WaitHere.is_last_step & last_schedule =

schedule_S1_alertFridgeDoor): step_9;
159 (b_lowerTray.is_last_step & last_schedule =

schedule_S1_continueWatchTV): step_3;
160 (b_lowerTray.is_last_step & last_schedule =

schedule_S1_goToKitchen): step_3;
161 (b_raiseTray.is_last_step & last_schedule =

schedule_S1_goToKitchen): step_5;
162 (b_lowerTray.is_last_step & last_schedule =

schedule_S1_gotoSofa): step_3;
163 (b_lowerTray.is_last_step & last_schedule =

schedule_S1_gotoTable): step_3;
164 (b_S1_Set_GoToSofa.is_last_step & last_schedule =

schedule_S1_kitchenAwaitCmd): step_2;
165 (b_S1_Set_GoToTable.is_last_step & last_schedule =

schedule_S1_kitchenAwaitCmd): step_2;
166 (b_S1_Set_Continue.is_last_step & last_schedule =

schedule_S1_kitchenAwaitCmd): step_2;
167 (b_S1_Set_WaitHere.is_last_step & last_schedule =

schedule_S1_kitchenAwaitCmd): step_2;
168 (b_S1_Set_GoToKitchen.is_last_step & last_schedule =

schedule_S1_Med_5PM): step_6;
169 (b_S1_Set_ReturnHome.is_last_step & last_schedule =

schedule_S1_Med_5PM): step_6;

88

170 (b_S1_Set_WaitHere.is_last_step & last_schedule =
schedule_S1_Med_5PM): step_6;

171 (b_lowerTray.is_last_step & last_schedule =
schedule_S1_ReturnHome): step_3;

172 (b_S1_Set_ReturnHome.is_last_step & last_schedule =
schedule_S1_sofaAwaitCmd): step_2;

173 (b_S1_Set_WaitHere.is_last_step & last_schedule =
schedule_S1_sofaAwaitCmd): step_2;

174 (b_S1_Set_Continue.is_last_step & last_schedule =
schedule_S1_sofaAwaitCmd): step_2;

175 (b_S1_Set_ReturnHome.is_last_step & last_schedule =
schedule_S1_tableAwaitCmd): step_2;

176 (b_S1_Set_WaitHere.is_last_step & last_schedule =
schedule_S1_tableAwaitCmd): step_2;

177 (b_S1_Set_Continue.is_last_step & last_schedule =
schedule_S1_tableAwaitCmd): step_2;

178 (b_lowerTray.is_last_step & last_schedule =
schedule_S1_watchTV): step_3;

179
180 a_behaviour_is_ending: step_none;
181 an_executed_behaviour_is_ending_as_a_last_action:

step_none;
182
183 step = step_1: step_2;
184 step = step_2: step_3;
185 step = step_3: step_4;
186 step = step_4: step_5;
187 step = step_5: step_6;
188 step = step_6: step_7;
189 step = step_7: step_8;
190 step = step_8: step_9;
191 step = step_9: step_10;
192 step = step_10: step_11;
193 step = step_11: step_12;
194 step = step_12: step_13;
195 step = step_13: step_14;
196 step = step_14: step_15;
197 step = step_15: step_none;
198
199 TRUE: step_none;
200 esac;
201
202 init(last_schedule):= schedule_none;
203 next(last_schedule):=
204 case
205 executed_behaviour_execute_next: last_schedule;
206 an_executed_behaviour_is_scheduled: last_schedule;
207 TRUE: schedule;
208 esac;
209
210 init(schedule):= schedule_none;
211 next(schedule):=
212 case
213 b_S1_Med_5PM_Reset.can_be_scheduled:

schedule_S1_Med_5PM_Reset;
214 b_unCheckBell.can_be_scheduled: schedule_unCheckBell;

89

215 b_S1_remindFridgeDoor.can_be_scheduled:
schedule_S1_remindFridgeDoor;

216 b_checkBell.can_be_scheduled: schedule_checkBell;
217 b_answerDoorBell.can_be_scheduled:

schedule_answerDoorBell;
218 b_S1_alertFridgeDoor.can_be_scheduled:

schedule_S1_alertFridgeDoor;
219 b_S1_Med_5PM_Remind.can_be_scheduled:

schedule_S1_Med_5PM_Remind;
220 b_S1_gotoTable.can_be_scheduled: schedule_S1_gotoTable;
221 b_S1_WaitHere.can_be_scheduled: schedule_S1_WaitHere;
222 b_S1_tableAwaitCmd.can_be_scheduled:

schedule_S1_tableAwaitCmd;
223 b_S1_sofaAwaitCmd.can_be_scheduled:

schedule_S1_sofaAwaitCmd;
224 b_S1_ReturnHome.can_be_scheduled: schedule_S1_ReturnHome;
225 b_S1_kitchenAwaitCmd.can_be_scheduled:

schedule_S1_kitchenAwaitCmd;
226 b_S1_gotoSofa.can_be_scheduled: schedule_S1_gotoSofa;
227 b_S1_goToKitchen.can_be_scheduled:

schedule_S1_goToKitchen;
228 b_S1_continueWatchTV.can_be_scheduled:

schedule_S1_continueWatchTV;
229 b_S1_watchTV.can_be_scheduled: schedule_S1_watchTV;
230 b_S1_sleep.can_be_scheduled: schedule_S1_sleep;
231 (b_S1_alertFridgeDoor.is_scheduled & step = step_8):

{schedule_S1_Set_GoToKitchen,
schedule_S1_Set_WaitHere};

232 (b_S1_continueWatchTV.is_scheduled & step = step_2 &
b_lowerTray.preconditions_hold): schedule_lowerTray;

233 (b_S1_continueWatchTV.is_scheduled & step = step_7):
{schedule_S1_Set_ReturnHome,
schedule_S1_Set_Continue};

234 (b_S1_goToKitchen.is_scheduled & step = step_2 &
b_lowerTray.preconditions_hold): schedule_lowerTray;

235 (b_S1_goToKitchen.is_scheduled & step = step_4 &
b_raiseTray.preconditions_hold): schedule_raiseTray;

236 (b_S1_gotoSofa.is_scheduled & step = step_2 &
b_lowerTray.preconditions_hold): schedule_lowerTray;

237 (b_S1_gotoTable.is_scheduled & step = step_2 &
b_lowerTray.preconditions_hold): schedule_lowerTray;

238 (b_S1_kitchenAwaitCmd.is_scheduled & step = step_1):
{schedule_S1_Set_GoToSofa, schedule_S1_Set_GoToTable,
schedule_S1_Set_Continue, schedule_S1_Set_WaitHere};

239 (b_S1_Med_5PM.is_scheduled & step = step_5):
{schedule_S1_Set_GoToKitchen,
schedule_S1_Set_ReturnHome, schedule_S1_Set_WaitHere};

240 (b_S1_ReturnHome.is_scheduled & step = step_2 &
b_lowerTray.preconditions_hold): schedule_lowerTray;

241 (b_S1_sofaAwaitCmd.is_scheduled & step = step_1):
{schedule_S1_Set_ReturnHome,
schedule_S1_Set_WaitHere, schedule_S1_Set_Continue};

242 (b_S1_tableAwaitCmd.is_scheduled & step = step_1):
{schedule_S1_Set_ReturnHome,
schedule_S1_Set_WaitHere, schedule_S1_Set_Continue};

243 (b_S1_WaitHere.is_scheduled & step = step_6):

90

{schedule_S1_Set_WaitHere,
schedule_S1_Set_ReturnHome, schedule_S1_Set_Continue};

244 (b_S1_watchTV.is_scheduled & step = step_2 &
b_lowerTray.preconditions_hold): schedule_lowerTray;

245 (b_S1_watchTV.is_scheduled & step = step_7):
{schedule_S1_Set_Watch_TV,
schedule_S1_Set_ReturnHome, schedule_S1_Set_Continue};

246
247 a_behaviour_is_ending: schedule_none;
248 an_executed_behaviour_is_ending_as_a_last_action:

schedule_none;
249 (an_executed_behaviour_is_ending & last_schedule !=

schedule): last_schedule;
250 an_executed_behaviour_is_ending: schedule_none;
251
252 TRUE: schedule;
253 esac;
254
255 init(Doorbell_Last_Wattage___1):= {TRUE, FALSE};
256 next(Doorbell_Last_Wattage___1):= {TRUE, FALSE};
257
258 init(Fridge_Freezer_In__ON_):= {TRUE, FALSE};
259 next(Fridge_Freezer_In__ON_):= {TRUE, FALSE};
260
261 init(Television_Wattage___10):= {TRUE, FALSE};
262 next(Television_Wattage___10):= {TRUE, FALSE};
263
264 init(seat_occupied):= {no_value, seat_1, seat_2, seat_3, seat_4,

seat_5};
265 next(seat_occupied):= {no_value, seat_1, seat_2, seat_3, seat_4,

seat_5};
266
267 init(__500__TrayIsRaised):= FALSE;
268 next(__500__TrayIsRaised):=
269 case
270 (b_lowerTray.is_scheduled & step = step_4): FALSE;
271 (b_raiseTray.is_scheduled & step = step_4): TRUE;
272 (b_S1_ResetAllGoals.is_scheduled & step = step_1): FALSE;
273
274 TRUE: __500__TrayIsRaised;
275 esac;
276
277 init(__501__TrayIsLowered):= TRUE;
278 next(__501__TrayIsLowered):=
279 case
280 (b_lowerTray.is_scheduled & step = step_5): TRUE;
281 (b_raiseTray.is_scheduled & step = step_5): FALSE;
282 (b_S1_ResetAllGoals.is_scheduled & step = step_2): TRUE;
283
284 TRUE: __501__TrayIsLowered;
285 esac;
286
287 init(__502__5PM_MedicineDue):= TRUE;
288 next(__502__5PM_MedicineDue):=
289 case
290 (b_S1_Med_5PM.is_scheduled & step = step_6): FALSE;

