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Abstract. We present a clausal resolution-based method for normal multimodal
logics of confluence, whose Kripke semantics are based on frames characterised
by appropriate instances of the Church-Rosser property. Here we restrict attention
to eight families of such logics. We show how the inference rules related to the
normal logics of confluence can be systematically obtained from the parametrised
axioms that characterise such systems. We discuss soundness, completeness, and
termination of the method. In particular, completeness can be modularly proved
by showing that the conclusions of each newly added inference rule ensures that
the corresponding conditions on frames hold. Some examples are given in order
to illustrate the use of the method.
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1 Introduction

Modal logics are often introduced as extensions of classical logic with two additional
unary operators: “�” and “♦”, whose meanings vary with the field of application to
which they are tailored to apply. In the most common interpretation, formulae “�p”
and “♦p” are read as “p is necessary” and “p is possible”, respectively. Evaluation of
a modal formula depends upon an organised collection of scenarios known as possible
worlds. Different modal logics assume different accessibility relations between such
worlds. Worlds and their accessibility relations define a so-called Kripke frame. The
evaluation of a formula hinges on such structure: given an appropriate accessibility
relation and a worldw, a formula �p is satisfied at w if p is true at all worlds accessible
from w; a formula ♦p is satisfied at w if p is true at some world accessible from w.
∗This is an extended version, including correctness proofs, of the paper “Clausal Resolution

for Modal Logics of Confluence” accepted to IJCAR 2014.
†C. Nalon was partially supported by CAPES Foundation BEX 8712/11-5.
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In normal modal logics extending the classical propositional logic, the schema
�(ϕ ⇒ ψ) ⇒ (�ϕ ⇒ �ψ) (the distribution axiom K), where ϕ and ψ are well-
formed formulae and ⇒ stands for classical implication, is valid, and the schematic
rule ϕ/�ϕ (the necessitation rule Nec) preserves validity. The weakest of these logics,
named K(1), is semantically characterised by the class of Kripke frames with no re-
strictions imposed on the accessibility relation. In the multimodal version, named K(n),
Kripke frames are directed multigraphs and modal operators are equipped with indexes
over a set of agents, given by An = {1, 2, . . . , n}, for some positive integer n. Ac-
cordingly, in this case classical logic is extended with operators �1 , �2 , . . . , �n , where
a formula as �a p, with a ∈ An, may be read as “agent a considers p to be nec-
essary”. The modal operator ♦a is the dual of �a , being introduced as an abbrevi-
ation for ¬�a ¬, where ¬ stands for classical negation. The logic K(n) can be seen
as the fusion of n copies of K(1) and its axiomatisation is given by the union of
the axioms for classical propositional logic with the axiomatic schemata Ka, namely
�a (ϕ⇒ ψ)⇒ (�a ϕ⇒ �a ψ), for each a ∈ An; and the set of inference rules is given
by modus ponens and the rule schemata Neca, namely ϕ/�a ϕ, for each a ∈ An.

The basic normal multimodal logic K(n) and its extensions have been widely used to
represent and reason about complex systems. Some of the interesting extensions include
the normal multimodal logics based on Ka and (the combination of) axioms as, for in-
stance, Ta (�a ϕ ⇒ ϕ), Da (�a ϕ ⇒ ♦a ϕ), 4a (�a ϕ ⇒ �a �a ϕ), 5a (♦a ϕ ⇒ �a ♦a ϕ),
and Ba (♦a �a ϕ ⇒ ϕ). For example, the description logic ALC, which is employed
for reasoning about ontologies, is a syntactic variant of K(1) [22]; the epistemic logic,
denoted by S5(n), which is used in dealing with problems ranging from multi-agency
to communication protocols [21, 11], can be axiomatised by combining Ka, Ta, and 5a.
The addition of those axioms (or their combinations) to K(n) imposes some restrictions
on the class of models where formulae are valid. Thus, a formula valid in a logic con-
taining Ta is valid only if it is valid in a frame where the accessibility relation for each
agent a is reflexive. The other axioms, Da, 4a, 5a, and Ba, demand the accessibility re-
lation for each agent a to be, respectively, serial, transitive, Euclidean, and symmetric.

A logic of confluence Kp,q,r,s(n) is a modal system axiomatised by K(n) plus axioms
Gp,q,r,s
a of the form

♦a p�a qϕ⇒ �a r♦a sϕ
where a ∈ An, ϕ is a well-formed formula, p, q, r, s ∈ N, where �a 0ϕ

def
= ϕ and

�a i+1ϕ
def
= �a �a iϕ, and where ♦a 0ϕ

def
= ϕ and ♦a i+1ϕ

def
= ♦a ♦a iϕ, for i ∈ N (the su-

perscript is often omitted if equal to 1). Such axiomatic schemata were notably studied
by Lemmon [16]. Using Modal Correspondence Theory, it can be shown that the frame
condition on a logic where an instance of Gp,q,r,s

a is valid corresponds to a generalised
diamond-like structure representing the Church-Rosser property (the philosophical lit-
erature sometimes calls such property ‘incestual’ [8]), as illustrated in Fig. 1 [6]. To be
more precise, letW be a nonempty set of worlds and let Ra ⊆ W ×W be the acces-
sibility relation of agent a ∈ An. By wR0

aw
′ we mean that w = w′, and wRi+1

a w′

means that there is some world w′′ such that wRaw′′ and w′′Riaw′. Thus, wRiaw′
holds if there is an i-long Ra-path from w to w′; alternatively, to assert that, we may
also write (w,w′) ∈ Ria. Given these definitions, the condition on frames that corre-
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sponds to the axiom Gp,q,r,s
a is described by ∀w0, w1, w2 (w0Rpaw1 ∧ w0Rraw2 ⇒

∃w3(w1Rqaw3 ∧ w2Rsaw3)), where w0, w1, w2, w3 ∈ W .
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Fig. 1. Church-Rosser property for frames where Gp,q,r,s
a = ♦a p �a qϕ ⇒ �a r♦a sϕ is valid.

Many well-known modal axiomatic systems are identified with particular logics of
confluence. For instance, T(n) corresponds to K0,1,0,0

(n) , namely a normal modal logic in
which the axiom �a ϕ ⇒ ϕ is valid, for all a ∈ An and any formula ϕ. The axiom 4a
may be written as G0,1,2,0

a , that is, �a 1ϕ ⇒ �a 2ϕ. The Geach axiom G1a is given by
G1,1,1,1
a (♦a �a ϕ ⇒ �a ♦a ϕ). Formulae in K1,1,1,1

(n) are satisfiable if, and only if, they
are satisfiable in a model with n relations satisfying the so-called ‘diamond property’,
and analogous claims hold for instance concerning formulae of T(n) and models whose
relations are all reflexive, and formulae of 4(n) and models whose relations are all
transitive.

