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Abstract

This work presents a framework for e�ciently managing the energy
needs of a set of houses connected in a micro-grid con�guration. The
micro-grid consists of houses and local renewable plants, each seen as
independent agents with their speci�c goals. In particular houses have the
option to buy energy from the national grid or from the local renewable
plants. We discuss a practical heuristic that leads to energy allocation
schedules that are cost-e�ective for the individual houses and pro�table
for the local plants. We present experiments describing the bene�ts of our
proposal. The results illustrate that houses and micro plants can make
considerable saving when they work in micro grid compared with working
alone.

1 Introduction

T
he world's energy needs are ever increasing [1, 2] and the investment in new
power plants is not going to cover the future demand [3]. The power sector

can be improved in many ways, using more renewable resources, or resorting to
more e�cient and environmentally friendly power plants. Also, Demand Side
Management and Demand Response could encourage consumers to modify their
energy usage behaviour.

The concept of Smart Grid is relatively new. The Smart Grid is an en-
hanced electrical grid in which information and communication technology is
used to improve the power system and increase the pro�t of consumers, distrib-
utors and generation companies. The key features of such infrastructure are
reliability, �exibility, e�ciency, sustainability, peak curtailment, and demand
response. The Smart Grid is also market enabling, it provides a platform for
advanced services, and increases the manageability of the available resources.
To exploit the Smart Grid in residential buildings, we need new technologies



such as integrated communications, sensing and measurements, smart meters,
advanced control, advanced components, power generation, and smart appli-
ances [4]. Smart micro-grids [5] can be de�ned as a set of houses containing
loads (appliances) and co-located resources (such as small PV arrays, or wind
plants) working as a single controllable system [6]. Smart micro-grids also o�er
the possibility to export the surplus of locally generated power to the national
grid.

There are plenty of studies that investigate methods for optimizing the cost of
electricity in stand-alone residential buildings, based on electricity price, avail-
ability of renewable power, or user preferences. These studies use di�erent
algorithms to achieve their goals. For example, studies [7�10] use algorithms
that �nd the optimal cost of electricity, whereas [11�13] use heuristic methods
which only guarantee suboptimal cost. Sharing local renewable power in small
communities is an active research area. Study [14], uses Mixed Integer Linear
Programming (MILP) to compare the cost of 20 houses working individually and
the same houses working in a micro-grid setup. Although this study adds some
knowledge to the �eld, it does not tackle the important issue of computation
time. In studies of this type the time complexity of the particular algorithm in-
creases with the system's granularity or the number of available appliances. The
authors are only able to present examples that allocates resources over relatively
large time slots. Furthermore, in this study each house uses only two appliances.
Study [1] investigates the sharing of local renewable energy in a micro-grid. A
greedy energy search algorithm is used to match the predicted renewable power
with the predicted house consumption. The proposed approach also minimizes
the power loss incurred while transferring electricity power along power lines by
choosing the nearest house to share renewable power with. Unfortunately the
proposed algorithm does not scale well with the length of the time slots.

In this work, we investigate the e�ectiveness of a MILP-based strategy that
can be used to solve a particular energy allocation problem within a given micro-
grid. Our contribution is summarized in the following points:

� Design of a general micro-grid management system. Including fairly gen-
eral notion of appliances.

� MILP applied to micro-grid control, with heuristic, for practical purposes.

� Preliminary empirical evaluation.

The rest of this paper is organized as follows: Section 2 details the system
de�nition and modeling of system entities, MILP formulation is presented in
section 3, and the fourth section illustrates the results which are followed by
discussions in Section 5. Finally, the paper ends with conclusions.

2 Allocation Problem

In this section we present the formalization of the computational problem dis-
cussed in this paper.



