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Abstract

The ability to rewrite defined ontological entities into syntactically
different, but semantically equivalent forms is an important property of
Definability. While rewriting has been extensively studied, the practical
applicability of currently existing methods is limited, as they are bounded
to particular Description Logics (DLs), and they often present only the-
oretical results. Moreover, these efforts focus on computing single defini-
tions, whereas the ability to find the complete set of alternatives, or even
just their signature, can support ontology alignment, and semantic inter-
operability in general. As the number of possible rewritings is potentially
exponential in the size of the ontology, we present a novel approach that
provides a comprehensive and efficient way to compute in practice all def-
inition signatures of most defined entities described using a DL language
for which the a particular definability property holds (Beth definability).
In this paper we present our approach, and we assess the prevalence,
extent and merits of definability over large and diverse corpora, as well
as discussing ways in which it can be exploited to support a variety of
different ontology engineering tasks.

1 Introduction

The ability to rewrite defined ontological entities into syntactically different,
but semantically equivalent forms is an important property of the notion of
Definability. In particular, Beth definability [2, 11] is a well-known property from
classical logic, that relates the notion of implicit definability to the one of explicit
definability, by stating that every implicitly defined concept is also explicitly
definable, in any definitorially complete DL language [26]. For example, given
an ontologyO = {C ≡ A t B,A v ¬B,D v ∃r.>}, where the concept C is defined
explicitly, i.e. C ≡ A t B, the concept A is defined implicitly under O by the set
of general concept inclusions {C ≡ A t B,A v ¬B}. Thus, A can be explicitly
defined by the axiom A ≡ C u ¬B.

Definability in general (and Beth definability in particular) have been utilised
within Description Logics (DL) to generate syntactically different, albeit seman-
tically equivalent definitions. Known as rewriting, this process is primarily used
for: 1) extracting equivalent terminology from a general TBox [1]; and 2) find-
ing equivalent query rewritings in ontology-based data access scenarios [21].

1



These approaches exploit the fact that any defined concept has one or more
possible alternative definitions; however they usually focus on finding a single
alternate definition; whereas several ontology engineering tasks would benefit
from the ability to identify a complete set. For example, in ontology alignment
[7], several approaches have been proposed that successfully align ontologies [3].
However, Stuckenschmidt et. al. have argued that existing approaches often fail
to compute complex correspondences: typically, systems are only able to iden-
tify simple equivalence statements between class or relation names, but often fail
to identify richer semantic relation between elements of different ontologies [23].
Thus, the ability to rewrite concept definitions can widen the search space for
possible correspondences. This is illustrated by the fact that some alignment
mechanisms may not find a simple correspondence for some concept C, but given
its definition C ≡ A t B, finding a complex correspondence may be possible.

Determining the complete set of possible definitions of defined concepts is a
challenging task, as the number of different definitions is potentially exponential
in the size of the ontology. This is problematic for large scale ontologies, such
as SNOMED CT1 or the Foundational Model of Anatomy (FMA)2. Existing
rewriting algorithms are language dependent, and thus different approaches to
construct rewritings are used for different types of DL expressivity. Furthermore,
even if there was an existing approach for a given language, many rewriting
systems provide only a theoretical characterization of the rewriting mechanism,
therefore making them less usable in practice. Finally, rewriting requires a seed
signature to be specified in input, i.e. a restricted vocabulary to be used in
defining a given concept. The process of identifying all valid seed signatures
is inherently complex, as it requires examining each member of the powerset
of the ontology signature and verifying whether it actually implicitly defines a
particular entity. Therefore, reducing the search space for these problems is
highly desirable.

In this paper we present a pragmatic approach to computing the complete
set of rewriting signatures for a given ontology. Our approach exploits the Beth
definability property to identify all possible alternative definitions of defined
entities. We present the notion of Beth definability in Section 2, and then intro-
duce our novel approach, that in practice, can efficiently compute the complete
set of definition signatures (DS) of defined entities, for any DL language, where
the Beth property holds (Section 3). Section 5 presents concept definition pat-
terns (CDP), that not only aid comprehension of definability, but also serve
as input for a heuristic-based rewriting approach, which produces definition ax-
ioms without using reasoning services. As little is currently known about the
prevalence and the extent of definability in real world ontologies, the practical
value of the various applications of definability is explored in practice through
comprehensive evaluation over a large and diverse ontology corpus containing a
wide range of ontologies, which illustrates the definability landscape, and paves
the way for further research into its application areas.

1http://www.ihtsdo.org/snomed-ct
2http://si.washington.edu/projects/fma

2



2 Beth Definability in Description Logics

The vocabulary of a DL ontology3 consists of the (disjoint) union of the count-
ably infinite sets of concept names (NC), role names (NR) and individual names
(NI), where an entity e is either a concept or role.

A signature is an arbitrary set of role and concept names, and individuals;
by Sig(C) we denote the signature of the a complex concept C, while Sig(T )
denotes the signature of a TBox. In this paper, Σ refers to a definition signature
(DS), i.e. the set of concept and role names that implicitly define a given
concept.

A DS is used to characterise implicitly definable concepts in terms of their
explicit definability, by exploiting Beth definability theorem. The theorem, ini-
tially studied for first-order logic [2], states that a concept is implicitly definable
with respect to a theory if and only if it is also explicitly definable. Given that
explicit definability implies implicit definability, the Beth definability property
holds for some logic language L if the converse also holds, i.e. if implicit defin-
ability implies explicit definability. Consequently, if a term is implicitly defined
then it is always possible to define it explicitly. As there are several variants
of Beth definability [26], we focus on Projective Beth definability which is a
stronger formulation [11] with the ability to specify a set of predicates Σ, thus
permitting us to restrict the vocabulary that can be used in definitions. Beth
definability has also been studied in the context of DLs [26], where it has been
used to compute explicit definitions based on implicit definitions. We thus as-
sume a general DL language L for which the Beth definability property holds.
We define an explicit definability concept as:

Definition 1 Explicitly defined concept Let C be a concept name, and T a
TBox, where C ∈ Sig(T ). C is explicitly defined under T , if and only if there is
an axiom α : C ≡ D, such that α ∈ T , where D is either a concept name in T ,
or a complex concept such that Sig(D) ⊆ Sig(T ) \ {C}.

For example, let us consider T Family, a small ALC-TBox describing the family
domain, shown in Figure 1 (upper). The concept Parent, defined by the axioms
α1 and α2, is the only explicitly defined concept in the ontology. Similarly, we
can define implicitly definable concepts:

Definition 2 Implicitly definable concept Let C be a concept name, T a
TBox, and Σ a signature, where C ∈ Sig(T ), and Σ ⊆ Sig(T ) \ {C}. C is
implicitly definable from Σ under T , if and only if for any two models I and
K of T , ∆I = ∆K, and for all predicate P ∈ Σ, P I = PK. Then it holds that
CI = CK.

Given the example, it can be seen that both Mother and Father are implic-
itly defined concepts in T Family, and each has six syntactically different, but
semantically equivalent definitions (Figure 1, lower).

3In this paper, we assume familiarity with basic notions of Description Logics [1] and the
Web Ontology Language [10] (OWL).
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FatherMother 9hasChild.> u ¬Father

9hasChild.> u ¬Man

9hasChild.> uWoman

Parent uWoman
Parent u ¬Man
Parent u ¬Father

9hasChild.> uMan
9hasChild.> u ¬Woman

9hasChild.> u ¬Mother

Parent uMan
Parent u ¬Woman

Parent u ¬Mother

⌘⌘

↵3 : Father v Man

↵4 : Mother vWoman

↵5 : Man v ¬Woman

↵1 : Parent ⌘ 9hasChild.>
↵2 : Parent ⌘ Father tMother

T Family {

}

=

J2 = {↵2,↵3,↵4,↵5}

J1 = {↵1,↵3,↵4,↵5}

Figure 1: This small ontology describes a family domain. Concepts Mother and
Father are implicitly defined in T Family, hence these are also explicitly definable,
as shown by their definition axioms. Each axiom is explained by a justification
(J1,J2), denoted with dashed line.

2.1 Deciding Definability

A particular concept name C can either be defined explicitly or implicitly under
an ontology, or be undefined. Explicit definability is a syntactic notion; decid-
ing whether C is explicitly defined under an ontology is the trivial process of
searching the TBox for a concept equivalence axiom whose left-hand side is C,
and the potentially complex concept on the right-hand side does not include C
(e.g. C ≡ D where C 6∈ Sig(D)). The process is formalised by Algorithm 1.

Algorithm 1: IsConceptExplicitlyDefined(C, T ,Σ)

Input : C: concept name, T : TBox, Σ: signature
Output: Boolean: True if C is explicitly defined by Σ in T , False

otherwise
1 if C ≡ D ∈ T , where Sig(D) ⊆ Σ then
2 return True
3 end
4 return False

In contrast, implicit definability is a semantic notion whose detection re-
quires reasoning. Algorithm 2 implements the ten Cate et al. method for deter-
mining implicit definability of a concept using a particular signature [25]. The
process reduces the definability check to an entailment check [26]. The com-
putational complexity of determining whether a concept is implicitly defined
depends on the complexity of the entailment check, which is predicted on the
expressivity of the given DL language. Thus it is potentially exponential in the
size of the ontology, for expressive DL dialects.

4



Algorithm 2: IsConceptImplicitlyDefined(C, T ,Σ)

Input : C: concept name, T : TBox, Σ: signature
Output: Boolean: True if C is implicit defined, False otherwise

1 T ′ ← T
2 K ← Sig(T ) \ Σ
3 for e ∈ T ′ do
4 if e ∈ K then
5 e← e′

6 end

7 end
8 if T ∪ T ′ |= C ≡ C′ then
9 return True

10 else
11 return False
12 end

Algorithm 2 Walkthrough. First T ′, an identical copy of TBox T is created
(line 1). Next, the entity set K is initialised, by taking the signature of the
TBox, and reducing it with Σ, the set of entities allowed to be used in the
complex concept which would define C (line 2). Now K only contains those
entities of the TBox that would not be a part of a prospective non-primitive
concept definition of C. At this point the process begins iterating through every
occurrence of every entity in T ′ (i.e. in all the axioms of the ontology) to rename
those entities that also appear in K, thus each entity e ∈ K becomes e′ in T ′.

After each entity has been renamed T ∩ T ′ = Σ, i.e. the two TBox-es only
share those entities that are allowed to be used in a definition of C. Next the
axiom C ≡ C′ is created, which is an equality between the two versions of the
concept in question (the original from T , and the renamed in T ′). Finally the
merged TBox T ∪ T ′ (that consists of the original, and the renamed version) is
queried, whether this axiom is entailed by it (line 8). If it follows that means
that C is indeed implicitly defined under T , using only entities of Σ; otherwise
it is not implicitly defined.

