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Abstract. Intrusion detection systems (IDS) aim to protect computer
systems against attacks. The detection methods employed in anomaly-
based IDS are based, in particular, on monitoring networks for patterns
of activity that differ from normal behaviour. Issues to be addressed with
anomaly-based systems include deciding and representing what consti-
tutes normal behaviour as well as being able to detect deviations from
this efficiently in high speed networks. Here we describe an approach to
anomaly-based intrusion detection utilising temporal logic and stream
data processing. Temporal logic is used to specify the normality con-
ditions which, after translation into data stream queries, are efficiently
executed on streams of network packets. The proposed approach allows
the concise representation of patterns of normal behaviour, possibly in-
volving multiple steps, as well as being able to detect their violations
over a high volume of data in high speed networks.

1 Introduction

In order to meet today’s cyber security challenges a key requirement is the effi-
cient processing of high volume, transient data coming from high-speed network
traffic. According to an estimation provided by Endace [12], for the detection
of the Conflicker worm “on a 50% loaded 1Gb/s link, a packet loss of 0.00002%
could cause a system to miss the critical packet that triggers the alert.” A second
challenge relates to the difficulty of specifying cyber defence tasks in a concise
and unambiguous way, which is transparent to the human user, given the ever
increasing number and complexity of the cyber threats. Furthermore, the ef-
ficiency of the detection, prevention and response to security threats requires
mechanisms for the reduction, abstraction, aggregation and comprehension of a
vast volume of short lived, transient data.

Both of these challenges appear in the context of Intrusion Detection Systems
(IDS) and Intrusion Prevention Systems (IPS), which are designed to monitor
networks or systems to detect and prevent against malicious entities and events.
Whilst widely used IDS such as SNORT3 (the de facto standard for open source
IDSs) and Bro4 have been successfully used to detect attacks, the advent of high

3 www.snort.org
4 www.bro-ids.org



speed/high volume networks entails the need for robust, scalable and efficient
solutions. Additionally, to describe attack patterns or patterns of normal be-
haviour we often need the ability to describe not only the contents of network
packets but also a particular sequence of packets or events in a suitable language.
Many current IDS are not designed for the detection of temporal, multiple step
attacks over flows of data, involve complex, low level languages to specify attacks
and drop packets in high speed and volume network traffic.

In summary, we believe that Intrusion Detection and Intrusion Prevention, as
well as many other cyber security related tasks require: the efficient processing of
transient data (stream data) to cope with the high-volume and the high-speed
network traffic; the ability to specify multiple-step patterns; and a high-level
specification language to specify the attacks, policies, normal behaviour, etc in
an unambiguous and concise way.

Intrusion detection methods and techniques fall into two broad categories -
one consists of the methods using explicit knowledge of threats, that is signature-
based intrusion detection (sometimes also referred to as knowledge-based, or mis-
use detection); and the other relies upon the detection of anomalies, or deviation
from normal behaviour (anomaly-based detection). The second category can be
further split into the methods learning normal behaviour at the operation time
using statistical and machine learning techniques [21, 13, 18], and the methods
using pre-defined normal behaviour [11], e.g. based on the specification of the
network protocols.

In this paper we focus on the latter, that is specification-based protocol
anomaly detection. Issues involve deciding what normal behaviour is and how
to represent this as well as how to detect abnormal behaviour. We address both
challenges above, that is efficiency in high-throughput traffic and the high-level,
concise and transparent specification of IDS tasks.

We utilize and expand our generic concept of Temporal Stream Processing
for Cyber Security, proposed in the previous work [2, 3], which is based on the
following principles:

1. temporal logic is used for the specification of data stream queries/data
stream transformers; and

2. temporal specifications are translated to standard data stream queries lan-
guages and translations are used for the execution using available high per-
formance data stream engines.

In previous work [2, 3] temporal stream processing was proposed for signature-
based IDS where temporal logic is used to specify known attack signatures, which
are translated into stream queries and then executed using a stream processing
engine. Experimentation with the resulting system showed efficient detection in
very high-speed networks. It outperformed SNORT in terms of the packet loss
when working in the high-speed networks [3]. Furthermore, the system demon-
strated the convenience of the high-level specification language especially for
specifying multi-step attack signatures.

In this paper we extend the approach of [2, 3] and apply it to the specification-
based protocol anomaly detection. Here, unlike our previous work, temporal logic



is used to specify not the attack signatures, but rather the patterns of the ex-
pected normal behaviour. Then similarly to [2, 3] temporal specifications are
translated into data stream queries which are executed by the efficient data
stream processing engine. This paper should be viewed as a proof of concept for
demonstrating these ideas. Further work is necessary to fully explore, analyse
and demonstrate its potential. The contributions of the paper are:

– the application of Temporal Stream Processing for Cyber Security to anomaly
based intrusion detection via the specification of normal behaviour;

– a discussion of what we mean by normal behaviour here and its representa-
tion using temporal logic;

– a demonstration of the approach using examples of both single step and
multi-step normal behaviour.