(a) Conventional Grid (b) Smart MicroGrid with

LMGO

Fig. 1: Conventional grid vs smart MicroGrid

2.1 The micro-grid

A micro-grid consists of a set of houses H, and a set of micro-generation power
plants (or generators) R (see the example in Fig.(1)). Some houses (like H2, H3,
or H4 in Fig.(1)) may be directly connected to a generator, and therefore they
are able to receive energy from it in a particularly e�cient way, but in general the
houses in the system may receive their power from any of the generators in the
micro-grid or the National Electricity Grid (NEG). The energy exchange within
a micro-Grid is controlled by a Local micro-Grid Optimizer (LMGO). The power
plants generate energy which can be either used by the houses in the micro-grid
or exported to the NEG. Fig.(2) describes the possible energy exchanges between
a house, a generator and the NEG. Houses (and their appliances) can only use
electricity. The electricity comes in the house either from a generator (internal
to the house or external) or from the grid. The labels on the arcs represent the
unit cost that the entity at the end of the arrow will have to pay to the entity
at the other end to get electricity from it. We assume that the energy produced
by a generator r can be sent to a house h at a unit cost γr,h or exported to
the NEG at a cost ζr. Alternatively, a house can buy energy from the NEG at
a cost λh. All costs might change over time (hence the dependence on a time
parameter t shown in the �gure).

2.2 Appliances

Each house h ∈ H is equipped with a set of appliances Ah = {A1, A2, . . . , Amh
},

Appliances in a micro-grid are the main energy outlets. We assume that the
appliances in the system can be easily switched on or o� without disrupting

Fig. 2: Diagram shows exchange local renewable power among micro-grid compo-
nents.



their functionalities. Washing machines, cookers, air-conditioning (AC) units,
battery chargers are examples of suitable appliances whereas TV sets or Com-
puters do not �t into such framework. Moreover we assume that the appliances
in a micro-grid can either be interruptible or uninterruptible, uniphase or mul-
tiphase. Interruptible appliances are designed to be switched ON/OFF at any
time. Appliances of this type include heaters, cookers, or air-conditioning (AC)
units. Uninterruptible appliances are not designed to be switched OFF once they
have been switched ON until they �nish a particular task. Washing machines
are good examples of uninterruptible appliances. Heaters are also examples of
uniphase appliance. Any such appliance can either be OFF or ON and when it
is ON it uses approximately a constant amount of power (nominal power). Note
that the restriction to the use of uniphase appliances is that only have a single
ON state, without loss of generality, appliances that can run at one of several
power levels can be simulated by a combination of several uniphase appliances
as de�ned in this paper. Multiphase appliances work in di�erent phases, each
using a certain amount of power. A washing machine typically uses a lot of
energy at the beginning of a wash cycle, to heat up the water, then uses little
energy for some time, and a bit more again during the �nal spins. Fig.(3.(b))
shows the typical power pro�le of three di�erent multiphase appliances. Within
a given phase, multiphase appliances cannot be switched o�. We also assume
that some appliances may have constraints on how often they are run while
others might be controlled by environmental factors such as the level of charge
of a battery, or particular desired values of room temperatures.

For the purpose of this study we assume that each appliance A operates
in ∆A > 0 (nominal) phases and for each appliance, it is possible to de�ne a
power pro�le vector (α1, . . . , α∆A

) describing its energy needs. We assume that
τmin is length of the shortest phase. Each αj is a non-negative real number,
corresponding to the average amount of power used by the appliance during
its jth phase. When switched on appliance A progresses through each of its
phases, starting from phase 1 up to phase ∆A at which point the appliance is
switched OFF. We also assume that for each appliance we know whether it is
interruptible or not, and the number of times it must be used, nA. Note that
such model �ts the di�erent types of appliances described before.

2.3 Optimization Problem

From the discussion so far it is evident that a micro-grid consists of distinct
agents each with their own goals and priorities: houses need energy to run their
set of appliances according to pre-de�ned plans, generators produce energy that
can be sold to the houses in the micro-grid or the NEG; houses want to purchase
cheap energy whereas generators want to maximize their pro�t. In this setting
we can associate a cost function Ψh to each house h ∈ H:

Ψh =

∫
λhL

h
gdt+

∑
r

∫
γhrG

h
rdt, (1)



(a) Power pro�le of uniphase appliances

(b) Power pro�le of multiphase appliances

Fig. 3: Uniphase vs Multiphase appliances

where Lhg describes the amount of energy from the NEG used by house h over

time, and Ghr the amount of energy generated from plant r used by h. Similarly,
we can associate a pro�t function Ξr to each r ∈ R:

Ξr =

∫
ζrE

r
gdt+

∑
h

∫
γhrG

h
rdt. (2)

In such formula, Erg describes the amount of energy produced by r that is sold
to the NEG. If generator r owned by house h then Ψh = Ψh−Ξr. The problem
of allocating energy to houses in a micro-grid in a way that is cost e�ective
for the houses and pro�table for the grid's power plants can then be cast as a
multi-objective optimization problem [15].

min(Ψh : h ∈ H;−Ξr : r ∈ R) (3)

In this paper we present a practical solution to this problem and provide some
evidence of its e�ectiveness.