Logics of confluence are interesting not only because they encompass a great num-
ber of normal modal logics as particular examples, but also in view of their attractive
computational behaviour. Indeed, if we think of multimodal frames as abstract rewriting
systems, for instance, and think of modal languages as a way of obtaining an internal
and local perspective on such frames, then each given notion of confluence ensures that
certain different paths of transformation will eventually lead to the same result. Having
a decidable proof procedure for a logic underlying such class of frames helps in estab-
lishing a direct form of verifying the properties of the structures that they represent.

As a contribution towards a uniform approach to the development of proof methods
for logics of confluence, in this work we deal with the logics where p, q, r, s ∈ {0, 1}.
Table 1 shows the relevant axiomatic schemata, some standard names by which they are
known, and the corresponding conditions on frames. The axiom G0,1,1,1

a seems not to
be named in the literature; the corresponding property follows the naming convention
given in [5, pg. 127]. Note that G0,0,0,0

a , G0,1,1,0
a , and G1,0,0,1

a are obvious instances
of classical tautologies and are thus not included in Table 1. Also, given the duality
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between �a and ♦a , Gp,q,r,s
a is semantically equivalent to Gr,s,p,q

a . Thus, there are in
fact eight families of multimodal logics related to the axioms Gp,q,r,s

a , where p, q, r, s ∈
{0, 1}.

(p,q,r,s) Name Axioms Property Condition on Frames

(0, 0, 1, 1) Ba ϕ ⇒ �a ♦a ϕ symmetric ∀w,w′(wRaw
′ ⇒ w′Raw)

(1, 1, 0, 0) ♦a �a ϕ ⇒ ϕ

(0, 0, 1, 0) Bana ϕ ⇒ �a ϕ modally banal ∀w,w′(wRaw
′ ⇒ w = w′)

(1, 0, 0, 0) ♦a ϕ ⇒ ϕ

(0, 1, 0, 1) Da �a ϕ ⇒ ♦a ϕ serial ∀w∃w′(wRaw
′)

(1, 0, 1, 0) Fa ♦a ϕ ⇒ �a ϕ functional ∀w,w′, w′′((wRaw
′ ∧ wRaw

′′) ⇒ w′ = w′′)

(0, 0, 0, 1) Ta ϕ ⇒ ♦a ϕ reflexive ∀w(wRaw)

(0, 1, 0, 0) �a ϕ ⇒ ϕ

(1, 0, 1, 1) 5a ♦a ϕ ⇒ �a ♦a ϕ Euclidean ∀w,w′, w′′((wRaw
′ ∧ wRaw

′′) ⇒ w′Raw
′′)

(1, 1, 1, 0) ♦a �a ϕ ⇒ �a ϕ

(1, 1, 1, 1) G1a ♦a �a ϕ ⇒ �a ♦a ϕ convergent ∀w,w′, w′′((wRaw
′ ∧ wRaw

′′) ⇒
∃w′′′(w′Raw

′′′ ∧ w′′Raw
′′′))

(0, 1, 1, 1) G0,1,1,1
a �a ϕ ⇒ �a ♦a ϕ 0,1,1,1-convergent ∀w,w′(wRaw

′ ⇒ ∃w′′(wRaw
′′ ∧ w′Raw

′′))

(1, 1, 0, 1) ♦a �a ϕ ⇒ ♦a ϕ

Table 1. Axioms and corresponding conditions on frames.

We present a clausal resolution-based method for solving the satisfiability problem
in logics axiomatised by Ka plus Gp,q,r,s

a , where p, q, r, s ∈ {0, 1}. The resolution cal-
culus is based on that of [18], which deals with the logical fragment corresponding to
K(n). The new inference rules to deal with axioms of the form Gp,q,r,s

a add relevant
information to the set of clauses: the conclusion of each inference rule ensures that
properties related to the corresponding conditions on frames hold, that is, the newly
added clauses capture the required properties of a model. We discuss soundness, com-
pleteness, and termination. Full proofs can be found in Appendix A.

2 The Normal Modal Logic K(n)

The set WFFK(n)
of well-formed formulae of the logic K(n) is constructed from a denu-

merable set of propositional symbols, P = {p, q, p′, q′, p1, q1, . . .}, the negation sym-
bol ¬, the conjunction symbol ∧, the propositional constant true, and a unary connec-
tive �a for each agent a in the finite set of agents An = {1, . . . , n}. When n = 1,
we often omit the index, that is, �ϕ stands for �1 ϕ. As usual, ♦a is introduced as an
abbreviation for ¬�a ¬. A literal is either a propositional symbol or its negation; the set
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of literals is denoted by L. By ¬l we will denote the complement of the literal l ∈ L,
that is, ¬l denotes ¬p if l is the propositional symbol p, and ¬l denotes p if l is the
literal ¬p. A modal literal is either �a l or ¬�a l, where l ∈ L and a ∈ An.

We present the semantics of K(n), as usual, in terms of Kripke frames.

Definition 1. A Kripke frame S for n agents over P is given by a tuple
(W, w0,R1,R2, . . . ,Rn), where W is a set of possible worlds (or states) with a
distinguished world w0 , and each Ra is a binary relation on W . A Kripke model
M = (S, π) equips a Kripke frame S with a function π : W → (P → {true, false})
that plays the role of an interpretation that associates to each state w ∈ W a truth-
assignment to propositional symbols.

The so-called accessibility relation Ra is a binary relation that captures the notion of
relative possibility from the viewpoint of agent a: A pair (w,w′) is in Ra if agent a
considers world w′ possible, given the information available to her in world w. We
write 〈M, w〉 |= ϕ (resp. 〈M, w〉 6|= ϕ) to say that ϕ is satisfied (resp. not satisfied) at
the world w in the Kripke modelM.

