Actions with Durations and Failures in BDI Languages'

Louise A. Dennis and Michael Fisher?

Abstract. BDI programming languages provide a well developed
route to implementing intelligent agents. However, as such agents
are increasingly being used to work in, and interact with, real envi-
ronments their treatment of external actions needs to be improved.
In this paper we describe a mechanism for handling actions which
have durations and failures. In particular we note that where an ac-
tion has a duration it acquires two failure modes, one which requires
an abort. We provide a formal semantics for this mechanism which
is general enough to be used to add such actions to a wide range of
BDI programming languages.

1 Introduction

The BDI model (Belief-Desire-Intention; [14]) is the predominant
mechanism for describing deliberative, intelligent, agents. Conse-
quently, a range of agent programming languages have been de-
veloped based on this approach, for example Jason [3], GWEN-
DOLEN [6], 3APL [5] and GOAL [10]. BDI languages typically
model interaction with the external environment either as an action
or as a capability. It is generally implicitly assumed that an action
or capability does not take long to finish and usually execution of
the BDI program waits for the action to complete before processing
other intentions, goals and plans.

The concept of an agent is increasingly being used in real-world
applications, sometimes to control quite complex physical systems.
Agent-based control can be found in cyber-physical and autonomous
systems and, more generally, an agent is often seen within the dis-
crete component of a hybrid system. Typical examples of the types
of systems of relevance include ground-based mobile robots, space-
craft, unmanned aircraft and robot arms. (These are ones that we are
using agent-based hybrid control for, and all utilise BDI agents at
their heart; for example [7].) In these situations real actions may ac-
tually take considerable time to complete.

Consider the example of an autonomous spacecraft exploring an
asteroid field which we implemented in GWENDOLEN and executed
in a simulated environment created through a combination of MAT-
LAB and jBullet (as described in [11]). In this scenario the space-
craft chooses an asteroid, calculates a path to intersect an orbit with
the asteroid and then activates the control system which will follow
and monitor the path. As the spacecraft moves, the high level agent
control continues to monitor sensors and can react to the failure of
a thruster by changing fuel lines and modifying the thruster control.
In our implementation of this scenario, an action is used to initiate
the “following of a path”. The intention which contains the plan for
moving to, and orbiting, an asteroid then suspends until the space-
craft is actually in position. This is achieved using a wait until ¢
construct available in the GWENDOLEN language. In the meantime,

1 Work funded by EPSRC Project EP/J011770: “Reconfigurable Autonomy”
2 University of Liverpool. email: L. A.Dennis@liverpool.ac.uk

other monitoring procedures and intentions can continue to execute,
allowing thruster failures to be handled in a timely fashion while
the spacecraft moves. If the goal becomes unachievable (because,
for instance, of catastrophic thruster failure) then separate plans had
to be constructed to recognise the event, explicitly drop the goal and
send ‘abort’ messages to the underlying control systems that were
attempting the maneouvre. These plans were not directly linked with
the action of moving into a particular orbit around some asteroid.

In such hybrid systems, we do not want the agent program to sus-
pend during interaction, but to continue operating, in order to per-
form error monitoring etc. Although ad hoc solutions to this prob-
lem exist (not least in some of our own autonomous systems) these
frequently involve treating the action/capability as the initiation of
an interaction with the environment only. Perception is then used to
judge when the interaction has concluded. Furthermore an action that
takes significant time may need to be aborted while it is still execut-
ing (e.g., by sending the underlying hardware a “stop” signal).

A particular focus of interest at present is on if (and how) high-
level agent control can assist with managing graceful degradation.
Graceful degradation is a system’s ability to adapt its behaviour in the
event of the failure or damage to some of its (physical) sub-systems
in such a way that it can continue to achieve some, or all of its goals.
Managing graceful degradation draws on a range of techniques from
across artificial intelligence and control engineering, such as learn-
ing techniques, and adaptive and reactive control. However, where
a BDI-agent is involved at the highest (decision-making) level of
the system we want such an agent to recognise that a component
is no longer behaving as expected, and then invoke diagnosis sub-
systems and possibly reconfigure lower-level control processes. The
first of these issues, recognising that a capability has not behaved as
expected, is related to this paper’s treatment of interactions with a
significant duration within BDI programming languages.