Optimisation. In order to reduce complexity the definability check process
is optimised by first checking explicit definability, due to the fact that this
approach has significantly lower computational complexity compared to the im-
plicit definability check. In case the concept in question is not explicit defined,
then it is checked for implicit definability. If both definability checks fail, the
concept is clearly undefined in the ontology.

2.2 Justifying Definability

It is often difficult for humans to identify the axiom set in a TBox that implies
definability. Justifications [12] can be used to validate definability and to provide
a set of axioms supporting an entailment. A justification J for an entailment
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η in an ontology is the ontological fragment in which η holds (i.e. a set of
TBox axioms such that J ⊆ O). A justification is minimal, if the entailment
in question does not follow from any proper subset of the justification. For
example, if we assume O = {A v B,B v C,D v ∃r.C} and the axiom α : A v C,
then O |= α holds as {A v B,B v C} ⊆ O; i.e. the entailment is justified4.

Algorithm 3: JustifyDefinability(C, T ,Σ)

Input : C: concept name, T : TBox, Σ: signature
Output:

1 T ′ ← T
2 K ← Sig(T ) \ Σ
3 for e ∈ T ′ do
4 if e ∈ K then
5 e← e′

6 end

7 end
8 α← C ≡ C′

9 J ←ComputeSingleJustification((T ∪ T ′), α)
10 return J

The algorithm checking for implicit definability (Algorithm 2) can be modi-
fied to compute not only whether a concept is definable with respect to a given
signature, but to also provide its justifications; thus instead of directly querying
a reasoner, the entailment check is delegated to the justification algorithm, that
returns either a justification if the given signature defines the concept in ques-
tion, or an empty set if the definability does not hold. This method formalised
by Algorithm 3.

2.3 Definability of Roles

The notion of definability also applies to roles, hence a role can be classified
either as defined (explicitly or implicitly), or as undefined. A defined role means
that its extensions (set of pairs of individuals) can be unambiguously determined
under an ontology, if the individuals of those entities that are used to define the
role are known in an interpretation.

Equivalently to concepts, explicit role definability is a syntactic notion, ex-
pressed by a single axiom; whereas implicit definability is a semantic notion
where the meaning is implied by a set of axioms. In the axiom

brotherOf ≡ maleSiblingOf (1)

both brotherOf and maleSiblingOf are explicitly defined as synonym role of the
other, using a role equivalence axiom. Similarly, the following two role inclusion

4Horridge et. al. [12] introduced an efficient approach that computes either a single, or all
justifications of an entailment.
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axioms define both roles as synonym, however in this case these are implicitly
defined:

{brotherOf v maleSiblingOf,maleSiblingOf v brotherOf} |=
brotherOf ≡ maleSiblingOf

(2)

In the next statement parentOf is explicitly defined as the inverse of the childOf
role.

parentOf ≡ childOf− (3)

The following axiom set also explicitly defines the parentOf role:

{parentOf ≡ fatherOf tmotherOf, fatherOf umotherOf v⊥} (4)

as well as implicitly define both fatherOf and motherOf as

motherOf ≡ parentOf u ¬fatherOf fatherOf ≡ parentOf u ¬motherOf (5)

Although these example are all valid DL statements this form of axiomatisation
is quite rare, for instance, in OWL2, which is one of the most used ontology
representation language, the axiom set (5) cannot be expressed.

Deciding definability. Deciding role definability can be achieved by using the
same method as for concepts (Algorithm 2), with the following modifications:

• Instead of operating on the entire TBox, the process must be restricted to
the RBox (set of role axioms). TBox axioms, excluding the RBox, describe
concepts (often by using roles). If the TBox is used to decide role defin-
ability, false positives may emerge. For example, the axiom ∃s.> ≡ ∃r.>,
which implies that these roles r, s share the same domain concept, would
be incorrectly identified as a definition axiom for both roles.

• The candidate definition signature should only contain role names, as roles
are only defined in terms of other roles, i.e. Σ ⊆ NR.

In order to decide definability of a concept whose description contains defined
roles, there is no need to separately assess definability of the role. For example,
in the ontology fragment (6) concept Document is implicitly defined, either as
the domain of role used by, or the range of the inverse relation use.

T = { used by ≡ use−,

Document v ∃used by.Person

> v ∀use.Document}
(6)

Prevalence. In practice, the most prevalent forms of defined roles are synonym
an inverse roles. Role constructors, such as role hierarchy (H), transitive role
(R) and complex role inclusion axioms (R) are only part of (very) expressive
DL languages, where the complexity of reasoning services considerably increases
due to the use of constructors, making these languages less practical to use, and
subsequently less prevalent in real-world scenarios, compared to weaker DLs.
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3 Minimal Definition Signatures (MDSs)

This section defines the different concept definition signature types, explains
why there could be an exponential number of MDSs for a given defined concept,
how definition signatures can be validated, and shows that minimal definition
signatures can be used to detect certain type of ontology modelling errors. As
discussed in Section 2, every defined concept has a corresponding description(s).
Each description (except explicitly defined synonyms) is a complex concept, i.e.
an entity set conjoined by appropriate concept constructors, that assign precise
meaning to the defined concept concept name, under an ontology.

Parent︸ ︷︷ ︸
defined concept

≡ Mother t Father︸ ︷︷ ︸
concept description

(7)

The defined concept is the left-hand side (LHS), its description is the right-hand
side (RHS) of a non-primitive concept definition axiom. A definition signature
can be defined as:

Definition 3 Definition Signature (DS) A set of entities names Σ is a
definition signature of the concept C under a TBox T , if and only if members
of Σ can be used to construct the right-hand side of a definition axiom for C,
i.e. there is some complex concept D, such that Sig(D) ⊆ Σ, and T |= C ≡ D,
where Σ ⊆ Sig(T ) \ {C}.
If a concept C is defined in an ontology, then we can entail that there exists
some subset of the ontology signature that implicitly defines C. We only focus
on acyclic definitions, as definitions with direct cycles (where the defined concept
appears in its corresponding description) are excluded by this definition.

As definition signatures may contain redundant members, their size could be
very large, thus we introduced the notion of signature minimality :

Definition 4 Minimal Definition Signature (MDS) A signature Σ is a
minimal definition signature of a defined concept C under a TBox T , if none of
its proper subsets are definition signatures of C.

The minimality property of an MDS refers to minimising the size of the sig-
natures, by eliminating superfluous entities. However, a defined concept may
have multiple unique MDSs (where the difference of any two MDSs is not an
empty set) under an ontology, with the same cardinality. From the definition, it
follows that every MDS is also a DS, and any DS may contain at least one, but
potentially multiple MDSs. For example, in the T Family example (Figure 1),
the signature Σ = {hasChild, Man,Woman} is a DS of all three defined concepts
in the TBox. However, this signature is not a minimal DS of Parent, because
it can be defined by the following two MDSs: {hasChild}, {Mother,Father}; as
formalised by axiom α1 and α2, respectively.

Validity. An signature is a valid MDS if and only if it is:

• correct: it explicitly or implicitly defines a concept under a given TBox;
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• minimal: it contains no redundant members;

• acyclic: it does not contain the concept name which it defines;

• not empty: the only concept which can be defined with an empty definition
signature is >.

Number of MDSs. The number of possible rewritings of a defined concept is
exponential in the size of the ontology. This value is used as the quantitative
measure of the extant of concept definability.

Descriptions of defined concepts are built inductively using other, potentially
also defined concepts; therefore the number of possible concept rewritings are
dependent on the definability of its constituent concepts. The definability of
any defined description member concepts is dependent on the definability of its
own description, i.e. definability is a recursive notion.

For example, let us consider a TBox (8), where A is a defined concept, such
that each constituent concept Bi in the description of A is also defined.

A ≡ B1t . . . t Bn

Bi ≡ C1t . . . t Cm where (1 ≤ i ≤ n)
(8)

Then A is defined by the signature ΣA = {B1, . . . ,Bn}, and any other signature,
that is the result of substituting any defined concept Bi in ΣA with its cor-
responding definition (ΣBi = {C1t . . . t Cm}), hence the number of potential
syntactically different definitions, as well as the number of corresponding MDSs
is exponential.

The set of all MDSs of a particular concept may overlap (share one or more
entities), or in other cases some MDSs may be pairwise disjoint (especially when
the MDS contains only a single entity, such as when the MDS corresponds to a
domain or range concept pattern, or an explicit synonym pattern).

3.1 MDS to identify modelling errors

MDSs can shed light on some modelling errors in an ontology. So far three type
of errors were formalised, these are all automatically detectable, but repairing
requires involvement of an ontology engineer and a domain expert.

3.1.1 Redundant concept(s).

An explicit concept definition should be a succinct representation, meaning that
it should only consist of entities that are necessary to unambiguously describe
the concept. If the signature of an explicit concept definition is not minimal ;
i.e. a subset of this signature (an MCDS) can be used to define the concept, it
implies a discrepancy between the intended meaning (formalised by the explicit
definition axiom), and the actual meaning (an alternative explicit definition
axiom corresponding to an MCDS of the defined concept). Any redundant
concept in the definition is semantically ignored.

9



Example 1 5 In this example Regular author is explicitly defined by α1.

J = {α1 : Regular author ≡ (Contribution 1th− author t Contribution co− author)

u (∃contributes.Conference contribution︸ ︷︷ ︸
redundant

)

α2 : Contribution 1th− author v Regular author,

α3 : Contribution co− author v Regular author}
(9)

However, this explicit definition signature is not minimal (i.e. is a CDS but not
an MCDS), as its subset {Contribution 1th− author,Contribution co− author}
can be used to define Regular author by the axiom

Regular author ≡ Contribution 1th− author t Contribution co− author

as it is implied by the justification axiom set J . The error arise because:

• α1 |= Regular author v (Contribution 1th− author t Contribution co− author),

• {α2, α3} |= (Contribution 1th− author t Contribution co− author) v Regular author

Clearly the anomy concept ∃contributes.Conference contribution is redundant in
α1. This is most likely not what the ontology engineer intended.

3.1.2 Unwanted synonym(s).

This can occur when two or more concepts that suppose to convey different
meaning are wrongly represented as interchangeable synonyms of one another.

Example 2 6 This example shows three different ways of defining the concept
Anthropometrics Height.