Definition 2. Satisfaction of a formula at a given world w of a modelM is set by:

– 〈M, w〉 |= true
– 〈M, w〉 |= p if, and only if, π(w)(p) = true, where p ∈ P
– 〈M, w〉 |= ¬ϕ if, and only if, 〈M, w〉 6|= ϕ

– 〈M, w〉 |= (ϕ ∧ ψ) if, and only if, 〈M, w〉 |= ϕ and 〈M, w〉 |= ψ

– 〈M, w〉 |= �a ϕ if, and only if 〈M, w′〉 |= ϕ, for all w′ such that wRaw′

The formulae false, (ϕ ∨ ψ), (ϕ ⇒ ψ), and ♦a ϕ are introduced as the usual abbrevia-
tions for ¬true, ¬(¬ϕ ∧ ¬ψ), (¬ϕ ∨ ψ), and ¬�a ¬ϕ, respectively. Formulae are inter-
preted with respect to the distinguished world w0, that is, satisfiability is defined with
respect to pointed-models. A formula ϕ is said to be satisfied in the modelM = (S, π)
of the Kripke frame S = (W, w0,R1, . . . ,Rn) if 〈M, w0〉 |= ϕ; the formula ϕ is sat-
isfiable in a Kripke frame S if there is a modelM of S such that 〈M, w0〉 |= ϕ; and
ϕ is said to be valid in a class C of Kripke frames if it is satisfied in any model of any
Kripke frame belonging to the class C.

3 Resolution for K(n)

In [18], a sound, complete, and terminating resolution-based method for K(n), which in
this paper we call RESK, is introduced. As the proof-method for logics of confluence
presented here relies on RESK, in order to keep the present paper self-contained, we re-
produce the corresponding inference rules here and refer the reader to [18] for a detailed
account of the method. The approach taken in the resolution-based method for K(n) is
clausal: a formula to be tested for (un)satisfiability is first translated into a normal form,
explained in Section 3.1, and then the inference rules given in Section 3.2 are applied
until either a contradiction is found or no new clauses can be generated.
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3.1 A Normal Form for K(n)

Formulae in the language of K(n) can be transformed into a normal form called Sepa-
rated Normal Form for Normal Logics (SNF). As the semantics is given with respect to
a pointed-model, we add a nullary connective start in order to represent the world from
which we start reasoning. Formally, given a modelM = (W, w0,R1, . . . ,Rn, π), we
have that 〈M, w〉 |= start if, and only if, w = w0. A formula in SNF is represented by
a conjunction of clauses, which are true at all reachable states, that is, they have the gen-
eral form

∧
i�
∗Ai, whereAi is a clause and�∗, the universal operator, is characterised

by (the greatest fixed point of) �∗ϕ ⇔ ϕ ∧
∧
a∈An

�a �∗ϕ, for a formula ϕ. Observe
that satisfaction of �∗ϕ imposes that ϕ must hold at the actual world w and at every
world reachable from w, where reachability is defined in the usual (graph-theoretic)
way. Clauses have one of the following forms:

– Initial clause start ⇒
r∨

b=1

lb

– Literal clause true ⇒
r∨

b=1

lb

– Positive a-clause l′ ⇒ �a l

– Negative a-clause l′ ⇒ ¬�a l

where l, l′, lb ∈ L. Positive and negative a-clauses are together known as modal a-
clauses; the index a may be omitted if it is clear from the context.

The translation to SNF uses rewriting of classical operators and the renaming tech-
nique [20], where complex subformulae are replaced by new propositional symbols and
the truth of these new symbols is linked to the formulae that they replaced in all states.
Given a formula ϕ, the translation procedure is applied to �∗(start ⇒ t0) ∧ �∗(t0 ⇒
ϕ), where t0 is a new propositional symbol. The universal operator, which surrounds
all clauses, ensures that the clauses generated by the translation of a formula are true
at all reachable worlds. Classical rewriting is used to remove some classical operators
from ϕ (e.g. �∗(t ⇒ ψ1 ∧ ψ2) is rewritten as �∗(t ⇒ ψ1) ∧ �∗(t ⇒ ψ2)). Renam-
ing is used to replace complex subformulae in disjunctions (e.g. if ψ2 is not a literal,
�∗(t ⇒ ψ1 ∨ ψ2) is rewritten as �∗(t ⇒ ψ1 ∨ t1) ∧ �∗(t1 ⇒ ψ2), where t1 is a
new propositional symbol) or in the scope of modal operators (e.g. if ψ is not a literal,
�∗(t ⇒ �a ψ) is rewritten as �∗(t ⇒ �a t1) ∧ �∗(t1 ⇒ ψ), where t1 is a new propo-
sitional symbol). We refer the reader to [18] for details on the transformation rules that
define the translation to SNF, their correctness, and examples of their application.

3.2 Inference Rules for K(n)

In the following, l, l′, li, l′i ∈ L (i ∈ N) and D, D′ are disjunctions of literals.
Literal Resolution. This is classical resolution applied to the classical propositional
fragment of the combined logic. An initial clause may be resolved with either a lit-
eral clause or another initial clause (rules IRES1 and IRES2). Literal clauses may be
resolved together (LRES).
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[IRES1] �∗(true ⇒D ∨ l)

�∗(start ⇒D′ ∨ ¬l)

�∗(start ⇒D ∨D′)

[IRES2]�∗(start ⇒D ∨ l)

�∗(start ⇒D′ ∨ ¬l)

�∗(start ⇒D ∨D′)

[LRES]�∗(true ⇒D ∨ l)

�∗(true ⇒D′ ∨ ¬l)

�∗(true ⇒D ∨D′)

Modal Resolution. These rules are applied between clauses which refer to the same
context, that is, they must refer to the same agent. For instance, we may resolve two
or more �a -clauses (rules MRES and NEC2); or several �a -clauses and a literal clause
(rules NEC1 and NEC3). The modal inference rules are:

[MRES] �∗(l1 ⇒ �a l)

�∗(l2 ⇒¬�a l)

�∗(true ⇒¬l1 ∨ ¬l2)

[NEC1] �∗(l′1 ⇒ �a ¬l1)
...

�∗(l′m ⇒ �a ¬lm)

�∗(l′⇒¬�a l)

�∗(true ⇒ l1 ∨ . . . ∨ lm ∨ l)

�∗(true ⇒¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′)

[NEC2] �∗(l′1 ⇒ �a l1)

�∗(l′2 ⇒ �a ¬l1)

�∗(l′3 ⇒¬�a l2)

�∗(true ⇒¬l′1 ∨ ¬l′2 ∨ ¬l′3)

[NEC3] �∗(l′1 ⇒ �a ¬l1)
...