91

291 (b_S1_Med_5PM_Reset.is_scheduled & step = step_1): TRUE;
292 (b_S1_ResetAllGoals.is_scheduled & step = step_3): TRUE;
293
294 TRUE: __502__5PM_MedicineDue;
295 esac;
296
297 init(__503__5PM_MedicineReminder):= FALSE;
298 next(__503__5PM_MedicineReminder):=
299 case
300 (b_S1_Med_5PM.is_scheduled & step = step_7): TRUE;
301 (b_S1_Med_5PM_Remind.is_scheduled & step = step_5): FALSE;
302 (b_S1_Med_5PM_Reset.is_scheduled & step = step_2): FALSE;
303 (b_S1_ResetAllGoals.is_scheduled & step = step_4): FALSE;
304
305 TRUE: __503__5PM_MedicineReminder;
306 esac;
307
308 init(__504__TrayIsEmpty):= TRUE;
309 next(__504__TrayIsEmpty):=
310 case
311 (b_S1_ResetAllGoals.is_scheduled & step = step_5): TRUE;
312
313 TRUE: __504__TrayIsEmpty;
314 esac;
315
316 init(__505__GOAL_gotoKitchen):= FALSE;
317 next(__505__GOAL_gotoKitchen):=
318 case
319 (b_S1_goToKitchen.is_scheduled & step = step_6): FALSE;
320 (b_S1_ResetAllGoals.is_scheduled & step = step_6): FALSE;
321 (b_S1_Set_GoToKitchen.is_scheduled & step = step_1): TRUE;
322
323 TRUE: __505__GOAL_gotoKitchen;
324 esac;
325
326 init(__506__GOAL_gotoCharger):= FALSE;
327 next(__506__GOAL_gotoCharger):=
328 case
329 (b_S1_alertFridgeDoor.is_scheduled & step = step_5):

FALSE;
330 (b_S1_ResetAllGoals.is_scheduled & step = step_7): FALSE;
331 (b_S1_ReturnHome.is_scheduled & step = step_5): FALSE;
332 (b_S1_Set_ReturnHome.is_scheduled & step = step_1): TRUE;
333
334 TRUE: __506__GOAL_gotoCharger;
335 esac;
336
337 init(__507__GOAL_gotoTable):= FALSE;
338 next(__507__GOAL_gotoTable):=
339 case
340 (b_S1_alertFridgeDoor.is_scheduled & step = step_6):

FALSE;
341 (b_S1_gotoTable.is_scheduled & step = step_5): FALSE;
342 (b_S1_ResetAllGoals.is_scheduled & step = step_8): FALSE;
343 (b_S1_Set_GoToTable.is_scheduled & step = step_1): TRUE;
344

92

345 TRUE: __507__GOAL_gotoTable;
346 esac;
347
348 init(__508__GOAL_gotoSofa):= FALSE;
349 next(__508__GOAL_gotoSofa):=
350 case
351 (b_S1_alertFridgeDoor.is_scheduled & step = step_7):

FALSE;
352 (b_S1_gotoSofa.is_scheduled & step = step_5): FALSE;
353 (b_S1_ResetAllGoals.is_scheduled & step = step_9): FALSE;
354 (b_S1_Set_GoToSofa.is_scheduled & step = step_1): TRUE;
355
356 TRUE: __508__GOAL_gotoSofa;
357 esac;
358
359 init(__509__GOAL_waitAtKitchen):= FALSE;
360 next(__509__GOAL_waitAtKitchen):=
361 case
362 (b_S1_goToKitchen.is_scheduled & step = step_7): TRUE;
363 (b_S1_kitchenAwaitCmd.is_scheduled & step = step_2):

FALSE;
364 (b_S1_ResetAllGoals.is_scheduled & step = step_10): FALSE;
365
366 TRUE: __509__GOAL_waitAtKitchen;
367 esac;
368
369 init(__510__GOAL_waitAtSofa):= FALSE;
370 next(__510__GOAL_waitAtSofa):=
371 case
372 (b_S1_gotoSofa.is_scheduled & step = step_6): TRUE;
373 (b_S1_ResetAllGoals.is_scheduled & step = step_11): FALSE;
374 (b_S1_sofaAwaitCmd.is_scheduled & step = step_2): FALSE;
375
376 TRUE: __510__GOAL_waitAtSofa;
377 esac;
378
379 init(__511__GOAL_waitAtTable):= FALSE;
380 next(__511__GOAL_waitAtTable):=
381 case
382 (b_S1_gotoTable.is_scheduled & step = step_6): TRUE;
383 (b_S1_ResetAllGoals.is_scheduled & step = step_12): FALSE;
384 (b_S1_tableAwaitCmd.is_scheduled & step = step_2): FALSE;
385
386 TRUE: __511__GOAL_waitAtTable;
387 esac;
388
389 init(__512__GOAL_waitHere):= FALSE;
390 next(__512__GOAL_waitHere):=
391 case
392 (b_S1_ResetAllGoals.is_scheduled & step = step_13): FALSE;
393 (b_S1_Set_Continue.is_scheduled & step = step_1): FALSE;
394 (b_S1_Set_GoToKitchen.is_scheduled & step = step_2):

FALSE;
395 (b_S1_Set_ReturnHome.is_scheduled & step = step_2): FALSE;
396 (b_S1_Set_WaitHere.is_scheduled & step = step_1): TRUE;
397 (b_S1_Set_Watch_TV.is_scheduled & step = step_2): FALSE;

93

398
399 TRUE: __512__GOAL_waitHere;
400 esac;
401
402 init(__513__GOAL_watchTV):= FALSE;
403 next(__513__GOAL_watchTV):=
404 case
405 (b_S1_ResetAllGoals.is_scheduled & step = step_14): FALSE;
406 (b_S1_Set_Continue.is_scheduled & step = step_2): FALSE;
407 (b_S1_Set_ReturnHome.is_scheduled & step = step_3): FALSE;
408 (b_S1_Set_Watch_TV.is_scheduled & step = step_1): TRUE;
409 (b_S1_watchTV.is_scheduled & step = step_6): TRUE;
410
411 TRUE: __513__GOAL_watchTV;
412 esac;
413
414 init(__514__GOAL_fridgeUserAlerted):= FALSE;
415 next(__514__GOAL_fridgeUserAlerted):=
416 case
417 (b_S1_alertFridgeDoor.is_scheduled & step = step_9): TRUE;
418 (b_S1_remindFridgeDoor.is_scheduled & step = step_1):

FALSE;
419 (b_S1_ResetAllGoals.is_scheduled & step = step_15): FALSE;
420
421 TRUE: __514__GOAL_fridgeUserAlerted;
422 esac;
423
424 init(__515__GOAL_AnserDoorBell):= FALSE;
425 next(__515__GOAL_AnserDoorBell):=
426 case
427 (b_checkBell.is_scheduled & step = step_1): TRUE;
428 (b_unCheckBell.is_scheduled & step = step_1): FALSE;
429
430 TRUE: __515__GOAL_AnserDoorBell;
431 esac;
432
433 init(light):= white;
434 next(light):=
435 case
436 (b_lowerTray.is_scheduled & step = step_1): yellow;
437 (b_lowerTray.is_scheduled & step = step_3): white;
438 (b_raiseTray.is_scheduled & step = step_1): yellow;
439 (b_raiseTray.is_scheduled & step = step_3): white;
440 (b_S1_alertFridgeDoor.is_scheduled & step = step_1):

yellow;
441 (b_S1_alertFridgeDoor.is_scheduled & step = step_3):

white;
442 (b_S1_continueWatchTV.is_scheduled & step = step_1):

yellow;
443 (b_S1_continueWatchTV.is_scheduled & step = step_4):

white;
444 (b_S1_goToKitchen.is_scheduled & step = step_1): yellow;
445 (b_S1_goToKitchen.is_scheduled & step = step_5): white;
446 (b_S1_gotoSofa.is_scheduled & step = step_1): yellow;
447 (b_S1_gotoSofa.is_scheduled & step = step_4): white;
448 (b_S1_gotoTable.is_scheduled & step = step_1): yellow;

94

449 (b_S1_gotoTable.is_scheduled & step = step_4): white;
450 (b_S1_Med_5PM.is_scheduled & step = step_1): yellow;
451 (b_S1_Med_5PM.is_scheduled & step = step_3): white;
452 (b_S1_Med_5PM_Remind.is_scheduled & step = step_1):

yellow;
453 (b_S1_Med_5PM_Remind.is_scheduled & step = step_3): white;
454 (b_S1_ReturnHome.is_scheduled & step = step_1): yellow;
455 (b_S1_ReturnHome.is_scheduled & step = step_4): white;
456 (b_S1_sleep.is_scheduled & step = step_1): white;
457 (b_S1_sleep.is_scheduled & step = step_3): yellow;
458 (b_S1_sleep.is_scheduled & step = step_5): white;
459 (b_S1_WaitHere.is_scheduled & step = step_1): white;
460 (b_S1_WaitHere.is_scheduled & step = step_3): yellow;
461 (b_S1_WaitHere.is_scheduled & step = step_5): white;
462 (b_S1_watchTV.is_scheduled & step = step_1): yellow;
463 (b_S1_watchTV.is_scheduled & step = step_4): white;
464 (b_T_medicine.is_scheduled & step = step_1): yellow;
465 (b_T_medicine.is_scheduled & step = step_3): white;
466 (b_T_moveTo_person.is_scheduled & step = step_1): yellow;
467 (b_T_moveTo_person.is_scheduled & step = step_3): white;
468
469 TRUE: light;
470 esac;
471
472 init(location):= __5___ChargingStation_Area_in_the_Dining_Room;
473 next(location):=
474 case
475 (b_S1_alertFridgeDoor.is_scheduled & step = step_2):

