Gwendolen Semantics: 2017

Louise A. Dennis

February 11, 2017

1 GWENDOLEN Semantics

An operational semantics for GWENDOLEN was presented in [1]. However the
language has been amended several times since then. This technical report updates
that semantics to present the current operational semantics of the language.

It should be noted that the GWENDOLEN distribution comes with extensive tu-
torials detailing the language syntax, the motivation behind its constructs and pro-
viding many examples of programs in the language. This technical report there-
fore focuses exclusively on the technical details of the semantics of the underlying
implementation.

2 Intentions

Intentions are crucial to understanding GWENDOLEN. BDI languages use inten-
tions to store the intended means for achieving goals — this is generally represented
as some from of deed stack (deeds include actions, belief updates, and the commit-
ment to goals). Intention structures also maintain information about the (sub-)goal
they are intended to achieve or the event that triggered them. GWENDOLEN aggre-
gates this information: an intention becomes a stack of tuples of an event, a deed,
and a unifier. This tuple is most simply viewed as a matrix structure consisting
of three columns in which we record events (new perceptions, goals committed to
and so forth), deeds (a plan of future actions, belief updates, goal commitments,
etc.), and unifiers. These columns form an event stack, a deed stack, and a unifier
stack. Rows associate a particular deed with the event that has caused the deed to
be placed on the intention, and a unifier. New events are associated with an empty
deed, €.

Example The following shows the full structure for a single intention to clean
a room. We use a standard BDI syntax: !g to indicate the goal g, and +!g to
indicate the commitment to achieve that goal (i.e., a new goal that ¢ becomes true
is adopted). Constants are shown starting with lower case letters, and variables
with upper case letters.

event \ deed \ unifier
+!clean () +!goto (Room) Room = rooml
+!clean () +!vacuum (Room) Room = rooml

This intention has been triggered by a goal to clean — the commitment to the
goal clean() is the trigger event for both rows in the intention. An intention is
processed from top to bottom so we see here that the agent first intends to commit
to the goal goto(Room), where Room is to be unified with room1. Once it has
committed to that goal it then commits to the goal vacuum(Room). In GWEN-
DOLEN the process of committing to a goal causes an expansion of the intention
stack, pushing more deeds on it to be processed. So goto(Room) is expanded be-
fore the agent commits to vacuuming the room and the above intention becomes

event \ deed \ unifier

+!goto (Room) +!planRoute (Room, Route) Room = rooml
+!goto (Room) +!follow (Route) Room = rooml
+!goto (Room) +!enter (Room) Room = rooml
+!clean () +!vacuum (Room) Room = rooml

At any moment, we assume there is a current intention which is the one being
processed at that time. The stacks that form the intention are further paired with
two booleans, suspended, and locked which indicate the intention’s status. A
suspended intention is, by default, not selected at the intention selection phase of
the agent’s reasoning. Typically an intention will remain suspended until some
belief condition occurs, normally that a belief is acquired via perception or from
the receipt of a message. If an intention is locked, conversely, then it must be
selected at the intention selection phase.

3 Plans, Applicable Plans and Intentions

A GWENDOLEN agent also has a plan library which is an ordered list of plans.
Plans are matched against intentions and manipulate them. There are three main
components to a plan,

1. A trigger event which may match the top event of an intention.
2. A guard: the guard is checked against the agent’s state for plan applicability.
3. A body which is the new deed stack that the plan proposes for execution.

We use the syntax trigger : {guard} < body to represent plans.

Plans only match intentions which contain unplanned goals (i.e., those as-
sociated with the “no plan yet” deed, ¢). For instance after a commitment to
goto (Room) the above intention might appear as:

event \ deed \ unifier

+!goto (Room) € Room = rooml
+!clean () +!goto (Room) Room = rooml
+!clean() +!vacuum (Room) Room = rooml

which would match the plan

+!goto(Room) : {upstairs(Room)} < +!goto(stairs); +!goto(Room)
This plan says that in order to achieve the goal goto(Room) in the case where the
room is upstairs, (upstairs(Room)), first the goal goto(stairs) must be achieved
and then the goal goto(Room) achieved.