�∗(l′m ⇒ �a ¬lm)

�∗(l′⇒¬�a l)

�∗(true ⇒ l1 ∨ . . . ∨ lm)

�∗(true ⇒¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′)

The rule MRES is a syntactic variation of classical resolution, as a formula and its
negation cannot be true at the same state. The rule NEC1 corresponds to necessitation
(applied to (¬l1 ∧ . . . ∧ ¬lm ⇒ ¬l), which is equivalent to the literal clause in the
premises) and several applications of classical resolution. The rule NEC2 is a special
case of NEC1, as the parent clauses can be resolved with the tautology true ⇒ l1 ∨
¬l1 ∨ l2. The rule NEC3 is similar to NEC1, however the negative modal clause is
not resolved with the literal clause in the premises. Instead, the negative modal clause
requires that resolution takes place between literals on the right-hand side of positive
modal clauses and the literal clause. The resolvents in the inference rules NEC1–NEC3
impose that the literals on the left-hand side of the modal clauses in the premises are
not all satisfied whenever their conjunction leads to a contradiction in a successor state.
Given the syntactic forms of clauses, the three rules are needed for completeness, as
shown in [18]. Note that for NEC1, we may have m = 0; for NEC2 the number of
premises is fixed; and that for NEC3, if m = 0, then the literal clause in the premises
is given by true ⇒ false, which cannot be satisfied in any model. Therefore, NEC3 is
not applied when m = 0.

We define a derivation as a sequence of sets of clauses T 0, T 1, . . . , where T i results
from adding to T i−1 the resolvent obtained by an application of an inference rule of
RESK to clauses in T i−1. A derivation terminates if, and only if, either a contradiction,
in the form of �∗(start ⇒ false) or �∗(true ⇒ false), is derived or no new clauses
can be derived by further application of the resolution rules of RESK. We assume stan-
dard simplification from classical logic to keep the clauses as simple as possible. For
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example,D∨ l∨ l on the right-hand side of an initial or literal clause would be rewritten
as D ∨ l.

Example 1. We wish to check whether the formula �1 �2 (a ∧ b) ⇒ �1 (�2 a ∧ �2 b) is
valid in K(2). The translation of its negation into the normal form is given by clauses
(1)–(9) below. Then the inference rules are applied until false is generated. In order to
improve readability, the universal operator is suppressed. The full refutation follows.

1. start ⇒ t1

2. t1 ⇒ �1 t2

3. t2 ⇒ �2 t3

4. true ⇒ ¬t3 ∨ a

5. true ⇒ ¬t3 ∨ b

6. t1 ⇒ ¬�1 ¬t4
7. true ⇒ ¬t4 ∨ t5 ∨ t6

8. t5 ⇒ ¬�2 a

9. t6 ⇒ ¬�2 b

10. true ⇒ ¬t2 ∨ ¬t5 [NEC1, 3, 8, 4]

11. true ⇒ ¬t2 ∨ ¬t4 ∨ t6 [LRES, 10, 7]

12. true ⇒ ¬t2 ∨ ¬t6 [NEC1, 3, 9, 5]

13. true ⇒ ¬t2 ∨ ¬t4 [LRES, 12, 11]

14. true ⇒ ¬t1 [NEC1, 2, 6, 13]

15. start ⇒ false [IRES1, 14, 1]

Clauses (10) and (12) are obtained by applications of NEC1 to clauses in the context of
agent 2. Clause (14) is obtained by an application of the same rule, but in the context of
agent 1. Clauses (11) and (13) result from applications of resolution to the propositional
part of the language shared by both agents. Clause (15) shows that a contradiction was
found at the initial state. Therefore, the original formula is valid.

4 Clausal Resolution for Logics of Confluence

The inference rules of RESK, given in Section 3.2, are resolution-based: whenever a
set of (sub)formulae is identified as contradictory, the resolvents require that they are
not all satisfied together. The extra inference rules for Kp,q,r,s(n) , with p, q, r, s ∈ {0, 1},
which we are about to present, have a different flavour: whenever we can identify that
the set of clauses imply that ♦a p�a qψ holds, we add some new clauses that ensure that
�a r♦a sψ also holds. If this is not the case, that is, if the set of clauses implies that
¬�a r♦a sψ holds, then a contradiction is found by applying the inference rules for K(n).
Because of the particular normal form we use here, there are, in fact, two general forms
for the inference rules for Kp,q,r,s(n) , given in Table 2 (where l, l′ are literals and C is a
conjunction of literals).

[RESp,1,r,s
a ] �∗(l ⇒ �a l′)

�∗(♦a pl ⇒ �a r♦a sl′)

[RESp,0,r,s
a ] �∗(C ⇒ ♦a pl′)

�∗(C ⇒ �a r♦a sl′)

Table 2. Inference Rules for Gp,q,r,s
a

Soundness is checked by showing that the transformation of a formula ϕ ∈
WFFK(n)

into its normal form is satisfiability-preserving and that the application of
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the inference rules are also satisfiability-preserving. Satisfiability-preserving results for
the transformation into SNF are provided in [18]. To extend the soundness results so
as to cover the new inference rules, note that the conclusions of the inference rules
in Table 2 are derived using the semantics of the universal operator and the distribu-
tion axiom, Ka. For RESp,1,r,sa , we have that the premise �∗(l ⇒ �a l′) is semanti-
cally equivalent to �∗(¬�a l′ ⇒ ¬l). By the definition of the universal operator, we
obtain �∗(�a p(¬�a l′ ⇒ ¬l)). Applying the distribution axiom Ka to this clause re-
sults in �∗(�a p¬�a l′ ⇒ �a p¬l)), which is semantically equivalent to �∗(¬�a p¬l ⇒
¬�a p¬�a l′). As ♦a is an abbreviation for ¬�a ¬ and because ♦a p�a l′ implies �a r♦a sl′
in Kp,1,r,s(n) , by classical reasoning, we have that �∗(¬�a p¬l ⇒ ¬�a p¬�a l′) implies
�∗(♦a pl ⇒ �a r♦a sl′), the conclusion of RESp,1,r,sa . Soundness of the inference rule
RESp,0,r,sa can be proved in a similar way.