__2___Living_Room;
476 (b_S1_continueWatchTV.is_scheduled & step = step_3):

__31___TV_location_in_the_Living_Room;
477 (b_S1_goToKitchen.is_scheduled & step = step_3):

__7___Kitchen_Entrance_in_the_Dining_Room;
478 (b_S1_gotoSofa.is_scheduled & step = step_3):

__14___Living_Room_Sofa_Area_in_the_Living_Room;
479 (b_S1_gotoTable.is_scheduled & step = step_3):

__23___Living_Room_Table_in_the_Living_Room_Sofa_Area_of_the_Living_Room;
480 (b_S1_Med_5PM.is_scheduled & step = step_2):

__14___Living_Room_Sofa_Area_in_the_Living_Room;
481 (b_S1_Med_5PM_Remind.is_scheduled & step = step_2):

__14___Living_Room_Sofa_Area_in_the_Living_Room;
482 (b_S1_ReturnHome.is_scheduled & step = step_3):

__5___ChargingStation_Area_in_the_Dining_Room;
483 (b_S1_watchTV.is_scheduled & step = step_3):

__14___Living_Room_Sofa_Area_in_the_Living_Room;
484 (b_T_medicine.is_scheduled & step = step_2):

__999___Current_user_Location;
485 (b_T_moveTo_person.is_scheduled & step = step_2):

__999___Current_user_Location;
486
487 TRUE: location;
488 esac;
489
490 init(says):= none;
491 next(says):=
492 case

95

493 (b_answerDoorBell.is_scheduled & step = step_1):
Doorbell;

494 (b_S1_alertFridgeDoor.is_scheduled & step = step_4):
_The_fridge_door_is_open__;

495 (b_S1_Med_5PM.is_scheduled & step = step_4):
_Its_time_for_your_medicine_;

496 (b_S1_Med_5PM_Remind.is_scheduled & step = step_4):
_Have_you_taken_your_medicine_;

497 (b_S1_watchTV.is_scheduled & step = step_5):
_Shall_we_watch_TV_together__;

498
499 TRUE: none;
500 esac;
501
502 init(torso):= none;
503 next(torso):=
504 case
505 (b_S1_continueWatchTV.is_scheduled & step = step_5):

the_right;
506 (b_S1_continueWatchTV.is_scheduled & step = step_6):

the_back_position;
507
508 TRUE: none;
509 esac;
510
511 init(tray):= Lowered;
512 next(tray):=
513 case
514 (b_lowerTray.is_scheduled & step = step_2): Lowered;
515 (b_raiseTray.is_scheduled & step = step_2): Raised;
516
517 TRUE: tray;
518 esac;
519
520
521 init(Fridge_Freezer_In__ON__TRUE_BEEN_IN_STATE):= s_0;
522 next(Fridge_Freezer_In__ON__TRUE_BEEN_IN_STATE):=
523 case
524 Fridge_Freezer_In__ON_ = FALSE: s_0;
525 (Fridge_Freezer_In__ON__TRUE_BEEN_IN_STATE = s_0 &

Fridge_Freezer_In__ON_ = TRUE): s_final;
526 Fridge_Freezer_In__ON__TRUE_BEEN_IN_STATE = s_final:

s_final;
527
528 TRUE: Fridge_Freezer_In__ON__TRUE_BEEN_IN_STATE;
529 esac;
530
531 init(__503__5PM_MedicineReminder_TRUE_BEEN_IN_STATE):= s_0;
532 next(__503__5PM_MedicineReminder_TRUE_BEEN_IN_STATE):=
533 case
534 __503__5PM_MedicineReminder = FALSE: s_0;
535 (__503__5PM_MedicineReminder_TRUE_BEEN_IN_STATE = s_0 &

__503__5PM_MedicineReminder = TRUE): s_final;
536 __503__5PM_MedicineReminder_TRUE_BEEN_IN_STATE = s_final:

s_final;
537

96

538 TRUE: __503__5PM_MedicineReminder_TRUE_BEEN_IN_STATE;
539 esac;
540
541 init(__514__GOAL_fridgeUserAlerted_TRUE_BEEN_IN_STATE):= s_0;
542 next(__514__GOAL_fridgeUserAlerted_TRUE_BEEN_IN_STATE):=
543 case
544 __514__GOAL_fridgeUserAlerted = FALSE: s_0;
545 (__514__GOAL_fridgeUserAlerted_TRUE_BEEN_IN_STATE = s_0 &

__514__GOAL_fridgeUserAlerted = TRUE): s_final;
546 __514__GOAL_fridgeUserAlerted_TRUE_BEEN_IN_STATE =

s_final: s_final;
547
548 TRUE: __514__GOAL_fridgeUserAlerted_TRUE_BEEN_IN_STATE;
549 esac;
550
551 init(__513__GOAL_watchTV_FALSE_BEEN_IN_STATE):= s_0;
552 next(__513__GOAL_watchTV_FALSE_BEEN_IN_STATE):=
553 case
554 __513__GOAL_watchTV = TRUE: s_0;
555 (__513__GOAL_watchTV_FALSE_BEEN_IN_STATE = s_0 &

__513__GOAL_watchTV = FALSE): s_600;
556 __513__GOAL_watchTV_FALSE_BEEN_IN_STATE = s_600: s_1200;
557 __513__GOAL_watchTV_FALSE_BEEN_IN_STATE = s_1200: s_1800;
558 __513__GOAL_watchTV_FALSE_BEEN_IN_STATE = s_1800: s_2400;
559 __513__GOAL_watchTV_FALSE_BEEN_IN_STATE = s_2400: s_3000;
560 __513__GOAL_watchTV_FALSE_BEEN_IN_STATE = s_3000: s_final;
561 __513__GOAL_watchTV_FALSE_BEEN_IN_STATE = s_final:

s_final;
562
563 TRUE: __513__GOAL_watchTV_FALSE_BEEN_IN_STATE;
564 esac;
565
566 init(__515__GOAL_AnserDoorBell_TRUE_BEEN_IN_STATE):= s_0;
567 next(__515__GOAL_AnserDoorBell_TRUE_BEEN_IN_STATE):=
568 case
569 __515__GOAL_AnserDoorBell = FALSE: s_0;
570 (__515__GOAL_AnserDoorBell_TRUE_BEEN_IN_STATE = s_0 &

__515__GOAL_AnserDoorBell = TRUE): s_final;
571 __515__GOAL_AnserDoorBell_TRUE_BEEN_IN_STATE = s_final:

s_final;
572
573 TRUE: __515__GOAL_AnserDoorBell_TRUE_BEEN_IN_STATE;
574 esac;
575
576
577 init(Doorbell_Last_Wattage___1_TRUE_WAS_IN_STATE):= s_0;
578 next(Doorbell_Last_Wattage___1_TRUE_WAS_IN_STATE):=
579 case
580 Doorbell_Last_Wattage___1 = TRUE: s_final;
581 Doorbell_Last_Wattage___1_TRUE_WAS_IN_STATE = s_final:

s_0;
582
583 TRUE: Doorbell_Last_Wattage___1_TRUE_WAS_IN_STATE;
584 esac;
585
586

97

587
588 --
589 -- Definitions
590 --
591 DEFINE
592 pre_answerDoorBell:= __515__GOAL_AnserDoorBell;
593 pre_checkBell:= Doorbell_Last_Wattage___1 &

Doorbell_Last_Wattage___1_TRUE_WAS_IN_STATE != s_0;
594 pre_lowerTray:= (__504__TrayIsEmpty & __500__TrayIsRaised);
595 pre_raiseTray:= __501__TrayIsLowered;
596 pre_S1_alertFridgeDoor:= (!__514__GOAL_fridgeUserAlerted &

Fridge_Freezer_In__ON_ &
Fridge_Freezer_In__ON__TRUE_BEEN_IN_STATE = s_final);

597 pre_S1_continueWatchTV:= (Television_Wattage___10 &
__513__GOAL_watchTV);

598 pre_S1_goToKitchen:= __505__GOAL_gotoKitchen;
599 pre_S1_gotoSofa:= __508__GOAL_gotoSofa;
600 pre_S1_gotoTable:= __507__GOAL_gotoTable;
601 pre_S1_kitchenAwaitCmd:= (__509__GOAL_waitAtKitchen & location =

__7___Kitchen_Entrance_in_the_Dining_Room);
602 pre_S1_Med_5PM:= (__502__5PM_MedicineDue & time =

_17_00_00_to_23_59_00);
603 pre_S1_Med_5PM_Remind:= __503__5PM_MedicineReminder &

__503__5PM_MedicineReminder_TRUE_BEEN_IN_STATE = s_final;
604 pre_S1_Med_5PM_Reset:= (!__502__5PM_MedicineDue & time =

_00_00_00_to_16_59_00);
605 pre_S1_remindFridgeDoor:= __514__GOAL_fridgeUserAlerted &