• J1 |= Anthropometrics Height ≡ Anthropometrics Weight

• J2 |= Anthropometrics Height ≡ Anthropometrics BMI

• J3 |= Anthropometrics Height ≡ Anthropometrics

Obviously, Anthropometrics Height, Anthropometrics Weight and Anthropometrics BMI
are semantically related, but otherwise completely different concepts. However,
in TBox T where (J1 ∪ J2 ∪ J3) ⊆ T , these concepts are defined as equivalent.

J1 = {α1 : Anthropometrics v Anthropometrics BMI u
Anthropometrics Height u Anthropometrics Weight,

α2 : Anthropometrics Height v Anthropometrics,

α3 : Anthropometrics Weight v Anthropometrics}
(10)

5Conference corpus, conference.owl
6Bioportal corpus, bp26.owl
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J2 = {α1 : Anthropometrics v Anthropometrics BMI u
Anthropometrics Height u Anthropometrics Weight,

α2 : Anthropometrics Height v Anthropometrics}
J3 = {α1 : Anthropometrics v Anthropometrics BMI u

Anthropometrics Height u Anthropometrics Weight,

α2 : Anthropometrics Height v Anthropometrics,

α4 : Anthropometrics BMI v Anthropometrics}
The correction requires some expert knowledge. Anthropometrics means mea-
surement of the size and proportions of the human body 7. Axioms α2, α3, α4

are correct, as height, weight and BMI are all type of measurements that make
up the general class Anthropometrics, but axiom α1 is incorrect as height and
weight measurements would share nothing in common (their intersection would
be empty). The correct representation would be to describe Anthropometrics as
a disjoint union of these concepts.

3.1.3 Implicitly defined by an empty MCDS.

The only concept in any ontology, which requires no signature for its definition
is >. If a named concept is definable by an empty signature, then the ontology is
most likely to contain an error, or purposely define the concept as the synonym of
>. For example in the cocus.owl ontology of the Conference corpus, concept
Person is equivalent to >. By examining the document, it becomes obvious that
this is unintentional, as the ontology contains many other concepts (such as
Conference) that are definitely not semantically related to Person.

4 Computing Minimal Definition Signatures

Finding MDSs can be computationally expensive, as the number of definitions
themselves can be exponential in the size of the ontology. Furthermore, the set
of candidate signatures is equivalent to the power set of the TBox signature
(excluding the defined concept itself, i.e. 2Sig(T )\{C}). Moreover, each candidate
signature must be subjected to an implicit definability check, where the com-
plexity of checking each case of definability is predicated on the DL expressivity
of the ontology language, thus it can be exponential in the size of the ontology,
for more expressive DL flavours.

However, typically the average case complexity is expected to stay within
manageable bounds, thus it is feasible to compute MDS because: (1) In gen-
eral the number of MDSs are relatively low. Defined concepts (and roles) are
described in terms of other entities, hence the number of MDSs of a given con-
cept depends on the number of MDSs of its description entities. Therefore the
number of “less-defined” entities (entities with relatively low number of MDSs)
is considerably larger than the “more-defined” ones. (2) In order to reduce

7http://dictionary.reference.com/browse/anthropometric
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this complexity, modularisation [19] is used as space reduction mechanism. In
the most general sense, a module M is an ontology fragment (M ⊆ T ) which
functions independently from the ontology, with respect to some subject mat-
ter, e.g. a signature, or an axiom set. In other words, a module preserves all
entailments over a signature S, which, in this context, is always the singleton
signature consisting of a concept name, i.e. S = {A}. As modules preserve
all entailments with respect to a signature, any MDS of a defined concept is
contained in the module signature. Syntactic locality based modules (LBM)
have been shown to be sound approximations of semantic locality based modules
(that preserve entailments over all the terms that occur in the module) [5], and
there are efficient and widely used polynomial time algorithms for extracting
syntactic LBMs8. Furthermore, there are efficient and widely used polynomial
time algorithms for extracting syntactic LBMs. As modules can be consider-
ably smaller compared to the original ontology, modularisation is an effective
mechanism for reducing the complexity of computing MDSs. The initial search
space P(Sig(T ) \ {C})) can be reduced by using modularisation. (3) Implicit
definability check is performed by a reasoner. In practice, state of the art sys-
tems has been shown to work for most of the currently existing TBoxes, even
for more expressive DL languages.

In the following, various MDS computation algorithms are presented. Each
algorithm is used to achieve a particular task (such as computing a single MDS,
disjoint MDSs etc.), where the composition of these methods form the approach
that computes all MDSs of a defined concept. Computing all MDSs (Section
4.4) is a two phase process, first a set of pairwise disjoint MDSs need to be
acquired (Section 4.2), which can be achieved in logarithmic to polynomial time
(depending on the particular defined entity, the number of its corresponding
disjoint MDSs, and the method used to compute the MDSs), then the set of
disjoint MDSs is expanded (Section 4.3) until the complete set of different MDSs
are identified, the complexity of the later is potentially exponential in the size
of the ontology (more precisely, the size of the module).

4.1 Computing a Single MDS

There are two approaches to compute a single MDS, the Single entity prun-
ing (Section 4.1.1) algorithm always runs in linear time, whilst the divide and
conquer (D&Q) (Section 4.1.2) algorithm at best takes logarithmic time to com-
pute. The later approached is favoured when the input signature is large (i.e. it
consists of the entire signature of the ontology, or the module which describes
a defined entity). The former algorithm is used in optimisation, when comput-
ing MDSs of an explicitly defined concept, the first candidate signature is the
explicit definition(s), such signatures are often already minimal definition sig-
natures, or definition signatures that contain only a small number of redundant
entities. In this case the D&Q approach performs at its worst, taking twice as
long as the single entity pruning approach.

8The OWL API provides methods for extracting several types of LBMs.
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4.1.1 Single Entity Pruning

This algorithm finds one MDS of a given defined concept, which is contained
within the input signature, assuming that this signature implicitly defines the
concept under the ontology. Figure 2 depicts the process formalised by Algo-
rithm 4.

Algorithm 4: ComputeSingleMDS(C, T ,S)
Input : C: defined concept; T : TBox; S: signature (set of entities)
Output: Σ: one minimal definition signature of concept C

1 Σ← S
2 for e ∈ Σ do
3 Σ← Σ \ {e}
4 if IsConceptImplicitlyDefined(C, T ,Σ) is False then
5 Σ← Σ ∪ {e}
6 end

7 end
8 return Σ

Walkthrough. The basic idea behind the algorithm is to systematically prune
the input signature S until it contains no redundant members, thus it becomes
minimal, whilst still implicitly defining concept C by the signature S, under a
TBox T . The prospective minimal signature set Σ is initially set to be equal
to the input signature S (line 1). Next, each entity e ∈ Σ is tested whether
it is required to be the member of the minimal signature (line 2-7). First the
entity is removed the from the signature (line 3), then Σ is tested whether the
signature is still correct, i.e. if it implicitly defines C (line 4). If Σ is no longer a
correct concept definition signature, it means that e was a required member of
Σ, therefore it is put back in Σ (line 5), otherwise it is redundant and it remains
discarded. The algorithm terminates when all members of the input signature
e ∈ Σ have been examined. At this point Σ is a minimal concept definition
signature of C, and it is returned by the algorithm (line 8).

If the input signature S contains more than one MDSs, then the outcome
(resulting signature set) depends on the entity ordering in S. In order words,
the same input can yield different solutions if the ordering of entities in S is
changed, but the same ordering always yields the same output.

Correctness. The only outcome of the process is that the input signature,
which is a concept definition signature (DS) of C, becomes minimal (i.e. an
MDS):

• the precondition is that C is implicitly defined by S under T , thus it is
already correct (T |= C ≡ D, where Sig(D) ⊆ S);

• the postcondition is that the output Σ is minimal, this is achieved by
removing all those entities that without Σ can still be used to describe C

13
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Figure 2: Computing an MDS using the single entity pruning method.

(T |= C ≡ D, where Sig(D) ⊆ Σ).

The difference between the input S, and the output Σ, is a set of redundant
definition signature entities (discarded members from the input R = S \ Σ).

Termination and Completeness. Each member of the input e ∈ Σ is exam-
ined once, therefore it terminates when all elements of this set are exhausted.
Completeness, i.e. finding one minimal CDS is ensured by the pre, and post-
condition.

Complexity. The process takes n steps to complete, where n is the number of
entities found in the input signature (n = |S|). Thus the asymptotic complexity
is linear (O(n)), in the size of the input signature, not including the complexity
of the implicit definability check of each candidate signature. Regardless of the
number of required signature entities, the complexity is always O(n), because
each entity is examined exactly once.

4.1.2 Divide and Conquer

Although the previously presented approach (Algorithm 4) has polynomial worst-
case time complexity, for large signatures, the process can still take considerable
time, because every entity is individually examined by performing an implicit
definability check, which is a time consuming operation (potentially exponen-
tial). In order to improve performance, the number of implicit definability
checks need to be reduced. This is achieved by examining entities in groups,
using a top-down style “divide and conquer” strategy. The method is depicted
by Figure 3 and formalised in Algorithm 5 and 6.

Divide and Conquer. The divide and conquer algorithm design paradigm is
commonly used in computer science [4]. The approach solves difficult problems
by recursively splitting them into sub-problems until each part becomes simple
enough to be solved. The final solution is derived by combining the results of
sub-problems. Some applications of this approach include sorting (e.g. merge
sort), searching (e.g. binary search), syntactic analysis (e.g. top-down parsers).
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Figure 3: Computing an MDS using the divide and conquer method. Tree nodes
are labelled according to the order of traversal.

The strategy is applied to MDSsearch in the following way: instead of ex-
amining candidate signature entities individually, entities are tested as groups
to see whether they are required members of the MDS. Each entity group is
recursively split until a smaller subset is found, such that it is either removable,
or cannot be split any further (i.e. contains only one entity which is a required
MDS member). The process generates a binary-tree, where the root node is the
input signature, and every other node is a subset of the input signature. Every
leaf node is either a set of removable entities, or a single entity required in the
final signature.

First a given signature S (which is a definition signature, but not yet nec-
essarily minimal) is split into two halves, SL and SR. Next SL is checked: if
the signature S \ (R∪SL) can still implicitly define the given concept, then SL
contained no required signature member(s) and it is permanently added to R,
the set of removable entities of S. The same test is also done for the other half:
SR. Otherwise, if the implicit definability check fails, it means that SL contains
required signature member(s), thus it cannot be removed as a whole. At this
point a recursive call is made, SL is split into halves and the above process is
repeated.

In oppose to single entity pruning, with this approach the input signature
is not pruned during the process, due to the use of recursion. Instead the
removable entities are recoded in R.