The rest of this paper is organised as follows. Section 2 explains our approach
to the specification of normal behaviour. In Section 3 we provide the syntax and
semantics of the temporal logic we use to specify normal behaviour. Section 4
gives details about Stream Data Processing and some of the facilities it provides.
In Section 5 we describe the TeStID System for network IDS. In Section 6 we
show how parts of normal behaviour may be specified using temporal logic and
Section 7 shows how this can be mapped into a corresponding stream query.
In Section 8 we provide results of running these queries and we provide details
of related work in Section 9. Conclusions and further work are described in
Section 10.

2 Representing Normal Behaviour

In this paper we aim to model normal behaviour by capturing the require-
ments on the properties of individual network packets and of sequences of pack-
ets using temporal logic. Although the proposed approach is very flexible and
is applicable for modelling the behaviour of arbitrary networks, including the
simultaneous use of various protocols, for the purpose of this paper we restrict
ourselves to the case of TCP/IP behaviour only.

Where the “normality” requirements come from is a delicate question. One
may first try to reduce requirements on normality to the correctness of protocols
and their implementations. For example, the relevant Request for Comments
(RFC) can be consulted to identify expected or normal behaviour. An RFC
describes the syntax, semantics, and the function of a protocol, separate from
its implementation. However, as the authors of the most comprehensive formal
analysis of TCP/IP and Sockets API [6] have noticed that the development
of TCP/IP protocols was originally “focused on “rough consensus and running
code” augmented by prose RFC specifications that do not precisely define what
it means for an implementation to be correct.” This imprecision of semi-formal
RFC specifications leads to the inevitable variability of behaviour of different
implementations of the TCP/IP stack in use which are commonly accepted as



correct or compliant with the RFCs. Furthermore, there may be implementa-
tions which are only partially compliant with all the required RFCs. Finally, the
normal behaviour of TCP/IP may reflect the particular context of use, that is
a particular setup of the network, the use of cyber defence tools (firewalls, IDS,
IPS) etc.

Attacks relating to normal behaviour may be due to a vulnerability in the
RFC itself, or due to the implementation of the RFC. There may be different
implementations for the same protocol (e.g. for different operating systems) so
attacks may affect some platforms which do not comply with the RFC but not
others.

The Land attack simulates a TCP connection, but uses the victim’s own IP
address as the source address. The victim computer then attempts to contact it-
self in order to respond to the simulated connection request. If the target systems
are not compliant with RFC 2267 [20], then they may crash or lose services for
some time. When this attack first appeared in 1997 it was due to a vulnerability
in the original TCP RFCs. The attack succeeded on some platforms because of
the weakness in the specification that was not addressed by the implementers of
the affected platforms. In 1998, RFC 2267 was released and the attack affected
only the systems that did not implement the improved specification. The attack
resurfaced again in 2005 on Windows 2003 and Windows XP SP2 [26] as these
operating systems were not compliant with RFC 2267.

One way to capture all variants of normality in a uniform way is to use
methods learning normal behaviour at operation time. Here techniques such as
statistical methods are used which keep averages of particular values and detects
whether thresholds are exceeded based on standard deviations [21, 13]. Other
approaches propose the use of machine learning and data mining techniques
such as clustering and classification [18]. This is a well-established approach
in anomaly based intrusion detection in which detection of the deviation from
learned normal behaviour leads to an alarm. While this allows the detection
of unknown attacks and threats, it almost inevitably leads to a non-negligible
amount of false positives and false negatives.

We focus here on another possibility, that is to use explicit specifications of
the normal behaviour. We acknowledge the inherent incompleteness of normal-
ity conditions and do not aim to address the completeness issue. Rather, we
take a pragmatic approach and develop the principles for flexible specification
and efficient execution of normality condition checking. The flexibility covers all
variants of normality conditions discussed above:

1. derived from the specifications of the protocols;

2. derived from specifics of various implementations; and

3. derived from different contexts of use.

The protocol anomaly detection based on the explicit specifications of the
normal behaviour was first proposed in a [11] and since then has been developed



e.g. in [23, 24] and implemented in such systems as the CISCO IPS Intelligent
Detection technology5 and the Tipping Point intrusion prevention system6.

As a basis for the specification of normal behaviour, we use expected net-
work communications behaviour as described in the RFC [11, 15]. We use, in
particular, the TCP state transition diagram (see for example [27]) to derive the
normality conditions. It ascribes the transitions between the states of the TCP
protocol accompanied by send or receive action labels.

We assume that a network based IDS does not have access to the internal
states of TCP stacks at the end points of communication and the only infor-
mation available to IDS is that from the packets observed on the wire (wire
interface only in terms of [6]). Because of that we consider the following general
form of normality conditions derived from the specifications.

Principle 1 (normality of the specification compliant behaviour) The se-
quence of packets observed on the wire is normal iff it is consistent with
TCP state transitions diagrams at both ends of the connections.

We express the condition above, as well as all other normality conditions in
terms of expected behaviour: if the sequence of packets l1, . . . ln related to the
same connection and satisfying some side conditions has been observed on the
wire then for the execution being normal we expect to observe the next one
of a few possible packets with related side conditions. For a moment we can
symbolically denote the requirements of the above type by

(l1, . . . , ln)S →
∨
i

liSi
.

Side conditions S and Si here are understood very broadly and may be both
on the timing constraints between packets and on the content of the packets.
Notice that the compliance, if any, of the expected behaviour rules with the
specification, is not subject to dynamic, on-line/runtime testing or analysis. If,
indeed, the expected behaviour rule expresses normality with respect to TCP
specification, as stated in Principle 1, then it has to be checked as such statically
before deployment.

