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Abstract

An ontology signature (set of entities used to define terms in the on-
tology) may facilitate the expression of more than its constituent concept,
role and individual names, since rewriting permits defined entities to be
replaced by syntactically different, albeit semantically equivalent defini-
tions. A signature can support and improve a variety of semantic inter-
operability scenarios, especially when only a restricted subset of terms is
available to facilitate (cover) a knowledge-based task, or when it is ben-
eficial to minimise the size of the cover set. Identifying whether a given
signature permits the definition of a particular entity is a well-understood
problem, while determining the smallest (minimal) signature that covers a
set of entities (i.e. a task signature) poses a challenge: the complete set of
alternative definitions, or even just their signature, needs to be obtained,
and all combinations of such definition signatures need to be explored,
for each of the entities under consideration. In this paper, we present
and empirically evaluate our novel approach for efficiently computing an
approximation of minimal signature cover sets.

1 Introduction

Ontologies in computer science provide a reference vocabulary (signature) for
some domain of interest, where the meaning of vocabulary members (entities)
is defined inductively in terms of other entities [1]. In definitorially complete
Description Logics ontologies, defined ontological entities are permitted to be
expressed (rewritten) into syntactically different, but semantically equivalent
forms [14], thus it is possible to convey the meaning of an entity without using
the actual entity name. Therefore, a signature may enable the expression of
not only its asserted concept, role and individual names, but also those defined
entities whose definition is permitted with the given signature.

A carefully composed signature may support and enhance a variety of se-
mantic interoperability scenarios, such as ontology alignment. Semantic inter-
operability between individually designed ontologies is typically hindered by
heterogeneity, as distinct ontologies may differ in their vocabularies and in the
meaning they associated with particular entities [3]. Ontology matching resolves
heterogeneity between different ontologies by producing an alignment, i.e. a set
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of correspondences that describe relationships between semantically related en-
tities of distinct ontologies. However, as alignments are typically incomplete,
providing only a partial coverage of an ontology vocabulary, often only a re-
stricted signature is available to support semantic interoperability. Moreover,
in ontology alignment negotiation [9, 11, 12], where an alignment is required to
be mutually acceptable for all interacting parties and it is the product of a nego-
tiation process, it is beneficial to minimise the considered correspondences (i.e.
the aligned part of an ontology signature), in order to reduce the overall cost of
the process, and to support emerging constraints (privacy, confidentiality, etc.).

F. van Harmelen et al. have shown [15], that semantic interoperability tasks
(amongst other parameters) are characterised by signatures, thus the prerequi-
site for any knowledge-based task is that it must be covered by the signature
which is available for the party who intends to carry out the given task. In
order to determine whether a given task signature is coverable by an available,
restricted signature, each entity of the task signature must be individually exam-
ined; an entity is considered to be covered, either if it appears in the restricted
signature, or if it is rewritable using only the restricted signature members. Al-
though task coverage is trivial to establish, determining the smallest, minimal
signature that covers a given task signature poses a challenge, as the complete
set of rewriting forms (definitions) need to be known, and all combinations of
such definitions are required to be explored, for each entity in question.

In our previous work [4], we have presented a pragmatic approach to com-
puting the complete set of definition signatures (or DSs, i.e. sets of entities
that permit the rewriting of defined concepts or roles) for a given ontology, by
exploiting the Beth definability property [14], a well-known property from clas-
sical logic which permits the notion of rewriting. In this paper, we introduce and
empirically evaluate a novel algorithm, which by assuming the a priori obtained
complete set of definition signatures, can efficiently compute an approximation
of the smallest entity combination (minimum signature coverage) that covers
a given task signature. The remainder of this paper is organised as follows:
Section 2 presents the notion of Beth-definability, and recaps our previous work
concerning the notion and computation of definition signatures, furthermore, it
discusses the set coverage problem family, which relates closely to the signature
coverage problem, and as has inspired our solution. Section 3 introduces and
characterises the signature coverage problem. Section 4 presents our novel ap-
proach. Section 5 reports on the empirical evaluation, including the experiment
framework, methodology and the results. Section 6 concludes the paper.

2 Background

In this paper, we assume familiarity with basic notions of Description Logics [1]
and the Web Ontology Language [6] (OWL). The vocabulary of a DL ontology
consists of the (disjoint) union of the countably infinite sets of concept names,
role names and individual names, where an entity e is either a concept, role
or an individual. A signature is an arbitrary set of role and concept names,
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Figure 1: This small ontology describes a family domain. Concepts Mother and
Father are only implicitly defined in T Family, hence these are also explicitly de-
finable, while concept Parent is both explicitly and implicitly defined in T Family,
as shown by their definition axioms. Each definition axiom is explained by a
justification (J1 −J7), where dashed line denotes implicit, normal line denotes
explicit definability.

and individuals; by Sig(C) we denote the signature of the a complex concept
C, while Sig(T ) denotes the signature of a TBox. In this paper, Σ refers to a
definition signature (DS) or its minimal variant (MDS), i.e. the set of entities
that implicitly define a given concept or role.

2.1 Beth Definability

A DS is used to characterise implicitly definable concepts in terms of their ex-
plicit definability, by exploiting Beth definability theorem. The theorem, initially
studied for first-order logic [2], states that a concept is implicitly definable with
respect to a theory if and only if it is also explicitly definable. Given that explicit
definability implies implicit definability, the Beth definability property holds for
some logic language L if the converse also holds, i.e. if implicit definability
implies explicit definability. Consequently, if a term is implicitly defined then
it is always possible to define it explicitly. As there are several variants of Beth
definability [14], we focus on Projective Beth definability which is a stronger
formulation [7] with the ability to specify a signature, thus permitting us to
restrict the vocabulary that can be used in definitions. Beth definability has
also been studied in the context of DLs [14], where it has been used to compute
explicit definitions based on implicit definitions. We thus assume a general DL
language L for which the Beth definability property holds. We define an explicit
definability concept as:

Definition 1 (Explicitly defined concept) Let C be a concept name, and T
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a TBox, where C ∈ Sig(T ). C is explicitly defined under T , if and only if there
is an axiom α : C ≡ D, such that α ∈ T , where D is either a concept name in
T , or a complex concept such that Sig(D) ⊆ Sig(T ) \ {C}.