Walkthrough. The ComputeSingleMDS-D&C (Algorithm 5) serves as a
“runner” for its recursive subroutine SplitAndPrune (Algorithm 6). After
initialisation (line 1-2), ComputeSingleMDS-D&C calls SplitAndPrune
to identify R, the set of redundant members of S (where R ⊆ S). When R
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Algorithm 5: ComputeSingleMDS-D&C(C, T ,S)

Input : C: defined concept; T : TBox; S: signature
Output: Σ: one minimal definition signature of concept C

1 S ′ ← S
2 R ← ∅
3 R ← SplitAndPrune(C, T ,S ′,S,R)
4 Σ← S \R
5 return Σ

Algorithm 6: SplitAndPrune(C, T ,S ′,S,R)
Input : C: defined concept; T : TBox; S ′: examined signature part; S:

original signature; R: removable entities
1 if |S ′| > 1 then
2 SL,SR ← Split(S ′)
3 Scheck ← S \ (R∪ SL)
4 if IsConceptImplicitlyDefined(C, T ,Scheck) is True then
5 R ← R∪ SL
6 end
7 else
8 R ← SplitAndPrune(C, T ,SL,S,R)
9 end

10 Scheck ← S \ (R∪ SR)
11 if IsConceptImplicitlyDefined(C, T ,Scheck) is True then
12 R ← R∪ SR
13 end
14 else
15 R ← SplitAndPrune(C, T ,SR,S,R)
16 end

17 end
18 return R

is computed, the initial signature S is pruned by removing R (line 4). The
resulting signature Σ is now a minimal DS of C, which is then returned and the
process terminates (line 5).

SplitAndPrune takes an input signature S ′ (where S ′ ⊆ S) and splits it
into two halves SL,SR (line 2). Next it generates the entity set Scheck by taking
the original signature (S) and removing: (1) R, i.e. all redundant entities found
so far; (2) SL/SR one half of the currently examined signature part. Scheck is
then tested to see whether it is a valid definition signature. In case it is valid,
then every member of SL/SR were redundant entities, thus these are added to
R. If Scheck fails the definability check, then SL/SR must contain at least one
required entity (member of the final signature), hence it cannot be removed
as a whole, thus SplitAndPrune is called to identify redundant members of
SL/SR.

16



|S| = 7
|R| = 5
steps = 6

|S| = 7
|R| = 5
steps = 8

Entity

MCDS Entity

LEGEND:

Removed Entity Set

Examined Entity Set

Figure 4: Computing MDSs with divide and conquer approach of two different
signature orderings. |S| denotes the signature set cardinality, |R| denotes the
number of redundant signature members. Both signatures are identical in size
and redundant-required entity ratio, however due to the ordering, the process
takes less time for the left-hand side signature.

Complexity. The complexity depends on the ratio of required and redundant
members in the signature, and the ordering of the signature. Figure 4 shows
how different signature orderings influence the process. The worst case occurs
when all members e ∈ S are required MDS entities. The required number of
steps are (2 ∗ n) − 2, where n = |S|, i.e. it has linear time complexity. In the
best case, when the signature contains only one required entity, the number of
required steps (implicit definability checks) are 2 ∗ (blog2nc), where n = |S| for
all |S| ≥ 4. For example, given a signature where |S| = 1024, it takes 20 implicit
definability checks to identify the MDS member.

4.2 Computing Pairwise Disjoint MDSs

Algorithm 7 (depicted in Figure 5) builds upon single MDS computation meth-
ods in order to compute a set of mutually disjoint MDSs of a particular defined
concept.

Walkthrough. The basic idea behind the algorithm is that at every itera-
tion, a single σ (i.e. an MDS of C) is computed (line 3), then subsequently
removed from the working signature S (line 4), until S contains no more MDSs,
i.e. it does no longer implicitly defines C under T , hence the process terminates.
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Figure 5: Computing mutually disjoint MDSs. Each iteration reduces the can-
didate signature.

Algorithm 7: ComputeDisjointMDSs(C, T ,S)
Input : C: defined concept; T : TBox; S: signature (set of entities)
Output: Σ = {σ1, . . . , σn}: a set of pairwise disjoint MDSs of C

1 Σ← ∅
2 while IsConceptImplicitlyDefined(C, T ,S) is True do
3 σ ← ComputeSingleMDS-D&C(C, T ,S)
4 S ← S \ σ
5 Σ← Σ ∪ {σ}
6 end
7 return Σ

Termination. The algorithm operates on a working signature S = {e1, . . . , en},
which contains a finite number of entities. This signature contains a finite
number of MDS (set of entities). At each step, S is reduced by removing the
constituent entities of the last found MDS. Once there are no more remaining
MDSs, the working signature set S fails the implicit definability check, thus the
process terminates.

Completness. The algorithm finds a set of MDSs, that are pairwise disjoint,
but it does not necessarily find all disjoint MDSs. This depends on the following
properties

• the ordering of entities in the set S: the same input can yield different
solutions, by changing the ordering of S, however the same ordering always
yields the same output.

• whether some of all the possible MDSs of a given concept overlap: if a
concept only has pairwise disjoint MDSs, then the algorithm is guaranteed
to find them all ; otherwise any overlapping MDSs would not be found.
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Complexity. The complexity the algorithm is polynomial in the size of the
input signature (O(n) where n = |S|), this is determined by the following factors:
(a) the time taken by its sub-routine ComputeSingleMDS-D&C (Algorithm
4), which is logarithmic in the size of input signature; (b) the (finite) number of
iterations of the main loop where the sub-routine is called, which is equivalent to
the number of mutually disjoint MDSs contained in the input signature number.

4.2.1 Optimisation

Algorithm 8: ComputeDisjointMDSs2(C, T )
Input : C: defined concept; T : TBox
Output: Σ = {σ1, . . . , σn}: disjoint minimal concept defintion signatures

of C
1 Σ← ∅
2 S ← (Sig(T ) \ C)
3 if IsConceptDefined(C, T ) is Explicit then
4 A ← GetExplicitDefinitionAxioms(C, T )
5 for α ∈ A do
6 σ ← ComputeSingleMDS-D&C(C, T , (Sig(α) \ C))
7 Σ← Σ ∪ {σ}
8 S \ Sig(α)

9 end

10 end
11 Σ← Σ ∪ ComputeDisjointMDSs(C, T ,S)
12 return Σ

In case a concept (for which the MDSs are to be determined) is explicitly
defined, the process can be optimised by first computing MDSs from explicit
definition axioms. At the worst case, locating an axiom has polynomial time
complexity in Ax(T ).

The method is formalised in Algorithm 8. First the explicit definition axioms
are identified (line 4), then from each axiom signature an MDS is computed (note
that not every definition axiom signature is a minimal DS) (line 6). Each MDS
is taken out from the working signature set S. Finally, by using the reduced
input signature, any remaining pairwise disjoint MDSs are computed (line 11).
Note that if a concept has multiple explicit definitions, where these signatures
overlap, the resulting MDSs computed by this approach are not always pairwise
disjoint.

4.3 Expanding MDSs

After computing a set of pairwise disjoint MDSs, any unidentified MDS must
overlap with existing MDSs, i.e. combine entities from existing MDSs, and those
entities that are not part of any identified MDS (the remainder of the TBox
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signature)9. Finding overlapping MDSs requires a different search strategy than
single, or pairwise disjoint MDS search, this is formalised by Algorithm 9. The
algorithm has two applications: (1) it determines whether a given set of MDSs
is complete, i.e. are there any unidentified MDSs of the given defined concept in
the ontology; (2) using existing MDSs, it computes some previously unknown
MDSs, thus expanding the prior MDS set.

Algorithm 9: ExpandMDSs(C, T ,Σ)

Input : C: defined concept; T : TBox; Σ = {σ1, . . . , σn} : set of already
identified MDSs of C

Output: a potentially updated Σ is returned that may contain new
MDSs, if the inputted Σ was incomplete

1 S ←
|Σ|⋃
i=1

σi{∀σi ∈ Σ|1 < |σi|}
2 K ← Sig(T ) \ (S ∪ {C})
3 S ′ ← P(S) \ Σ
4 for s ∈ S ′ do
5 W ← K ∪ s
6 if IsConceptImplicitlyDefined(C, T ,W) then
7 σ ← ComputeSingleMDS(C, T ,W)
8 Σ← Σ ∪ {σ}
9 end

10 end
11 return Σ

Walkthrough. The prerequisite is that |Σ| ≥ 0, i.e. there are some previously
computed MDSs of C. If Σ = ∅, then the process terminates without computing
any MDSs. First, all existing MDSs are merged into the set S (line 1), excluding
MDSs containing only one entity; by definition single entity MDSs cannot be
part of any minimal DS. Next, the signature of the TBox is deducted by S∪{C}.
The resulting entity set K now only contains those entities of the ontology which
do not appear in any of the identified MDSs, σ ∈ Σ (line 2). The initialisation
concludes by computing S ′, the power set of S and reducing it with Σ (line 3).

Next the process begins to exhaustively test each subset s ∈ S ′. From every
s, a candidate definition signature W is generated by merging s with K (line 5).
W is then examined to establish whether it implicitly defines C. If it does then
W contains at least one new MDS. In this case a new MDS σ is extracted and
stored in Σ (line 7-8).

At the end of the process Σ is returned. This either contains new MDSs,
thus the input was incomplete, or is the same size as at input (i.e.the initial Σ
contained all MDSs of C). If Σ contains new MDSs, it indicates that there may

9Due to the nature of the process (combining MDS and non-MDS entities to gain new
ones), no new mutually disjoint MDS will be identified.
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be more undiscovered MDSs. In this case the algorithm should be run again
using the updated set of MDSs (the returned Σ) to check whether the updated
Σ is complete.

Termination and Complexity. As the process includes exhaustively iterating
through a power set, it has exponential computational complexity in S (the
union of all MDSs). It terminates when all cases have been examined.

4.4 Computing All MDSs (Search & Expand)

Search Expansion

Entity

Signature Entity

Complete MDS

Legend:

...

Figure 6: Depiction of a Search and Expand MDS computation strategy.

Algorithm 10 identifies all MDSs of a given concept by using a search then
expand strategy, illustrated in Figure 6. During the search phase, it computes a
set of mutually disjoint MDSs (using the ComputeDisjointMDSs algorithm).
Then it proceeds with the expansion phase, which is an indefinite loop, where
the process incrementally expands the set of MDSs by combining entities of ex-
isting MDSs and other ontology signature entities (using ExpandMDSs as its
sub-routine). Although the expansion phase has exponential worsts case time
complexity, evaluation suggests that this method is feasible to use for most real-
world ontologies.