__514__GOAL_fridgeUserAlerted_TRUE_BEEN_IN_STATE = s_final;
606 pre_S1_ResetAllGoals:= TRUE;
607 pre_S1_ReturnHome:= __506__GOAL_gotoCharger;
608 pre_S1_Set_Continue:= TRUE;
609 pre_S1_Set_GoToKitchen:= TRUE;
610 pre_S1_Set_GoToSofa:= TRUE;
611 pre_S1_Set_GoToTable:= TRUE;
612 pre_S1_Set_ReturnHome:= TRUE;
613 pre_S1_Set_WaitHere:= TRUE;
614 pre_S1_Set_Watch_TV:= TRUE;
615 pre_S1_sleep:= TRUE;
616 pre_S1_sofaAwaitCmd:= (__510__GOAL_waitAtSofa & location =

__14___Living_Room_Sofa_Area_in_the_Living_Room);
617 pre_S1_tableAwaitCmd:= (__511__GOAL_waitAtTable & location =

__23___Living_Room_Table_in_the_Living_Room_Sofa_Area_of_the_Living_Room);
618 pre_S1_WaitHere:= __512__GOAL_waitHere;
619 pre_S1_watchTV:= (!__513__GOAL_watchTV &

__513__GOAL_watchTV_FALSE_BEEN_IN_STATE = s_final &
(Television_Wattage___10 & (seat_occupied = seat_5 |
(seat_occupied = seat_4 | (seat_occupied = seat_3 |
(seat_occupied = seat_2 | seat_occupied = seat_1))))));

620 pre_T_medicine:= time = _17_00_00_to_23_59_00;
621 pre_T_moveTo_person:= TRUE;
622 pre_unCheckBell:= __515__GOAL_AnserDoorBell &

__515__GOAL_AnserDoorBell_TRUE_BEEN_IN_STATE = s_final;
623
624 can_interrupt_10:= FALSE;
625 can_interrupt_30:= (can_interrupt_10 | (schedule =

schedule_S1_sleep));

98

626 can_interrupt_35:= (can_interrupt_30 | (schedule =
schedule_S1_watchTV));

627 can_interrupt_40:= (can_interrupt_35 | (schedule =
schedule_S1_continueWatchTV));

628 can_interrupt_50:= (can_interrupt_40 | (schedule =
schedule_S1_WaitHere | schedule = schedule_S1_tableAwaitCmd |
schedule = schedule_S1_sofaAwaitCmd | schedule =
schedule_S1_ReturnHome | schedule =
schedule_S1_kitchenAwaitCmd | schedule =
schedule_S1_gotoTable | schedule = schedule_S1_gotoSofa |
schedule = schedule_S1_goToKitchen));

629 can_interrupt_60:= (can_interrupt_50 | (schedule =
schedule_S1_Med_5PM_Remind));

630 can_interrupt_70:= (can_interrupt_60);
631 can_interrupt_80:= (can_interrupt_70);
632 can_interrupt_90:= (can_interrupt_80);
633
634 executed_behaviour_execute_next:=

((!b_S1_alertFridgeDoor.can_be_interrupted &
b_S1_alertFridgeDoor.is_scheduled & step = step_8) |
(!b_S1_continueWatchTV.can_be_interrupted &
b_S1_continueWatchTV.is_scheduled & step = step_2) |
(!b_S1_continueWatchTV.can_be_interrupted &
b_S1_continueWatchTV.is_scheduled & step = step_7) |
(!b_S1_goToKitchen.can_be_interrupted &
b_S1_goToKitchen.is_scheduled & step = step_2) |
(!b_S1_goToKitchen.can_be_interrupted &
b_S1_goToKitchen.is_scheduled & step = step_4) |
(!b_S1_gotoSofa.can_be_interrupted &
b_S1_gotoSofa.is_scheduled & step = step_2) |
(!b_S1_gotoTable.can_be_interrupted &
b_S1_gotoTable.is_scheduled & step = step_2) |
(!b_S1_kitchenAwaitCmd.can_be_interrupted &
b_S1_kitchenAwaitCmd.is_scheduled & step = step_1) |
(!b_S1_Med_5PM.can_be_interrupted & b_S1_Med_5PM.is_scheduled
& step = step_5) | (!b_S1_ReturnHome.can_be_interrupted &
b_S1_ReturnHome.is_scheduled & step = step_2) |
(!b_S1_sofaAwaitCmd.can_be_interrupted &
b_S1_sofaAwaitCmd.is_scheduled & step = step_1) |
(!b_S1_tableAwaitCmd.can_be_interrupted &
b_S1_tableAwaitCmd.is_scheduled & step = step_1) |
(!b_S1_WaitHere.can_be_interrupted &
b_S1_WaitHere.is_scheduled & step = step_6) |
(!b_S1_watchTV.can_be_interrupted & b_S1_watchTV.is_scheduled
& step = step_2) | (!b_S1_watchTV.can_be_interrupted &
b_S1_watchTV.is_scheduled & step = step_7));

635 a_behaviour_can_be_scheduled:=
(b_S1_Med_5PM_Reset.can_be_scheduled |
b_unCheckBell.can_be_scheduled |
b_S1_remindFridgeDoor.can_be_scheduled |
b_checkBell.can_be_scheduled |
b_answerDoorBell.can_be_scheduled |
b_S1_alertFridgeDoor.can_be_scheduled |
b_S1_Med_5PM_Remind.can_be_scheduled |
b_S1_goToKitchen.can_be_scheduled |
b_S1_gotoSofa.can_be_scheduled |

99

b_S1_gotoTable.can_be_scheduled |
b_S1_kitchenAwaitCmd.can_be_scheduled |
b_S1_ReturnHome.can_be_scheduled |
b_S1_sofaAwaitCmd.can_be_scheduled |
b_S1_tableAwaitCmd.can_be_scheduled |
b_S1_WaitHere.can_be_scheduled |
b_S1_continueWatchTV.can_be_scheduled |
b_S1_watchTV.can_be_scheduled | b_S1_sleep.can_be_scheduled);

636 a_behaviour_is_ending:= (b_S1_Med_5PM_Reset.is_last_step |
b_unCheckBell.is_last_step |
b_S1_remindFridgeDoor.is_last_step | b_checkBell.is_last_step
| b_answerDoorBell.is_last_step |
b_S1_alertFridgeDoor.is_last_step |
b_S1_Med_5PM_Remind.is_last_step |
b_S1_goToKitchen.is_last_step | b_S1_gotoSofa.is_last_step |
b_S1_gotoTable.is_last_step |
b_S1_kitchenAwaitCmd.is_last_step |
b_S1_ReturnHome.is_last_step | b_S1_sofaAwaitCmd.is_last_step
| b_S1_tableAwaitCmd.is_last_step |
b_S1_WaitHere.is_last_step |
b_S1_continueWatchTV.is_last_step | b_S1_watchTV.is_last_step
| b_S1_sleep.is_last_step);

637 an_executed_behaviour_is_ending_as_a_last_action:=
((b_S1_Set_ReturnHome.is_last_step & last_schedule =
schedule_S1_continueWatchTV) |
(b_S1_Set_Continue.is_last_step & last_schedule =
schedule_S1_continueWatchTV) |
(b_S1_Set_WaitHere.is_last_step & last_schedule =
schedule_S1_WaitHere) | (b_S1_Set_ReturnHome.is_last_step &
last_schedule = schedule_S1_WaitHere) |
(b_S1_Set_Continue.is_last_step & last_schedule =
schedule_S1_WaitHere) | (b_S1_Set_Watch_TV.is_last_step &
last_schedule = schedule_S1_watchTV) |
(b_S1_Set_ReturnHome.is_last_step & last_schedule =
schedule_S1_watchTV) | (b_S1_Set_Continue.is_last_step &
last_schedule = schedule_S1_watchTV));

638 an_executed_behaviour_is_ending:= (b_S1_Set_WaitHere.is_last_step
| b_raiseTray.is_last_step | b_lowerTray.is_last_step |
b_S1_Set_GoToKitchen.is_last_step |
b_S1_Set_Continue.is_last_step |
b_S1_Set_GoToSofa.is_last_step |
b_S1_Set_GoToTable.is_last_step |
b_S1_Set_ReturnHome.is_last_step |
b_S1_Set_Watch_TV.is_last_step);

639 an_executed_behaviour_is_scheduled:=
(b_S1_Set_WaitHere.is_scheduled | b_raiseTray.is_scheduled |
b_lowerTray.is_scheduled | b_S1_Set_GoToKitchen.is_scheduled
| b_S1_Set_Continue.is_scheduled |
b_S1_Set_GoToSofa.is_scheduled |
b_S1_Set_GoToTable.is_scheduled |
b_S1_Set_ReturnHome.is_scheduled |
b_S1_Set_Watch_TV.is_scheduled);

640
641
642 --
643 -- Behaviour Module

100

644 --
645 MODULE behaviour(preconditions, can_interrupt, can_be_int, schedule,

this_schedule, step, last_step)
646
647 DEFINE
648 preconditions_hold:= preconditions;
649 can_be_scheduled:= ((schedule = schedule_none | can_interrupt) &

preconditions_hold);
650 can_be_interrupted:= can_be_int;
651 is_last_step:= (is_scheduled & step = last_step);
652 is_scheduled:= (schedule = this_schedule);

12.2.2 Testing of Expected Properties

Variable Assignments For any behaviour named N having as its k

th action a propositional
variable assignment or enumerated variable assignment, where some value v is assigned to some
variable var we would expected the following property to hold as var should have the value v in
the next moment in time:

2 ((schedule = schedule N ^ step = step k)) #(var = v))

All of the following properties are expected to be true in the model.

Test 1 If the 1st action of the answerDoorBell behaviour is being executed then in the next step
the robot should say ’Doorbell’.