In this paper we propose principled mechanisms and semantics
for integrating actions and capabilities within BDI programming lan-
guages, which are presumed to take significant time and which may
fail both during and at the end of their execution. We link our in-
tegration with work on goal life-cycles that have active, suspend
and abort stages for goals and we show how these interact with ac-
tions/capabilities comprising both durations and potential failures.

2 Preliminaries and Terminology

We are seeking a generic description of interactions with the envi-
ronment that is independent of any particular implementation of BDI
programming. As such we need to consider some of the common
representations of interactions in BDI languages.

Actions. Many BDI languages represent environmental interaction
as an atomic action. When an action is invoked it executes some low
level code, invisible at the BDI-level. While such an action is often

a ground atomic command, and its effect is judged via agent percep-
tion, it can return results either via the instantiation of variables in
the action expression (using unification) or as an explicit return value
(typically, ‘success’ or ‘failure’). Languages which treat interaction
in this way include Jason, GWENDOLEN and 3APL.

Capabilities. Interaction may also be modelled as capabilities.
These have explicit pre- and post-conditions such that the interaction
is executed only if the pre-conditions are true and, after the interac-
tion has concluded, the post-conditions are asserted explicitly by the
language. Other effects may be subsequently observed via percep-
tion mechanisms. It is possible that a capability executes no low-level
code, particularly when an agent is executing in some simulated set-
ting where it is considered sufficient to use just the post-conditions
to represent the result of the interaction. Languages which treat in-
teraction in this way include GOAL and 3APL.

In this paper treat interactions as capabilities, as we con-
sider these to provide a more general representation. An ac-
tion such as move_to (X, Y)? can be represented as a capability
{True} move_to (X, Y) {True} (i.e., a capability with trivial pre-
and post-conditions) and even where an action returns a result this
can be captured via unification and post-conditions.

2.1 Goal Life-cycles in BDI Languages.

Several teams of researchers have proposed life-cycles for goal pro-
cessing in BDI agents [13, 19, 9]. While there are differences in de-
tail, there is also significant agreement. It is agreed that goals need to
transition through a number of states, including a Suspend state in
which execution of any plans associated with the goal is halted and
an Active state in which the goal is being processed, either by the
execution or the selection of a plan. In this paper we will adopt the
semantics presented by Harland et al. [9] (the most recent elaboration
of this work) as our starting point. This semantics provides a compre-
hensive account of the goal life-cycle, as shown in Figure 1. Goals
can be in a number of states: Pending; Active; Monitoring; Sus-
pended; and Aborting (abbreviated to Pnd, Act, Mn, Ssp and Ab
in what follows). Specific goal actions (e.g., activate, reconsider,
respond) move a goal between states in its life-cycle.

Four types of goals are in common use [19]: achieve; perform; test;
and maintain. Work in [9] shows how perform goals (which motivate
some activity but have no success criteria) and test goals (which seek
to ascertain the truth of some fact or belief) can be represented as
achieve goals (which motivate some activity in order to achieve some
state of the world) and so we focus on achieve goals. Maintain goals
motivate activity with a view to preserving some state of the world.
We will discuss these separately in Section 3.3

Harland et. al [9] present an operational semantics for the goal life-
cycle in the CAN (Conceptual Agent Notation) formal system [20].
CAN is sufficiently general that it can be used to specify the seman-
tics of an operational BDI system in a generic way but one with suf-
ficient detail that a mapping to an implementation is clear.