Walkthrough. The process begins by initialising entity set S, which consists
of the TBox signature, excluding the defined concept C (line 1). Then it com-
putes a set of mutually disjoint MDSs of C, and stores it in Σ (line 2). Next, it
enters a loop, which only terminates when all MDSs of C have been found (line
3-11). At each iteration, Σ is tested for completeness, using Algorithm 9 as a
subroutine (line 4). If the returned Σ′ is equivalent to Σ, then Σ was complete,
thus the loop terminates and the complete set of MDSs are returned (line 6).
Otherwise Σ′ contains newly found MDSs, that are added to Σ (line 9), and the
loop enters the next iteration repeating the above process.

Completeness and Termination. Completeness is ensured by (a) the Ex-
pandMDSs algorithm (9), which is proven to be correct in identifying com-
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Algorithm 10: ComputeAllMDSs-S&E(C, T )
Input : C: defined concept; T : TBox
Output: Σ = {σ1, . . . , σn}: all MCDSs of C

1 S ← Sig(T ) \ {C}
2 Σ← ComputeDisjointMCDSs(C, T ,S)
3 while True do
4 Σ′ ← ExpandMDSs(C, T ,Σ)
5 if Σ′ = Σ then
6 return Σ
7 end
8 else
9 Σ← Σ′

10 end

11 end

pleteness of an MDS set; (b) the loop structure, which only terminates when
there are no more unidentified MDSs. Termination is ensured by the fact that
the loop is not repeated unless new MDSs are found during the last iteration.

Complexity. Computational complexity of the algorithm is determined by two
factors. Firstly, it depends on the number of all MDSs of the particular defined
concept, because the process only terminates when the set of identified MDSs
is complete. Although the number of MDSs is exponential in the size of the
ontology, according to the experimental evaluation, this case rarely occurs in
real-world ontologies.

|Σ|⋃
i=1

σi ∈ Σ ⊆ Sig(T ) \ {C} where {∀σi ∈ Σ|1 < |σi|} (11)

Secondly, as described in Section (4.3), the expansion phase involves ex-
haustively processing a power set of the union (11) of all priori computed MDS
entities. However this is still significantly lower compared to using a naive brute-
force approach, which would iterate trough all subsets of the power-set of the
ontology (or module) signature. A brute force approach goes through the power
set of the TBox signature (Sig(T \ {C)), while this method only reaches that
number, if the union of all MDSs of a given concept (11) is the same as the
TBox signature. Evaluation suggests that this method is feasible to use because
in most cases the union of all MDSs of a given concept (a) is not equivalent to
the TBox signature; (b) its cardinality typically stays within reasonable bounds.

Replacing Defined Entities with MDSs. Algorithm 10 is clearly unfeasible
to use, when the union of MDSs (11) is large. This scenario occurs if either there
are many disjoint MDSs, the existing MDS are large, or the combination of both
cases take place. Although the complete set of MDSs may not be computed in
these cases, the following method provides a half measure. First the complete
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set of MDSs should be computed for those defined entities that are feasibly
computable. Then the disjoint MDSs of unfeasible entities can be expanded
by replacing any defined entity in the disjoint MDSs with their corresponding
MDSs.

5 Concept Definition Patterns (CDP-s)

In this section the different axiomatisations of concept definitions are categorised
into patterns. An explicit concept definition is always formalised as a single
axiom, whereas the definition of an implicitly defined concept is derived from
an axiom set (i.e. a justification). Thus, in contrast with explicit definitions,
implicit definitions are often not straightforward to recognise and understand.
Therefore, a set of patterns were identified that facilitates the understanding of
the relation between definition entities and their corresponding axioms.

Classification. Patterns are classified into basic and complex: basic patterns
are atomic artefacts, whilst complex patterns are formed by the combination
of basic ones. As previously described, Algorithm 3 makes use of justification-
based explanation computation, that extracts a minimal axiom set (a justifi-
cation J ) from the TBox which implies the meaning of a defined concept. By
examining this axiom set (J ), and the concept definition signature (Σ), the
corresponding concept definition pattern can be identified.10

Applications. CDPs can be used for the following tasks:

• Basic patterns serve as input for the heuristics-based definition axiom gen-
eration approach, which in contrast with general rewriting methods, is lan-
guage independent and does not require ontological reasoning, therefore
the computational complexity is linear in the size of the input. Although
this method only covers basic patterns, the evaluation suggests that this is
sufficient in many scenarios because the majority of all definability cases
fall in to the basic pattern category.

• Axiom generation from complex patterns is not yet formalised, however
the set of basic patterns (along with the corresponding axioms) forming a
complex pattern can be pinpointed with this method, hence it can aid hu-
man comprehension thus simplify manual axiom generation from complex
patterns.

• Validation of concept definition signatures.

10Please note that these patterns are non-exhaustive, i.e. the identified patterns are not
guaranteed to represent all cases, however they cover all cases that emerged during the eval-
uation (thus as future work, a more fine-grade classification may be developed).
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5.1 Related Work

As previously described, concepts are defined inductively using other concepts,
roles and individuals from the ontology vocabulary. The number of different
ways a definitions can be constructed is infinite. The actual content of a defini-
tion obviously depends on the defined concept, however the formalisation must
follow the rules of the given ontology language. Every language uses the same
three type of modelling primitives (i.e. entities), and has a restricted, finite set
of logical operators available, thus it is possible to generalise the common forms
of creating concept definitions (i.e. abbreviating complex concepts). The hereby
presented definition patterns build on the following sources:

OWL API. The OWL API makes this generalisation explicit. In order to
create an axiom in OWL API the user must choose the from a set of pre-
defined axiom types (subclasses of the AxiomType Java class) [13]. For ex-
ample, concepts that are mutually disjoint are formalised using the OWLD-
isjointUnionAxiom class, which translated to DL axioms as a concept equiv-
alence axiom (C ≡ D1 t D2 t D3) and a set of the corresponding axioms that
state the disjoint relation between constituent entities of the concept descrip-
tion ({D1 v ¬D2,D2 v ¬D3}). This axiom type was adapted in the Constituent
concept of a disjoint union CDP.

Ontology alignment design patterns. The various formalisations of defini-
tion axioms were studied in the area of ontology alignment. Matching concept
and role names (i.e. generating simple correspondences) is a non-trivial, but
well understood task, however matching a concept name to a complex concept
is typically more challenging. Many state of the art approaches [20, 18, 24, 27]
tackle the complex matching problem by making use of patterns in conjunction
with other techniques (e.g. linguistic analysis [18], ontology transformation [24],
etc.). Author of these publications argue that ontology engineering is a design
problem, where ontology engineers often employ design patterns for formalising
the content of a given knowledge base. In ontology alignment, patterns are
meant to serve as generic solutions to particular ontology alignment problems,
meaning that a mismatched (unmatched, or wrongly matched) entity may be
fitted with a pattern and subsequently aligned to an entity of the other ontology
(that is being aligned).

In [20] Scharffe et al. introduced the Ontology alignment design patterns
library as a solution for recurring mismatches that can arise during the align-
ment of two ontologies. This repository (at the time of writing) consists of
about a dozen alignment patterns, it is hosted online 11 as part of the collabora-
tively built (Wikipedia style) semantic web portal dedicated to ontology design
patterns.

Let us consider the Class by attribute value (CAV) pattern, which occurs
“when a class in one ontology corresponds to a class in the other ontology, given
that the scope of the latter class is restricted to only those instances having a

11http://ontologydesignpatterns.org/wiki/Submissions:AlignmentODPs
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specific value for a given attribute” [20]. For example, the following axiom

Late Registered ParticipantO1 ≡ ∃earlyRegistrationO2 .{false}

is an instantiation of the CAV pattern, where the concept Late Registered Participant
of ontologyO1, corresponds to the anonym ( complex) concept ∃earlyRegistration.{false}
of O2. This alignment pattern confirms that concepts are often described as the
domain or range concept of some restriction; this was used in defining the do-
main or range restriction concept of a role CDP.

5.2 Pattern Recognition

Pattern recognition requires the following objects:

• C: the defined concept name;

• Σ = {e1, . . . , en}: the concept definition signature, consisting of a set of
different entities, that can be used to create a complex concept, i.e. the
right-hand side of an explicit definition axiom that describes the concept;

• J = {α1, . . . , αm} : the justification, consisting of a set of axioms that
given a particular Σ, entails the definability of the concept.

The recognition is performed by analysing the cardinality, and the type of the
constituent entities or axioms of the above sets, respectively.

5.3 Basic patterns

Basic patterns are trivial to recognise, as well as to use for constructing an ex-
plicit concept definition.

(1) Explicit definition patterns. These are patterns of explicitly defined
concepts, that are always represented in form of a single, asserted concept equiv-
alence axiom, hence |J | = 1. However the corresponding definition signature
cardinality and the type of entities that make up the signature can differ.

• synonym explicit definition: takes the form takes the form A ≡ B, where
A,B are concept names. Both of these concepts are explicitly defined
synonyms of each other. Σ contains a single concept name.

• complex explicit definition: A ≡ C where A is an explicitly defined concept
name, and C is a complex concept. C can take different forms:

- union: A ≡ C1 t C2

- intersection: A ≡ C1 u C2

- property domain or range: A ≡ ∃r.C, A ≡ ∃r.∃s.>

Σ is equivalent to the signature of C. If |Σ| = 1, it contains a single role
name; otherwise |Σ| > 1, consisting of an arbitrary set of entities.
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(2) Constituent concept of a disjoint union. A disjoint union states that
a concept A is a union of a set of pairwise disjoint concepts {C1, . . . ,Cn}. This
is formalised by a set of axioms, therefore |J | > 1. J contains a single concept
equivalence axiom α1, which states the union, as the explicit definition of A;
then the corresponding axioms α2 − αm state pairwise disjointness of the other
signature entities.

J = {α1 : A ≡ C1 t . . . t Cn,

α2 : Ci v ¬C1,

. . .

αm : Ci v ¬Cn}
In this pattern, all named and anonymous 12 concepts are defined. Please note
that C is not necessarily a concept name, but a potentially complex concept. A is
the only explicitly defined concept (LHS of axiom α1). Its constituent concepts
{C1, . . . ,Cn} (the signature of the RHS of α1), are all implicitly defined. To
define A, all those entities which occur on the RHS of the CE axiom are needed,
thus the signature of this concept definition is ΣA = Sig(α1) \ {A}.