For protocol anomaly, only parts of the specifications are used. The use of
full TCP/IP specifications would be problematic for two reasons:

1. there still would not be 100% precision due to the inherent imprecision and
ambiguity of TCP/IP specifications; and

2. even with most detailed existing specifications, such as in [6] it would be too
computationally expensive (compare with [6] where the compliance of TCP
traces was checked off-line).

In the proposed approach, the parts of the specification can be selected due to
their frequent use (e.g. session establishments and fragmentation/defragmentation

5 www.cisco.com/c/en/us/products/collateral/security/ips-manager-express/
6 www8.hp.com/us/en/software- solutions/software.html?compURI=1343617



of packets) or due to their critical nature (e.g secure data transfer and authen-
tication). Furthermore, the conditions might not necessarily be derived from
specifications, but rather chosen by a user to reflect the specifics of the normal
behaviour of a particular implementation, or to reflect the particular context of
use.

In the next section we present the precise syntax of the temporal logic capable
to express the necessary details of such requirements.

3 Temporal Logic

Temporal logic is the extension of classical logic with operators that deal with
time which allows us to formally specify temporal events. For example we can
state that a formula ϕ will hold now or at some point in the future using the for-
mula ♦ϕ. Temporal logics have been developed for real-time systems, for example
Metric Temporal Logic (MTL) [16] where temporal operators are decorated with
time intervals to specify timing constraints. For example, ♦[0,5]ϕ means eventu-
ally ϕ will hold within 0 to 5 seconds from now. This is useful in the specification
of normal behaviour as we often need to state a sequence of events within some
time interval. We use Many Sorted First Order Metric Temporal Logic (MS-
FOMTL) [16] to represent patterns of normal behaviour relating to data packets
arriving over time. This allows us to state expectations relating to the content
of packets, the order they should arrive, relative timing constraints, etc.

The underlying temporal model, M, represents the sequence of packet ar-
rivals and we use temporal logic formulae, ϕ, to model normal behaviour. In
anomaly IDS we want to provide an alert when the underlying temporal model
does not satisfy the normal behaviour (i.e. M 6|= ϕ or equivalently M |= ¬ϕ).

3.1 Representation of Packets and Models

The incoming network stream packets form the temporal modelM. Packets are
captured in order by arrival time τ . Each captured packet belongs to a particular
network communication protocol (TCP, UDP, ICMP, etc). In this paper we
consider TCP as a case study. The set of all possible packets is denoted by JPK.

Rather than explicitly representing each field in a TCP packet we focus on
twelve fields that we have used to represent attacks in signature-based detec-
tion [3]. This helps with the ease of presentation, demonstrates the usefulness
of the approach, and helps with avoiding errors in the specification of normal
behaviour. However, if necessary, we could incorporate additional fields.

We will use P to represent a predicate of the TCP protocol type. P has
an arity of 12, s1 × ... × s12, where si (1 ≤ i ≤ 12) is the sort of a particular
predicate argument (i.e sender address, receiver address, sender ports ... etc.).
The specification of a TCP predicate is:

P (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)

where:



– x1 : is a string variable representing the sender IP address;
– x2: is an integer variable representing the sender port;
– x3: is a string variable representing the receiver IP address;
– x4: is an integer variable representing the receiver port;
– x5: is an integer variable representing the sequence number;
– x6: is an integer variable representing the acknowledgment number;
– x7: is a boolean variable representing the ack flag;
– x8: is a boolean variable representing the syn flag;
– x9: is a boolean variable representing the rst flag;
– x10: is a boolean variable representing the push flag;
– x11: is a boolean variable representing the urg flag.
– x12: is a string representing the payload or data.

The packets arrive at some point in time. We consider the arrival of these packets
as instantaneous, arbitrary occurring events. Two packets can not arrive at the
same time, one must be before the other. The model of time consists of a set of
arrival points T ⊂ R+ (where R+ is the set of non-negative real numbers) and
we require T to be discrete: for any interval [a, b], the set [a, b]∩T is finite. The
model is represented as M = 〈T , <, I, Is〉 where:

– < is a linear order on T ;
– T = {τ0, τ1, . . .} ⊂ R+, where R+ is a non-empty set of positive real numbers

and T is the set of all arrival moments;
– I is an interpretation which maps T into JPK, I : T → JPK so, I(τi) represents

a packet arriving at a moment τi ∈ T ; and
– Is is the interpretation of sort s over the domain Ds.

3.2 MSFOMTL Syntax

The syntax of MSFOMTL (Many Sorted First Order Logic) is based on [17,
16, 4]. Here we restrict our presentation of syntax and semantics to the sym-
bols required in this paper. Logical symbols are the quantifier ∃, the logical
connectives ∧ (“and”), ∨ (“or”) → (implies) and ¬ (“not”), the logical binary
predicate symbols =, 6=, <,≤, >, and ≥, the bounded future temporal opera-
tors ♦[t1,t2] (“eventually”), and �[t1,t2] (“always”). The subscripts [t1, t2] in the
operators refer to their scope (between the moments t1 and t2 from now).