Goals are represented as a tuple, (I, G, Rules, State, P) where I
is a unique identifier for the goal, G is the goal type (a (achieve), m
(maintain), p (perform) or t (test)), Rules are a set of condition-goal
action pairs. These govern how the goal moves between states. State
is the current goal state and P is the current plan body associated with
the goal (if any). Further, ¢ indicates the absence of any plan body,
nil a trivially successful plan and fail a trivially unsuccessful plan.
Harland et. al [9] assume that means-end reasoning is employed to
select plan bodies, in particular, that such a reasoning mechanism is

3 Capital letters represent variables that can be instantiated by unification.

used whenever a goal is unsuspended to decide whether to continue
with the existing plan body or a new plan. In our semantics for the
addition of capabilities to this framework we will sometimes choose
to specify the outcome of this means-end reasoning instead of dele-
gating it to the underlying language.

A CAN agent is a tuple (B, G) of a set of beliefs and a set of goals.
This is an idealisation of the semantics of many BDI languages but
works as a solid general framework. Rules are presented as

Condition
(B,G) — (B',¢")

Here Condition is some property that must hold before the transi-
tion can take place, (B, G) is the state of the agent before the transi-
tion, and (B’, G’) is the state of the agent after the transition.

We assume that, if an atomic plan execution step does not com-
plete, then no further activity can take place on any goal until that
step has finished execution. In Section 3.4, we briefly touch on how
our semantics would change in the presence of parallel goal handling.

3 Adding Capabilities to the Goal life-cycle

We represent capabilities as a tuple (C, Pre, Post, ¢s, ¢, da),
where C' is an identifier for the capability, Pre and Post are
pre- and post-conditions, and ¢s, ¢y and ¢, are logical expres-
sions describing the state where the capability has “completed and
succeeded”, “completed and failed”, or is “ongoing but in need
of an abort”. We will, for convenience, refer to the capability
(C, Pre, Post, ¢s, 7, da) as capability, C, and where relevant to
its components as Pre(C), Post(C'), etc. Where a capability has a
non-trivial abort condition we will assume it also has a paired capa-
bility, abort(C'), which is a control for aborting capability C'.

We aim to have condition-goal action rules that are active only
while an interaction is being undertaken. Therefore we choose to par-
tition the set, Rules, into (R, R¢) where R is a dedicated set of
condition-goal action rules associated with some capability C'.

3.1 Capabilities associated with Achieve Goals

We start with the semantics for a capability invoked as part of a plan
for handling an achieve goal. We use the notation a; P to indicate
the sequential composition of some activity and a plan. Hence C'; P
indicates that capability C is the next activity in some plan.

We want activity on the goal to suspend until the capability has
succeeded, failed or needs to be aborted.

B = Pre(C) do(C)
(B,GU{{I,G,(R,0),Act,C; P)}) —
(B,GU{{I,G, (R, {{¢s(C), reactivate),

(¢ (C),reconsider), (¢p.(C), reactivate) }), Ssp, C; P) })

ey
Rule (1) adapts [9]’s semantics for the suspension of an active goal.
Where a capability’s preconditions are implied by the current beliefs
of the agent, we suspend the goal and add a set of rules which govern
how the agent should react in the event that the capability’s success,
Jfailure or abort conditions come to hold. do(C') represents the acti-
vation of control systems to execute C'

Both success and abort states cause the goal to be reactivated.
In [9] reactivation of a goal causes it to move to the Act state and
replaces its plan body with the non-existent plan, e. The assumption
is that means-end reasoning will typically reinstate the pre-existing
plan body. We specialise this rule so that, in the event of successful
completion of the interaction, the plan body continues processing as

activate(A)

[

activate(M) —»|

Pending

reconside suspend

suspend

Suspended

reactivate(M)

reactivate(M)

abort l

e N
Active

respond

reactivate(A)
re-respond(M)

suspend

abort

Figure 1. The Goal Life-Cycle from Harland et. al [9].

normal while, in the case where the interaction should be aborted,
the associated abort capability is invoked.

(¢,reactivate) e Re BE¢ ¢ =¢s(C)
(B,GU{{I,G,(R,Rc),Ssp,C; P)}) —
(BU Post(C),GU{{I,G,(R,0),Act, P)})

@

Rule (2) controls the successful conclusion of a capability. If its suc-
cess condition ¢, arises then processing of the current plan con-
tinues, the post-conditions are asserted and the goal becomes ac-
tive once more. The remaining condition-goal action pairs associated
with C' (captured as R¢) are then removed.