For example, let us consider T Family, a small ALC-TBox describing the family
domain, shown in Figure 1 (upper). The concept Parent, defined by the axiom
α1 or α2, is the only explicitly defined concept in the ontology. Similarly, we
can define implicitly definable concepts:

Definition 2 (Implicitly definable concept) Let C be a concept name, T
a TBox, and Σ a signature, where C ∈ Sig(T ), and Σ ⊆ Sig(T ) \ {C}. C is
implicitly definable from Σ under T , if and only if for any two models I and
K of T , ∆I = ∆K, and for all predicate P ∈ Σ, P I = PK. Then it holds that
CI = CK.

Given the example, it can be seen that both Mother and Father are implicitly
defined concepts in T Family, and each has nine syntactically different, but se-
mantically equivalent definitions (Figure 1, lower). Furthermore, the explicitly
defined concept Parent, is also implicitly defined by axioms {α2, α6}.

Deciding definability. A particular concept name C can either be defined
explicitly or implicitly under an ontology, or be undefined. Explicit definability
is a syntactic notion; deciding whether C is explicitly defined under an ontology
is the trivial process of searching the TBox for a concept equivalence axiom
whose left-hand side is C, and the potentially complex concept on the right-
hand side does not include C (e.g. C ≡ D where C 6∈ Sig(D)). In contrast,
implicit definability is a semantic notion whose detection requires reasoning1.
The computational complexity of determining whether a concept is implicitly
defined depends on the complexity of the entailment check, which is predicted
on the expressivity of the given DL language. Thus it is potentially exponential
in the size of the ontology, for expressive DL dialects.

Role definability. The notion of definability also applies to roles, hence a
role can be classified either as defined (explicitly or implicitly), or as undefined.
For example, in T Family, the role hasChild is explicitly defined as the inverse
of the role hasParent, which is implicitly defined by axiom α6. A defined role
means that its extensions (set of pairs of individuals) can be unambiguously
determined under an ontology, if the individuals of those entities that are used
to define the role are known in an interpretation. Concepts are defined in terms
of other concept and role names, whereas roles are only defined in terms of other
roles. Deciding role definability can be achieved by using the same method as
for concepts, however the implicit definability check process must be restricted
to the R-Box (a subset of the TBox which contains all role axioms), and the
definition signature Σ can only contain role names [4].

The number of possible rewritings of a defined concept (or role), regardless
of whether it is explicitly or implicitly defined, is potentially exponential in the
size of the ontology. Descriptions of defined concepts (i.e. the right-hand side

1Implicit definability can be reduced to entailment checking [14].
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of a non-primitive concept definition axiom) are built inductively using other,
potentially defined concepts. Thus, the number of possible concept rewritings
is dependent on the definability of its constituent concepts. As the definability
of any defined description member concept is dependent on the definability of
its own description, definability is therefore a recursive notion [4].

2.2 Minimal Definition Signatures

A definition signature can be defined as:

Definition 3 (Definition Signature (DS)) Given a TBox T , a set of enti-
ties Σ is a definition signature of

• the concept C under T , if and only if members of Σ can be used to
construct the right-hand side of a definition axiom for C, i.e. there is
some complex concept D, such that Sig(D) ⊆ Σ, and T |= C ≡ D, where
Σ ⊆ Sig(T ) \ {C};

• the role r under T , if and only if there is some complex role s, such that
Sig(s) ⊆ Σ, and T |= s ≡ r, where Σ ⊆ Sig(T ) \ {r}.

If an entity e is defined in an ontology, then we can entail that there exists some
subset of the ontology signature that implicitly defines e. We only focus on
acyclic definitions, as definitions with direct cycles (where the defined concept
appears in its corresponding description) are excluded by this definition, due to
the fact that such definition signatures does not permit rewriting without using
the defined entity name. We denote that an entity e is implicitly definable by
a signature Σe under an ontology O as O |=Σe e ≡ C, where C is a potentially
complex concept or complex role, such that Sig(C) = Σ.

As definition signatures may contain redundant members, their size could be
as large as the ontology signature, thus we introduced the notion of signature
minimality :

Definition 4 (Minimal Definition Signature (MDS)) A signature Σ is a
minimal definition signature of a defined entity e under a TBox T , if none of
its proper subsets are definition signatures of e.

The minimality property of an MDS refers to minimising the size of the signa-
tures, by eliminating superfluous entities. However, a defined concept may have
many unique MDSs (where the difference of any two MDSs is not an empty
set) under an ontology, with the same cardinality. From the definition, it fol-
lows that every MDS is also a DS, and any DS may contain at least one, but
potentially many MDSs. For example, in the T Family example (Figure 1), the
signature Σ = {hasChild, Man,Woman} is a DS of all three defined concepts in
the TBox. However, this signature is not a minimal DS of Parent, because it can
be defined by the following MDSs: {hasChild}, {hasParent}, {Mother,Father}; as
formalised by axiom sets {α1}, {α2, α6} and {α2}, respectively.
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While rewriting has been extensively studied, the practical applicability of
currently existing methods is limited, as they are bounded to particular De-
scription Logics (DLs), and they often present only theoretical results. In our
previous work [4], we have presented a pragmatic approach that in practice can
efficiently compute the complete set of definition signatures of most defined en-
tities described using a DL language for which the Beth definability property
holds. Knowing the signature of a definition, even without knowing the actual
form of the definition axiom, can support a variety of applications, such as on-
tology alignment evaluation. Furthermore, we have sampled the prevalence and
the extent of definability in real world ontologies by conducting experiments on
a large and diverse dataset2, which included establishing the definability status
of concepts and roles and computing all possible minimal definition signatures of
defined entities. This has confirmed the hypothesis that definability is prevalent
in any type of ontology, although it is more likely to occur in more expressive,
and semantically richer ontologies. In addition it was shown, that definability
computation is feasible for most real world ontologies, and in some cases, it
can be useful in dynamic environments as well, due to the fact that a subset of
MDSs can be found in polynomial time.