In many sorted logic, the arguments of predicate and function symbols may
have different sorts s and every sort s ∈ S where S is a finite set of sorts. The
non-logical symbols of MSFOMTL consist of the finite disjoint sets of predi-
cate symbols, function symbols, constants, and variables. The alphabet of the
language of MSFOMTL, L, consists of the union of all the non-logical symbols.

Terms The set of terms in L of sort s is the smallest set of expressions with
the following properties:

– Each constant symbol c of sort s is a term where s ∈ S.



– Each variable v of sort s is a term where s ∈ S.

– If f is a function symbol of n-arity s1× ...× sn → s and tei is a term of sort
si, then f(te1, ..., ten) is a term of sort s.

– If te1 and te2 are numeric terms of sort s, then te1 + te2, te1 − te2, te1 × te2
and te1 ÷ te2 are terms of sort s, where s ∈ S.

Formulae The formulae of MSFOMTL are defined as follows:

– If te1 × ... × ten, where each tei is a term of sort si, and P is a predicate
symbol with n-arity s1 × ...× sn, then P (te1, ..., ten) is an atomic formula.

– If te1 and te2 are terms of the same sort s then te1 = te2, te1 6= te2, te1 > te2,
te1 < te2, te1 ≤ te2 and te1 ≥ te2, are atomic formulae.

– Every atomic formula is a formula.

– If ϕ is a formula then ¬ϕ is a formula.

– If ϕ is a formula then ♦[t1,t2]ϕ and �[t1,t2]ϕ are formulae.

– If ϕ and ψ are formulae then ϕ ∧ ψ, ϕ ∨ ψ, and ϕ→ ψ, are formulae.

– If ϕ is a formula and x is a variable then (∃x)ϕ is a formulae.

3.3 MSFOMTL Semantics

In MSFOMTL the arguments of functions and predicates have different sorts
and each sort s ranges over a domain Ds. We denote Is as the interpretation
over the domain Ds. The following mapping can be defined:

– Each variable v in L of sort s is evaluated as vIs which is an element in Ds.

– Each constant symbol c in L of sort s is evaluated as cIs which is an element
in Ds.

– Each functional symbol f of arity n and of sort s1×...×sn → s is mapped to a
function Ds1×...×Dsn → Ds. The evaluation of a function f(te1, ..., ten)Is =

f Is(te
Is1
1 , ..., te

Isn
n ), where tei is a term of sort si.

– Each predicate symbol P with n-arity s1 × ...× sn is mapped to a predicate
PIs which is a subset of Ds1 × ...×Dsn . A predicate is evaluated to be true

when (te
Is1
1 , ..., te

Isn
n ) ∈ PIs , where tei is a term of sort si.



A temporal formula ϕ holds at M = 〈T , <, I, Is〉 at an arrival time τi ∈ R, that
is, M, τi |= ϕ is defined recursively as follows:

M, τi |= P (te1, ..., ten) iff P Is(te
Is1
1 , ..., te

Isn
n ) = I(τi)

M, τi |= ¬ϕ iff M, τi 6|= ϕ
M, τi |= ϕ1 ∧ ϕ2 iff M, τi |= ϕ1 and M, τi |= ϕ2

M, τi |= ϕ1 ∨ ϕ2 iff M, τi |= ϕ1 or M, τi |= ϕ2

M, τi |= ϕ1 → ϕ2 iff M, τi |= ¬ϕ1 or M, τi |= ϕ2

M, τi |= ♦[t1,t2]ϕ iff for some τ
′

(τi + t1 ≤ τ
′ ≤ τi + t2)

s.t.M, τ
′ |= ϕ

M, τi |= �[t1,t2]ϕ iff for all τ
′

(τi + t1 ≤ τ
′ ≤ τi + t2)

M, τ
′ |= ϕ

M, τi |= (∃x)ϕ iff for some Is x
Is = a and

M, τi |= ϕ[x/a]

Finally, the arithmetic functions (e.g,+,−,×,÷) for numeral terms in L are
the standard binary operations for arithmetic functions.

4 Stream Data Processing

Stream Data Processing [7, 5] is concerned with handling and processing flows
of data. Data Stream Management Systems (DSMS) are designed to handle
large volumes of data arriving in rapid, time-varying, continuous streams. They
can handle queries that are issued once and then continuously evaluated over
the data (continuous queries). For example, “raise an alarm when a packet is
detected where the source and the destination address are the same and the syn
flag is set”. Another useful feature is sliding window query processing relative
to an ordered field e.g time or tuple count. This focuses on a finite history
relative to the current time where new data is added to the history and older
data is removed. These features are well suited for applications like network
monitoring, network traffic analysis, and intrusion detection. DSMS often have
operators to partition streams into substreams based on the data in each record
or to recombine substreams with the same data structure. Other useful features
are aggregation, pattern matching, merging, and mapping the stream based on
values in the data.

4.1 StreamBase Stream SQL

In this work we use StreamBase7 a commercial DSMS. The StreamBase Complex
Event Processing (CEP) platform allows us to build a system that can analyse
and act on real time data. StreamBase has rich Stream Data Processing (SDP)

7 www.streambase.com



functionalities that enable us to translate from MSFOMTL to its stream SQL.
It has high performance and scalability features such as parallelism and multi-
threading.