This would transform the intention to:

event \ deed \ unifier

+!goto (Room) +!goto(stairs) Room = rooml
+!goto (Room) +!goto (Room) Room = rooml
+!clean () +!goto (Room) Room = rooml
+!clean() +!vacuum (Room) Room = rooml

3.1 Applicable Plans

Applicable plans are an interim data structure that describe how a plan from an
agent’s plan library changes the current intention. An applicable plan describes
the new rows that will replace the top row of the intention. The new rows are
generated from an event, a unifier and a stack of deeds. The new intention rows
are generated by creating a row for each deed and associating the event and unifier
with each of those rows (so the event and unifier are duplicated several times).
Therefore, an applicable plan is a tuple, (p., pas, o), of an event p., a deed
stack pgs, and a unifier py. The applicable plan in the example above would be

(+!goto(Room), [+!goto(stairs); +!goto(Room)|, { Room = room1}) (1)

Applicable plans are used because GWENDOLEN first determines a list of appli-
cable plans and then picks one plan to be applied. The function S,y is used to
select one applicable plan from a set. By default, this treats the set as a list and
picks the first plan, but it may be overridden by specific applications.

Applicable Plan Generation Method The function appPlans, generates a set
of applicable plans from the current intention, 7, and an agent’s internal state.

There are two cases. In the first case the top deed on the intention is not € (i.e.,
no planning is needed). In this case the set of applicable plans is for continuing
to process intention ¢ without any changes (i.e., it represents the top row of the
intention). So the set of applicable plans is the singleton:

{(hd.(3),hda(i), ") | hda(i) # €})

where hd,(4) is the top event in i, hd,(4) is the top deed, and #*4() is the top
unifier.

In the case where the top deed on the intention is ¢, appPlans generates the
set

{(p67pd78hd(i) UG) |

De : {Pgu}t < pa € P A hd, (1)0™0) = p,, 0 A ag = pgt’, 0} 3)

where P is the agent’s library of plans. hd.(i) = pe, 6’ means that the plan’s
trigger event follows from the top event on the current intention returning a unifier,
0'. This allows for Prolog-style reasoning on plan triggers.

The notation ag |= g, § means that the guard, g, is satisfied by agent ag given
unifier . Again this allows Prolog-style reasoning. Plan guards may refer to the
agent’s belief base, goal base or outbox. For instance Bb means some belief, b
should follow by logical inference from the agent’s belief base and Gg means that
some goal g should follows by logical inference from the goal base.

The notation ¢f indicates the application of unifier # to term ¢. So, for in-
stance, hd, (i)6"4(") is the result of applying the unifier §*4(") to the top event on
the intention.

4 The Environment

A feature of BDI agent programming languages is that BDI programs do not, in
general, stand alone but exist within a computational environment. GWENDOLEN

4

Notation Description

¢.do(a) Executes an action. Returns a unifier.

¢.getMessages(ag) Returns a set of new messages for agent ag.

¢.Percepts(ag) Returns a set of new perceptions (logical formulae) for
agent, ag.

&.done True if the environment is incapable of

further independent action.

Table 1: Methods implemented by GWENDOLEN Environments

programs expect to interact with environments programmed in Java which imple-
ment a specific interface. This means the semantics of some rules will depend
upon the environment used. Environments offer various functions — executing
agent actions, supplying sets of perceptions etc. The execution of these functions
may also induce a change in the environment itself according to its own semantics.

We represent the environment as . Table 1 summarises the functions that all
environments are required to offer by the GWENDOLEN semantics. Some envi-
ronments only change when one of these functions is called but others may be
independently dynamic (e.g., because other agents, not programmed in GWEN-
DOLEN are acting in them). We therefore also allow a transition relation on en-
vironments §: { —¢ ¢ and represent the transitions caused by the functions in

table 1 as ¢ do—(a)>§ SIS ¢ ¢ and ¢
change the environment.

getMessages Percepts(ag)
e _—

¢ . done does not

S Multi-Agent System Semantics, Scheduling, Rea-
soning Cycle

A GWENDOLEN agent is executed as part of a multi-agent system which includes
an environment and a scheduler. The scheduler is specific to the application and
so its policy for the order in which agents (and where relevant the environment)
are executed varies.