Property
2 ((schedule = schedule answerDoorBell ^ step = step 1)) #(says = ’Doorbell’))

Result

Test 2 If the 3rd action of the S1-alertFridgeDoor behaviour is being executed then in the next
step the robot’s light should be white.

Property
2 ((schedule = schedule S1 alertFridgeDoor ^ step = step 3)) #(light = white))

Result

Test 3 If the 1st action of the uncheckBell behaviour is being executed then in the robot’s
internal flag ::515::GOAL AnserDoorBell should be set to false.

Property
2 ((schedule = schedule uncheckBell ^ step = step 1)) #(::515::GOAL-AnserDoorBell
= false))

Result

101

Test 4 If the 6th action of the S1-watchTV behaviour is being executed then in the next step
the robot’s internal flag ::513::GOAL-watchTV should be set to true.

Property
2 ((schedule = schedule S1-watchTV ^ step = step 6)) #(::513::GOAL-watchTV =
true))

Result

Property 3 Test Results These tests correspond to property 3 defined in Section 10.7:
”If no behaviour is scheduled, and the preconditions to one or more schedulable behaviours

hold, then in the next moment in time the schedulable behaviour with the highest priority will be
executing its first action.”

Test 1 It is always the case that if no behaviour is currently scheduled, the preconditions of the
S1 remindFridgeDoor behaviour hold, and the preconditions of the checkBell and uncheckBell
behaviours do not hold, then in the next moment in time the S1 remindFridgeDoor behaviour
should be scheduled and should be executing it first action. This is expected to be true as all three
behaviours have equal priority, and have the highest priority of all schedulable behaviours, therefore
if no behaviour is currently scheduled and the preconditions to only one of these behaviours holds,
then in the next moment in time that behaviour should be scheduled.

Property
2((schedule = schedule none ^ b S1 remindFridgeDoor.preconditions hold
^ ¬b checkBell.preconditions hold ^ ¬b unCheckBell.preconditions hold)
) #(schedule = schedule S1 remindFridgeDoor ^ step = step 1))

Result

Test 2 It is always the case that if no behaviour is currently scheduled, the preconditions of
the answerDoorBell behaviour hold, and the preconditions of the S1-remindFridgeDoor,checkBell
and uncheckBell behaviours do not hold, then in the next moment in time the S1-answerDoorBell
behaviour should be scheduled and should be executing its first action. This is expected to be true
as the preconditions of all schedulable behaviours having a higher priority than answerDoorBell
do not hold, therefore it should be scheduled in the next moment in time.

Property
2((schedule = schedule none ^ b answerDoorBell.preconditions hold
^ ¬b checkBell.preconditions hold ^ ¬b unCheckBell.preconditions hold)
^ ¬b S1 remindFridgeDoor.preconditions hold
) #(schedule = schedule answerDoorBell ^ step = step 1))

Result

102

Test 3 It is always the case that if no behaviour is currently scheduled, the preconditions
of the S1-alertFridgeDoor behaviour hold, and the preconditions of the alertFridgeDoor, S1-
remindFridgeDoor,checkBell and uncheckBell behaviours do not hold, then in the next moment
in time the S1-alertFridgeDoor behaviour should be scheduled and should be executing its first
action. This is expected to be true as the preconditions of all schedulable behaviours having a
higher priority than S1-alertFridgeDoor do not hold, therefore it should be scheduled in the next
moment in time.

Property
2((schedule = schedule none ^ b S1 alertFridgeDoor.preconditions hold
^ ¬b answerDoorBell.preconditions hold ^ ¬b checkBell.preconditions hold
^ ¬b unCheckBell.preconditions hold) ^ ¬b S1 remindFridgeDoor.preconditions hold
) #(schedule = schedule S1 alertFridgeDoor ^ step = step 1))

Result

Property 4 Test Results These tests correspond to property 4 defined in Section 10.7:
”If a scheduled behaviour is interruptible, and the preconditions to one or more schedulable

behaviours with a higher priority hold, then in the next moment in time the schedulable behaviour
having the highest priority of all these behaviours will interrupt the currently scheduled behaviour
and will be executing its first action.”

Test 1 It is always the case that if the S1-gotoTable behaviour is scheduled and the preconditions
to the S1-remindFridgeDoor behaviour hold, and the preconditions to the uncheckBell and check-
Bell behaviours do not hold, then in the next moment in time the S1-remindFridgeDoor behaviour
should be scheduled and executing its first action. This is expected to be true as the S1-gotoTable
behaviour is interruptible, the priority of the S1-remindFridgeDoor behaviour is greater than the
priority of the S1-gotoTable behaviour, and no other schedulable behaviour has a priority greater
than or equal to the priority of the S1-remindFridgeDoor behaviour with the exception of the
uncheckBell and checkBell behaviours.

Property
2((schedule = schedule S1 gotoTable ^ b S1 remindFridgeDoor.preconditions hold
^ ¬b checkBell.preconditions hold ^ ¬b unCheckBell.preconditions hold
) #(schedule = schedule S1 remindFridgeDoor ^ step = step 1))

Result

103

Test 2 It is always the case that if the S1-gotoTable behaviour is scheduled and the precon-
ditions to the S1-alertFridgeDoor behaviour hold, then in the next moment in time the S1-
remindFridgeDoor behaviour should be scheduled and executing its first action. This is expected
to be false as the there are other behaviours with a higher priority than the S1-alertFridgeDoor
behaviour that could interrupt the S1-gotoTable behaviour instead.

Property
2((schedule = schedule S1 gotoTable)
) #(schedule = schedule S1 remindFridgeDoor ^ step = step 1))

Result

Property 5 Test Results These tests correspond to property 5 defined in Section 10.7:
”If a behaviour scheduled and is executing its k

th action, this action does not execute another
behaviour and is not the final action, and in the next moment in time the scheduled behaviour will
not be interrupted by another behaviour, then in the next moment in time the scheduled behaviour
will be executing its (k + 1)th action.”

All of the following properties are expected to be true in the model.

Test 1 It is always the case that if the S1-gotoSofa behaviour is scheduled and is executing its
first action and it is not the case that this behaviour can be interrupted in the next moment in
time, then in the next moment in time this behaviour will be executing its second action.

Property
2((schedule = schedule S1 gotoSofa ^ step = step 1
^ ¬b S1 gotoSofa.can be interrupted)) #(schedule = schedule S1 gotoSofa
^ step = step 2))

Result

Test 2 It is always the case that if the T-moveTo-person behaviour is scheduled and is executing
its second action and it is not the case that this behaviour can be interrupted in the next moment
in time, then in the next moment in time this behaviour will be executing its third action.

Property
2((schedule = schedule T moveTo person ^ step = step 2
^ ¬b T moveTo person.can be interrupted)
) #(schedule = schedule T moveTo person ^ step = step 3))

Result

104

Property 6 Test Results These tests correspond to property 6 defined in Section 10.7:
”If a behaviour scheduled and is executing another behaviour whose precondition holds, and in

the next moment in time the scheduled behaviour will not be interrupted by another behaviour, then
in the next moment in time the executed behaviour will be scheduled and will be executing its first
action.”

All of the following properties are expected to be true in the model.

Test 1 It is always the case that if the S1-continueWatchTV behaviour is scheduled and is
executing its second action, and in the next moment in time the S1-continueWatchTV behaviour
cannot be interrupted, and the preconditions for the lowerTray behaviour hold, then in the next
moment in time the lowerTray behaviour will be scheduled and executing its first action

Property
2((schedule = schedule S1 continueWatchTV ^ step = step 2
^ ¬b S1 continueWatchTV.can be interrupted ^ b lowerTray.preconditions hold)
) #(schedule = schedule lowerTray ^ step = step 1))

Result

Test 2 It is always the case that if the S1-goToKitchen behaviour is scheduled and is executing
its fourth action, and in the next moment in time the S1-goToKitchen behaviour cannot be
interrupted, and the preconditions for the raiseTray behaviour hold, then in the next moment in
time the raiseTray behaviour will be scheduled and executing its first action

Property
2((schedule = schedule S1 goToKitchen ^ step = step 2
^ ¬b S1 goToKitchen.can be interrupted ^ b raiseTray.preconditions hold)
) #(schedule = schedule raiseTray ^ step = step 1))

Result

Property 7 Test Results These tests correspond to property 7 defined in Section 10.7:
”If a scheduled behaviour is executing its k

th action, this action executes another behaviour
whose preconditions hold, this action is not the final action, and in the next moment in time the
scheduled behaviour will not be interrupted by another behaviour, then in the next moment in time
the executed behaviour will be scheduled and will be executing its first action and at some time
after the executing behaviour will again be scheduled and will be performing its (k + 1)th action.”

All of the following properties are expected to be true in the model.

105

Test 1 It is always the case that if the S1-continueWatchTV behaviour is scheduled and is
executing its second action, and in the next moment in time the S1-continueWatchTV behaviour
cannot be interrupted, and the preconditions for the lowerTray behaviour hold, then in the next
moment in time the lowerTray behaviour will be scheduled and executing its first action and at
some time after that the S1-continueWatchTV behaviour will again be scheduled and will be
executing its third action.

Property
2((schedule = schedule S1 continueWatchTV ^ step = step 2
^ ¬b S1 continueWatchTV.can be interrupted ^ b lowerTray.preconditions hold)
) #(schedule = schedule lowerTray ^ step = step 1
^ ⌃(schedule = schedule S1 continueWatchTV ^ step = step 3)))

Result

Test 2 It is always the case that if the S1-goToKitchen behaviour is scheduled and is executing
its fourth action, and in the next moment in time the S1-goToKitchen behaviour cannot be
interrupted, and the preconditions for the raiseTray behaviour hold, then in the next moment in
time the raiseTray behaviour will be scheduled and executing its first action and at some time
after that the S1-goToKitchen behaviour will again be scheduled and will be executing its fifth
action.