3 MILP Formulation

In this Section we present our heuristic algorithm for �nding a feasible solution
for the multi-objective optimization problem de�ned in Section 2.3. We start
by providing a (multi-objective) mathematical programming formulation of the
problem.

3.1 Appliances modeling and linear constraints

In what follows we assume that each instance of the problem is solved over
a �xed time horizon (say 24 hours) and that time within such horizon is di-
vided into a �nite set of time slots, T = {t1, t2, . . . , tT }, all of length τ with
0 < τ < τmin. We assume that τ divides the length of each phase within the
system. We identify themh appliances in house h with the numbers 1, 2, . . . ,mh.



Fig. 4: Multiphase appliance modeling

Without loss of generality, we also assume that each appliance i runs through
∆h
i (real) phases, of length τ . Note that real phases may be much shorter than

the nominal phases mentioned in Section 2.2. Thus we assume that real phases
are grouped into clutches corresponding to the nominal phases and the appli-
ances are uninterruptible within each clutch (Fig.(4) shows an appliance with
three clutches). We use a dedicated binary variable xhi,j(t) for appliance i in
(real) phase j. The variable holds the appliance ON/OFF state at time t.

Phi,j(t) = αhi,j · xhi,j(t) ∈
{

0, . . . , αh∆h
i

}
. (4)

We also assume that appliance i in h can only be run between time slot th,is
and th,if (with th,is ≤ th,if ), in a so called comfort interval speci�ed by the user,
if needed. We model this using the following constraints

th,i
s −1∑
t=0

xh,ij (t) +

tT∑
t=th,i

f1 +1

xh,ij (t) = 0, (5)

where either sums may be empty if th,is = t1 or th,if = tT . If both equalities
hold (say if the user does not specify a comfort interval) the constraints vanish.

To enforce that appliance i in h runs nhi times in {th,is , . . . , th,if }, we need the
following constraints ∑

t∈{th,i
s ,...,th,i

f }

xh,ij (t) = nhi . (6)

Phases can be kept in order imposing∑
t∈T

[
t · xh,ij+1(t)− t · xh,ij (t)

]
≥ 1. (7)

and to prevent interruption between any two consecutive phases, we use con-
straint (7) with �=� replacing �≥�.

As mentioned before, the operation of some appliances depends on external
conditions rather than initial user demands. For instance charging a battery
depends on the battery charging state Θh

i (t) and its charging rate, αhi , whereas
the operations of an Air Conditioning (AC) unit depends on the room tem-

perature, Th,iin (t), the outside temperature and the device heating or cooling
power [8]. Appropriate constraints in such cases replace those in (6). In the
case of batteries, say, we need to use the following constraints.



Θh
i (t) = Θh

i (t− 1) +
1

4
· π · Ph

i,1(t) ∀t : t ∈
{
th,is , . . . , th,if

}
(8)

Θh
i (th,is ) = βhi , Θh

i (th,if ) = β
h

i (9)

where βhi is the initial state of charge of the battery, β
h

i is the desired �nal state
of charge of the battery (usually full), and π is the battery charging e�ciency.
In the case of heating/cooling units, the main task of the given unit is to keep

the room temperature within the comfort level [Th,imin, T
h,i
max] during bhi speci�ed

time intervals Ih1 , . . . , I
h
bi
. The relationship between room temperature and the

power allocated to the appliance is shown in Eq. (10).

Th,iin (t) = ε · Th,iin (t− 1) + (1− ε)
[
Tout(t)−

η

κ
Phi,1(t)

]
(10)

Th,imin ≤ T
h,i
in (t) ≤ Th,imax ∀t : t ∈ Ih1 ∪ . . . Ihbi

where ε is the appliance inertia, η is e�ciency of the system (with η > 0 for a
heating appliance and η < 0 in the case of cooling), κ is the thermal conductivity,
Tout(t) is outside temperature at time t.