StreamSQL (SSQL) is a query language that extends SQL with the ability
to process continuous data streams. Queries can be constructed using SSQL or
graphical event flow tools. SSQL language has the following processing capabil-
ities:

– Non temporal operators: These operators do not have a time window and
act continuously on the stream (as the event arrives) allowing operations
such as filtering or merging streams, creating sequences, timers, or tables (in
memory or external storage), mapping values to the stream (e.g adding time
stamps), correlating multiple streams, etc.

– Temporal operators: These operators have windowing constructs allowing us
to query temporal events over a specified time window. The query is evalu-
ated continuously within the sliding window. For example the pattern match
and aggregate operators both have a time window. The pattern match op-
erator accepts inputs and matches specified temporal patterns in the query
with these inputs. The aggregate operator performs aggregations and com-
putations on real time streams or stored tables. The time window in the
aggregate operator specifies the time window for the aggregation and how to
advance following the time window expiration.

– Extensibility: The StreamSQL operator set is extensible, developers can add
functions, operators, adapters (input or output operators).

The SSQL language has many operators. Some of these operators are data
definition language (DDL) operators, and some of them are data manipulation
language (DML) operators. To query data streams, the select statement is used
(from DML). The semantics of a query depends on the clauses that are used
in the select statement for example the filter, the pattern and the aggregate
operators. The syntax and semantics for these operators are as follows:

– The syntax of the filter operator is:

SELECT target_list_entry

[, target_list_entry...]

FROM event_source [...] |

[WHERE predicate]

[INTO stream_identifier]

where:
• target_list_entry: are field identifiers;
• event_source: is the source of input such as stream or table;
• predicate: are conditions on the select fields that limit the returned set

by the select statement;
• stream_identifier: is a unique stream identifier which can be either the

final output stream or a stream that can be used by other SSQL com-
ponents.



In stream processing a query is evaluated continuously. So, at any moment
in time a running query might be answered. The query is answered if it
returns some results and this means the query valuation is true, otherwise
it is false. The filter operator is used to query the incoming events and if
there is a tuple that satisfies the restrictions specified on particular elements
of the tuple at a moment of time τ , then that tuple is returned (output).
This means the query valuation at τ is true. If no tuple is returned, then the
query valuation at τ is false.

– The syntax of the pattern operator is:

SELECT target_list_entry

[, target_list_entry...]

FROM event_source [...] |

FROM PATTERN template

[pattern_operator template ...]

WITHIN (interval TIME)

[WHERE predicate]

[INTO stream_identifier]

where:
• target_list_entry, event_source, predicate and stream_identifier: are

as previously
• interval TIME: is a timeout in seconds;
• template: is a stream identifier;
• pattern operator: is a logical operator that relates a pair of templates

(NOT streamA, streamA AND streamB, streamA THEN streamB, streamA OR streamB);
The pattern operator queries the event sources and only returns a true val-
uation if a query on the first template returns a tuple at τ that satisfies the
conditions in the where clause. Then within the specified time interval (i.e.
within τ+ interval TIME) the second query relating to the second template
returns a tuple that satisfies the conditions on the where clause and the log-
ical pattern operator between the two templates. No tuples are returned if
the pattern operator fails to match any pattern and this means the valuation
of the pattern operator is false.

More information about the SSQL query operators mentioned here and other
constructors can be found at the Streambase web site.

5 The TeStID System

TeStID (Temporal Stream Intrusion Detection) is a network based intrusion de-
tection developed by the authors based on using temporal logic to specify attack
patterns and using SDP as the attack detection engine. By combining the expres-
siveness, conciseness, clear semantics, and ability to represent temporal patterns
of Temporal Logic with the stream processing technology we have developed an
online system for network based intrusion detection that can handle high volume
network traffic. In previous work [2, 3] we have described the use of TeStID for



signature-based network IDS. It allowed the specification and detection of both
single and multiple step attacks and outperformed both SNORT and Bro over
high-speed networks.

Here we show how TeStID can be applied to anomaly network IDS. The
advantages of the system are as follows:

– It provides a concise and unambiguous way to formally write the specification
of normal behaviour.

– It allows the specification and detection of multiple step attacks.
– It is suitable for high volume/speed networks because of the underlying SDP

engine.
– It is extensible in that additional or updated descriptions of normal be-

haviour can be added that can be automatically translated into SSQL
queries.

5.1 TeStID System Architecture

The system architecture of TeStID is shown in Figure 1. It consists of the fol-

Anomaly Based

Network

Intrusion Detection

Data Preprocessing

Intrusion Log and
Reporting

Normal Behaviour
Specification of

Fig. 1. TeStID System Architecture for Anomaly network IDS

lowing components:

– Data preprocessor: This component captures or sniffs the data that traverses
the network. When it captures the data, it can perform preprocessing or
filtering of the data as required by the module that uses it. For example, the
module for detecting attacks against TCP/IP will need to process all the



TCP packets, the data preprocessing will filter out all the TCP traffic and
provide it as a stream to the module. More filtering is possible for example
filtering by source port or destination port.

– Specification of Normal Behaviour: This is written using MSFOMTL (see
Section 3). These formulae are stored in a file which is read and parsed by
the translator.