ΣCj = { A,︸︷︷︸
subsumer concept

C1, . . .Ci,Ck, . . . ,Cn︸ ︷︷ ︸
disjoint concepts

}

To define any other concept Cj (of RHS concepts) the signature would be ΣCj =
Sig(α1) \ {Cj}, where the definition axiom takes the form of Cj being defined as
the conjunction of A, and the complement of the union of those concepts that
Cj is disjoint with:

Cj ≡ A u ¬(C1 t . . . t Ci t Ck t . . . t Cn) where (1 ≤ i < j < k ≤ n)

This pattern does not apply to simple unions, i.e. cases where there is a CE
axiom such that A ≡ C1 t . . . t Cn, but there are no corresponding disjoint state-
ments. Although it is true that any Cj v A, but it cannot be stated that
Cj v ¬(C1 t . . . t Ci t Ck t . . . t Cn), hence no precise definition can be con-
structed which would define the necessary and sufficient conditions for being
a Cj .

Example 3 13 Regular contribution is explicitly defined by α1, where the defi-
nition axiom signature is Σ = {Extended abstract,Paper}. On the RHS of α1

there are two concept names, these are declared to be pairwise disjoint in axiom
α2.

J = {α1 : Regular contribution ≡ Extended abstract t Paper,

α2 : Extended abstract v ¬Paper}

12Assuming that any anonymous concept that appear in α1 are not unfolded, for example
if A ≡ C1 t ∃r.∃s.>, then ∃r.∃s.> is defined, but ∃s.> is not.

13Conference corpus, Conference.owl

26



It is clearly visible, that both Extended abstract and Paper are implicitly defined
from J as follows:

Extended abstract ≡ Regular contribution u ¬Paper

Paper ≡ Regular contribution u ¬Extended abstract

(3a) Domain or range restriction concept of a role. In this pattern
|J | > 1 and Σ contains a single role name. A role is defined as a relationship
between a certain domain and range concept, thus in some cases a role name
itself is sufficient to define its domain or role concept. For example the non-DL
statement

hasChild(Parent,Human)

asserts that hasChild is a relation between instances of concept Parent and Child.
In DL, this is formalised as the axiom set:

domain restriction ∃hasChild.> v Parent (12)

range restriction > v ∀hasChild.Human (13)

(12: everything that has a child is a parent; 13: only a human can be child of
something). These axioms alone do not define neither the domain, nor the role
concept because they only express subsumption, but not equivalence. However,
if the ontology contains the additional axiom (every parent has a child)

Parent v ∃hasChild.> (14)

then (12, 14) together imply the statement, Parent ≡ ∃hasChild.>, i.e. a parent
is somebody who has a child. Therefore now the domain concept can be de-
fined using the role itself. A range concept can also be defined, given that an
additional axiom that specifies its meaning, is also present in the ontology.

Example 4 14 Conference setup is defined by the signature Σ = {includes topic}.
The axioms of J entail the definition axiom Conference setup ≡ ∃includes topic.>,
i.e. Conference setup is the domain of relation includes topic.

J = { α1 : Conference setup v ∃includes topic.Topic,

α2 : ∃includes topic.> v Conference setup}

(3b) Domain or range concept of role or inverse role. This pattern is
almost identical to the normal role pattern (3a), as in this case there is also a
role name r(C,D) that defines a concept, either as its domain or range. However,
there is always another role name, which is the inverse of the former role that
defines the given concept, only here the domain becomes range and vice versa:
s(D,C) and r ≡ s−. Because r ≡ s−, the two roles are interchangeable, hence any
axiom that is relevant to r is also relevant to s as well. In this pattern |J | > 1
and Σ contains a single role name.

14Conference corpus, confious.owl
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Example 5 15 Document is either definable as the domain of used by, or as
the range of use.

J = { α1 : used by ≡ use−,

α2 : Document v ∃used by.Person

α3 : > v ∀use.Document}

Using the role used by as the concept definition signature, the axioms can be
rewritten, and an explicit definition formulated as follows:

α3 −→ > v ∀usedBy−.Document}
Document ≡ ∃used by.>

Alternatively, the role use can be used for the same purpose:

α2 −→ Document v ∃use−.Person}
Document ≡ ∃use−.>

(3c) Explicitly defined concept with inverse role. This is a special pattern
which differs from the previous role patterns. In this case there is a concept
which is explicitly defined, where its definition contains one or more roles, which
has an inverse. Hence Σ > 1: consists of the signature of the explicit definition,
where the one of the roles is switched with its inverse. The justification consists
of two axioms, an explicit definition, and the inverse role statement.

Example 6 16 IASTED member is an explicitly defined concept, but it is also
implicitly definable with the signature Σ = {Member registration fee, is paid by}

J = { α1 : IASTED member ≡ ∃pay.Member registration fee,

α2 : is paid by ≡ pay−}

(4) Implicit synonyms In this pattern Σ contains a single concept name,
similarly to the explicit synonym pattern, however the axiomatisation is more
complex as |J | > 1.

The simplest case is when a concept equivalence is represented as two in-
clusion axioms, such as {A v B,B v A} |= A ≡ B. In other cases, this may an
unintended, conceptual error made by the ontology engineer, consider the fol-
lowing example

Example 7 17 Both concepts Event,Document are synonym terms of each other,
however this may be an error, as the words are semantically unrelated.

J = { α1 : Event ≡ ∃created by.Person,

α2 : Document ≡ ∃created by.Person}
15Conference corpus, cocus.owl
16Conference corpus, iasted.owl
17Conference corpus, paperdyne.owl
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The following example shows a more complex axiomatisation:

Example 8 18 In this ontology, Plenary lecture is a synonym of Tutorial.

J = { α1 : Plenary lecture ≡ ∃is given by.Plenary lecture speaker,

α2 : Plenary lecture speaker ≡ ∃give.Tutorial

α3 : Tutorial ≡ ∃is given by.Tutorial speaker

α4 : Tutorial speaker ≡ ∃give.Plenary lecture

α5 : give ≡ is given by−}

5.4 Complex patterns

The combination of a set of basic patterns together form a complex pattern.
Each basic pattern consist of an axiom set, from which a concept definition is
derivable; in a basic pattern, usually these axioms enable the definition of a
single concept. In complex patterns, apart from the main concept in question,
there are typically more than one defined concepts, hence the set of axioms
(cardinality of justification J ) grows with the number of defined concepts that
are substituted with their descriptions in the definition of the main concept.

Example 9 19 This pattern is the combination of two explicit definitions. The
concept Plenary lecture is explicitly defined by α1.

J = { α1 : Plenary lecture ≡ ∃is given by.Plenary lecture speaker

α2 : Plenary lecture speaker ≡ ∃give.Tutorial}

In addition, there is an alternative way to define the concept, because it is
also implicitly defined as Plenary lecture ≡ ∃is given by.∃give.Tutorial, where Σ =
{Tutorial, give, is given by}

Some complex patterns consist of clearly partitioned axiom subsets, where
each subset corresponds to a basic pattern which defining a single concept. In
other cases (such as the following example), these subsets may overlap, reducing
the overall size (number of axioms) of the complex pattern.

Example 10 20 In this example, concept Conference is defined by the combi-
nation of two basic patterns: a disjoint union (α1, α3) and role domain pattern
(α1, α2). The two patterns overlap as both contain axiom α1

J = { α1 : Conference v= 1hasName.>
α2 : ∃hasName.> v (Conference t Session)

α3 : Conference v ¬Session}
Conference ≡ = 1hasName.> u ¬Session

18Conference corpus, iasted.owl
19Example from iasted.owl, OAEI2014 Conference track corpus
20Example from myreview.owl, OAEI2014 Conference track corpus
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6 Empirical Evaluation

The goal of the evaluation was to investigate the definability landscape, in order
to establish the prevalence and the eisxtent of definability over a large and di-
verse corpus of OWL ontologies; and to characterise the behaviour of proposed
definability computation algorithms. All of the data and software, including on-
tologies, computed definition signatures, corresponding justifications, generated
definition axioms, and other raw results, are available online21.

6.1 Evaluation Corpus

Dataset selection was mostly dictated by diversity, meaning that the dataset
must contain a wide range of ontologies of different size (with respect to signa-
ture, as well as axiomatisation), and language expressivity (ranging from simple
to very expressive). In addition, it was important that documents were a real
world ontologies depicting a variety of domains, with a broad range of appli-
cation areas22, and originating from a large number of independent sources
(domain experts, ontology engineers, application developers, etc.) that may ap-
ply different modelling styles. Lastly, it was also important to have a sufficient
number of ontologies in order to uncover any patterns or anomalies that may
effect the derived conclusions.

Ontology format. There are a number of popular knowledge representation
languages and corresponding ontology document formats available for creating
ontologies. The ontology document format was restricted to OWL compatible
documents. This choice was motivated by the following reasons:

• OWL is the official W3C recommendation, a de facto standard, hence it
is widely used for both academic, and real world purposes.

• There is a plethora of accessible and freely obtainable OWL ontologies, in
the form of individual files, and curated collections consisting of thousands
of documents.

• OWL has very good tool support. This is important for the implemen-
tation of the experiment framework, which requires: an API for creat-
ing, manipulating and processing ontologies; ontology reasoner(s); API
for module extraction; and the API for computing justifications, which is
exclusive to OWL.

21http://www.csc.liv.ac.uk/~dgeleta/ontodef.html
22The purpose for which a particular ontology is used for impacts the ontology engineers’

modelling choices, such as DL expressivity. For example, a highly expressive language is
detrimental to the effectives of reasoning services, therefore one would not use such language
when the aim is to perform large scale or frequent inferences; on the other hand, when the
goal of the conceptualisation is the most accurate representation of some domain of interest,
an expressive language is usually a better choice.
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• OWL has several named profiles corresponding to different levels of DL
language expressivity. This helps to partition the dataset, which is neces-
sary for analysis.

6.1.1 Dataset Selection and Curation

The OWL ontology landscape was surveyed in [15, 16], providing a comprehen-
sive picture about a number of important ontology collections and repositories.
These papers present an ontology classification based on the purpose for which
they were created for as either in-use or test, where the former category is built
for use in real life applications, and the later is built for academic research. The
evaluation corpus was assembled from six different collections.

• OAEI corpus. Each year since 2004 the Ontology Alignment Evalu-
ation Initiative (OAEI23) [6] organises evaluation of ontology matching
technologies using several tracks, where each track consists of different
datasets, aiming to evaluate certain ontology matching features (instance
matching, large ontology matching, interactive matching etc.). It contains
a mixture of in-use, and test ontologies. In addition to a diverse set of on-
tologies, each track contains validated ontology alignments as well, which
would also facilitate later experiments that meant to assess the applica-
tion of definability in the ontology alignment domain. Several tracks were
selected for evaluation:

- Anatomy track: consists of 2 relative large ontologies, where one
describes the human, the other describes the mouse anatomy.