3.2 Objective Function and Additional Constraints

For the purpose of our experiments we simplify the general model presented in
Section 2.3. The cost function in Eq.(1) is replaced by the linear function

Ψh =
∑
t∈T

{
λ(t)Lhg (t) +

∑
r∈R

[
γhr (t)Ghr (t)

]}
∀h : h ∈ H, (11)

and similarly, the pro�t function in Eq.(2) is replaced by

Ξr =
∑
t∈T

{
ζ(t)Erg(t) +

∑
h∈H

[
γhr (t)Ghr (t)

]}
∀r : r ∈ R. (12)

Note that we are assuming that the cost of the energy from the NEG, λ, and the
pro�t obtained selling energy to the grid, ζ, may vary over time but are otherwise
identical for all houses and generators in the system. Also if r belongs to h then
γhr (t)= 0 ∀t, and Ψh is the right-hand side of (11) minus Ξr.

Few constraints need to be added to the system. There are the renewable
power constraints

Erg(t) +
∑
h∈H

Ghr (t) = Pr(t) ∀t : t ∈ T , ∀r : r ∈ R, (13)

where Pr(t) is the renewable power generated by r, and power balance equations,
enforcing that the allocated power at any time slot, t, must equal power demand
at that time

Lhg (t) +
∑
r∈R

Ghr (t) =
∑
i∈Ah

∆h
i∑

j=0

Ph,ij (t), ∀t : t ∈ T , (14)



The key idea is to reduce the multi-objective problem to a single objective
one using "modi�ed version" ε-constraint method [16] in order to treat all en-
tities equally, and then use a MILP solver to �nd a feasible allocation. To this
purpose we consider the MILP obtained by using the constraints listed in 3.1
along with the following objective function

Min

{ |H|∑
i=1

Ψi −
|R|∑
i=1

Ξi

}
(15)

and extra constraints
Ψh ≤ Ψ̃h ∀h : h ∈ H (16)

Ξr ≥ Ξ̃r ∀r : r ∈ R (17)

where Ψ̃h, and Ξ̃r are the optimal costs of the energy allocation problem for
house h and renewable plant r, considered as isolated units connected solely to
the NEG.

3.3 MILP-based Heuristic

Let MinCost denote the version of our problem restricted to a single house,
with m uniphase appliances, to be allocated in one of two possible time slots.
Also assume that the available renewable power is always 1

2

∑m
i=1 αi, and the

NEG electricity price is λ > 0. A straightforward reduction from the Partition
problem [17] shows thatMinCost is NP-hard. Therefore there is little hope that
the MILP de�ned in the previous section might be solved quickly if the number
of appliances is large. In our experiments we resort to an MILP-based heuristic
algorithm to get a feasible solution in acceptable time. The basic idea is to use
an o�-the-shelf LP-solver to generate a feasible solution but without running
the optimization process to completion. The LP-solver uses dual relaxation to
�nd a lower bound on the optimum and stops as soon as the di�erence between
the cost of the best feasible solution so far and the lower bound on the optimum
becomes smaller than a prede�ned threshold. Also, we can put time limit or
deadline to stop the algorithm.

4 Empirical Evaluation

All the experiments in this work have been done on a PC with an Intel(R)
core(TM) i7-2600 CPU @ 3.4 GHZ, RAM is 16 GB, 64-bit Operating System
(windows 7). In addition, Gurobi [18] has been used to solve LP and MILP
problems, whereas the Java was the main tools to build our model. Three case
studies will be demonstrated to illustrate the advantages and disadvantages of
our approach.



4.1 First case study

The main goals of this case study is to show the e�ect of renewable power
demand on saving or pro�t.

4.1.1 Input setting

20 houses with variant renewable power generation capacities, see Table (1), and
three independent renewable plants (PV array with maximum generation capac-
ity = 5KW/H, two wind turbines, with 5KW/H, 10KW/H generation capacity,
respectively) will be used to investigate the performance of our algorithm. The
power pro�les of uninterruptible appliances are shown in Table.(2), whereas the
interruptible appliances are given in Table (3).