(¢p,reactivate) € Re BE¢ ¢ = ¢a(C)
(B,G6U{{I,G,(R,R¢),Ssp,C; P)}) —
(B,GU{{I,G, (R, D), Act, abort(C); fail)})

3

Rule (3) also moves the goal back to the Act state. The previous
plan is replaced by the plan abort(C); fail, indicating that the system
needs to take some new action to cancel the ongoing action and then
the existing plan will have failed (In [9], the fail plan will eventually
lead to a new round of means-end reasoning to re-plan the goal).
We could include, if appropriate, the condition-action pair (¢4 (C) A
done(abort(C)), abort) in R, which would cause the whole goal to
abort once the capability itself has aborted. In many cases however,
although C' has been aborted, we want to continue working towards
achieving the goal.

(¢, reconsider) € R¢ B E ¢
(B,GU{{I,G,(R,Rc),Ssp,C; P)}) —
(B,GU{{I,G,(R,0),Pnd,e)})

“

Rule (4) covers the case where the capability completes but with fail-
ure. The postconditions are not asserted and the goal is moved into
the Pnd state. In the Pnd state goals are explicitly under considera-
tion for either adopting and pursuing, or dropping. This rule is almost
identical to the equivalent version from [9] except that it clears away
the temporary condition-goal action pairs from R (again captured as
‘R¢) that were associated with capability, C.

3.2 Incorporating Time Stamps

Recall that one of our primary motivations is to extend BDI lan-
guages to help with handling graceful degradation. This will require
an agent to track a capability’s successes and failures and, over time,

analyse patterns of repeated failures. Let us assume that the system
can provide us with time stamps for activities, such as capability and
goal actions. We will assume a distinguished time stamp, ct, for the
current time when some event takes place. We also assume the exis-
tence of a predicate ct(7") which will instantiate 7" to the current time
when it is evaluated. We extend rules (2)—(4) above to give (5)—(7) in
Figure 2 to record successes and failures.

Furthermore, the existence of time stamps allows us to set default
durations for capabilities in the system by adapting rule (1) to provide
rule (8) in Figure 2. and including

(suspended(I,C,T) A ct > T + timeout, reconsider) (10)

in the goal’s Rules. This considers any capability to have failed if it
takes longer than t¢meout for its success state to occur.

Of course, we may not want a global default timeout for capabili-
ties (since some may be expected to take longer than others) in which
case time out conditions could also be added to ¢s, ¢ or ¢, on a
case-by-case basis as part of the success, failure or abort conditions.

3.3 Maintenance Goals and Monitoring

The Monitoring state is exclusively reserved for maintenance goals.
These goals may have a predictive mechanisms which allow them to
determine that the state they seek to maintain is about to be violated.
When the state is (or is about to be) violated the goal moves into
the Act state and creates a new achieve subgoal, G5, which controls
plans to preserve or recover the desired state. We assume, therefore,
that capabilities are never invoked in the Monitoring state and we do
not need to alter its semantics.

It is not unreasonable to suppose that a capability, particularly one
prone to failure might want to set up a maintenance goal to mon-
itor the progress of the interaction. We can frame rule (1) instead
as rule (9) in Figure 2, where I’ is a fresh goal identifier. Rule (9)
sets up a new maintenance goal instead of adding the condition-goal
action pair (¢, (C), reactivate) to R¢. I’ provides condition-goal
action pairs that will respond in the event that ¢,(C') holds (or is
considered at risk of holding) and will drop the maintenance goal if
C' succeeds, fails or is aborted.