As the conclusions of the above inference rules may contain complex formulae,
they might need to be rewritten into the normal form. Thus, we also need to add clauses
corresponding to the normal form of ♦a pl and ♦a sl′, which occur in the conclusions of
the inference rules. Let ϕ be a formula and let τ(ϕ) be the set of clauses resulting from
the translation of ϕ into the normal form. Let L(τ(ϕ)) be the set of literals that might
occur in the clause set, that is, for all p ∈ P such that p occurs in τ(ϕ), we have that
both p and ¬p are in L(τ(ϕ)). The set of definition clauses is given by

�∗(posa,l ⇒ ¬�a ¬l)
�∗(¬posa,l ⇒ �a ¬l)

for all l ∈ L(τ(ϕ)), where posa,l is a new propositional definition symbol used for re-
naming the negative modal literal ♦a l, that is, the definition clauses correspond to the
normal form of posa,l ⇔ ¬�a ¬l. Note that we have definition clauses for every propo-
sitional symbol and its negation, e.g. for a propositional symbol p ∈ τ(ϕ), we have
the definition clauses �∗(posa,p ⇒ ¬�a ¬p), �∗(¬posa,p ⇒ �a ¬p), �∗(posa,¬p ⇒
¬�a p), and �∗(¬posa,¬p ⇒ �a p), for every a ∈ An occurring in τ(ϕ). We assume
the set of definition clauses to be available whenever those symbols are used. It is also
important to note that those new definition symbols and the respective definition clauses
can all be introduced at the beginning of the application of the resolution method be-
cause we do not need definition clauses applied to definition symbols in the proofs, as
given in the completeness proof (see Appendix A). As no new propositional symbols
are introduced by the inference rules, there is a finite number of clauses that might be
expressed (modulo simplification) and, therefore, the clausal resolution method for each
modal logic of confluence is terminating.

As discussed above and from the results in [18], we can establish the soundness of
the proof method.

Theorem 1. 1 The resolution-based calculi for logics of confluence are sound.

Proof (Sketch). The transformation into the normal form is satisfiability preserving
[18]. Given a set T of clauses and a modelM that satisfies T , we can construct a model
M′ for the union of T and the definition clauses, where M and M′ may differ only
in the valuation of the definition symbols. By setting properly the valuations inM′, we
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have that 〈M′, w〉 |= posa,p if and only if 〈M, w〉 |= ♦a p, for any w ∈ W . Sound-
ness of the inference rules for RESK is also given in [18]. Soundness of RESp,1,r,sa and
RESp,0,r,sa follow from the axiomatisation of Kp,q,r,s(n) .

Logic Inference Rules

Ta
[RES0,0,0,1

a ] �∗(true ⇒ D ∨ l)

�∗(¬D ⇒ ¬�a ¬l)

[RES0,1,0,0
a ] �∗(l ⇒ �a l′)

�∗(true ⇒ ¬l ∨ l′)

Bana
[RES0,0,1,0

a ] �∗(true ⇒ D ∨ l)

�∗(¬D ⇒ �a l)

[RES1,0,0,0
a ] �∗(l ⇒ ¬�a ¬l′)

�∗(true ⇒ ¬l ∨ l′)

Ba
[RES0,0,1,1

a ] �∗(true ⇒ D ∨ l)

�∗(¬D ⇒ �a posa,l)

[RES1,1,0,0
a ] �∗(l ⇒ �a l′)

�∗(¬l′ ⇒ �a ¬l)

Da
[RES0,1,0,1

a ] �∗(l ⇒ �a l′)

�∗(l ⇒ ¬�a ¬l′)

Logic Inference Rules

G0,1,1,1
a

[RES0,1,1,1
a ] �∗(l ⇒ �a l′)

�∗(l ⇒ �a posa,l′)

[RES1,1,0,1
a ] �∗(l ⇒ �a l′)

�∗(posa,l ⇒ ¬�a ¬l′)

Fa
[RES1,0,1,0

a ] �∗(l ⇒ ¬�a ¬l′)

�∗(l ⇒ �a l′)

5a
[RES1,0,1,1

a ] �∗(l ⇒ ¬�a ¬l′)

�∗(l ⇒ �a posa,l′)

[RES1,1,1,0
a ] �∗(l ⇒ �a l′)

�∗(posa,l ⇒ �a l′)

G1a
[RES1,1,1,1

a ] �∗(l ⇒ �a l′)

�∗(posa,l ⇒ �a posa,l′)

Table 3. Inference Rules for several instances of Gp,q,r,s
a

Table 3 shows the inference rules for each specific instance of Gp,q,r,s
a , where

p, q, r, s ∈ {0, 1}, l, l′ ∈ L, and D is a disjunction of literals. As Gp,q,r,s
a is se-

mantically equivalent to Gr,s,p,q
a , the inference rules for both systems are grouped to-

gether. Some of the inference rules in Table 3 are obtained directly from Table 2. For
instance, the rule for reflexive systems, i.e. where the axiom G0,1,0,0

a is valid, has the
form �∗(l ⇒ �a l′)/�∗(♦a 0l ⇒ �a 0♦a 0l′) in Table 2; in Table 3, the conclusion is
rewritten in its normal form, that is,�∗(true⇒ ¬l∨ l′). For other systems, the form of
the inference rules are slightly different from what would be obtained from a direct ap-
plication of the general inference rules in Table 2. This is the case, for instance, for the
inference rules for symmetric systems, that is, those systems where the axiom G1,1,0,0

a

is valid. From Table 2, in symmetric systems, for a premise of the form �∗(l ⇒ �a l′),
the conclusion is given by �∗(♦a l ⇒ l′), which is translated into the normal form as
�∗(true ⇒ ¬posa,l ∨ l′). We have chosen, however, to translate the conclusion as
�∗(¬l′ ⇒ �a ¬l), which is semantically equivalent to the conclusion obtained by the
general inference rule, but avoids the use of definition symbols.
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The inference rules given in Table 2 provide a systematic way of designing the
inference rules for each specific modal logic of confluence. We note, however, that we
do not always need both inference rules in order to achieve a complete proof method for
a particular logic. In the completeness proofs provided in the Appendix A, we show for
instance that the inference rules which introduce modalities in their conclusions from
literal clauses (that is, the inference rules RES0,0,r,s

a ) are not needed for completeness.
We also show that we need just one specific inference rule for logics in which G0,1,1,1

a

and 5a are valid: RES0,1,1,1
a and RES1,0,1,1

a , respectively.
Given a formula ϕ in Kp,q,r,s(n) , with p, q, r, s ∈ {0, 1}, the resolution method

for K(n), given in Section 3, and the inference rule RESp,q,r,sa are applied to τ(ϕ)
and the set of definition clauses. The extra inference rules for Kp,q,r,s(n) do not need
to be applied to clauses if such application generates new nested definition symbols,
that is, we do not need definition clauses for definition symbols. For instance, the ap-
plication of RES1,1,1,1

a to a clause of the form �∗(l ⇒ �a posa,l′) would result in
�∗(posa,l ⇒ �a posa,posa,l′ ). Although it is not incorrect to apply the inference rules
to such a clause, this might cause the method not to terminate. We can show, however,
that the application of inference rules to clauses which would result in nested literals is
not needed for completeness, as the restrictions imposed by those symbols are already
ensured by existing definition symbols and relevant inference rules (see Theorem 3 be-
low). This ensures that no new definition symbols are introduced by the proof method.