– The anomaly based intrusion detection: After parsing the MSFOMTL for-
mulae representing normal behaviour the translator will translate this into
equivalent Stream SQL queries which can be run and any traffic not match-
ing the normal behaviour will be reported.

– Intrusion log and reporting: Provide reporting and logging of the attacks.

6 Protocol Anomaly Specifications

We use the MSFOMTL to represent parts of the TCP protocol normal specifi-
cation φ and detect any deviation from this specification in the temporal logic
models M (incoming events) (i.e. the protocol specification φ is not satisfied in
M (M 6|= φ or equivalently M |= ¬φ). The protocol specifies requirements on
packets e.g. conditions or restrictions on the value of some fields and the order
in which they arrive.

We consider two main types of specification of normal behaviour. The first
involves the expected formation of a single packet. The second covers multiple
step protocol specifications where we model normal behaviour of a fragment of
the protocol.

6.1 Single Step Anomaly Specification

In the specifications of protocols, there are often restrictions on the fields e.g.
upper and/or lower bound values on that field, the field must be within a cer-
tain range, or is based on another field value using logical comparison and/or
arithmetic operation (e.g x6 ≥ x5 + 1). We can represent this type of anomaly
as follows:

ϕ→ ψ (1)

where:

– ϕ is first order predicate (representing a packet); and
– ψ an atomic formula or Boolean combination of atomic formulae.

In summary, for single step anomaly, a formula represents normal behaviour
(within some packet). When this formula is not satisfied, an alarm is raised.
Thus, we aim to detect ¬(ϕ→ ψ) or equivalently (ϕ ∧ ¬ψ).

Example 1. RFC 6335 [8] states that the port range is from 0-65535. Also, it
states that the lowest and highest bounds are usually reserved, i.e. ports 0 and
65535 are officially reserved by IANA [25]. So for normal specification require-
ments we could make sure that there are no packets with a source port (x2) or



a destination port (x4) with a value less than or equal 0 and greater or equal
65535. The normal specification can be represented as:

((∀x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)
P (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)→
(((x2 > 0) ∧ (x2 < 65535)) ∧ ((x4 > 0) ∧ (x4 < 65535)))).

The negated form is as follows:

((∃x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)
P (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)∧
(((x2 ≤ 0) ∨ (x2 ≥ 65535)) ∨ ((x4 ≤ 0) ∨ (x4 ≥ 65535))))

Example 2. As another example for single step anomaly, we use the RFC 793 [14]
for TCP/IP specification. In this specification, the reliability of TCP/IP is de-
scribed. One of the basic requirements for this reliability (not losing data and the
ability to recover) is assigning a sequence number to each octet transmitted, and
requiring a positive acknowledgment from the receiving TCP [14]. This means if
the ack flag is set (x7) the acknowledgment number (x6) must be greater than
0. This is represented as:

(∀x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)
(P (x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)
→ (x7 = 1→ x6 > 0))

and the negation of the above formula as follows:

(∃x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)
(P (x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)∧
((x7 = 1) ∧ (x6 ≤ 0)))

6.2 Multiple Step Anomalies

The syntactical subset of MSFOMTL corresponding to multiple step anoma-
lies allows us to specify expected behaviour rules formulated semi-formally in
Section 2.

The syntactical form of multiple step anomalies is the following:

�(P1 →
�[ts1 ,te1 ]

(P2 →
. . .

�[ts(n−1),te(n−1)
](Pn →

∨
i=1...k

♦[tsin
,tein

]P
i
n+1)))

(2)

(where Pi denotes a first order predicate) and the negation of the above formulae
is



♦(P1 ∧
♦[ts1 ,te1 ]

(P2 ∧
. . .

♦[ts(n−1)
,te(n−1)

](Pn ∧i=1...k ¬♦[tsin
,tein

]P
i
n+1)))

(3)

The negated formula will be satisfied only when P1, . . . , Pn appear in the correct
order within the timing constraints but Pn+1 cannot be satisfied within its timing
constraints.

Example 3. In this example we use the TCP simultaneous connection synchro-
nisation specification as described in RFC 793 [14]. There are two ways for es-
tablishing connections in TCP described in the RFC, the three-way handshake
and the simultaneous connection synchronisation. In the simultaneous connec-
tion specification the normal observable steps between clients A and B for the
process in the RFC are as follows.

– Client A sends a packet to B with source IP (x1), source port (x2), destina-
tion IP (x3), destination port (x4), initial sequence number = SA, and sets
the syn flag.

– Client B just after the time that A is sending the above request, sends
a packet to A with source IP (x3), source port (x4), destination IP (x1),
destination port (x2), initial sequence number = SB , and sets the syn flag.

– Client A receives the synchronisation request from B and responds with a
packet that has the acknowledge number = SB + 1 and both the syn and
ack flags set.

– Client B receives the synchronisation request from A and responds with a
packet that has the acknowledge number = SA + 1 and both the syn and
ack flags set.