3.4 Parallel Goal Processing
In a system where processing is not suspended when a particular ac-
tivity in a plan is yet to complete, we would not need to explicitly

suspend a goal to manage actions with durations. However, we still
need to handle situations where a capability must be aborted while it

(¢, reactivate) e Re BE¢ ¢ = ¢:(C)

(B,GU{({,G,{R,Rc),Ssp,C; P)}) — (B U {success(C,ct)} U Post(C),GU{{I,G, (R,0),Act, P)}) ©)
(¢, reactivate) e Re BE¢ ¢ = ¢a(C) ©)
(B,GU{{I,G,{R,Rc),Ssp,C; P)}) — (BU{abort(C,ct)},G U {{I,G, (R, D), Act, abort(C); fail)})
(¢, reconsider) € Re B E ¢ o
(B,GU{{I,G,{R,Rc),Ssp,C; P)}) — (BU{fail(C,ct)},GU{(I,G, (R, D),Pnd, €)})
B |= Pre(C) do(C) ®

(B,GU{{I,G,(R,0),Act,C; P)}) — (B U {suspended(I,C,ct)},G U {{I,G, (R, {{¢s, reactivate),
(¢, reconsider), (¢q, reactivate) }), Ssp, C; P) })

B = Pre(C) do(C)

(B,GU{{I,G,(R,0),Act,C; P)}) — (B,GU{(I,G, (R, {{¢s(C),reactivate), (¢#(C), reconsider)}), Ssp, C; P)}
{{I",m, {{¢a(C), respond), {¢s(C) V ¢ (C) V done(abort(C)),drop)},Mn, €) })

(C)]

Figure 2. Semantic Rules Incorporating Time Stamps.

is executing, so a semantics for attaching abort conditions to capabil-
ities remains a requirement (e.g., by adopting a maintenance goal to
monitor the capability’s execution).

4 Semantics in Action: A Simple Example

To see our semantics in action, consider a simple wheeled robot with
two capabilities, turn(0) (which turns through an angle,) and a
move(D) which moves forward a distance, D. Below is a simple
definition of the move(D) capability.

(move(D),at(X,Y) Aangle(0), T,
—motors_on A at(X + Dsin(0),Y + Dcos(0)),
—motors_on A —at(X + Dsin(0),Y + Dcos(0)), L)

This capability has a precondition which determines the location of

the robot and the direction it is facing (as an angle relative to the x-
axis). It has a trivial post-condition. We assume perception informs
the agent when its motors are engaged so —~motors_on is a part of
both its success and failure conditions — the capability has completed
when the motors switch off. It has no abort condition.

Let us assume the agent’s goal is to reach the location (0, 2) iden-
tified as, 702. The agent’s initial belief base is {at(0, 1), angle(0)}.
As a result of means-end reasoning it adopts the plan move(1). The
agent state at this point is shown in (11). For presentational reasons
we have split the tuple (B, G) and only show the single goal we are
interested in, not the set of all goals. After (1) fires, the motors are
engaged, and the goal is suspended. The new state is shown in (12).

The goal is suspended. However beliefs continue to be updated via
perception. Assuming the move interaction is successful then even-
tually the agent believes at(0, 2) and no longer believes motors_on.
Now (2) fires. The new state is shown in (13). Further reasoning will
then remove the goal as it has successfully concluded.

If the robot is not at (0,2) when the activity completes, e.g, it is
at (0.25,0.3), then the failure condition holds and the agent transi-
tions using (4) to (14). The existing plan is discarded and the robot
is invited to reconsider the goal which could involve dropping it al-
together or constructing a new plan.

Let us expand our agent so it has two special unique beliefs,
ep(X,Y) and pp(X,Y’) which store its current position and its pre-
viously measured position respectively. Now the programmer can
supply an abort condition (that the agent is moving away from it’s
target) and an abort move capability which will stop the motors:

(move(D),at(X,Y) Aangle(d), T,
—motors_on A at(X + Dsin(0),Y + Dcos(0)),
—motors_on A —at(X + Dsin(0),Y + Dcos(0)),
motors_on A pp(X',Y') A ep(X", YA
V(X + Dsin(0) — X')2 + (Y + Dsin(0) — Y')2 >
V(X + Dsin(0) — X")2 + (Y + Dsin(0) — Y")2)

(abort(move(D)), motors_on, T, —motors_on, L, L) (15)

Assume the robot’s motor capabilities are damaged and it travels on
a curved path that moves it away from its target. e.g., at some point
it is at position (0.5, 1.5) (/0.5 away from (0, 2)) and the next time
its position is checked it is at (0.6, 1.6) (1/0.52 away from (0, 2)).