2.3 The Set Coverage Problem Family

The set coverage problem (or minimal set cover problem) is a classic question
in computer science, combinatorics, and complexity theory [17]. The set cover
problem is, given a set of elements U (referred to as the universe) and a family S
of subsets of U (whose union equals the universe), to find the smallest, minimal
sub-collection C ⊆ S, called the cover set such that the union of sets in C covers
U (∀x{x ∈ U|x ∈ C}). For instance, let us consider Example 1:

Example 1 (Minimal set cover problem) Let U be a universe of elements,
and S be a family of sets such that:

• U = {1, 2, 3, 4, 5}
• S = {{1, 2, 3}, {1, 2}, {3, 4}, {4, 5}}

The union of subsets of S clearly contains all members of U , thus U can be
covered by an S′ ⊆ S. Although there are several other solutions ({{S1, S3, S4},
{S2, S3, S4}}), there is only one minimal cover set, C = {S1, S2}.
Finding the minimal cover set is an NP-hard problem, however, there is a poly-
nomial time greedy algorithm, that is able to find approximations (i.e. not
necessarily minimal, but small cover sets) [17].

In the weighted set cover problem, each set S ∈ S is assigned a weight
w(S) ≥ 0, thus in this case, the goal is to find a cover set C with the minimal
total weigh

∑
S∈C w(S). To illustrate the problem, let us consider the following

example:

2The evaluation corpus was assembled from a number of different datasets, including a
corpus which was obtained by crawling the Web, this contained thousands of OWL ontolo-
gies [10]
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Example 2 (Weighted set cover problem)

• U = {1, 2, 3, 4, 5}

• S = {{1, 2, 3}, {1, 2}, {3, 4}, {4, 5}}

• W = 〈5, 2, 2, 2〉

The union of subsets of S contains all members of U , but each set s ∈ S is
assigned a weight value, as given by the vector W . In terms of cover set cardi-
nality, the minimal solution is C1 = (S1∪S4). However, when weights are taken
into account the cover set with a minimal total weight is C2 = (S2 ∪ S3 ∪ S4),
where w(C1) = 7, w(C2) = 6, thus w(C1) > w(C2).

Another relevant classical problem is from relational database theory, which
concerns finding the minimal cover for functional dependencies. A functional
dependency (FD) is a constraint between two sets of attributes in a relation from
a database [16]. For example, X → Y means that the values of the attribute
set Y are determined by the values of X, or in other words, two tuples in a
database sharing the same values of X would also share the same values for Y .
The closure of a set of attributes X with respect to a set of FDs F is the set X+

of all attributes that are functionally determined by X using F+, the closure of
F . Before computing the closure, a set of FDs F is normalised by exhaustively
applying inference rules. The following inference rules [16] are used both in
normalisation and in closure computation (where X,Y, Z,W denote attribute
sets in some relation R):

Inference Rule Condition Action
Reflexivity if Y ⊆ X then X → Y
Augmentation if X → Y then XZ → Y Z
Transitivity if X → Y and Y → Z then X → Z
Union if X → Y and X → Z then X → Y Z
Decomposition if X → Y Z then X → Y and X → Z
Pseudotransitivity if X → Y and WY → Z then WX → Z
Composition if X → Y and Z →W then XZ → YW

Table 1: Functional dependency inference rules

The next example illustrates the computation of the closure of all attributes:

Example 3 (FD set attribute closures) Let us consider a set of FDs F
such that

F = { (1) A→ B

(2) C → E

(3) E → F

(4) A,C → D}
F is already normalised (is in 3NF, the third normal form), i.e. each FD con-
tains exactly one attribute on the RHS (right-hand side), and each FDs’ LHS
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is irreducible (reducing any one attribute from the LHS set would change the
content of F). The closure of all attributes in F is computed as shown by the
following steps:

1. A+ : A,B (A by reflexivity, B by (1))

2. B+ : B (B by reflexivity)

3. C+ : C,E, F (C by reflexivity, E by (2), F by transitivity and (2, 3))

4. D+ : D (D by reflexivity)

5. F+ : F (F by reflexivity)

6. (A,C)+ : A,B,C,D,E, F (A,C by reflexivity, B by (1), D by (4), E by (2), F
by transitivity and (2, 3))

3 The Signature Coverage Problem

The ontology signature coverage problem concerns whether a given task signa-
ture can be covered by another, restricted signature, where both signatures are
subsets of the same vocabulary. A task signature is said to be covered, if all of
its constituent entities are covered. Individual names can only be covered by
an asserted entity i.e. explicitly, however, definable signature entities (concepts
and roles) can also be covered implicitly, if the restricted signature contains a
corresponding definition signature. We define entity coverage as:

Definition 5 (Explicitly or implicitly covered entity) Given an ontology
O, a task signature S, and restricted signature R such that S,R ⊆ Sig(O), an
entity e ∈ S is covered explicitly by R, if e ∈ R; or covered implicitly by R, if e
has a definition signature Σ, such that Σ ⊆ R; otherwise it is uncovered.