Property
2((schedule = schedule S1 goToKitchen ^ step = step 4
^ ¬b S1 goToKitchen.can be interrupted ^ b raiseTray.preconditions hold)
) #(schedule = schedule raiseTray ^ step = step 1
^ ⌃(schedule = schedule S1 goToKitchen ^ step = step 5)))

Result

Property 9 Test Results These tests correspond to property 9 defined in Section 10.7:
”When an uninterruptible behaviour has been scheduled it is expected to execute all of its ac-

tions.”

Test 1 It is always the case that if the raiseTray behaviour is scheduled and is executing its first
action then at some future point the raiseTray behaviour will be scheduled and will be executing
its last (fifth) action. This is expected to be true as this behaviour is uninterruptible.

Property
2((schedule = schedule raiseTray ^ step = step 1)
) #(schedule = schedule raiseTray ^ step = step 5))

106

Result

Test 2 It is always the case that if the S1-alertFridgeDoor behaviour is scheduled and is executing
its first action then at some future point the S1-alertFridgeDoor behaviour will be scheduled
and will be executing its last (ninth) action. This is expected to be true as this behaviour is
uninterruptible.

Property
2((schedule = schedule S1 alertFridgeDoor ^ step = step 1)
) #(schedule = schedule S1 alertFridgeDoor ^ step = step 9))

Result

Test 3 It is always the case that if the S1-sleep behaviour is scheduled and is executing its first
action then at some future point the S1-sleep behaviour will be scheduled and will be executing
its last (fifth) action. This is expected to be false as this behaviour is interruptible.

Property
2((schedule = schedule S1 sleep ^ step = step 1)
) #(schedule = schedule S1 sleep ^ step = step 5))

Result

107

13 Appendix E - Selected Source Code Listings
Some important functions are listed here and referred to in the main text. Full code listings

have been submitted electronically along with this document. Instructions on how to build the
software using the source code, and both sets of input files used during the development of the
software, are also included.

13.1 The getByName Procedure

1 /*--
2 getByName
3
4 Finds and returns a precondition, action or behaviour with the given
5 name. If automatic identifier matching is disabled then the user is
6 prompted when ambiguity or case-insensitive matches are encountered.
7 ..
8 @param variable the list of propositional variables/enumerated
9 variables/behaviour
10 @param name the name of the propositional variable/
11 enumerated variable/behaviour to retrieve
12 @param type text describing the type being disambiguated
13 (either propositional variable, enumerated
14 variable, or behaviour)
15 @param info some information to display to the user
16 @return the propositional variable/enumerated variable/
17 behaviour, or nullptr if none is found
18 --*/
19 template<typename T>
20 T* IntermediateForm::getByName(std::list<T*>& instances, const

std::string& name,
21 const std::string& type, const std::string& info)
22 {
23 T* case_insensitive_match = nullptr;
24 std::list<std::pair<T*, const int>> similarity_matches;
25 std::for_each(instances.begin(), instances.end(),
26 [&](T* variable)
27 {
28 if(caseInsensitiveCompare(variable->getName(), name))
29 {
30 // a case-insensitive match has been found
31 case_insensitive_match = variable;
32 }
33 else
34 {
35 auto pair = compareStrings(variable->getName(), name);
36 if(pair.second >= g_string_matching_threshhold)
37 {
38 // a match has been found
39 similarity_matches.push_back(std::pair<T*,
40 const int>(variable, pair.second));
41 }
42 }
43 });
44
45 if(case_insensitive_match != nullptr)
46 {

108

47 // a case insensitive match was found
48 if(case_insensitive_match->getName() != name)
49 {
50 if(!g_no_prompt_case_insensitivity)
51 {
52 /* prompt the user to choose whether to replace the
53 existing identifier, to use the existing identifier,
54 or to simply ignore the match and treat both
55 identifiers as being distinct */
56 displayTitle(DIVIDER_DISAMBIGUATION, DIVIDER_2, info);
57 switch(disambiguationPrompt(case_insensitive_match->getName(),
58 type))
59 {
60 case DISAMBIGUATION_REPLACE_EXISTING:
61 case_insensitive_match->setName(name);
62 return case_insensitive_match;
63 break;
64
65 case DISAMBIGUATION_USE_EXISTING:
66 return case_insensitive_match;
67 break;
68
69 case DISAMBIGUATION_IGNORE:
70 return nullptr;
71 break;
72 }
73 }
74 else
75 {
76 // automatically match
77 displayTitle(DIVIDER_DISAMBIGUATION, DIVIDER_2,
78 "automatic case-insensitive match");
79 std::cout << "matched " << type << " \’" << name
80 << "\’\nwith existing " << type << " \’"
81 << case_insensitive_match->getName() << "\’\n";
82 return case_insensitive_match;
83 }
84 }
85 else
86 {
87 return case_insensitive_match;
88 }
89 }
90 else
91 {
92 if(similarity_matches.empty())
93 {
94 // no matches were found
95 return nullptr;
96 }
97 else
98 {
99 // sort the matches by similarity

100 similarity_matches.sort(
101 [&](const std::pair<T*, const int>& this_pair,
102 const std::pair<T*, const int>& that_pair)

109

103 {
104 return this_pair.second > that_pair.second;
105 });
106
107 if(!g_no_prompt_identifier_matching)
108 {
109 /* prompt the user to choose whether to replace the
110 existing identifier, to use the existing identifier,
111 or to simply ignore the match and treat both
112 identifiers as being distinct */
113 displayTitle(DIVIDER_DISAMBIGUATION, DIVIDER_2, info);
114 auto it = similarity_matches.begin();
115 auto end = similarity_matches.end();
116 int count = 1;
117 while(it != end)
118 {
119 std::pair<T*, const int> matched_pair = *it;
120 std::cout << "match " << count << " of "
121 << similarity_matches.size() << " ("
122 << matched_pair.second << "% similarity)\n";
123 switch(disambiguationPrompt(matched_pair.first->getName(),
124 type))
125 {
126 case DISAMBIGUATION_REPLACE_EXISTING:
127 matched_pair.first->setName(name);
128 return matched_pair.first;
129 break;
130
131 case DISAMBIGUATION_USE_EXISTING:
132 return matched_pair.first;
133 break;
134
135 case DISAMBIGUATION_IGNORE:
136 break;
137 }
138 count++;
139 it++;
140 }
141 return nullptr;
142 }
143 else
144 {
145 // automatically use the most similar match
146 displayTitle(DIVIDER_DISAMBIGUATION, DIVIDER_2,
147 "automatic similarity match");
148 std::locale loc;
149 auto first_pair = *similarity_matches.begin();
150 std::string matched_name = first_pair.first->getName();
151 int matched_name_spc = 0;
152 for(char c : matched_name)
153 {
154 if(std::isspace(c, loc))
155 {
156 matched_name_spc++;
157 }
158 }

110

159 int name_spc = 0;
160 for(char c : name)
161 {
162 if(std::isspace(c, loc))
163 {
164 name_spc++;
165 }
166 }
167 std::cout << "matched " << type << " \’" << name
168 << "\’\nwith existing " << type << " \’"
169 << first_pair.first->getName()
170 << "\’\nhaving " << first_pair.second << "% similarity\n";
171 if(name_spc < matched_name_spc)
172 {
173 std::cout << "new identifier contains less whitespace: "
174 << "replacing original identifier\n";
175 first_pair.first->setName(name);
176 }
177 return first_pair.first;
178 }
179 }
180 }
181 return nullptr;
182 }

111

13.2 The parseGrammarFile Procedure

1 /*--
2 parseGrammarFile
3
4 Parses the given grammar file. Throws an error if parsing was
5 unsuccessful.
6 ..
7 @param filename the name of the file containing the grammar
8 definitions
9 @throw an error message if parsing failed
10 --*/
11 void IntermediateFormParser::parseGrammarFile(
12 const std::string filename) throw (std::string)
13 {
14 std::ifstream ifstream(filename);
15
16 try
17 {
18 if(!ifstream)
19 {
20 throw("error loading file \’" + filename + "\’\n");
21 }
22
23 // read the file in as a string
24 std::string input_file_string = std::string(
25 std::istreambuf_iterator<char>(ifstream),
26 std::istreambuf_iterator<char>());
27
28 // do this while there is more to read
29 while(hasNextToken(input_file_string))
30 {
31 std::string line = getNextLine(input_file_string);
32 // get the left hand side non-terminal symbol
33 std::string non_t = getNextToken(line);
34
35 NonTerminalSymbol* new_non_terminal;
36 if(!isNonTerminalSymbol(non_t))
37 {
38 throw("\’" + non_t + "\’ bad non_terminal name on left\n");
39 }
40 if(getNextToken(line) != "::=")
41 {
42 throw("expected ’::=’ in file \’" + filename + "\’\n");
43 }
44 // create a new empty non-terminal symbol
45 new_non_terminal =
46 new NonTerminalSymbol(getSymbolText(non_t),
47 Automaton::REPEAT_NONE);
48 while(hasNextToken(line))
49 {
50 std::string token = getNextToken(line);
51 bool is_non_terminal = false;
52 bool is_terminal = false;
53 bool is_predefined = false;
54