At this point in time, the agent’s state will be that shown in (16).
This transitions, via (3), to (17). The abort capability is invoked and
(1) transitions the agent to (18). Assuming the motors stop this will
then transition to (19). The agent can now once again employ means-
end reasoning in an attempt to achieve the goal.

We now rework this example using time stamps. Consider the
abort(move(D)) capability. While we assume it takes some time
for the abort to stop the motors, we can assume this is only a short
duration, e.g. 0.5 seconds. Therefore the abort command has failed in
the situation where motors_on still holds 0.5 seconds after the capa-
bility was invoked (determined as the current time when the precon-
dition was evaluated). The reworked capability therefore becomes:

(abort(move(D)), motors_on A ct(T), T,
—motors_on,ct > T + 0.5 A motors_on, L)

Assume the agent chooses to abort its move at time 5.6. The agent
state shown in (18) will instead be that shown in (20) (we omit the
agent’s beliefs about position and angle for space reasons). Rule (8)
has added suspended(r02, abort(move(1)),5.6) and rule (6) has

Beliefs Goal

{at(0,1), angle(0)} (r02, a, (0, 0), Act, move(1)) (11)

{at(0, 1), angle(0), motors_on} (r02, a, (0, {(~motors_on A at(0, 2), reactivate), (12)
(—motors_on A —at(0,2), reconsider) }), Ssp, move(1))

{at(0,2), angle(0)} (r02, a, (0, 0), Act, nil) (13)

{at(0.25,0.3), angle(0)} (r02,a, (0, 0), reconsider, ¢) (14)

Figure 3. Execution of a Wheeled Robot Agent with a simple Move capability

Beliefs
{pp(0.5,1.5),¢p(0.6, 1.6), angle(90), motors_on}

Goal

{pp(0.5,1.5), ¢p(0.6, 1.6), angle(90), motors_on}
{pp(0.5,1.5),¢p(0.6, 1.6), angle(90), motors_on}

{pp(0.5,1.5),¢p(0.6, 1.6), angle(90)}

(r02, a, (B, {{(=motors_on A at(0,2), reactivate), (16)
(—motors_on A —at(0, 2), reconsider),
(pp(X",Y") Aep(X",Y")A

Ssp, move(1))
(r02, a, (0, 0), Act, abort(move(1)); fail) (17)
(r02, a, (0, {(~motors_on, reactivate) }), Ssp, abort(move(1)); fail)

VX724 (2-Y")2 > /X2 4+ (2 - Y")2, reactivate) }),

(18)

Figure 4. Execution of a Wheeled Robot Agent with a Move capability with an abort condition

added abort(move(1),5.5) to the belief base. If (catastrophically)
the motors fail to disengage after half a second (so at a time after
6.1), then rule (7) causes the state to transition to (21).

Alternatively we could make a global assumption that no interac-
tion takes longer than 0.5 second. In this case we retain our original
definition of abort(move(D)), (15), but, instead, by default all goals
have rule (10) in which case (20) would become (22).

Adding time stamped beliefs about the success, failure, and aborts
related to capabilities will be necessary for making judgements about
degradation. However any naive implementation is likely to prove
impractical in the efficient evaluation of an agent’s beliefs.