A defined concept or role can simultaneously be covered explicitly and implicitly,
thus a task signature entity e ∈ S may assume one of the four different coverage
status w.r.t. a restricted signature R:

uncoverable e 6∈ R ∧ Σ 6⊆ R
explicit coverage: e ∈? R

coverable
explicitly only e ∈ R ∧ Σ 6⊆ R
explicitly and implicitly e ∈ R ∧ Σ ⊆ R

explicit and implicit coverage: e ∈? R+

implicitly only e 6∈ R ∧ Σ ⊆ R

Table 2: Entity coverage status

Determining whether a given task signature is coverable by a particular,
restricted signature is the trivial process of identifying the coverage status of
each task signature entity. This can be achieved in two ways: i) either each task
signature entity is subjected to an implicit definability check; ii) or by assuming
that the complete set of minimal definition signatures of each entity is already
obtained, for each entity ei ∈ S, we search for an MDS Σei such that Σei ⊆ R.
The set of entities, which covers all members of a task signature S is called the
cover set and it is defined as follows:
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Definition 6 (Cover set) Given an ontology O, a task signature S, and re-
stricted signature R such that S,R ⊆ Sig(O), C is a cover set of S with respect
to R, if and only if ∀e{e ∈ S|e ∈ C ∨ ∃Σe|Σe ⊆ C} and C ⊆ R.

In other words, a cover set is a definition signature of all entities of the task
signature.

As an ontology signature can cover more than its constituent entities, due to
the fact that a given signature may permits some defined entities to be implic-
itly covered, hence we adopt the notion of closure from functional dependency
computation (Section 2.3) in order to provide a signature representation which
describes the set of all entities covered by a given signature. We refer to such
an entity set as signature closure, and define it as follows:

Definition 7 (Signature closure) Given an ontology O, and a signature X
such that X ⊆ Sig(O), X+ (the closure of X ), contains all explicitly and implic-
itly covered entities of Sig(O) by X , i.e. the set of entities ∀e{e ∈ Sig(O)|e ∈
X ∨ ∃Σe|Σe ⊆ C}.

This permits a more succinct definition of coverage: a task signature S is covered
by a set C if and only if S ⊆ C+.

Once it has been established, that a restricted signature R covers a given
task signature S, the problem is to identify the smallest subset C ⊆ R which
covers S. This is called the minimal cover set (or cover), and defined as follows:

Definition 8 (Minimal cover set) Given an ontology O, a task signature S,
a restricted signature R such that S,R ⊆ Sig(O), and the set C which covers S
with respect to R, C is minimal if and only if there is no other cover set C′ ⊆ R
such that |C′| < |C|.

There can be more than one minimal cover set, i.e. two sets with the same
cardinality whose overlap is not an empty set.

Finding a minimal cover set is an NP problem, because it requires all cover
sets to be identified, by exhaustively testing each subset of the power set of the
ontology signature (P(Sig(O))), in order to find all covers and select the one
with the minimum cardinality. This complexity can be reduced by considering
the module of a given task signature, instead of the entire ontology signature.
As it was shown in our previous work [4], all possible MDSs of a defined entity
is contained in a module of the entity, thus the module of a task signature
contains all possible minimal cover sets. However, finding the minimal cover set
in a module is still an NP problem, as in this case, each subset of the power set
of the module signature needs to be considered.

Approximation algorithms are commonly used for problems with NP time
complexity, such as the set cover problem, in order to provide sub-optimal so-
lutions in polynomial-time. The greedy algorithm design is one of the standard
techniques for approximation algorithms [17]. In the context of the minimal
signature cover problem, the optimal solution is the smallest possible cover set.
The following example illustrates the signature coverage problem:
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Example 4 (Signature Coverage) Let O be an ontology, S a task signature,
R a restricted signature, and M the complete set of MDSs of each defined entity
of S (an MDS m ∈ M is represented as the tuple 〈e,Σ〉, where e is the defined
concept or role name,and Σ denotes the definition signature), where S,R ⊆
Sig(O), such that

• Sig(O) = {A,B,C,D,E,F, r, s, q}
• M = {〈C, {A,B}〉 , 〈C, {E, r}〉 , 〈C, {q}〉 , 〈B, {D}〉 , 〈D, {B}〉 , 〈s, {r}〉}
• S = {B,C,D,E, s, q}
• R = {A,B,C,D,E, r, q}

Without accounting for definability, i.e. by only considering explicit coverage,
the restricted signature does not cover the task signature because S \ R 6= ∅.
However, considering implicit coverage shows that the closure of the restricted
signature is R+ = {A,B,C,D,E, r, s, q}, thus S can be covered by R, because
S ⊆ R+. Following a naive, greedy approach, one may select those entities that
appear both in S and R as these entities can be covered explicitly, i.e. C1 =
S∩R = {C,D,E, q}; then attempt to cover the remaining task signature entities,
by adding a correponding MDSs for each uncovered task signature entity; in
this case covering s by adding r to C1, as there is an MDS 〈s, {r}〉 thus s is
implicitly definable by the signature {r}. As a result, C1 = {B,C,D,E, r, q}
covers S. However, the smallest cover set is C2 = {B,E, r, q}, because C+

2 =
{B,C,D,E, r, s, q}, S ⊆ C+

2 , and |C1| > |C2|.

In example 4, a naive, greedy approach (Greedy #1 ) has produced a non-
minimal cover set C1, which was an approximation of the minimal cover C2.
The cover set C1 can be improved by removing redundant entities (resulting in
the set C ′

1 = C2), i.e. producing a non-redundant cover set:

Definition 9 (Non-redundant cover set) Given an ontology O, a task sig-
nature S, a restricted signature R such that S,R ⊆ Sig(O), and the set C which
covers S with respect to R, C is a non-redundant cover set if and only if none
of its no proper subsets are cover sets of S.