112

55 if(isPredefinedAutomaton(token))
56 {
57 is_predefined = true;
58 }
59 else if(isNonTerminalSymbol(token))
60 {
61 is_non_terminal = true;
62 }
63 else if(isTerminalSymbol(token))
64 {
65 is_terminal = true;
66 }
67
68 if(!is_non_terminal && !is_terminal && !is_predefined)
69 {
70 // this is an invalid token
71 delete new_non_terminal;
72 throw("\’" + token
73 + "\’ is not a terminal or non-terminal\n");
74 }
75
76 int repeat;
77 std::string prefix = getSymbolPrefix(token);
78 if(prefix == "+")
79 {
80 repeat = Automaton::REPEAT_ONE_OR_MORE;
81 }
82 else if(isInteger(prefix))
83 {
84 std::istringstream stream(prefix);
85 stream >> repeat;
86 }
87 else
88 {
89 repeat = Automaton::REPEAT_NONE;
90 }
91
92 std::string symbol_name = getSymbolText(token);
93
94 if(is_terminal)
95 {
96 // create a new terminal symbol...
97 TerminalSymbol* new_terminal =
98 new TerminalSymbol(symbol_name,
99 repeat);

100 // ...and add it to the list of automata in the non-terminal
101 new_non_terminal->addAutomaton(new_terminal);
102 }
103 else if(is_predefined)
104 {
105 // get a copy of the predefined automaton
106 Automaton* predefined_symbol =
107 getPredefinedAutomatonByName(symbol_name);
108 predefined_symbol->setRepeat(repeat);
109 // ...and add it to the list of automata in the non-terminal
110 new_non_terminal->addAutomaton(predefined_symbol);

113

111 }
112 else
113 {
114 // has this non-terminal symbol already been defined?
115 auto it = std::find_if(
116 non_terminal_symbols.begin(),
117 non_terminal_symbols.end(),
118 [&](NonTerminalSymbol* n)
119 {
120 return symbol_name == n->getName();
121 });
122 if(it == non_terminal_symbols.end())
123 {
124 // it was not defined, throw an error
125 delete new_non_terminal;
126 throw("non-terminal symbol " + symbol_name
127 + " was not already defined\n");
128 }
129 // it was already defined, make a copy of it
130 NonTerminalSymbol* n = (NonTerminalSymbol*)(*it)->getCopy();
131 n->setRepeat(repeat);
132 // ...and add it to the list of automata in the non-terminal
133 new_non_terminal->addAutomaton(n);
134 }
135 }
136 // check to see if the new non-terminal has already been defined
137 auto it = std::find_if(
138 non_terminal_symbols.begin(),
139 non_terminal_symbols.end(),
140 [&](NonTerminalSymbol* n)
141 {
142 return getSymbolText(non_t) == n->getName();
143 });
144 if(it != non_terminal_symbols.end())
145 {
146 // it was already defined, throw an error
147 delete new_non_terminal;
148 throw("non_terminal " + non_t + " is already defined\n");
149 }
150 int type;
151 if((type = getAutomatonType(getSymbolText(non_t)))
152 != NO_TYPE)
153 {
154 // this matched a type, add the automaton to the corresponding
155 // list
156 non_terminal_symbols_by_type[type - 1].push_back(
157 new_non_terminal);
158 }
159 // add the new non-terminal to the list of non-terminals
160 non_terminal_symbols.push_back(new_non_terminal);
161 }
162 }
163 catch(std::string& error)
164 {
165 throw(std::string("[parseGrammarDefinitions]->\n")
166 + "error in file \’" + filename + "\’\n"

114

167 + error);
168 }
169 ifstream.close();
170 }

115

13.3 The buildBehaviourLists Procedure

1 /*--
2 buildBehaviourLists
3
4 Builds the lists of schedulable, executing, and executable behaviours.
5 --*/
6 void NuSMVTranslator::buildBehaviourLists()
7 {
8 std::list<Behaviour*> behaviours = intermediate_form->getBehaviours();
9 if(!behaviours.empty())
10 {
11 auto it = behaviours.begin();
12 auto end = behaviours.end();
13 while(it != end)
14 {
15 Behaviour* behaviour = *it;
16 if(behaviour->isSchedulable())
17 {
18 // this behaviour is schedulable so add it to the list of
19 // schedulable behaviours
20 schedulable_behaviours.push_back(behaviour);
21 }
22 bool executes_another = false;
23 std::list<Action*> actions = behaviour->getActions();
24 auto action_it = actions.begin();
25 auto action_end = actions.end();
26 while(action_it != action_end)
27 {
28 Action* action = *action_it;
29 if(action->getActionType() == ActionType::EXECUTE)
30 {
31 ActionExecute* action_ex = (ActionExecute*)action;
32 // add the executed behaviour to the list of
33 // executable behaviours
34 executable_behaviours.insert(
35 intermediate_form->getBehaviourByName(
36 action_ex->getBehaviour(), ""));
37 executes_another = true;
38 }
39 else if(action->getActionType() == ActionType::EXECUTE_NON_D)
40 {
41 ActionExecuteNonDeterministic* action_ex_non_d =
42 (ActionExecuteNonDeterministic*)action;
43 // add the executable behaviours to the list of
44 // executable behaviours
45 for(std::string behaviour_name :
46 action_ex_non_d->getBehaviourValues())
47 {
48 executable_behaviours.insert(
49 intermediate_form->getBehaviourByName(
50 behaviour_name, ""));
51 }
52 executes_another = true;
53 }
54 action_it++;

116

55 }
56 if(executes_another)
57 {
58 // this behaviour executes another behaviour, add it
59 // to the list of executing behaviours
60 executing_behaviours.push_back(behaviour);
61 }
62 it++;
63 }
64 }
65 }

117

13.4 The buildTimingConstraintMap Procedure

1 /*--
2 buildTimingConstraintMap
3
4 Builds the timing constraint map.
5 --*/
6 void NuSMVTranslator::buildTimingConstraintMap()
7 {
8 std::list<Behaviour*> behaviours = intermediate_form->getBehaviours();
9 std::list<PreconditionTimingConstraint*> timing_constraints;
10 if(!behaviours.empty())
11 {
12 auto it = behaviours.begin();
13 auto end = behaviours.end();
14 while(it != end)
15 {
16 Behaviour* behaviour = *it;
17 std::list<Precondition*> preconditions =
18 behaviour->getPreconditions();
19 auto precondition_it = preconditions.begin();
20 auto precondition_end = preconditions.end();
21 while(precondition_it != precondition_end)
22 {
23 Precondition* precondition = *precondition_it;
24 if(precondition->getPreconditionType()
25 == PreconditionType::TIMING_CONSTRAINT)
26 {
27 // this precondition is a timing constraint, add it
28 // to the map
29 PreconditionTimingConstraint* precondition_t =
30 (PreconditionTimingConstraint*)precondition;
31 timing_constraints.push_back(precondition_t);
32 timing_constraint_map.insert(
33 std::pair<PreconditionTimingConstraint*,
34 std::list<std::string>*>(precondition_t,
35 new std::list<std::string>()));
36 }
37 precondition_it++;
38 }
39 it++;
40 }
41 }
42 if(timing_constraints.size() == 1)
43 {
44 // there is only one timing constraint, build a value for it
45 // and add a no_time_constraints_hold value
46 PreconditionTimingConstraint* p = timing_constraints.front();
47 std::string value = validateIdentifier("_" + p->getStartTime() +

"_to_"
48 + p->getEndTime());
49 auto pair = *(timing_constraint_map.find(p));
50 pair.second->push_back(value);
51 time_intervals.push_back(value);
52 time_intervals.push_back("no_time_constraints_hold");
53 }

118

54 else if(!timing_constraints.empty())
55 {
56 std::string time = "00:00:00";
57 bool added_none_accepting_interval = false;
58 std::list<PreconditionTimingConstraint*> accepting;
59 // remove any time constraints from the list that hold
60 // at the current time, and add them to the accepting list
61 timing_constraints.remove_if(
62 [&](PreconditionTimingConstraint* p)
63 {
64 bool remove_if = timeConstraintHoldsAtTime(p, time);
65 if(remove_if)
66 {
67 accepting.push_back(p);
68 }
69 return remove_if;
70 });
71 // do this while there are still some time constraints that
72 // are yet to be accepting, or are still accepting
73 while(!timing_constraints.empty() || !accepting.empty())
74 {
75 PreconditionTimingConstraint* earliest_starting = nullptr;
76 PreconditionTimingConstraint* earliest_finishing = nullptr;
77 std::for_each(timing_constraints.begin(), timing_constraints.end(),
78 [&](PreconditionTimingConstraint* p)
79 {
80 // get the timing constraint with the earliest
81 // start time
82 if(earliest_starting == nullptr ||
83 timeIsBefore(p->getStartTime(),
84 earliest_starting->getStartTime()))
85 {
86 earliest_starting = p;
87 }
88 });
89 std::for_each(accepting.begin(), accepting.end(),
90 [&](PreconditionTimingConstraint* p)
91 {
92 // get the timing constraint with the earliest
93 // finishing time
94 if(earliest_finishing == nullptr ||
95 timeIsBefore(p->getEndTime(),
96 earliest_finishing->getEndTime()))
97 {
98 earliest_finishing = p;
99 }

100 });
101 if(earliest_starting == nullptr || (!(earliest_finishing == nullptr)
102 && timeIsBefore(earliest_finishing->getEndTime(),
103 earliest_starting->getStartTime())))
104 {
105 std::string value = validateIdentifier("_" + time + "_to_" +
106 earliest_finishing->getEndTime());
107 if(accepting.empty())
108 {
109 if(!added_none_accepting_interval)