We represent the operational semantics of the multi-agent system a set of tran-
sition rules. The first rules, —, operate on tuples of the environment, a set of
agents and the scheduler and represents how the scheduler chooses the next agent
for execution. The agent then transitions through stages in a reasoning cycle (rep-
resented with —,). At each stage in the reasoning cycle specific rules are selected

which cause transitions on the agent (and sometimes also on the environment).

We assume the existence of the following functions: next_job(s) returns a
tuple of an agent (or the environment) and an updated version of the scheduler
depending on the scheduler policy; sleeping(a, s) returns true if the scheduler lists
a as asleep; sleep(a) returns true if the agent’s status is that it has no further
reasoning at the moment and sleep(a, s) returns an updated scheduler that lists a
as sleeping. — represents the transitive closure of the semantics on an agent’s
reasoning cycle so (£,a,A) —* (¢, d,F) represents the effect of a run of the
agent’s reasoning cycle (from stage A to F — see below) on both the agent and the
environment. { —, £ represents an update of the environment according to its
own semantics (not considered here).

The following rules represent the operation of the scheduler.

—€.done mnext_job(a) = (£,5') & —¢ ¢

4
€ A,5) ~, (€.4,9) @
da € A.—sleeping(a,s) next_job(s) = (a,s’)
(€, a,A) =% (¢ d,F) —sleep(a’))
(€, A s) = (¢, Ala\d'], &)
da € A.—sleeping(a, A) next_job(s) = (a,s’)

(€, A, s) =, (&, Ala\d'], sleep(a’, s'))
It should be noted that, among other things, next_job(s) can change the internal
state of the scheduler, for instance altering the set of agents marked as sleeping
if, for instance, new perceptions are available in the environment that might mean
the agent now has something to do.
The GWENDOLEN reasoning cycle is a set consisting of size stages (A, B, C,
D, E, and F). Each stage is a list of rules which are discussed in section 6. The
agent reasoning cycle transitions, —,, by picking the first applicable rule, r, from
the list in the current reasoning stage, R.S, transitioning the agent (and in some
cases environment) according to the rule —, and then moving the reasoning cycle
on according to the function next (see (9)).

Ir € rules(RS). (&, a) —, (&', d’)

(€,a,RS) =, (€', ', next(a’, RS))

—3r € rules(RS). (§,a) —, (¢, d")
(€,a,RS) —, (&, a,next(a, RS))

(7

®)

6

A GWENDOLEN agent is a tuple (ag, i, I, P, Pl, B, R, In, Out, S) of an iden-
tifier, current intention, intention set, plan library, applicable plan set, belief base,
rule base, inbox, outbox and sleep flag (more in this in section 6). The definition
of next in (9) sometimes uses the current intention, ¢, and intention set, /, to com-
pute the next reasoning stage. In these cases we represent the agenta as (...i...)

or (..

.i,1...) as appropriate.

WD) A) = E i=[AV €. 1is suspended (i)
MO Dl ~ |B i#[V3i'el —is_suspended()
next(a,B) = C)
E =
next((...i...),C) = {D i#H
next(a,D) = E
next(a,E) = F

next(a,F) = A

where is_suspended(:) is true if the intention, 4, is suspended.

6 Stage Rules: The Agent Reasoning Cycle

We represent an agent as a tuple (ag, i, [, P, Pl, B, R, In, Out, S) where:

ag is a unique identifier for the agent (it’s name);

1 is the current intention (see section 2); Note that there can be no current
intention which we will indicate with the expression ¢ = null.

I is a stack of intentions {7,7', ..};
P is an ordered list of the agent’s plans (see section 3);
Pl is a set of currently applicable plans (see section 3);

B is a set of the agent’s beliefs which are pairs of ground first-order for-
mulae and a string indicating the source of the belief. In GWENDOLEN all
beliefs are automatically assigned the source self unless they are acquired
by perception in which case they are assigned the source percept;

R is a set of Prolog-style rules used in reasoning;

7

e In is the agent inbox. Elements of inbox have the form | % m where id
is the identifier of the sender, ¢lf is the illocutionary force of the message
and can be tell, perform, or achieve, and m is the message content, a ground
first-order formula.

e Out is the agent outbox. Messages in this set have the format 1%¥ m
where id is the identifier of the recipient, ¢lf is the illocutionary force and
m is the message content, a ground first-order formula.

e Sis aboolean indicating whether the agent should be slept by the scheduler
or not.