To represent the above specification, we use the syntax form (2) as follows:

�((∀x1, x2, x3, x4, SA, SB)
((∃y6, y7, y9, y10, y11, y12)
P (x1, x2, x3, x4, SA, y6, y7, 1, y9, y10, y11, y12)→

�[0,1]((∃w6, w7, w9, w10, w11, w12)
P (x3, x4, x1, x2, SB , w6, w7, 1, w9, w10, w11, w12)→

�[0,1]((∃z9, z10, z11, z12)
P (x1, x2, x3, x4, SA, SB + 1, 1, 1, z9, z10, z11, z12)→

♦[0,1](∃k9, k10, k11, k12)
P (x3, x4, x1, x2, SB , SA + 1, 1, 1, k9, k10, k11, k12)))))



This is negated as follows (3):

((∃x1, x2, x3, x4, SA, SB)
♦[0,1]((∃y6, y7, y9, y10, y11, y12)
P (x1, x2, x3, x4, SA, y6, y7, 1, y9, y10, y11, y12)∧

♦[0,1]((∃w6, w7, w9, w10, w11, w12)
P (x3, x4, x1, x2, SB , w6, w7, 1, w9, w10, w11, w12)∧

♦[0,1]((∃z9, z10, z11, z12)
P (x1, x2, x3, x4, SA, SB + 1, 1, 1, z9, z10, z11, z12)∧
¬♦[0,1](∃k9, k10, k11, k12)
P (x3, x4, x1, x2, SB , SA + 1, 1, 1, k9, k10, k11, k12)))))

Next we show how this is translated into Stream SQL queries.

7 Formula Mapping

We show how to translate the two main forms for abnormal behaviour, from
the negation of normal behaviour defined in Section 6, into SSQL. Single step
anomalies are translated using the filter operator which filters relevant pack-
ets according to particular conditions. Multiple step anomalies use the pattern
operator which allows the specification of a sequence of packets with timing con-
straints and particular conditions between them. Anomalies relating to a count
of particular packets received within some time frame could be translated using
the aggregate operator.

7.1 Single Step Anomalies

These are abnormal behaviour represented by conditions within one packet of
the form

ϕ ∧ ψ
where:

– ϕ is first order predicate (representing a packet).
– ψ is Boolean combination of atomic formulae.

Some pre-precessing takes place to read packets from the network and identify
the relevant fields and to set up the relevant input (inputstream) and output
(outputstream) streams. The second stage is the mapping process. For the map-
ping, we define the mapping function (M1) which maps a subset of MSFOMTL
(∆) into a subset of SSQL (Θ):

M1 : ∆ −→ Θ.

M1(ϕ ∧ ψ) 7→
SELECT * FROM inputstream

WHERE M1’(ψ)
INTO outputstream;



and

M1’(ψ1 ∧ ψ2) 7→ M1’(ϕ) and M1’(ψ)
M1’(ψ1 ∨ ψ2) 7→ M1’(ϕ) or M1’(ψ)
M1’(te1 � te2) 7→ M1’(te1) �M1’(te2)
M1’(ci) 7→ ci
M1’(xi) 7→ xi

where parenthesis are preserved and in the above te1, te2 are terms, ci is a
constant, xi is a variable, and

� ∈ {=, <>,>,<,>=, <=,+,−, ∗, / }.

Example 4. We show how to translate Example 1 into SSQL. We take the
negated formula specification, repeated below and translate it into SSQL.

((∃x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)
P (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)∧
(((x2 ≤ 0) ∨ (x2 ≥ 65535)) ∨ ((x4 ≤ 0) ∨ (x4 ≥ 65535))))

The mapping to SSQL using the mapping function M1 will be :
M1(φ) =

SELECT * FROM inputstream

WHERE (((x2 ≤ 0) or (x2 ≥ 65535)) or

((x4 ≤ 0) or (x2 ≥ 65535)))

INTO outputstream;

7.2 Multiple Step Anomalies

Here an abnormal sequence of packets are represented

ϕ1 ∧ ♦[t1,t2]ψ or ϕ1 ∧ ¬♦[t1,t2]ϕ2

where:

– ϕ1 and ϕ2 are first order predicates (representing packets);
– ψ is the same form as the above.

Similar pre-processing takes place as in the single packet case. An additional
preprocessing step will split the input into two streams, one relating to each
conjunct, by filtering the main stream by the contents of the constant values of
each predicate. The code template for this is as follows.

CREATE STREAM Filter1;

// creates input stream for first conjunct

CREATE STREAM Filter2;

// creates input stream for second conjunct

SELECT * FROM inputstream

WHERE xi = cj [and ...]

// condition(s) on constant value(s)



// in the first conjunct

INTO Filter1

WHERE xi = ck [and ...]

// condition(s) on constant value(s)

// in the second conjunct

INTO Filter2;

For the mapping, we define the mapping function (M2) that maps a subset of
MSFOMTL (∆) into a subset of SSQL (Θ):

M2 : ∆ −→ Θ

The mapping process to the pattern constructor deals with at least two pred-
icates. We will assume that start of any timing constraints (below denoted t1)
is 0. We can define the basic elements of the mapping function M2 as follows:

M2(ϕ ∧ [¬]♦[t1,t2]ψ) 7→

SELECT input1.x1,...,input1.xn, // input1

input2.x1,...,input2.xn, // input2

FROM PATTERN (Filter1 as input1 THEN

[NOT] Filter2 as input2)

WITHIN M2([t1, t2]) TIME

WHERE M2(ϕ,ψ)

INTO output;

where if the second conjunct is negated then NOT is present in the fourth line
above and

M2([t1, t2]) 7→ t2 − t1
M2(ϕ,ψ) 7→ conj({input1.xi = input2.yj |

for all xi in ϕ, for all yj in ψ, such that xi = yj})
where

conj(A) = a1 and a2 and . . . and an for all ai ∈ A.