119

110 {
111 time_intervals.push_back(
112 "no_time_constraints_hold");
113 added_none_accepting_interval = true;
114 }
115 }
116 else
117 {
118 time_intervals.push_back(value);
119 }
120 accepting.remove_if(
121 [&](PreconditionTimingConstraint* p)
122 {
123 bool remove_if = p->getEndTime() ==
124 earliest_finishing->getEndTime();
125 auto pair = *(timing_constraint_map.find(p));
126 pair.second->push_back(value);
127 return remove_if;
128 });
129 time = momentAfter(earliest_finishing->getEndTime());
130 }
131 else
132 {
133 if(timeIsBefore(time, earliest_starting->getStartTime()))
134 {
135 std::string value = validateIdentifier("_" + time + "_to_"
136 + momentBefore(earliest_starting->getStartTime()));
137 if(accepting.empty())
138 {
139 if(!added_none_accepting_interval)
140 {
141 time_intervals.push_back(
142 "no_time_constraints_hold");
143 added_none_accepting_interval = true;
144 }
145 }
146 else
147 {
148 time_intervals.push_back(value);
149 }
150 for(PreconditionTimingConstraint* p : accepting)
151 {
152 auto pair = *(timing_constraint_map.find(p));
153 pair.second->push_back(value);
154 }
155 }
156 timing_constraints.remove_if(
157 [&](PreconditionTimingConstraint* p)
158 {
159 bool remove_if = p->getStartTime() ==
160 earliest_starting->getStartTime();
161 if(remove_if)
162 {
163 accepting.push_back(p);
164 }
165 return remove_if;

120

166 });
167 time = earliest_starting->getStartTime();
168 }
169 }
170 }
171 }

121

13.5 The vectorPowerSet Procedure

1 /*--
2 vectorPowerSet
3
4 Given a vector v of type T, returns a vector of vectors of type T
5 corresponding to the power set of the vector v.
6 ..
7 @param T the type of elements in the vector
8 @param v a vector of elements of type T
9 @param sort_increasing_size true if the powerset of vectors should
10 be sorted into increasing size, or false if the
11 set should be sorted into decreasing size.
12 @return the powerset of v as a vector of vectors of type
13 T
14 --*/
15 template<typename T>
16 std::vector<std::vector<T>>

NuSMVTranslator::vectorPowerSet(std::vector<T>& v,
17 const bool sort_increasing_size)
18 {
19 std::vector<std::vector<T>> power_set;
20 int num_items = v.size();
21 int num_subsets = static_cast<int>(std::pow(2.0, num_items));
22 for(int characteristic_vector = 0; characteristic_vector < num_subsets;
23 characteristic_vector++)
24 {
25 power_set.push_back(filterVectorByCharacteristicVector(v,
26 characteristic_vector));
27 }
28
29 if(sort_increasing_size)
30 {
31 std::sort(power_set.begin(), power_set.end(),
32 [&](std::vector<T> this_v, std::vector<T> that_v)
33 {
34 return that_v.size() < this_v.size();
35 });
36 }
37 else
38 {
39 std::sort(power_set.begin(), power_set.end(),
40 [&](std::vector<T> this_v, std::vector<T> that_v)
41 {
42 return this_v.size() > that_v.size();
43 });
44 }
45
46 return power_set;
47 }
48
49 /*--
50 filterVectorByCharacteristicVector
51
52 Returns a vector containing the elements of the vector v, filtered by
53 the given characteristic vector.

122

54 ..
55 @param T the type of elements in the vector
56 @param v a vector of elements of type T
57 @param characteristic_vector a characteristic vector, as an integer
58 from 0 to (|v|ˆ2)-1, determining which elements
59 of v should be included in the returned vector
60 @return the vector v filtered by the characteristic
61 vector
62 --*/
63 template<typename T>
64 std::vector<T> NuSMVTranslator::filterVectorByCharacteristicVector(
65 std::vector<T>& v, int characteristic_vector)
66 {
67 std::vector<T> subset;
68 int index = 0;
69 while(characteristic_vector)
70 {
71 if(characteristic_vector & 1)
72 {
73 subset.push_back(v[index]);
74 }
75 index++;
76 characteristic_vector >>= 1;
77 }
78 return subset;
79 }

123

14 Appendix F - Feedback
The following questionnaire was completed by Dr.Matt Webster, a postdoctoral Research Asso-

ciate in the department of Computer Science at the University of Liverpool, who will be using the
software in further work to be conducted as part of the Trustworthy Robotic Assistants project.

Question 1 From your initial experience of using the software, how do you rate the level of
automation of the transformation process into both the Intermediate Form and into NuSMV input?

9.5 out of 10. The software does the vast majority of the work, and only minimal user input
is needed. For example, when the software finds a rule without a precondition it raises a warning
and asks the user what to do, It would be nice if the software continued with the translation
without user input, and just mentioned the warnings at the end of the translation process (i.e.,
like a compiler). I imagine this would be quite straightforward to implement within the software
though.

Question 2 Does the software given appropriate notifications when it encounters errors or am-
biguity in the parsed input files?

Yes. All errors and warnings are given during the translation process.

Question 3 Does the software provide a flexible solution for parsing new sets of control rules?

Yes. The software has been able to translate everything I’ve given it.

Question 4 How might the software be used in future work relating to the Trustworthy Robot
Assistants research project?

In previous work on the project we did a manual translation of the Care-O-bot’s behaviours
into Brahms and NuSMV. However this was laborious (it took several weeks) and error-prone,
and by the time we had done the translation the rule set had been expanded upon by the team
at Hertfordshire. We would like to use the translator software to automate this process so that it
can be done much faster and with fewer errors.

Another potential application is in the next healthcare scenario on the TRA project, in which
the person living in the Robot House will be able to input new rules for the Care-O-bot to follow.
In this case the rule set would need to be formally-verified again. Clearly the translator software
would be very useful here as we could automatically translate the new rule set into NuSMV and
check that all the requirements of the system still hold, and if not warn the user that there is a
problem.

Question 5 Are there any specific features of the software that will be of noteworthy use?

I think the intermediate form is very useful, as it will allow translation into Promela, PRISM,
UPPAAL or other languages so that di↵erent kinds of model checking can be done, e.g., proba-
bilistic model checking or real-time model checking.

Question 6 Is it likely that the softwares functionality will be extended, and if so what extra
functionality might be added?

If the software is used in the healthcare scenario it will need to be modified so that no user
input is required, i.e., the software will have to make a ”best guess” at what to do during the
translation process if something seems awry. Also, the software may be modified to translate to
other languages for model checking (see response to last question).

124

	Introduction
	Motivation
	Aims and Objective
	Challenges
	Solution

	Background
	Problem Background
	Research Conducted
	Temporal Logic
	Model Checking
	Semantics of Care-O-Bot Behaviours
	Practical Model Checking
	Additional Research

	Project Requirements

	Design
	Intermediate Form
	Translation into Intermediate Form
	Grammar Rules
	Data Extraction Rules
	Parser Design

	Translation into NuSMVInput
	Main Module Variable Declarations
	Main Module Variable Assignments
	Main Module Macro Definitions
	The Behaviour Module
	Temporal Constraints

	Test Design
	Evaluation Design

	Realisation
	Intermediate Form Implementation
	Translation into Intermediate Form
	Parsing Grammar Rules
	Parsing Data Extraction Rules
	Parsing Control Rules
	Intermediate Form Translation Testing

	Translation into NUSMV Input
	Behaviour Lists
	Time Constraints
	Main Module and Behaviour Module
	Been-in-State and Was-In-State Conditions
	Non-Deterministic Behaviour Scheduling
	NuSMVInput Testing

	Software Used

	Evaluation
	Software Functionality
	Intermediate Form Translation
	NuSMVInput Translation
	Anticipated Flags

	Degree of Automation
	Comparison to Hand-Written Model
	Flexibility
	Conclusion

	Learning Points
	Professional Issues
	Bibliography
	Appendix A - NuSMV
	Appendix B - Semantics of Care-O-Bot Control Rules
	Introduction
	Behaviour Scheduling
	Precondition Rules
	Action Rules
	Nested Behaviour Executions
	Definitions
	Linear Temporal Logic Properties

	Appendix C - Additional Design Documentation
	Identified Precondition Rule Features
	Precondition Rules Grouped by Features
	Categorization of Precondition Rules
	Identified Action Rule Features
	Action Rules Grouped by Features
	Categorization of Precondition Rules
	Predefined Non-Terminal Symbols
	Grammar Rules
	Data Extraction Rules
	Propositional Value Check Data Extraction Rule
	Enumeration Value Check Data Extraction Rule
	Time Constraint Data Extraction Rule
	Propositional Value Assignment Data Extraction Rule
	Enumeration Value Assignment Data Extraction Rule
	Non-Deterministic Behaviour Execution Data Extraction Rule
	Behaviour Execution Data Extraction Rule
	Delay Data Extraction Rule

	NuSMVVariable Assignments
	Main Module Macro Definitions
	The Behaviour Module
	Pseudocode for Key Parsing Methods

	Appendix D - Test Results
	Intermediate Form Translation Results
	Control Rule File
	Grammar Rule File
	Data Extraction File
	Intermediate Form

	NuSMVInput Translation Results
	Generated NuSMVInput
	Testing of Expected Properties

	Appendix E - Selected Source Code Listings
	The getByName Procedure
	The parseGrammarFile Procedure
	The buildBehaviourLists Procedure
	The buildTimingConstraintMap Procedure
	The vectorPowerSet Procedure

	Appendix F - Feedback