In its initial state the current intention is nwll, the intention set consists of one
intention for each of the initial goals provided by the programmer. These inten-
tions are of the form (start, +!, g,0) where start is a special event used for
intentions with no specific trigger. Its plan library is a set of plans provided by a
programmer. The applicable plans are empty. The belief base and rule base are as
defined by the programmer. The inbox and outbox are empty and the sleep flag is
false.

Many of the transition rules make a check on a deed to see what type it is
(e.g. the addition of a belief, the deletion of a goal). We represent these checks
implicitly using the notation shown in table 2. Many of the rules also check in-
tentions for various properties and manipulate them. Table 3 summarises various
operations on intentions that are used in the rules.

It is generally unwieldy to present the full agent tuple in the description of a
transition rule. As a result we restrict ourselves to presenting only those parts of
the intention that are changed by the rule as we did in (9).

We now discuss each stage of the reasoning cycle in turn.

6.1 Stage A

Stage A of the GWENDOLEN reasoning cycle consists of a list of three rules which
are focused around managing intention selection:
[select_intention, sleep, drop_intention]

Select Intention (select_intention)

—empty(i) —locked(i) 3" € IU{i}. ~is_suspended(i")
Simte(IU{i}) = (4',1") hd.(i') # —!r,g Vhdg(i') # €
<£7 < s 7"7 I.. >> —7select_intention <£; < = i/, I.. >>

8

(10)

a An action.
b A belief.
+b A belief addition.
—b A belief removal.
b{source} A belief, from source source.
g A goal of type 7.
+9 A goal addition.
—lg A goal drop.
x| g A goal which can’t be planned.
lock An lock.
unlock An unlock.
1994 1 A message m sent to ag.
L) A message m received from ag.
T An structure who’s logical content is trivially true.
€ A special marker indicating that some event has no plan yet.
Table 2: Notations for deed type checks
Notation Description
Ug Compose a unifier with the top unifier on the intention.
empty(i) The deed stack of the intention is empty.
events(i) The stack of events associated with intention i.
hd.(7) The top event on the intention.
hd (i) The top deed on the intention.
ghd(®) The top unifier on the intention.
@ Add a new event, deed stack, and unifier
to the top of the intention.
ip Add a new event, deed, and unifier
as the top row of the intention.
t1;(4) Drop the top row of the intention.
dropy(e, 1) Drop all rows in the intention above and including the
first appearance of e as a trigger.
lock(i) Mark the intention as locked.
locked(i) The intention is locked.
suspend(4) Mark the intention as suspended.

is_suspended(i)

unlock(7)

The intention is suspended.
Mark the intention as unlocked.

Table 3: Operations on Intentions

—empty(i) locked(i) hd.(i)# —!r,gVhdy(z)# €
3" € I U{i}. ~is_suspended(i”)

<§7 < < ia I.. >> —7select_intention <€a < .. i, I.. >>

where empty(7) is true if intention 7 has an empty deed stack, locked(i) is true
if intention i is locked, and is_suspended(3) is true if intention i is suspended.
Table 3 summarises all the operations on intentions.

This rule has two cases, one for when the current intention isn’t locked and
one for when it is. When the intention isn’t locked the system uses the applica-
tion specific selection function S, to pick a new current intention (by default this
treats the intention set / as a LIFO queue and selects the first unsuspended inten-
tion from the queue). The rule is inapplicable if the current intention is empty or
the selected intention’s trigger is a drop goal event.

(11)

Sleep (sleep)

(i = null V empty(i) V is_suspended(i)) Vi’ € [.is_suspended(s’)
(€, (.0, 1,...9)) =s1eep (&, (.-, 0,1,...T))

Table 3 summarises all the operations on intentions such as empty etc,.