A justification of the correctness of the translation is provided in [1]. Es-
sentially conditions on packets are translated using WHERE syntax, and timing
constraints on subsequent packets using the PATTERN and WITHIN...TIME syn-
tax.

8 Sample Results

Rather than testing on a real high-speed network, we make use of the US Defence
Advanced Research Projects Agency (DARPA) publicly available IDS evaluation
data sets [10, 9]. This means we know the types of attack in the data, it allows
us to easily repeat experiments and experiment with speeding up the replay of
the data. We demonstrate results for one of each type of attack.



– Example 1 The translated code for Example 1 was run against the test
DARPA data files. Two anomalies were raised where the TCP port of 0
was used. They also belong to an already known signature-based attack in
SNORT, with SNORT identification sid-5248. This attack uses TCP port 0
for scanning target machines. Port 0 is outside range of normal specification
and this is why it was caught in our experiments.

– Example 3 The formula in this example specifies expected behaviour which
means that it will raise an alert only when the fourth packet (or the fourth
step) of the simultaneous handshake is missing. This formula was translated
into SSQL code and tested using the data file mentioned above. No alert or
alarm was raised. The data file has a total of 88458 TCP connection records,
but the simultaneous way of TCP connection did not occur.

– Example 3 (cont.) Note when we implemented a version of Example 3 with
weaker requirements, meaning that an alert will be raised whenever a step
(2, 3, or 4) is not completed. The result was a total of 88458 alerts. This is
because all the connections in the test data file used the three way handshake
of TCP connection rather than the simultaneous way. The three way TCP
handshake and the simultaneous TCP handshake share the first step but
they differ in the second step. This illustrates that this would not be a good
representation of normal behaviour and shows how it is important to specify
normal behaviour carefully to avoid such issues.

9 Related Work

Using temporal logic as a specification language for the Intrusion Detection
Systems is not new. It has been used at least in such IDS as MONID [19] and
ORCHIDS [22]. In MONID, temporal logic is used to represent a safety formula φ
(specification of the absence of an attack) and the system continuously evaluates
φ against a model M representing a finite sequence of events. Whenever φ is
violated (i.e.M 6|= φ) an intrusion alarm is raised. In that sense it is close to our
use of temporal logic for the protocol anomaly detection we presented in this
paper.

ORCHIDS [22] is a signature based intrusion detection tool which uses tem-
poral logic to define attacks that are complex, correlated sequences of events.

The main differences between the system we described in this paper as com-
pared with MONID and ORCHIDS (apart from some variations in the temporal
logic language) is that here checking for abnormal behaviour φ in some modelM
(M |= φ) is reduced to the stream query evaluation (instead of using custom ex-
ecution mechanisms), which is subsequently executed by high-performance SDP
engine. In the proposed system, the way of using temporal logic takes advan-
tage of its expressiveness and conciseness to allow the user to express attack
signatures transparently and independently from the underlying technical im-
plementations.

8 www.snort.org/search/sid/524



SNORT is an open source network intrusion detection and prevention system.
It performs packet level traffic monitoring and analysis. Packets are examined
for matching attack signatures. SNORT includes a library of attack signatures
known as SNORT rules and an attack specification language allowing users to
add their own rules. Bro is a network monitoring system that can be used for
network IDS. It has its own scripting language that allows the specification of
custom written attacks and can be used to detect of multiple step attacks.

TeStID [2, 3] was originally developed for signature-based intrusion detec-
tion. It was shown to detect attacks efficiently in very high-speed networks,
outperforming SNORT and Bro, whilst also having an elegant and concise rep-
resentation of attacks, in particular of multi-step attacks, via temporal logic.

10 Conclusions and Future Work

We have proposed the concept of Temporal Stream Processing for Cyber Security
here using Temporal Logic to specify (parts of) the normal behaviour and their
translation into a stream data query and execution via a data stream engine.
In this paper we focused on anomaly based IDS and gave examples of partial
specifications of TCP. We showed their translation into Stream SQL queries and
gave details of their execution on a data set.

This is only a starting point showing a proof of concept. Further work must
be carried out with the formalisation a larger portion of TCP and experimenting
further with TeStID using this. This will allow better experimentation with the
performance of the system in high speed networks and comparison with other
tool similar to what we have considered for signature-based IDS [3].

Other protocols could also be formalised. Rather than considering protocol
anomaly we can investigate behaviour anomaly at higher levels of abstraction
than considered at protocol level where “normal” means either following some
specifications/conventions, or just the users choice. Additionally we can use the
approach to traffic transformation by normalising network traffic to deal with
attacks stemming from out of order packets or fragmentation on one hand or
the need to aggregate/abstract on the other.

In previous work we applied this approach to signature based IDS [2, 3]. We
believe this approach can be applied to other cyber security tasks and will form
the basis for a new generation of cyber security tools, including those for IDS
and IPS, with the novelty in combining the simplicity, conciseness and clarity of
temporal logic with the high speed and volume data stream engines.
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