Non-redundant cover sets are typically small, however, as there can be more
than one non-redundant cover set (with different cardinality), a non-redundant
cover set is not necessarily minimal. It is worth noting that every minimal cover
set is also a non-redundant set.

4 Approximating Minimal Cover Sets

In order to tackle the NP time complexity of the minimal signature cover prob-
lem, we introduce a greedy, approximation algorithm (Greedy #2 ), which pro-
vides a sub-optimal solution in polynomial-time. The resulting cover set is
always non-redundant.

The basic idea behind the approach is that the cover set is built incremen-
tally until all task signature members are covered, however, instead of selecting
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individual entities from the restricted signature, at each iteration the approach
selects an entity set. The entity sets that are being considered are MDSs, be-
cause individual entities are typically only cover entities explicitly, while MDSs
can cover defined entities implicitly (in addition to explicitly covering all those
task signature entities that appear in the MDS as well). The selection is made
by assigning a cost and value score to each MDS, and then picking the set which
provides the maximum value and the minimum cost with respect to the task
signature and the incomplete cover set, prioritising on the value score. The cost
quantifies the number of entities required to be added to the cover set (i.e. the
set difference of the cover set and the particular MDS), while the value repre-
sents the number of entities that the given signature covers (an MDS can be
a DS for more than one defined entity, thus it can cover several task signature
entities). In case there are more than one MDSs with the same cost and value,
a random MDS is selected.

In order to evaluate the actual value of an MDS (i.e. the set of all entities of
the task signature that the MDS covers either explicitly or implicitly), its closure
needs to be identified, similarly to functional dependencies, thus we represent
MDSs in the form of functional dependencies to facilitate this notion. There is
a strong resemblance between the concept of FD and MDS, meaning that an
MDS can be thought of as functional dependency between entities of an ontology,
where the relation between the signature of the left-hand side (LHS) and the
entity on the right-hand side (RHS) is implicit definability. For example, the
minimal definition signature ΣC = {A,B} which defines concept C using entities
{A,B} may be represented as m : (A,B→ C), we refer to such MDS as fMDS,
and define it as follows:

Definition 10 (fMDS) Given a defined entity e, and its minimal definition
signature Σ, the corresponding fMDS is the function m : (Σ→ e), which given
Σ covers e.

A given fMDS closure is computed from the set of all fMDSs, by identifying
all relevant definition signatures:

Definition 11 (fMDS-closure) Given an fMDS m : (Σ → e), and a set of
fMDSs M where mi ∈M, the closure of mi is m+

i : (Σ→ E) such that

E = Σ ∪ {e} ∪ (
⋃
∀m+RHS

j {mj ∈M|m+LHS
j ⊆ m+LHS

i })

where m+LHS denotes the signature Σ, and m+RHS refers to signature E.

For example, givenM = {m1 : (A,B→ C),m2 : (B→ D)}, the closure isM+ =
{m+

1 : (A,B→ A,B,C,D),m+
2 : (B→ D)} because the m+LHS

1 signature, in
addition to implicitly covering concept C, also explicitly covers concepts A,B,
furthermore, it implicitly covers D as m+LHS

2 ⊆ m+RHS
1 thus D ∈ m+LHS

1 .
Now we formalise the cost and value calculation of an fMDS:

Definition 12 (fMDS value and cost) Given an fMDS m, an ontology O,
a task signature S, a cover set C, and M the complete set of fMDSs in O, where
m,S ⊆ O the value and cost of m with respect to S and C is given by
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Algorithm 1: ComputeMinimalSignatureCover(O,R,S,M)

Input : O: ontology; S: task signature; R: restricted signature;
M: the complete set of fMDSs of each defined entity e ∈ O

Output: C: cover set of S w.r.t. R
1 C ← C ∪ ∀e{e ∈ S ∩R|e 6∈ mRHS

i |mi ∈M}
2 Initalise(M)
3 C+ ← ComputeSignatureClosure(C,M)

4 M ′ ←M \ ∀mi{mi ∈M ′|mLHS
i ⊆ C+}

5 while (S \ C+) 6= ∅ do
6 V ← ComputeValueCostVector(M ′,S, C+)
7 mselected ← select an m ∈M ′ according to V, with max value(m),

and min cost(m)

8 C ← C ∪mLHS
selected

9 C+ ← ComputeSignatureClosure(C,M)

10 M ′ ←M ′ \ ({mselected} ∪ ∀mi{mi ∈M ′|mLHS
i ⊆ C+})

11 end
12 return C

- the value function v(m), which assigns a natural number i ∈ N0 to m such
that v(m) = |R \ C+ ∩m+RHS |

- the cost function c(m), which assigns a natural number i ∈ N0 to m such
that c(m) = |C+ \mLHS |

Algorithm 1 present the approach that approximates a minimal cover set for
an ontology signature. The algorithm uses two subroutines (both described in
Section 4.1), Algorithm 2 that computes the closure of fMDSs, and Algorithm
3 which computes the closure of signatures.

Algorithm 1 assumes the precondition, that the task signature S is coverable
by the restricted signature R. The process starts by applying an optimisation
heuristic, that initialises the cover set C with all entities of the task signature
that can only be covered explicitly (line 1). Next M , which is used as the
search space, is initialised with the complete set of fMDSs M. In addition,
we generate and add a ‘faux’ MDS to M , for each entity that can be covered
both explicitly and implicitly. For instance, the concept A would have the
faux fMDSs (A→ A), i.e. the entity can cover itself as it is permitted by the
restricted signature. By including these fMDSs, we ensure that the search space
is complete, i.e. for each task signature entity it includes all possible ways of
cover. Finally we replace M with its closure (line 2).