This rule sets an agent’s sleep flag if all its intentions are empty or suspended.
The agent will then be marked as sleeping by the scheduler once the reasoning
cycle is concluded.

(12)

Drop Intention (drop_intention)
i #null empty(i) [#0 Swl= (1)
(€,(...4,1...)) = arop.intention (&, (... ¢, I"...))

Table 3 summarises all the operations on intentions such as empty etc,.

This rule drops the intention : if it is empty and selects a new current intention
from the intention set. The additional i # null is necessary since a few rules can
leave the agent state with no current intention.

(13)

6.2 StageB

Stage B of the GWENDOLEN reasoning cycle consists of a list of two rules based
on generating a set of applicable plans: [generate_plan,no_plan]

10

Generate Plan (generate_plan)
appPlans(i) # ()

: : . (14)
(€,(...1, Pl...)) = generatepian (&, (... %, appPlans(i)...))
appPlans is as described in section 3.
No Applicable Plans (no_plan)
appPlans(:) =0 hd.(i) = +!;¢ (15)
(€, (..., Pl..)) —nopran (& (- 4, [(x!rg, [¢], 0240)] .. L))
appPlans(i) =0 —hd.(i) =+l g (16)

(€, (... 0, PL...)) =nopran (& (..., [(hdc(4),], 0)] .. .))

appPlans(i) is empty if there is no plan applicable to the current intention.
This rule differentiates between whether the intention trigger is a goal commit-
ment (in which case the rule creates an applicable plans consisting of an unplanned
“problem goal” event (x!.¢) (which might, for instance, be responded to by sus-
pending the intention until the agent’s beliefs have changed and some plan does
become applicable). Otherwise it generates an applicable plan with an empty deed
stack. This will have the effect of removing the top row of the intention and re-
placing it by nothing — i.e., it ignores the event that had no applicable plan for
handling it. The reasoning behind this is that such events (notifications of beliefs
acquired or dropped generally only require a planning response in special cases
and can normally be ignored).

6.3 Stage C

Stage C of the GWENDOLEN reasoning cycle consists of a list of a single rule for
modifying the current intention according to the applicable plan: [apply_plan]

Apply Plan (apply_plan)
(e, Ds,0) = Spian(Pl)
(&, (...i...PL..YY = (& (... (e,Ds,0) e t1;(i)...0...))
where t1,(7) represents intention, 7, with its top row removed and (e, Ds,) @
t1;(i) represents the applicable plan (e, Ds, 0) expanded and added to the top of

the intention, ¢ in place of its top row as described in section 3. Table 3 summarises
all the operations on intentions such as empty etc,.

7)

11

This rule selects a plan from the agent’s applicable plans as determined by the
application specific Syja, (by default this is the first applicable plan found in the
plan library and, where a unifier is required, this is the first returned by checking
against the agents internal state (this lists beliefs and goals, etc., in alphabetical
order)). The plan is represented as a tuple of the trigger event, the plan’s deed stack
and unifier. The top row of the current intention is dropped and the applicable plan
is “glued” in its place.

6.4 StageD

Stage D of the GWENDOLEN reasoning cycle consists of a list of rules for pro-
cessing the top deed on the current intention:
lempty, add_achieve_goal, add_perform goal,drop_goal, add belief,
drop_belief,lock unlock,wait_for, problem _goal, action, send,
null]

Handle Empty Deed Stack (empty)

_ empty (i) | (18)
(€, (i) Zempry (6, (v i.l))
Table 3 summarises all the operations on intentions such as empty etc,.
This rule does nothing if the current intention’s deed stack is empty (which
can occur if there is no plan for handling the intention’s trigger event). This leaves

the intention unchanged and it will be removed during the select intention phase
(Stage A).

Handle Add Achieve Goal (add_achieve_goal)
hdy(4)0™¢) = +1,9 B,R [g,0,

19
€ (i . B.R..)) (9
_>add,achieve,goa1
(&, (.. 21,(i) Vs 0,...B,R...))
hdy ()0 = +1,g B, R~ g 0)

(¢,(...i...B,R...))
_>add,achieve,goa1

(& (o (Hlag, e, 020); i B R...))