5 Related Work

We have already considered the seam of research on goal life-cycles
that informs the framework proposed here. In general BDI languages
do not explicitly treat actions as having durations. A notable excep-
tion is the Brahms language [16] in which actions, called activities,
explicitly involve durations. In its original presentation, Brahms had
no formal semantics. However, one has recently been provided [17]
though this focuses primarily on the effect of duration on simulation
without any formal framework for activity failure or monitoring.
The field of Al Planning has invested considerable effort in the

modelling of actions and capabilities with durations and stochastic
outcomes, both theoretically as variants on Markov Decision Proce-
dures [12, 21] and practically capturing such concepts in planners
(e.g. [4]) and domain description languages such as the PDDL 2.1
extension of PDDL [8]. In planning the effect of the action duration
is of most importance during the generation of the plan, rather than
its execution. Executable plans are represented as sequences of ac-
tions and lack the manipulation of mental states that is the defining
feature of BDI approaches.

The modelling of actions with durations has been considered in
logics for agency. Troquard et. al [18] represent these using continu-
ations within STIT logic. The logic does not explicitly link the issue
of durations with aborts.

There has been a great deal of work on plan failure in BDI pro-
gramming languages (e.g., [2, 15]). This has not distinguished goal
failure from capability failure. This is understandable, when a capa-
bility fails its most important effect is on the goal which will need to
be dropped or re-planned. As a result work has focused on goal drop-
ping and re-planning mechanisms which are captured in the work on
BDI goal life-cycles already discussed.

Beliefs Goal

{motors_on, suspended(r02, abort(move(1)),5.6), (r02,a,{(d,{(—motors_on,reactivate), (20)
abort(move(1),5.5)} (et > 6.1 A motors_on,reconsider)}), Ssp, abort(move(1)); fail)

{motors_on, ..., fail(abort(move(1)),6.2)} (r02, a, (0,0),Pnd, €) (21)

{motors_on, suspended(r02, abort(move(1)),5.6) (r02,a, {{{suspended(I,C,T) Act > T + 0.5, reconsider) }, (22)
abort(move(1),5.5)} {(—motors_on, reactivate)}), Ssp, abort(move(1)); fail)

Figure 5. Aborting a Move using time outs

6 Conclusion and Further Work

We have argued that BDI representations of interactions with the en-
vironment need to account for actions taking time to complete and
aborts. There also needs to be a declarative link between the success,
failure and abort conditions for such interactions and that this should
be treated separately from the success, failure and abort of a goal.

We have extended the semantics for the life-cycle of goals pre-
sented in [9] to show how the declarative representation of capabil-
ities with durations, failures and aborts can be integrated with this
semantics. While we have ignored many practical details of imple-
mentation we believe that describing a technique in a high level fash-
ion based primarily on the manipulation of beliefs and goals provides
a good guide to implementation in any particular system.

Our presentation does require a language to extend its representa-
tion of actions/capabilities to include their success, failure and abort
conditions. Handling success and abort will involve pairing the ex-
ecution of the action/capability with the language specific mecha-
nisms for goal suspension, while handling failure will involve pair-
ing execution of the action/capability with mechanisms for goal and
plan failure. Most mature languages have such mechanisms.

Of immediate interest to us is implementing the semantics pre-
sented. We would look to implement them in an existing language
with suitable support for the agent control of hybrid systems.

A critical element of our interest in BDI-based control of adapt-
ability and reconfiguration will be a system’s ability to create new
plans within the BDI program when changes to capabilities have
been detected and diagnosed. This will require integration with Al
planning systems. At present we are targetting PDDL 2.1 planners
that can reason about durative actions [8].

Our formalisation is a generic framework for handling interactions
with the real world, as they tend to arise in cyber-physical systems.
It aims to overcome practical problems that arise with the current
treatment of actions but that remain in keeping with the declarative
philosophy of BDI languages.

REFERENCES

[1] Multi-Agent Programming: Languages, Platforms and Applications,
eds., R. Bordini, M. Dastani, J. Dix, and A. El Fallah-Seghrouchni,
Springer, 2005.

[2] R. H. Bordini and J. F. Hiibner, ‘Semantics for the Jason Variant of
AgentSpeak (Plan Failure and some Internal Actions)’, in Proc. ECAI,
pp. 635-640. IOS Press, (2010).