Completeness is proved by showing that, for each specific logic of confluence, if a
given set of clauses is unsatisfiable, there is a refutation produced by the method pre-
sented here. The proof is by induction on the number of nodes of a graph, known as
behaviour graph, built from a set of clauses. The graph construction is similar to the
construction of a canonical model, followed by filtrations based on the set of formu-
lae (or clauses), often used to check completeness for proof methods in modal logics
(see [3], for instance, for definitions and examples). Intuitively, nodes in the graph cor-
respond to states and are defined as maximally consistent sets of literals and modal
literals occurring in the set of clauses, including those literals introduced by definition
clauses. That is, for any literal l occurring in the set of clauses, including definition
clauses, and agents a ∈ An, a node contains either l or ¬l; and either �a l or ¬�a l. The
set of edges correspond to the agents’ accessibility relations. Edges or nodes that do not
satisfy the set of clauses are deleted from the graph. Such deletions correspond to appli-
cations of one or more of the inference rules. We prove that an empty behaviour graph
corresponds to an unsatisfiable set of clauses and that, in this case, there is a refutation
using the inference rules for RESK, given in Section 3, and the inference rules for the
specific logic of confluence, presented in Table 3.

Theorem 2. 2 Let T be an unsatisfiable set of clauses in Gp,q,r,s
a , with p, q, r, s ∈

{0, 1}. A contradiction can be derived by applying the resolution rules for RESK, pre-
sented in Section 3, and Table 3.

Proof (Sketch). We construct a behaviour graph and show that the application of rules
in Table 3 removes nodes and edges where the corresponding frame condition does not
hold. The full proof is provided in the Appendix A.

Theorem 3. 3 The resolution-based calculi for logics of confluence terminate.
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Proof (Sketch). From the completeness proof, the introduction of a literal such as
posa,posa,l

for an agent a and literal l is not needed. We can show that the restrictions
imposed by such clauses, together with the resolution rules for each specific logical
system, are enough to ensure that the corresponding frame condition already holds. As
the proof method does not introduce new literals in the clause set, there is only a finite
number of clauses that can be expressed. Therefore, the proof method is terminating.

Example 2. We show that ϕ def
= p ⇒ �1 ♦1 p, which is an instance of B1, is a valid for-

mula in symmetric systems. As symmetry is implied by reflexivity and Euclideanness,
instead of using RES1,1,0,0

1 , we combine the inference rules for both T1 and 51. Clauses
(1)–(4) correspond to the translation of the negation of ϕ into the normal form. Clauses
(5)–(8) are the definition clauses used in the proof.

1. start ⇒ t0

2. true ⇒ ¬t0 ∨ p

3. t0 ⇒ ¬�1 ¬t1
4. t1 ⇒ �1 ¬p

5. ¬pos1,t1 ⇒ �1 ¬t1 [Def . pos1,t1 ]

6. pos1,t1 ⇒ ¬�1 ¬t1 [Def . pos1,t1 ]

7. pos1,p ⇒ ¬�1 ¬p [Def . pos1,p]

8. ¬pos1,p ⇒ �1 ¬p [Def . pos1,p]

9. true ⇒ ¬t0 ∨ pos1,t1 [MRES, 5, 3]

10. true ⇒ ¬t1 ∨ ¬pos1,p [MRES, 7, 4]

11. pos1,p ⇒ �1 pos1,p [RES1,0,1,1
1 , 7]

12. true ⇒ ¬pos1,p ∨ ¬pos1,t1 [NEC1, 11, 6, 10]

13. true ⇒ ¬p ∨ pos1,p [RES0,1,0,0
1 , 8]

14. true ⇒ ¬p ∨ ¬pos1,t1 [LRES, 13, 12]

15. true ⇒ ¬t0 ∨ ¬p [LRES, 14, 9]

16. true ⇒ ¬t0 [LRES, 15, 2]

17. start ⇒ false [IRES1, 16, 1]

Clause (11) results from applying the Euclidean inference rule to clause (7). Clause
(13) results from applying the reflexive inference rule to (8). The remaining clauses are
derived by the resolution calculus for K(1). As a contradiction is found, given by clause
(17), the set of clauses is unsatisfiable and the original formula ϕ is valid.

5 Closing Remarks

We have presented a sound, complete, and terminating proof method for logics of con-
fluence, that is, normal multimodal systems where axioms of the form

Gp,q,r,s
a = ♦a p�a qϕ⇒ �a r♦a sϕ

where p, q, r, s ∈ {0, 1}, are valid. The axioms Gp,q,r,s
a provide a general form for ax-

ioms widely used in logical formalisms applied to representation and reasoning within
Computer Science.

We have proved completeness of the proof method presented in this paper for eight
families of logics and their fusions. The inference rules for particular instances of these
logics can be systematically obtained and the resulting calculus can be implemented by
adding to the existing prover for K(n) [24] the clauses dependent on the clause-set. Ef-
ficiency, of course, depends on several aspects. Firstly, for certain classes of problems,
dedicated proof methods might be more efficient. For instance, if the satisfiability prob-
lem for a particular logic is in NP (as in the case of S5(1)), then our procedure may be
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less efficient as the satisfiability problem for K(1) is already PSPACE-complete [15].
Secondly, efficiency might depend on the inference rules chosen to produce proofs for a
specific logic. For instance, for S5(n), the user can choose the inference rules related to
reflexivity and Euclideanness, or choose the inference rules related to seriality, symme-
try, and Euclideanness. The number of inference rules used to test the unsatisfiability of
a set of clauses for a particular logic might affect the number of clauses generated by the
resolution method as well as the size of the proof. As in the case of derived inference
rules in other proof methods, using more inference rules might lead to shorter proofs.
Thirdly, as in the case of the resolution-based method for propositional logic, efficiency
might be affected by strategies used to search for a proof. Future work includes the
design of strategies for RESK(n) and for specific logics of confluence. Fourthly, effi-
ciency might also depend on the form of the input problem. For instance, comparisons
between tableaux methods and resolution methods [14, 13] have shown that there is no
overall better approach: for some problems resolution proof methods behave better, for
others tableaux based methods behave better. Providing a resolution-based method for
the logics axiomatised by Ka and Gp,q,r,s

a gives the user a choice for automated tools
that can be used depending on the type of the input formulae.