Before the process begins the search, C+, the cover closure is computed.
This is used as the termination condition of the search process (line 5), i.e. the
algorithm concludes when task signature is covered. M ′ is created as a copy of
M , the former is the actual search space which is continuously pruned at each
iteration (in order to optimise the process by reducing the size of the search
space), while the latter is the complete set of fMDSs closures which is left
intact for the purpose of computing signature closures during the search. The
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pruning of M ′ is carried out by removing any fMDSs which has no value and
cost w.r.t. the cover set (line 4).

During the search (line 5-11), the value and cost of each fMDSs in M ′ is
evaluated w.r.t. the cover set (line 6), then the best fMDSs is selected (line
7) and added to the cover (i.e. the LHS of the fMDS, which is the definition
signature, line 8). The cover is then reevaluated, by updating its closure (line
9), finally M ′ is pruned according to the updated cover set. These steps are
repeated until the task signature is covered.

The algorithm always finds a non-redundant cover set for a given task sig-
nature, thus it is complete and correct. At the worst case, the process covers at
least one entity at each iteration, thus the maximum number of steps performed
by the algorithm is n, where n = |S|. As both subroutines used by Algorithm 1
are polynomial time, the overall time complexity of Algorithm 1 is polynomial
as well.

(Greedy #3) In Example 4, we have outlined an algorithm (Greedy #1 ),
which produces redundant cover sets. The main difference between approach
#1 and #2 is that the former narrows the non-deterministic part of the search,
as it explicitly covers all of those entities that can be covered explicitly, i.e. it
includes each explicitly and implicitly coverable entity as well. Thus approach
#1 is typically faster than #2, however #2 may produces a considerably more
optimal cover set compared to approach #1. The redundancy issue of approach
#1 is trivial to resolve, as redundant entities can be filtered out from the cover
set in polynomial time:

C \ ∀e{e ∈ C|∃m ∈M |e ∈ mRHS |mLHS ⊆ C}

i.e. by removing every entity from the cover set C, that is definable by C. Thus
we introduce approach #3, that is expected to produce more optimal solutions
than #1, while still performing faster than approach #2.

4.1 Computing Closures

Algorithm 2 computes the closure of an fMDS set, by exhaustively applying
functional dependency inference rules (Section 2.3). The closure of an fMDS
consists of all entities that can be covered using the LHS signature of m. For
example, given M = {m1 = (A,B→ C),m2 = (C→ D)}, first we apply the
identity rule, i.e. every entity explicitly covers itself, hence m1 : (A,B→ A,B,C)
and m2 : (C→ C,D)}. Then we apply the transitivity rule: mLHS

2 ⊆ mRHS
1 ,

thus m1 : (A,B→ A,B,C,D). Finally the MDS closure is given by the set
M+ = {m1 : (A,B→ A,B,C,D),m2 : (C→ C,D)}. At the worst case, the each
fMDS is applied to every other fMDS, at most once, thus the algorithm has
quadratic time complexity.

Algorithm 3 computes the closure of an ontology signature w.r.t. to a set of
fMDSs, similarly to Algorithm 2, by exhaustively applying inference rules. X+,
the closure of a signature consists of all entities that can be covered either explic-
itly or implicitly by the set X. For example, given a signature X = {A,B}, and
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Algorithm 2: ComputeMDSClosure(M)

1 M+ ←M
2 for m ∈M+ do
3 mRHS ← (mLHS ∪mRHS)
4 end
5 Updated← true
6 while Updated do
7 Updated← false
8 for m ∈M+ do
9 for m′ ∈M+ do

10 if m′ 6= m ∧mLHS ⊆ m′RHS ∧ mRHS 6⊆ m′RHS then
11 m′ := (m′LHS → m′RHS ∪mLHS)
12 Updated← true

13 end

14 end

15 end

16 end
17 return M+

Algorithm 3: ComputeSignatureClosure(X,M+)

1 X+ ← X
2 Updated← true
3 while Updated do
4 Updated← false
5 for m+ ∈M+ do
6 if m+LHS ⊆ X+ then
7 X+ ← X+ ∪m+RHS

8 M+ ←M+ \ {m+}
9 Updated← true

10 end

11 end

12 end
13 return X+

the set of fMDSs closures M+ = {m+
1 = (A,B→ A,B,C,D),m+

2 = (C→ D)}
the closure of X is given by the set X+ = {A,B,C,D}. The algorithm has
polynomial time complexity, as at most every fMDS is applied to the signature
exactly once.

5 Empirical Evaluation

In this section, we empirically determine how effective our approximation ap-
proach is in finding task signature cover sets. The experiments tested the hypoth-

14



Ontology
DL

Axioms
C R C ∪R

Expressivity |C| Def% M |R| Def% M Def% M
Conference corpus

cmt ALCIN (D) 226 29 13.79% 2.00 59 67.80% 1.00 50.00% 1.09
conference ALCHIF(D) 285 59 49.15% 2.31 64 65.63% 1.00 57.72% 1.54
confOf SIN (D) 196 38 18.42% 4.00 36 5.56% 1.00 12.16% 3.33
edas ALCOIN (D) 739 103 11.65% 7.00 50 56.00% 1.00 26.14% 2.80
ekaw SHIN 233 73 0.00% 0.00 33 90.91% 1.00 28.30% 1.00
iasted ALCIN (D) 358 140 11.43% 2.50 41 39.02% 1.00 17.68% 1.75
sigkdd ALEI(D) 116 49 16.33% 2.38 28 42.86% 1.00 25.97% 1.55