[3] R.H.Bordini, J. F. Hiibner, and R. Vieira, ‘Jason and the Golden Fleece
of Agent-Oriented Programming’, In Bordini et al. [1], 3-37.

[4] M. Cirillo, L. Karlsson, and A. Saffiotti, ‘Human-Aware Task-Planning:
An Application to Mobile Robots’, ACM Trans. Intelligent Systems
Technology, 1(2), 15, (2010).

[5] M. Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer, ‘Pro-
gramming Multi-Agent Systems in 3APL’, In Bordini et al. [1], chap-
ter 2, 39-67.

[6] L. A. Dennis and B. Farwer, ‘Gwendolen: A BDI Language for Verifi-
able Agents’, in Proc. AISB Workshop on Logic and the Simulation of
Interaction and Reasoning. AISB, (2008).

[7]1 L. A. Dennis, M. Fisher, A. Lisitsa, N. Lincoln, and S. M. Veres, ‘Satel-
lite Control Using Rational Agent Programming’, IEEE Intelligent Sys-
tems, 25(3), 92-97, (May/June 2010).

[8] M. Fox and D. Long, ‘PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains’, JAIR, 20, 61-124, (2003).

[9] J. Harland, D. N. Morley, J. Thangarajah, and N. Yorke-Smith, ‘An
Operational Semantics for the Goal Life-Cycle in BDI Agents’, Auton.
Ag. and M.-Ag. Sys., 28(4), 682-719, (2014).

[10] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J.Ch Meyer,
‘Agent Programming with Declarative Goals’, in Intelligent Agents VII,
volume 1986 of LNAI, pp. 228-243. Springer, (2001).

[11]7 N. Lincoln, S. M. Veres, L. A. Dennis, M. Fisher, and A. Lisitsa, ‘Au-
tonomous Asteroid Exploration by Rational Agents’, IEEE Computa-
tional Intelligence Magazine, 8(4), 25-38, (2013).

[12] Mausam and Daniel S. Weld, ‘Planning with Durative Actions in
Stochastic Domains’, JAIR, 31, 33-82, (2008).

[13] M. Morandini, L. Penserini, and A. Perini, ‘Operational Semantics
of Goal Models in Adaptive Agents’, in AAMAS 2009, pp. 129-136.
IFAAMAS, (2009).

[14] A.S. Rao and M. P. Georgeff, ‘An Abstract Architecture for Rational
Agents’, in Proc. 3rd International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), pp. 439-449, (1992).

[15] S. Sardina and L. Padgham, ‘A BDI Agent Programming Language
with Failure Handling, Declarative Goals, and Planning’, Autonomous
Agents and Multi-Agent Systems, 23(1), 18-70, (2011).

[16] M. Sierhuis, Modeling and Simulating Work Practice. BRAHMS: a mul-
tiagent modeling and simulation language for work system analysis and
design, Ph.D. dissertation, SWI, University of Amsterdam, SIKS Dis-
sertation Series No. 2001-10, 2001.

[17] R. Stocker, M. Sierhuis, L.A. Dennis, C. Dixon, and M. Fisher, ‘A For-
mal Semantics for Brahms’, in Proc. 12th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA), volume 6814
of LNCS, pp. 259-274. Springer, (2011).

[18] N. Troquard and L. Vieu, ‘Towards a logic of agency and actions with
durations’, in Proc. ECAI, pp. 775-776. 10S Press, (2006).

[19] M. Birna van Riemsdijk, Mehdi Dastani, and John-Jules Ch. Meyer,
‘Goals in Conflict: Semantic Foundations of Goals in Agent Program-
ming’, Auton. Ag. and M.-Ag. Sys., 18(3), 471-500, (2009).

[20] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah, ‘Declarative
Procedural Goals in Intelligent Agent Systems’, in Proc. KR&R, pp.
470481, (2002).

[21] H. L. A. Younes and R. G. Simmons, ‘Solving Generalized Semi-
Markov Decision Processes using Continuous Phase-type Distribu-
tions’, in Proc. AAAL p. 742, (2004).