In addition, τ = 5 minutes, T=288 time slots, ζ = 4.5 P/KWH, ξ = 0.0
P/KWH, γ(t) = 8.5 P/KWH, π = 0.8. Regarding AC's parameters, ε = 0.96,
η= 30 KW/ ◦C, κ = 0.98, Tmin= 18.0 ◦C, Tmax=22.0

◦C. Fig.(5) shows solar
and wind power generated in Liverpool, UK (53°24´N 2°59´W), using 3.5KW/H
PV array and 2KW/H wind turbine. These data will be approximated and
scaled up/down to model variant set of PV arrays and wind turbines.

(a) Solar power for three days

in April, May, and June 2012

(b) Wind power for three days in

January, March, and June

Fig. 5: Renewable Power, for di�erent three days in April, May and June 2012 in
Liverpool

The electricity prices are shown in Fig.(6). In the �rst case study, dynamic
pricing 1 will be used, whereas the rest will be used in the second and third case
studies.

Table 1: PV array generation capacity of houses

House No 5,10,15 1,6,11,16,19 2,7,12,17,20 3,8,13,18 4,9,14

Capacity 0.0 KW 1.0 KW 1.5 KW 2.0 KW 2.5 KW



Fig. 6: Electricity Price, one �xed pricing scheme and two di�erent dynamic pricing
schemes.

Fig.(7) illustrates the outside temperature. Comfortable time for each ap-
pliance in each house is shown in Table(4). Three scenarios will be used in this
case study to examine the e�ect of electricity demand on saving. These scenar-
ios are low demand, medium demand, and high demand, See Table(5,6, and 7).

Fig. 7: Outside Temperature

4.1.2 Findings

Fig.(8a) displays the average pro�t of three scenarios, low demand, medium
demand, and high demand. The houses with high demand, in general, can
make more pro�t because the relationship between saving and renewable power
consumption is positive. In contrast, Fig(8b) shows the relative MILP Gap of
the three scenarios. As we can see, MILP Gap of high demand scenario is still
above 100% after 30 minutes of running time that means the solution found
could be far from optimality (we can save more by giving algorithm more time),
it could be so close to optimality though. In addition, the �rst and second
scenarios are so close to optimality because MILP gap is less than 1 %.

Table 2: Multiphase uninterruptible appliances

Laundry Dryer α in KW 3.2 0.28 0 3.2 0.28
φ in minutes 15 10 5 20 10

Dishwasher α in KW 0.2 2.7 0.2 2.7 0.2
φ in minutes 5 15 15 20 5

Washing Machine α in KW 2.2 0.28 2.2 0.28 -
φ in minutes 10 20 10 20 -



(a) Average pro�t in microgrid (b) the relative MILP Gap

Fig. 8: The result of low demand, medium demand, and high demand scenarios for
20 houses and 3 renewable independent plants

Fig. (9) depicts pro�t stability in low and high demand scenarios. The
relationship between run time and average pro�t of all entities is positive, but
it does not always hold for each entity. For instance, House No.17 in Fig.(9b)
made more pro�t after 1, 5, and 10 minutes of calculation time than after
15 minutes but in general the average pro�t increases with time until it reach
optimality. Fig.(10) illustrates the pro�t made by each component in micro-grid

(a) Low demand (b) High demand

Fig. 9: Pro�t stability in micro grid of �rst and third scenarios.

in three scenarios. Note that the �rst �fe house in medium demand scenarios,
surprisingly, made more pro�t than the �rst �fe houses in high demand scenario
because in medium demand scenario, the �rst �fe houses has 6 to 7 appliances
whereas the reset in around 4 and 5 houses so they consume a lot of local
renewable power for cheap price, we have not put details about exact number
of appliance and its details in each house for each scenarios due to page limit.
Also, this behavior is expected in MILP heuristic algorithm because the solution
is not optimal.

Table 3: Interruptible appliances

Interruptible appliances α Depend on

Water heater 3.1 KW/t -

Electric Towel Radiator 1.5 KW/t -

Electric cooker 2.5 KW/t -

Plug-in Hybrid Electric Vehicle 0.35 KW /t Θ(ts)=2.0, Θ(tf )=16.0

Air conditioner 2.3 KW/t Tmin=18, Tmax=22



Table 4: Comfortable Interval

Table 5: the appliances in each house for low demand

Fig. 10: The pro�t of entity in micro-grid in three scenarios.