AVG. 307.57 70.14 17.25% 2.88 44.43 52.54% 1.00 31.14% 1.87

LargeBio corpus
NCI fma ALC 9083 6551 30.27% 1.32 63 1.59% 0.00 30.00% 1.32
NCI snomed ALCH 30411 24040 28.60% 1.39 82 1.22% 0.00 28.50% 1.39
SNOMED fma ALER 20243 13430 21.44% 1.10 18 5.56% 0.00 21.47% 1.10
SNOMED nci ALER 71042 51128 57.31% 1.09 21 4.76% 0.00 57.87% 1.09

AVG. 32694.75 23787.25 34.40% 1.22 46.00 3.28% 0.00 34.46% 1.22

Table 3: Evaluation corpus

esis, that the presented approximation approach, by considering both explicit
and implicit coverage, produces a cover set which is albeit not minimal, but
still considerably smaller than cover sets obtained by only explicit coverage.
Thus approximations of minimal cover sets are typically smaller than explicit
covers, if the given task signature contains defined entities w.r.t. a restricted
signature (clearly, for a task signature which lacks defined entities, only explicit
coverage is possible). In addition, by measuring the computation time and the
cardinality of the resulting cover sets, we compare those two versions of the
approach (Greedy #2 and #3 ) that produce more optimal approximations, i.e.
non-redundant cover sets. Greedy #2 considers a larger search space, thus it is
expected to provide a more optimal solution (i.e. smaller cover set) than Greedy
#3, consequently, the latter approach is likely to perform faster.

The evaluation corpus was assembled from two OWL datasets that are com-
monly used for empirical evaluation in the ontology alignment literature. We
have selected 7 small ontologies (average 70.14 concepts and roles, and 307.57
axioms per ontology) from the Conference dataset 3, which describes the confer-
ence organisation domain; and 4 large (average 23787.25 entities, and 32694.75
axioms) ontologies from the Large biomedical ontology dataset4. Thus the cor-
pus is diverse in size, moreover, it is appropriate to assess implicit coverage as
all ontologies contain some defined concepts and roles. For every concept and
role in each ontology of the evaluation corpus, we have pre-computed the defin-
ability status and the complete set of MDSs. Table 3 presents a summary of the
corpus, showing the DL expressivity, the number of logical axioms, number of
concepts (|C|), roles (|R|) and their union (C ∪R) in the ontology signature, the
ratio of defined concepts and roles (Def%), and the average number of different
minimal definition signatures per defined entity (M). Both datasets contain
ontologies with varying level of definability, as shown by the ratio of defined
ontology signature entities and the number of different MDSs per entity.

The experimental framework was implemented in Java; the OWL API [8] was

3http://oaei.ontologymatching.org/2014/conference/index.html
4http://oaei.ontologymatching.org/2014/largebio/index.html
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Ontology (C ∪ R) Def%
Ideal Cover Greedy #3 Greedy #2

cov cov Time cov Time

Conference corpus
cmt 88 50.00% 50.00% 72.73% 0.48 ms 72.73% 3.62 ms
conference 123 57.72% 42.28% 69.92% 2.54 ms 70.73% 11.79 ms
confOf 74 12.16% 87.84% 89.19% 0.25 ms 89.19% 0.43 ms
edas 153 26.14% 73.86% 85.62% 3.05 ms 86.27% 8.70 ms
ekaw 106 28.30% 71.70% 85.85% 0.20 ms 85.85% 2.30 ms
iasted 181 17.68% 82.32% 87.85% 0.96 ms 87.85% 3.18 ms
sigkdd 77 25.97% 74.03% 81.82% 0.43 ms 81.82% 1.12 ms
AVG. 114.57 31.14% 68.86% 81.85% 1.13 ms 82.06% 4.45 ms

LargeBio corpus
NCI fma 6551 29.98% 70.02% 81.30% 1.53 s 70.02% 3.09 s
NCI snomed 24040 28.50% 71.50% 82.61% 27.68 s 71.50% 56.42 s
SNOMED fma 13430 21.47% 78.54% 85.82% 4.36 s 78.56% 8.64 s
SNOMED nci 51128 57.87% 42.13% 62.18% 709.76 s 42.45% 838.30 s
AVG. 23787.25 34.46% 65.55% 77.98% 185.83 s 65.63% 226.61 s

Table 4: Comparing cover size and computation of time of approach #2 and
#3, for full covering the entire ontology signature.

used for ontology manipulation and for interacting with the reasoners5. Entity
definability status, and corresponding MDSs were computed using the OntoDef
API [4]. All of the experimental software and data are available online6.

In all experiments, for each task signature, we have computed cover sets by
using the two approximation approaches, Greedy #2 and #3. A naive approach,
used as the baseline in all experiments, which considers only explicit coverage
of signatures, always provides a cover that is the same set as the task signature
(i.e. it is a constant cov = 100%). We have only considered coverable task
signatures (i.e. S ⊆ R+), thus in all cases, the restricted signature R was
equivalent to the T-Box signature, while the task signature S was allocated
several differently sized T-Box signature subsets (i.e. R = Sig(T ), and S ⊆
Sig(T )). Varying the composition of only one of the two signatures simplified
both the experiment conduct and the result analysis process, while it provided
the same overall results. Experiments were conducted with 8GB maximum
memory allocated for the Java Virtual Machine, running on a machine equipped
with 16GB RAM and a 16 core processor architecture.