There are quite a few dedicated methods for the logics presented in this paper. In
general, however, those methods do not provide a systematic way of dealing with log-
ics based on similar axioms or their extensions. Therefore, we restrict attention here
to methods related to logics of confluence. Tableaux methods for logics of confluence
where the mono-modal axioms T, D, B, 4, 5, De (for density, the converse of 4), and
G are valid, can be found in [7, 9]. For each of those axioms, a tableau inference rule
is given. The inference rules can then be combined in order to provide proof methods
for modal logics under S5(1). Whilst the tableaux procedures in [7, 9] are designed for
mono-modal logics they seem to be extendable to multimodal logics as long as there
are no interactions between modalities. Those procedures do not cover all the logics
investigated in this paper. In [2], labelled tableaux are given for the mono-modal logics
axiomatised by K and axioms Gp,q,r,s where q = s = 0 implies p = r = 0. This
restriction avoids the introduction of inference rules related to the identity predicate,
but also excludes, for instance, functional and modally banal systems, which are treated
by the method introduced in the present paper. In [4], hybrid logic tableaux methods
for logics of confluence are given: the inference rules create nodes, labelled by nom-
inals. The nominals are used in order to eliminate the Skolem function related to the
existential quantifier in the first-order sentence corresponding to the axiom Gp,q,r,s

a .
This proof method provides tableau rules for all instances of the axiom. Soundness and
completeness are discussed, but termination of the method is not dealt with and it is not
clear what are the bounds for creating new nodes in the general case. In [12], sound,
complete, and terminating display calculi for tense logics and some of its extensions,
including those with the axiom Gp,q,r,s

a , are presented. It has been shown that these
calculi have the property of separation, that is, they provide complete proof methods
for the component fragments. The paper investigates the relation between the display
calculi and deep inference systems (where the sequent rules can be applied at any node
of a proof tree). By finding appropriate propagation rules for the fusion of tense logic
with either S4(1), S5(1), or functional systems, completeness of search strategies are



14 Cláudia Nalon, João Marcos, and Clare Dixon

presented. However, propagation rules for the axiom of convergence, G1, or for the
combination of path axioms (i.e. axioms of the form ♦iϕ ⇒ ♦jϕ) with seriality are
not given. Also related, in [1], prefixed tableaux procedures for confluence logics that
validate the multimodal version of the axiom ♦a �b ϕ ⇒ �c ♦d ϕ, where ϕ is a formula,
are given. Note that the logics in [1] are systems with instances of the axiom G1,1,1,1

a,b,c,d ,
that is, a logic which allows the interaction of the agents a, b, c, d ∈ An, and might lead
to undecidable systems.

To the best of our knowledge, there are no resolution-based proof methods for logics
of confluence. However, resolution-based methods for modal logics, based on transla-
tion into first-order logic, have been proposed for several modal logics. A survey on
translation-based approaches for non-transitive modal logics (i.e. modal logics that do
not include the axiom 4) can be found in [19]. The translation-based approach has the
clear advantage of being easily implemented, making use of well-established theorem-
provers, and dealing with any logic that can be embedded into first-order, should it be
decidable or not. However, first-order provers cannot deal easily with logics that em-
bed some properties which are covered by particular axioms of confluence (e.g. func-
tionality). In order to avoid such problematic fragments within first-order logic, the
axiomatic translation principle for modal logic, introduced in [23], besides using the
standard translation of a modal formulae into first-order, takes an axiomatisation for a
particular modal logic and introduces a set of first-order modal axioms in the form of
schema clauses. As an example, adapted from [23], in order to prove that �a ¬�a p is
satisfiable in KT4(n), for each modal subformula (i.e. �a ¬�a p and �a p) and for each
considered axiom (i.e. T and 4), one schema clause is added, resulting in:

¬Q�a ¬�a p
(x) ∨ ¬R(x, y) ∨Q�a ¬�a p

(y)

¬Q�a p
(x) ∨ ¬R(x, y) ∨Q�a p

(y)

¬Q�a ¬�a p
(x) ∨Q¬�a p

(y)

¬Q�a p
(x) ∨Qp(y)

where the predicate Qϕ(x) can be read as ϕ holds at world x and R is the predicate
symbol to express the accessibility relation for agent a. Note that the clauses on the left
are related to transitivity (4) and the two clauses on the right are related to reflexivity
(T). The axiomatic translation approach is similar to the approach taken in the present
paper and in [18] as the schema clauses provide a way of talking about properties of the
accessibility relation. As in our case, soundness follows easily from the properties of
the translation. Termination follows from the fact that only a finite number of schema
clauses are needed. However, as in the case of the proof method presented here, general
completeness of the method is difficult to be proved and it is given only for particular
families of logics. In [10], a translation-based approach for properties which can be
expressed by regular grammar logics (including transitivity and Euclideaness) is given.
Completeness for the general method is also difficult and it has been proved for some
families of logics.

In the present paper, we have restricted attention to the case where p, q, r, s ∈ {0, 1},
but we believe that the proof method can be extended in a uniform way for dealing with
the unsatisfiability problem for any values of p, q, r, and s, by adding inference rules of
the following form:
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[RESp,q,r,s
a ] �∗(l ⇒ ♦a p �a rl′)

�∗(l ⇒ �a r♦a sl′)

which requires search for clauses that correspond to the normal form of the premise and
the introduction of as many new definition symbols as the number of modalities occur-
ring in the conclusion. The inference rule RESp,q,r,sa is obviously sound, but we have
yet to identify the restrictions on the number of new propositional symbols introduced
by the method in order to ensure termination. Future work includes this extension, the
complexity analysis, the implementation of the proof method, and practical compar-
isons with other methods.
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A Correctness

In this appendix, we provide the correctness results related to the resolution-based cal-
culus for modal logics of confluence, that is, soundness, termination, and completeness
results for this method.