4.2 Second case study

The main goal of this case study is to investigate the e�ect of electricity pricing
on the pro�t.



Table 6: the appliances in each house for medium demand

4.2.1 Input settings

We will use almost the same input data that have been used in third scenario
in �rst case study but we will repeat the experiment with three pricing scheme,
see Fig(6).

4.2.2 Findings

Fig.(11) shows the percentage pro�t made be each entity in micro grid with
three pricing scheme. We used MIP gap = 25% to stop searching.

Fig. 11: The pro�ts, in percentage, of micro grid when there is high demand (each
house has 8 appliances) for �xed pricing scheme, and two di�erent dynamic schemes.

The result illustrates that micro grid entities can make more pro�t in dy-
namic pricing scheme than in �xed pricing scheme. Note that entity no.22,
surprisingly, made more pro�t in �xed pricing, that is because this solution is
not optimal.

4.3 Third case study

The main goal of this case study is to examine the e�ect of number of houses in
micro grid on the performance of our algorithm. Two scenarios will be demon-



Table 7: the appliances in each house for high demand

strated.

4.3.1 Input settings

In the �rst scenario, we will use up to 20 identical houses (have the same power
demand), each house has 8 di�erent appliances, nominal power of appliances
and comfortable time of each house are exactly the same in �rst case study.
Each house equipped with PV array (2.5KW). There is no independent micro
plant in this scenario.

In the second scenario, we will use up to 20 house and three independent
micro plant in micro grid. We used the same data in third scenario in �rst case
study. The only di�erence here is that we vary the number of houses from 1 to
20.

4.3.2 Findings

Fig.(12) shows the average pro�t of houses, and the MILP gap in two scenarios.
As we can see, the pro�t increases up to a point in both scenarios then it start
decreasing with �uctuation that is because the calculation time is �xed (5 min-
utes) for all experiments, whereas the number of houses is varied. Moreover,
micro grid with two houses will reach optimality or near-optimality faster than
micro grid with 20 houses. In addition, it shows that the relationship between
MILP Gap and number of houses is positive, and the relationship between MILP
Gap and pro�t is negative. This explains why the curve of pro�t starts decreas-
ing when MILP Gap curve start increasing. Black curves present the results of
�rst scenario whereas the red curves present the results of second scenario.



Fig. 12: Average cost and MILP Gap of houses in two scenarios

5 Discussion and conclusion

5.1 Fairness issues

By converting the problem from multi objectives to single objective one, fairness
issue could raise. Constraints (16) and (17) are needed to reduce unfairness
issue. Fig.(10) shows the individual pro�t of each entity. As we can see, house
no. 5, 10, and 15, which are the houses that does not have PV array, made
pro�t higher than house no. 9 (equipped with PV array). The main reason for
this fairness issue is that this solution is suboptimal. Further work is needed to
cope with this issue.

5.2 Pro�t stability

The stability of the pro�t depends on size of the problem (number of inte-
ger variables) and MILP Gap, if problem is small, the algorithm will reach
optimality/near-optimality relatively fast and the pro�t will be almost stable,
and vice versa. See Fig.(8) and Fig.(9).

Fig.(8b) shows, after 30 minutes of run time, the MILP gap still around
100%, which means that the optimal solution may be still far on optimality, it
could be so close, though.

5.3 Scalability

Increasing the number of entities in micro-grid does not always increase the
pro�ts of these entities. Fig.(12) shows that the relationship between the number
of houses and pro�t is not always positive. As we can see in both scenarios, the
pro�t has positive relationship with the number of houses up to a point, after
that the relationship become negative, that is because we increase the number of
houses whereas run time is �xed. Future work, this study provided preliminary
investigation. Therefore, more investigation is needed to improve the fairness
of the algorithm. Also, we can improve the e�ciency of the micro-grid by
prioritizing entities of micro grid.

To conclude, this work illustrates how an appropriate using MILP Heuristic
can be for solving huge optimization problem, the results shows that the sub-



optimal cost of each house in micro grid is cheaper than the optimal cost of each
house working alone.
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