- Large Biomedical Ontologies track: consists of 6 large, seman-
tically rich ontologies. These are extracts (overlapping fragments)
of three well known biomedical ontologies: Foundational Model of
Anatomy (FMA), SNOMED CT, and the National Cancer Institute
Thesaurus (NCI).

- Conference track: is a collection of 16 small ontologies that model
the conference organisation domain.

• NCBO BioPortal repository corpus. This hand crafted, community-
based repository is hosted by the National Center for Biomedical Ontol-
ogy (NCBO) [17]. According to their website24 it is the ‘world’s most
comprehensive repository of biomedical ontologies’. As of August 2015,
it contains over 440 ontologies, represented in OWL compatible formats
(OWL, OBO, RDF and Proteg frames). These real world ontologies vary
greatly in size and expressivity, which makes it a popular corpora for tool
development and academic empirical evaluation.

• TONES corpus. This hand curated ontology repository is aimed to
provide a comprehensive test set for OWL application development and

23http://oaei.ontologymatching.org/
24http://bioportal.bioontology.org/
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empirical studies25. At the time of access, in December 2014, it contained
219 OWL and OBO ontologies, varing greatly in size and expressivity.

• WebCrawl corpus. This corpus was created by the authors of [16]. The
corpus was obtained by crawling the web and collecting OWL ontologies.
The dataset was curated by applying various filtering heuristics (file and
domain based manual cleaning procedures, repairing some minor syntactic
errors such as missing entity declarations, etc.), resulting in a very large (in
comparison to the other listed corpora) set of non-trivial OWL ontologies
containing 4327 documents. The general purpose of the corpus is to allow
sampling based empirical evaluation leading to more representative results
than when cherry-picking individual documents, or somewhat arbitrary
selecting certain data sets.

Curation Process. In [15, 16] the authors describe the good practices and
the pitfalls of selecting datasets for empirical evaluation; provide an overview
of the popular ontology repositories; present a checklist for dataset curation,
analysis and comparison; as well as outline an approach for gathering large yet
interesting (i.e., non-trivial) collection of OWL documents.

[14] served as a source for obtaining a curated version of the BioPortal and
WebCrawl datasets26). Both datasets were curated by the authors as follows:
each document was parsed using the OWL API. Available import closures 27

were recursively downloaded, and merged into a single ontology document. The
authors discarded any documents that could not be parsed, or had missing
imports. Both of these two datasets were compressed and stored on-line as ZIP
archive files; WebCrawl could not be unarchived entirely due to an unknown
error, resulting in the marginal loss of some files.

The three OAEI datasets and the TONES corpus was also curated, each
file was parsed using the OWLAPI, but missing import closures were not down-
loaded and merged. Any file that could not be parsed or had any missing imports
was discarded.

In addition, each document of all datasets were tested for consistency, be-
cause as later described, inconsistency in an ontology leads to false definability
results, hence all inconsistent documents were also discarded. The consistency
check was performed using both Pellet and Hermit ontology reasoners; there
were some minor discrepancies between the results of these two, therefore only
those documents were kept which was found consistent by both reasoners. Fur-

25http://rpc295.cs.man.ac.uk:8080/repository/
26Available on-line http://web.stanford.edu/~horridge/publications/2014/iswc/

atomic-decomposition/data/
27OWL ontologies, much like software, may be built in a modular fashion, where reusable

ontological knowledge is kept physically separate (i.e. it is an ontology on its own), but can
be included to create a single document through importing; top-level or foundation ontologies
that describe very general concepts are often used across many different knowledge domains.
An ontology which imports others is dependent on its imports, thus any imports must be
available (online or locally), otherwise the ontology cannot be loaded. To avoid scenarios
where imports cannot be loaded, or to reduce loading time (especially with large documents
stored online), these are often merged with the ‘base’ ontology.
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Figure 7: Relative frequency of OWL
constructor usage in the corpus.

Figure 8: Distribution of ontology
sizes, binned by the number of logical
axioms.

thermore, in each dataset, with the exception of the OAEI corpus, some large
or very expressive ontologies could not be processed (meaning that the implicit
definability checking algorithm could not complete its run) due to either rea-
soner time-out error, or memory overflow of the Java Virtual Machine; these
documents were also excluded from the final, curated versions of the corpus.

6.1.2 Dataset Description and Comparison

In order to demonstrate the diversity and to highlight certain characteristics
of the evaluation corpora that may effect the prevalence and extant of concept
definability, the main properties of the processed corpus are described in detail.

Anatomy LargeBio Conference TONES BioPortal WebCrawl

Signature

min 2755 3725 32 1 6 2
avg 3034 18187 113 1451 2450 119
med 3034 11809 109 168 569 53
max 3313 51181 274 36090 45091 2744

Classes

min 2743 3696 14 0 0 1
avg 3024 18140 54 1239 2060 61
med 3024 11785 49 88 451 15
max 3304 51128 140 36076 38738 2329

Object properties

min 2 0 13 0 0 0
avg 3 36 33 33 39 20
med 3 35 33 5 11 5
max 3 82 58 922 1390 607

Data properties

min 0 24 0 0 0 0
avg 0 8 12 14 9 9
med 0 0 11 0 0 1
max 0 24 23 708 488 674

Individuals

min 0 0 0 0 0 0
avg 0 0 10 40 341 19
med 0 0 0 0 0 1
max 0 0 114 3542 22534 1014

Logical Axioms

min 4838 3828 65 0 3 0
avg 8192 24150 265 1882 4156 215
med 8192 15268 233 187 839 69
max 11545 71042 739 42656 77700 4556

Table 1: Entity usage (minimum, average, median, maximum) in the six collec-
tions
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Anatomy LargeBio Conference TONES WebCrawl Total
Full 0.0% 0.0% 0.0% 16.7% 41.2% 42.2%
DL 100.0% 100.0% 100.0% 83.3% 58.8% 57.8%
EL only 0.0% 33.3% 0.0% 10.6% 1.9% 1.9%
EL total 0.0% 33.3% 0.0% 31.1% 6.9% 7.6%
QL only 0.0% 0.0% 0.0% 0.0% 1.0% 1.1%
QL total 0.0% 0.0% 0.0% 20.0% 5.2% 5.6%
RL only 0.0% 0.0% 6.7% 2.2% 5.0% 7.5%
RL total 0.0% 0.0% 6.7% 13.9% 9.3% 13.4%
DL only 0.0% 66.7% 93.3% 49.4% 45.1% 43.8%

Table 2: OWL 2 profile distribution in the collections

Table 1 shows the signature, entity usage (break down of classes, prop-
erties, individuals) and the number of logical axioms in the six datasets. In
addition, Figure 8 shows the distribution of ontology sizes sorted into six size
bins (ranging from less than 10 to 100000 axioms) by the number of logical
axioms 28. In terms of logical axiom count, the main corpus (i.e., the union of
the six collections) is sufficiently diverse in size: the majority falls into the very
small (less than 10 axioms) and small (10 to 100 axioms) size bins, with 17%
and 37%, respectively; medium size (101 to 1000 axioms) ontologies constitute
to 38% of the dataset; about 6% is large (1001 to 10000 axioms), and 1% falls
into the very large (over 10000 axioms) size category, making up the remainder
of the corpora. Although these numbers are the result of measuring the asserted
ontology model, which could obviously differ from the inferred model of an on-
tology 29, the mean and median values of the signature and entities confirm the
overall size distribution.

The expressivity of a particular DL flavour depends on the combination
of the concept and role constructors used by the language. Within this corpus,
there are over 250 different constructor combinations, thus the dataset is suffi-
ciently diverse. Although the constructor combinations are not listed here (for
the sake of readability), the use of constructors is depicted in Figure 7, where
the frequency of constructor usage is shown in terms relative usage. Constructor
combinations fall within OWL2 profiles, where each profile is a syntactic subset
of the full OWL2 language. These profiles were created to facilitate certain
purposes, trading expressive power for efficient reasoning.

Table 2 shows the named profiles in the corpus (for each sub-collection, as
well as the whole). Please note that an ontology can fall within more than
one named profile. In addition to the three named profiles, there are two more
categories, ‘DL’ shows any ontology that do not belong to any named profiles,
but are a valid syntactic subset of the OWL 2 language; ‘Full’ denotes those
OWL documents that cannot be classified as ‘DL’, but were still parsable by the
OWL API and processable by reasoners (as noted in [16], this could occur when,

28A more detailed logical axiom distribution that shows the breakdown for each corpus can
be found in the Appendix ??, Figure ?? (absolute distribution and relative distribution).

29In some cases, the asserted model of an ontology may contain less terminological axioms
than the inferred model, even though these models are semantically equivalent. For example,
the asserted model consisting of a single axiom A ≡ B t C conveys the same meaning as the
inferred model, i.e. the set of axioms {A ≡ B t C,B v A,C v A}.
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Axiom type Anatomy LargeBio Conference TONES BioPortal WebCrawl
EquivalentClasses 0.0% 34.6% 66.7% 39.3% 45.6% 38.1%
SubClassOf 100.0% 100.0% 100.0% 97.0% 87.5% 76.2%
DisjointClasses 50.0% 88.5% 66.7% 53.5% 42.7% 35.1%
DisjointUnion 0.0% 0.0% 0.0% 0.0% 0.5% 0.0%
ClassAssertion 100.0% 23.1% 0.0% 30.8% 22.4% 51.2%
EquivalentObjectProperty 0.0% 0.0% 0.0% 5.5% 2.2% 2.2%
SubObjectPropertyOf 0.0% 36.5% 50.0% 50.6% 34.0% 33.2%
DisjointObjectProperty 0.0% 0.0% 0.0% 3.2% 0.4% 0.2%
ObjectPropertyDomain 0.0% 100.0% 33.3% 51.7% 42.3% 54.6%
ObjectPropertyRange 0.0% 100.0% 33.3% 49.0% 43.0% 56.3%
ObjectPropertyAssertion 0.0% 0.0% 0.0% 11.0% 8.7% 16.5%
NegativeObjectPropertyAssertion 0.0% 0.0% 0.0% 0.0% 0.0% 0.9%
InverseObjectProperties 0.0% 100.0% 0.0% 45.4% 28.3% 38.3%
TransitiveObjectProperty 50.0% 32.7% 0.0% 46.7% 27.4% 21.5%
SymmetricObjectProperty 0.0% 7.7% 0.0% 18.5% 12.9% 11.4%
AsymmetricObjectProperty 0.0% 0.0% 0.0% 1.6% 1.0% 0.7%
FunctionalObjectProperty 0.0% 63.5% 0.0% 32.4% 23.7% 22.8%
InverseObjectProperty 0.0% 51.9% 0.0% 7.9% 8.4% 9.2%
IrreflexiveObjectProperty 0.0% 0.0% 0.0% 3.8% 0.4% 0.7%
EquivalentDataProperty 0.0% 0.0% 0.0% 1.1% 0.5% 1.7%
SubDataPropertyOf 0.0% 3.8% 0.0% 12.0% 1.4% 10.4%
DisjointDataProperty 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%
DataPropertyDomain 0.0% 71.2% 33.3% 26.5% 21.3% 37.5%
DataPropertyRange 0.0% 71.2% 33.3% 28.0% 25.3% 38.7%
FunctionalDataProperty 0.0% 59.6% 33.3% 19.9% 16.8% 19.9%
DataPropertyAssertion 0.0% 0.0% 0.0% 11.9% 4.0% 13.5%
SameIndividual 0.0% 0.0% 0.0% 0.6% 1.1% 17.4%
DifferentIndividuals 0.0% 3.8% 0.0% 11.8% 3.2% 6.0%
SubPropertyChainOf 0.0% 0.0% 33.3% 9.6% 2.2% 1.6%

Table 3: Axiom type usage in the six collections, as a proportion of ontologies
that use an axiom type

for instance, entity declarations are missing from the document). A small part
(16.7%) of the BioPortal corpus, and a large portion (41.2%) of WebCrawl
were outside of the DL profile, the rest of the documents were all within the DL
profile.