(Experiment 1: Ideal Covers.) In this experiment, we have compared the
cover set obtained by the different approximation approaches, to the actual min-
imal cover set. The only minimal signature cover, which is not an approximation
and can be computed efficiently, is only obtainable, when the task requires the
entire signature of an ontology to be covered, i.e. S = Sig(O). This special
case provides the opportunity to evaluate the difference between an actual, and
an approximated minimal signature cover set. The ideal cover is obtained by
removing all non-redundant, defined concept and role names from the ontol-
ogy signature7. Results are presented in Table 4 (where the baseline method

5We used both the HermiT [5] and Pellet [13] reasoners. In most datasets HermiT performs
faster, however Pellet was able to load and process some ontologies that HermiT could not
(due to ontologies using datatypes that are not part of the OWL 2 datatype map and no
custom datatype definition was given).

6http://www.csc.liv.ac.uk/~dgeleta/ontodef.html
7Considering non-redundancy in entity removal is necessary in order to avoid removing

those entities that are both defined, and provide the only definition signature to another
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is omitted). The partition labeled ideal cover shows the size of the minimal
cover set in ratio to the an explicit cover, which is always equivalent to the task

signature (i.e. cov = |C|
|S| ), while the two right hand side partitions present the

result obtained with the greedy algorithms, in terms of the cover size ratio, and
the computation time. In the Conference corpus, which contains small ontolo-
gies, neither approaches have come close to the ideal cover set (which was, on
average 68.86%). The cover sets produced by greedy #2 and #3, on average
were 81.85% and 82.06% of the task signature, respectively. With the exception
of two cases (ontologies conference and edas), where #2 produced slightly larger
cover sets than #3 (the difference in their average is 0.21%), the two algorithms
have produced the same results. In the LargeBio corpus, on average, the size
of the minimal cover set was 65.55% of task signature, thus with a 65.63% av-
erage, approach #2 performed significantly better than #2 (77.98%), and with
only a 0.08% difference, it has nearly achieved the optimal solution in all large
ontologies, i.e. the minimal cover. In terms of computation time, as expected,
greedy #3 performed considerably faster in both datasets: in the Conference
corpus, on average, greedy #3 has took 1.13 milliseconds to compute a cover
set, while greedy #2 has completed the same task in 4.45 milliseconds; in the
LargeBio corpus, greedy #3 needed 185.83 seconds, while #3 required 226.61
seconds to complete the search process.

(Experiment 2: Varying signatures.) In the second experiment, we have var-
ied the size of the task signature size, in order to assess the reduction provided
by a minimal cover in comparison to the baseline (explicit cover), and to eval-
uate the size and the computation time difference between the two approaches,
on a wider scale of possible tasks size settings. This experiment included 20
test cases for each ontology, where the task to ontology signature ratio ranged
between 100% and 5%. Due to the fact that both approaches include an non-
deterministic part, where a random choice is made to select an MDS from a set
of equally good options (MDSs with the same value and cost scores), each test
case was repeated 100 times8. Figure 2 presents the cover set cardinality results,
where the y-axis represents the approximated minimal cover to task signature

ratio ( |C|
|S| ), and the x-axis shows the task to ontology signature ratio ( |S|

|Sig(O)| ).

Figure 2 shows the Conference dataset results, computed by approach #2 (a),
and approach #3 (b); while the results of the LargeBio dataset are shown in (c)
and (d), for approach #2 and #3, respectively (for brevity, error bars are only
shown for the ontologies with the highest and lowest covers). In the small ontolo-
gies of the Conference corpus, approach #3 performed slightly better than #2,
with all task signature sizes, while in LargeBio corpus, approach #2 performs
considerably better for larger task signatures, however, with smaller task signa-
tures (under 40%) approach #3 still provides better results. This is reinforced
by Figure 2 (e) and (f), which shows the cover cardinality results for the same

entity, for example, the axiom r ≡ s implies that both roles r and s are defined, however
removing both entities from the ideal cover would make them both uncoverable.

8We have tested several different repetition counts, and by comparing their relative stan-
dard deviation established that 100 repetition was sufficient for both datasets.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Cover set sizes, in the Conference (a, b) and LargeBio (c, d) corpus,
obtained by the Greedy #2 (a, b) and #3 (b, d) approaches. Greedy #2 and
#3 are compared in a Conference (d), a LargeBio ontology (e).

ontologies, produced by the two approaches (in the conference, and NCI fma
ontologies from the Conference, and the LargeBio corpus, respectively). Figure
3 presents the computation time results, where the y-axis shows the time, and
the x-axis shows the task to ontology signature size ratio. Figure 3 presents the
results of approach #2 in the Conference (a), and in the LargeBio corpus (c),
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Computation times, in the Conference (a, b) and LargeBio (c, d)
corpus, obtained by the Greedy #2 (a, b) and #3 (b, d) approaches. Greedy
#2 and #3 are compared in a Conference (d), a LargeBio ontology (e).

while (b) and (d) shows the results of approach #3 in the two datasets. The
computation time of approach #3 is almost a constant for a given ontology,
while approach #2 seems to correspond to a bell curve (this is more visible in
larger ontologies, as shown by (c)). In all ontologies of both datasets, approach
#2 is significantly slower than #3, for example in the NCI fma ontology (Figure
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3, f), at 50% task to ontology signature ratio, #3 required 260.03 seconds, while
#2 took only 1.59 seconds to complete. The same trend can be observed in the
conference ontology (Figure 3, e).

6 Conclusions

In this paper, we have introduced and characterised the ontology signature cov-
erage problem, which is a non-polynomial time problem that concerns whether
an ontology signature can be covered by another signature, under a given on-
tology. Furthermore, we have presented and empirically evaluated two versions
our novel approach, that by exploiting the notion of Beth-definability in De-
scription Logic ontologies and using the pre-computed, complete set of different
definition forms, provides a sub-optimal solution to the minimal signature cover
problem. The evaluation has confirmed that, although the resulting covers are
not always optimal, i.e non-minimal, they are significant improvements on the
covers produced by naive approaches considering only explicit coverage.
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