12

where B, R = g¢,0, means that the formula ¢ (which is the goal with the top
unifier from the intention applied to it) follows using Prolog-style reasoning from
the agent’s belief base when the additional unifier 6, is applied. t1;(z) Uy 6,
indicates the union of unifier §, with the unifier on the top of the intention t1;(7).
(e,d, 0);,i represents the addition of a row (e, d, 0) to the top of an intention 1.
Table 3 summarises all the operations on intentions such as empty etc,.

GWENDOLEN recognises two types of goal, achieve goals and perform goals
(goal types a and p respectively). This rule handles the commitment to an achieve
goal. An achieve goal is one that triggers a plan if it not already believed but does
no more than set a unifier if it is. If it is to trigger a plan, then we register the
commitment to planning the goal as an event on the top of the intention stack.
In this case the top row of the intention is not dropped so the deed intending a
commitment to the goal remains. This means that if, after execution of the plan,
the goal is not achieved then it will be replanned.

Handle Add Perform Goal (add_perform_goal)
hd(4)0M0) = +1,g

€0 i)

‘_>add,perform,goal)
(& (.. (g, €,020); (hd, (i), null, 0*D); £1,()...))

where (e, d, 0));,,i represents the addition of arow (e, d, ¢)) to the top of an intention
1. Table 3 summarises all the operations on intentions such as 6P et

Perform goals always trigger planning but are not replanned if they fail to
achieve some state of the world. This being the case we replace the top deed (the
request to commit to the goal) on the intention with null so that this is automati-
cally processed once the system reaches that row of the intention. We then add a
new top row with the trigger event of the new goal and a no plan yet deed.

21

Handle Drop Goal (drop_goal)
hdy(i)024) = —1 g Je € events(i).unify(e, +!-,9)

(€, (... 0...)) —raropgoar (&, (... tL;(dropg(e,i))...))

where unify(ey, es) indicates that two events can be unified. dropy(e,i) is a
function that recurses through an intention dropping every row after the first oc-
currence of e — i.e. it prunes the intention back to the point where the event first
occurred. Table 3 summarises all the operations on intentions such as events etc,.

(22)

13

This rule searches the current intention for the most earliest add goal event
that unifies with the goal to be dropped and then deletes all rows on the intention
above that. It then deletes the new top row which will be he one that contains the
instruction to commit to the goal (if an achieve goal) or null (if a perform goal).

Handle Add Belief (add_belief)
hdy(i)02 = +b
(€ (.. Z} I,B...)) —addveliet
(&, (... t1;(7) Up 620 unsuspend (I, b) Unew(+b,¢,0),

BU{b},...))

where unsuspend (I, b) unsuspends all suspended intentions in / that are waiting
for b to become true. new(e, d, #) creates a new intention from an event, deed and
unifier. Table 3 summarises all the operations on intentions such as #*(*) etc,.

This rule adds new belief to the belief base and a new intention noting the
appearance of the new belief. At the same time it unsuspends all intentions which
are waiting for b to be achieved as part of their suspend condition.

(23)

Handle Drop Belief (drop_belief)
hdy ()08 = —b Bl = {¥'|b' € B A unify(b',b)}

<€7 < s i7 [a B.. >> _>drop,belief
(€, (... t1;(7) Up 20 [Unew(—b,¢,0), B\B',...))

(24)

where unify(b',b) means that ' and b unify with each other. new(e, d,0) cre-
ates a new intention from an event, deed and unifier. Table 3 summarises all the
operations on intentions such as #*®) etc,.

This rule drops a belief from the belief base. At the same time it generates a
new intention containing the event that the belief has been dropped. Appropriate
handling of this event can allow the agent to form plans in reaction to it.

Handle Lock and Unlock (Lock_unlock)
hdy(7)6"4) = lock
(€, (.. 1)) = 1ockuntock (&, (- -, Lock(t1;(7) Uy ORd)) L))

hdy(i)6*4®) = unlock
(€, (.. .)) = 1ockuntock (&, (- unlock(t1;(7)Upfd()) .))