The OWL language categorises represented axioms into axiom types, for
example a concept synonym statement such as C ≡ D is formalised by the Equiv-
alentClasses axiom type. Table 3 shows the axiom type usage in each subsets of
the evaluation corpus, which, due to the above mentioned problem of OWL pro-
filing provides a more fine grade picture about the expressivity of the ontologies
than the OWL 2 profiles.

6.2 Results

The experimental framework was implemented in Java; the OWL API ver-
sion 4.1.0 was used for ontology manipulation and for interacting with the rea-
soners [13]. The OWL Explanation API30 was usd to compute justifications.
Both the HermiT [9] (version 1.3.8) and Pellet [22] (version 2.2.2) reasoner31.
Experiments were conducted with a 10 minute reasoner timeout setting, and
4GB maximum memory allocated for the Java Virtual Machine, on an average

30https://github.com/matthewhorridge/owlexplanation
31In most datasets HermiT performs faster, however Pellet was able to load and process

some ontologies that HermiT could not (due to ontologies using datatypes that are not part
of the OWL 2 datatype map and no custom datatype definition was given).
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Figure 9: Proportion of a ontologies in the corpus, binned by the proportion of
defined concepts in an ontology

configuration machine with 16GB RAM and a 4 core processor architecture. The
evaluation corpus was assembled from a variety of OWL ontology datasets,
including ontologies in the Manchester Ontology Repository 32 and those used
for the OEAI evaluation challenge 33. The corpus contains 3576 ontologies of
different size (w.r.t. signature cardinality, as well as axiomatisation), and lan-
guage expressivity. The ontologies contain 396943 concepts in total; all the
datasets used are described in [8].

We distinguish between defined and undefined ontologies depending on whether
they contain at least one defined concept, of if all their concepts are undefined.
The investigation into the prevalence and the extent of definability was moti-
vated by the following experimental questions: (1) what portion of ontologies
contain defined concepts; (2) what is the ratio of undefined and defined concepts
in defined ontologies; (3) what is the ratio of explicitly and implicitly defined
concepts in defined ontologies; (4) what ontology properties affect definability?
In order to answer the first three questions, all concepts in every ontology were
examined to decide whether they were undefined, or defined either explicitly or
implicitly. In general about half (47.62%), 1703 out of 3576 ontologies contained
at least one defined concept. Out of all concepts (396943 concepts), 75.82% were
undefined, 20.74% were explicitly and 3.44% were implicitly defined. Figure 9
shows the proportion of documents in the corpus, binned by the ratio of defined
to undefined concepts within an ontology. As expected, there are increasingly
fewer number of ontologies as the ratio of defined to undefined concepts increase.

Intuitively concept definability is mostly influenced by the axiomatic rich-
ness of an ontology (i.e. the granularity of conceptualisation), along with a
combination of indirect factors, such as the expressivity of the employed DL
language and the size of an ontology. Other properties such as origin (source
of creation), and the conceptualised domain of interest are less likely to have
significant effect on definability. In the following, each ontology property is
assessed, by comparing the defined and undefined parts of the corpus.

32http://owl.cs.manchester.ac.uk/tools/repositories/
33http://oaei.ontologymatching.org
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Figure 10: Relative distribution of
defined and undefined ontology sizes,
binned by the number of logical ax-
ioms.

Figure 11: Comparing the frequency of
OWL constructor usage in defined and
undefined ontologies.

Logical Axioms. Figure 10 confirms the claim that size is at best an indi-
rect influencing factor of concept definability. The last two (largest) size bins
roughly have the same number of ontologies in defined and undefined categories
as well. In the smallest size bin (≤ 10 ) there are significantly more undefined
ontologies, in the medium size bin (101− 1000) there are twice as many defined
ontologies than undefined ones. This is most likely because an ontology that
contains over a hundred concepts: (a) is more likely to contain specialised and
generalised concepts that are distinguished in their meaning by more descrip-
tive axioms; (b) takes considerable effort to develop, which could also translate
into making the ontology more functional by adding more content (axioms); (c)
the developer has deeper understanding over the subject domain, which is also
reflected by richer axiomatisation of the described knowledge.

Ontology EL only EL QL only QL RL only RL DL only DL Full
Defined 2% 6% 1% 4% 4% 8% 49% 61% 39%

Undefined 2% 8% 1% 6% 6% 11% 41% 56% 44%

Table 4: OWL 2 profiles contrasting ontologies with and without defined con-
cepts

OWL Profiles and DL Constructors. Table 4 shows the distribution of
OWL profiles in defined and undefined ontologies. Profiling results are incon-
clusive, however, there is a slight indication that the more expressive ontologies
are more likely to contain defined concepts than less expressive ones. The DL
only category (ontologies exclusively in the DL profile) is used by 49% of the
defined ontologies, whereas it is only used in 41% of the undefined ones. Figure
11 shows the constructor usage in defined and undefined ontologies; this shows
an even distribution, meaning that both categories contain less and more ex-
pressive ontologies.

MDSs. Figure 15 shows the number of MDSs of all defined concepts found
in the corpus, divided into two parts corresponding to the search and expan-
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Figure 12: Relative distribution of
MDSs, binned by the number of differ-
ent MDSs per concept.

Figure 13: Relative distribution of
MDS cardinality, binned by the num-
ber of entities in an MDS

Figure 14: Relative distribution of
MDSs binned by concept definition
pattern types

Figure 15: Measuring the number of
MDSs of explicitly and implicitly de-
fined concepts

sion phases of MDS computation. The incomplete, but polynomial time search
phase computes pairwise disjoint MDSs; the complete, but exponential time ex-
pansion phase includes computing the complete set of MDSs of defined entities.
The results are divided between explicitly and implicitly defined concepts. A
given defined concept has on average 3.06 different MDSs. The median score of
2 suggests that at least half of all concepts had two or more different definitions.
This is supported by Figure 15, which provides the distribution of MDSs, binned
by the number of different MDSs per concept: 34.56% of all defined concepts
had exactly one MDS; the remaining 65.44% of defined concepts had at least
two different MDSs, where 22.52% of concepts had exactly two MDS. The trend
is that as the number of MDSs per same concept is increasing, the number of de-
fined concepts decreases. By comparing the mean scores of MDSs per concepts
between the two definability types, the data suggests that, in general explicitly
defined concepts have more MDSs than implicitly defined ones; the former has
3.94, the later has 2.34 different MDSs on average. This is most likely because,
by definition, an explicitly defined concept is guaranteed to have at least one,
but potentially more MDSs (unless the explicit definition is cyclic). The rest of
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the concept’s MDSs correspond to implicit definitions of the concept. Figure 6
shows that most concepts had only a few different MDSs, however few concepts
had a large number of MDSs, which is explained by that the number of MDSs
is potentially exponential in the size of the ontology.

MDS were analysed according to two properties: (a) cardinality ; (b) the cor-
responding CDP. MDS cardinality is one of the indicators of its corresponding
CDP type, and as such this property is used in pattern recognition. MDSs are
divided into two size categories: single, and multi-entity signatures. Figure 13
presents the distribution of MDS sizes, binned by the number of entities in an
MDS. 34.56% of all MDSs contained only a single entity, the remainder con-
tained two or more entities, the maximum number of entities in a signature was
seven (in 1.55% of all MDSs). In general as the size of the MDS increases, the
occurrence of the size type decreases. Figure 14 shows the distribution of MDSs
binned by CDP types. Out of all CPDs, 43.3% were complex. The rest of the
CDPs fall into the basic pattern category, for which it is possible to generate a
definition axiom, using the presented approach. 10.49% of all defined concepts
had only complex CDPs, the majority either had only basic pattern MDSs, or
both at the same time.

Modelling errors. Out of all defined concepts, 15% has redundant concepts,
and only a handful of concepts were definable by an empty signature. Inter-
estingly, most of these errors were detected in highly used and extensively cu-
rated ontologies, confirming the intuition that definability can aid ontology en-
gineering. This result also suggests, that redundant concepts can occur because
knowledge engineers aim to make explicit definitions descriptive or more com-
prehensible for humans rather than succinct.

7 Conclusions and Future Work

In this paper we have presented a novel way to compute the complete set of
definition signatures of defined concepts and roles. A large and diverse set of
ontologies were subjected to definability computation, which included estab-
lishing the definability status of concepts and computing all possible minimal
definition signatures of defined concepts. In addition it was shown, that defin-
ability computation is feasible for most real world ontologies, and in some cases,
it can be useful in dynamic environments as well, due to the fact that a subset of
MDSs can be found in polynomial time. This has confirmed the hypothesis that
definability is prevalent in any type of ontology, although it is more likely to
occur in more expressive, and semantically richer ontologies. Hence the exploita-
tion of MDSs could indeed benefit several application areas. One application
area, the support of ontology engineering by detecting modelling errors using
MDSs was introduced in this paper. In terms of future work, we aim to explore
other possible applications of definability such as ontology alignment evaluation
evaluation, and ontology alignment negotiation. These new applications should
be investigated in depth in order to quantify, the intuitively significant, effect
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of rewriting within these contexts.
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