(25)

(26)

14

Table 3 summarises all the operations on intentions such as 6P et

This allows an intention to be “locked” as the current intention, for instance
to allow a complete sequence of belief changes be processed before any other
reasoning takes place. Once finished the intention has to be unlocked.

Handle Wait For
hdg(i)0") = xb B, R}=b,0,

(i B,R..)) “uatstor
(€, (. £L(0) Uy (0D UG,) ... B, R...))

27)

hdy(i)0" =xb B, R b,0, 3i' € I. ~is_suspended(i’)

<€a < - ?;7 [7 Ba R . >> —wait_for
(&' (.. suspend(i*)) I B R...))

(28)

hdy(i)0"D =xb B, R~ b,0, Vi'€ [.is_suspended(i’)

€1 . 1.B.. . In...8)) —waistor
(€ (...null, I U {suspend(it")} B, R...T))

(29)

where B, R |= b, 6, means that the formula b follows using Prolog-style reasoning
from the agent’s belief base and Prolog rule-base when the additional unifier 6,
is applied. t1;(i) Uy (624 U 6,) indicates the union of unifier (6% U 6,) with
the unifier on the top of the intention t1;(i). suspend() suspends an intention.
Table 3 summarises all the operations on intentions such as HRa() etc, .

If an intention is waiting for some belief, b, to become true then if that belief
is now true the intention continues processing. Otherwise the intention is sus-
pended. If all intentions are suspended then the agent is told to sleep at the next
opportunity.

Ignore Unplanned Problem Goal (problem_goal)
hd.(i) = x!;,g hdy(i) =€
<§7 < Sl >> _>prob1em,goa1 <£7 < AN >>

Table 3 summarises all the operations on intentions such as ORa() etc, .

This rule ignores an unplanned problem goal. It simply does nothing but al-
lows the reasoning cycle of the agent to continue processing on the assumption
that planning of the goal may become possible later.

(30)

15

Handle General Action (action)

hdg ()60 = o ¢ 2% ¢ cdo(a) =6, a#19Y m an
(€00 —aceson (€, (- tL:(1) Ug (849D UG,)..)
hd, (1)) = o € 229 ¢ ¢ do(a) hd.(i) =+, g
a # /]\ag,ilf m (32)
(€ (1)) —raceion (& (- (x11 9,6, P90 U 0,)1 i)
hd, (1)) = o € 22 ¢ ¢ do(a) hd.(i) £+, g
a # /]\ag,ilf m (33)

07 0) —racmron (€1 TL(1) U 000)

where ¢.do(af4)) = 6, means that the environment successfully executes a
returning unifier ,. t1,(7) Uy 6, indicates the union of unifier 6, with the unifier
on the top of the intention t1,(i). (e,d,?);,i represents the addition of a row
(e,d,0) to the top of an intention ¢. Table 3 summarises all the operations on
intentions such as #4(%) etc,.

In this rule, the agent attempts the action (unless it is a send action — 199).
If the action succeeds it returns a unifier and the environment updates. Otherwise,
if the trigger event at the top of the intention is a goal then this is generates a
problem goal event for handling by some plan.

Handle Send Action (send)

d “gl’ilfma) , ’
¢ PN @ ()62 =190 g do(19' Y m,,) = 0,

Elagsii T Out) oo G4
(€, (ag, t1i(1) Uy (6" U 0,), I U {new(+19" m, e, 0)},
L Out U{tas i Y))
do (4" m,,)
{—¢
hdg(i)640) = 1094 . =& do(1%" m,,) hd.(i) =+l;,g 35)

(€, {ag,i,I...0ut...)) —sena
(€, (ag, (x!,,9,€, D UG i 1. Out...))

16

do(Ta’g/’“fmag)
{—¢
hd (1)) = 400"U . =£.do(1%9 m,,) —hd.(i) =+, g
(€, (ag,1,1...0ut...)) —sena
(€', {ag,t1;i Up 040 T ... Out...))

(36)

where ¢.do (1% ¥ m,,) is the environment executing the sending of a message,
m, from ag to ag’ with illocutionary force ilf. new(e, d, 0) creates a new intention
from an event, deed and unifier (in this case the event is the sending of a message
to ag’). t1,(7) Uy 6, indicates the union of unifier 6, with the unifier on the top of
the intention t1;(¢). Table 3 summarises all the operations on intentions such as
oPa(i) etc, .

This rule behaves much as the rule for handling general actions with the ex-
ception that when a send action succeeds a new intention is generated registering
the event that a message was sent and the message itself is added to the agent’s
outbox.

Handle Null (null)

hdy(7)0%4) = null
(€ (i)y = (& (- t1(0) Ug 020 L))

where t1;(7) Uy 6, indicates the union of unifier 6, with the unifier on the top of
the intention t1;(7). Table 3 summarises all the operations on intentions such as
o) etc,.

The null action is used as a place holder to note, when a perform goal has been
committed to, a record of the relevant trigger event in an intention stack. This rule
simply ignores the null action when it is encountered and deletes that row from
the intention.

(37)

6.5 Stage E

Stage E of the GWENDOLEN reasoning cycle consists of a list of a single rule for
handling perception: [perceive]

17

Perceive

Percepts(ag getMessages(ag)\

; b6 & €
P = ¢ Percepts(ag)
OP = {b| b€ B\P A source_of (b) = percept}
P\BUOP U ¢.getMessages(ag) # ()

(€. I,B...In...S)) —perceive

€ (...
I'U{new(start,+b,0) | b € P\B} U {new(start,—b,0) | b € OP},
B...InU¢.getMessages(ag)...T))

(38)
Percepts(a etMessages(a
¢ p(g)gf1 &g g(g),gf,
P = ¢ Percepts(ag)
OP = {b| b€ B\P A source_of (b) = percept}
P\BUOP U ¢.getMessages(ag) = () (39)

(€ (. 1.B.. . In..)) —rpercerve (€ (... 1, B.. . In...)

where ¢.Percepts(ag) returns a set of new beliefs to the agent which are all
annotated as coming from the source percept. source_of (b) returns the source
of a belief b. £.getMessages(ag) returns a set of new messages to the agent.
new(e, d, f) creates a new intention from an event, deed and unifier. In this case
the event is a special distinguished event start which is used to indicate an
intention with no trigger.

This rule adds all messages to the inbox. It also creates new intentions, each
triggered by the event of acquiring or losing a percept. A key part of the working
of the rule depends on AIL’s annotation of all beliefs in the belief base with a
source and its use of a special annotation for beliefs whose source is perception.
If some change is bought about either to the agent’s inbox or to its intentions then
the agent’s sleep flag is set to true (i.e., the agent will not sleep at the end of this
reasoning cycle).

Note that in the EASS variant of GWENDOLEN the perception rule also up-
dates the belief base directly, unlike this rule which creates intentions to update
the belief base and leaves these to later reasoning cycles for execution.

18

6.6 Stage F

Stage F of the GWENDOLEN reasoning cycle consists of a list of a single rule for
processing messages in the inbox: [messages]

Handle Messages (messages)

(€, (...1...In...)) —nessages
(&, (... T U {newu(+received(ag, ilf ,m),e,0) | L9 m € In}...[]...))

(40)

where new(e, d, #) creates a new intention from an event, deed and unifier. In this

case the event is a belief that the agent has received message m from agent, ag

with illocutionary force, #lf. It is up to the programmer to decide how messages

should be handled, there is no default mechanism for handling messages of any

particular illocutionary force (unlike many BDI languages which give a specific

semantics to such constructs)

This rule does not poll the environment for messages. It takes all messages
currently in an agent’s inbox and converts them to intentions (triggered by a per-
ception that the message has been received), emptying the inbox in the process.
It should be noted that it does not store the message anywhere once the inbox is
emptied. It assumes that some plan will act appropriately to the message received
event. If this does not happen then the message content may be lost.

Acknowledgments. This research was funded by EPSRC via the research project
“Verifiable Autonomy” at Liverpool (EP/L024845). Further details of the project
are available at http://wordpress.csc.liv.ac.uk/va

References

[1] L. A. Dennis and B. Farwer. Gwendolen: A BDI Language for Verifiable
Agents. In AISB’08 Workshop on Logic and the Simulation of Interaction and
Reasoning. AISB, 2008.

19