A.1 Soundness

Soundness is given by showing that the transformation of a formula ϕ ∈WFFK(n)
into

its normal form is satisfiability preserving and that the application of the inference rules
are also satisfiability preserving. Satisfiability preserving results for the transformation
into SNF are given in [17, 18]. Soundness of the inference rules follows from Lemmas 1
and 2 given below.

Lemma 1. RESp,1,r,sa is sound.

Proof. LetM = (W, w0,R1, . . . ,Rn, π) be a model such thatM |= �∗(l ⇒ �a l′).
By the semantics of the implication, we have thatM |= �∗(¬�a l′ ⇒ ¬l). By the se-
mantics of the universal operator, we obtain thatM |= �∗�a p(¬�a l′ ⇒ ¬l). By axiom
K, we have thatM |= �∗(�a p¬�a l′ ⇒ �a p¬l). By the semantics of implication, we
obtain that M |= �∗(¬�a p¬l ⇒ ¬�a p¬�a l′). By Gp,1,r,s

a and classical reasoning,
M |= �∗(¬�a p¬l ⇒ �a r¬�a s¬l′). By definition of ♦a ,M |= �∗(♦a pl ⇒ �a r♦a sl′).
Therefore, if �∗(l ⇒ �a l′) is satisfiable, so it is �∗(♦a pl ⇒ �a r♦a sl′). Thus,
RESp,1,r,sa is sound. ut

Lemma 2. RESp,0,r,sa is sound.
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Proof. Let M = (W, w0,R1, . . . ,Rn, π) be a model such that (1) M |= �∗(C ⇒
♦a pl′). By Gp,0,r,s

a , we have that (2) ♦a pl′ ⇒ �a r♦a sl′. Therefore, from (1) and (2),
by the semantics of the universal operator and classical reasoning, we have thatM |=
�∗(C ⇒ �a r♦a sl′). Thus, RESp,0,r,sa is sound. ut

Theorem 1. The resolution-based calculi for logics of confluence are sound.

Proof. Immediate from soundness of RESK [18] and Lemmas 1 and 2.

A.2 Completeness

Completeness is proved by showing that if a given set of clauses is unsatisfiable, there
is a refutation produced by the method presented here. The proof is by induction on
the number of nodes of a graph, known as behaviour graph, built from a set of clauses.
We prove that an empty behaviour graph corresponds to an unsatisfiable set of clauses
and that, in this case, there is a refutation using the inference rules given in Section 3
and Table 3. The graph construction is similar to the construction of a canonical model,
followed by filtrations based on the set of formulae (or clauses), often used to prove
completeness for proof methods in modal logics (see [3], for instance, for definitions
and examples). Intuitively, nodes in the graph correspond to states. Recall that for logics
of confluence, the resolution calculus introduces a set of literals, which are used in the
inference rules as new names for modal literals in the scope of the operator ♦a , a ∈ An.
Therefore, we define nodes as maximally consistent sets of literals and modal literals
occurring in the set of clauses, including those literals introduced by definition clauses.
That is, for any literal l occurring in the set of clauses, including definition clauses, and
agents a ∈ An, a node contains either l or ¬l; and either �a l or ¬�a l. The set of edges
correspond to the agents accessibility relations.

Formally, the graph for n agents is a tuple G = 〈N , E1, . . . , En〉, built from the set
of SNF clauses T , where N is a set of nodes and each Ea is a set of edges labelled
by a ∈ An. Intuitively, N corresponds to states, i.e., a consistent set of literals and
modal literals occurring in T . There are n types of edges representing the accessibility
relations of each agent in An. An edge labelled by a ∈ An is called an a-edge. Let η
and η′ be nodes. We say that η′ is a-reachable from η, if there is a sequence of nodes
η1, η2, . . . , ηk such that η = η1, η′ = ηk, and (ηj , ηj+1) ∈ Ea for j = 1, . . . , k − 1.
We say that η′ is immediately a-reachable from η, if (η, η′) ∈ Ea. We say that the k-
tuple (η, . . . , η′) ∈ Eka , k ∈ N, if there is a sequence of nodes η1, . . . , ηk, η = η1 and
η′ = ηk, and for each ηj , 1 ≤ j ≤ k − 1, we have that (ηj , ηj+1) ∈ Ea. Note that, for
k = 0 we have that η ∈ E0a , for all η ∈ N and a ∈ An.

First, we define truth of a formula with respect to a set of literals and modal literals:

Definition 3. Let V be a consistent set of literals and modal literals. Let ϕ, ψ, and ψ′ be
a Boolean combinations of literals and modal literals. We say that V satisfies ϕ (written
V |= ϕ), if, and only if:

– ϕ ∈ V , if ϕ is a literal or a modal literal;
– ϕ is of the form ψ ∧ ψ′ and V |= ψ and V |= ψ′;
– ϕ is of the form ψ ∨ ψ′ and V |= ψ or V |= ψ′;
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– ϕ is of the form ¬ψ and V does not satisfy ψ (written V 6|= ψ).

A maximally consistent set of literals and modal literals contains either a propositional
symbol or its negation, but not both; and it contains either a modal literal or its negation,
but not both. We define satisfiability of a formula and a set of formulae with respect to
a node:

Definition 4. Let V be a maximal consistent set of literals and modal literals, η be
a node such that η contains all the literals and modal literals in V , ϕ be a Boolean
combination of literals and modal literals, and χ = {ϕ1, . . . , ϕm} be a set of formulae,
where each ϕi, 1 ≤ i ≤ m, is a Boolean combination of literals and modal literals. We
say that η satisfies ϕ (written η |= ϕ) if, and only if, V |= ϕ. We say that η satisfies χ
(written η |= χ) if, and only if, η |= ϕ1 ∧ . . . ∧ ϕm.

Let T be a set of clauses into SNF. We construct a finite direct graph G =
〈N , E1, . . . , En〉 for T , where N is a set of nodes and each Ea is a set of a-edges,
as follows. A node η ∈ N is a maximal consistent set of literals and modal liter-
als. Firstly, we delete any nodes that do not satisfy the literal clauses in T , that is, if
�∗(true⇒ l1 ∨ . . .∨ lm) ∈ T , we delete the nodes η ∈ N such that η 6|= l1 ∨ . . .∨ lm.
This ensures that all literal clauses are satisfied by any node in G. For any modal clause,
�∗(l′ ⇒ m), where l′ is a literal and m is a modal literal, delete nodes that satisfy l′,
but do not satisfy m. This ensures that the implications in the set T of clauses is satis-
fied. Note that the satisfaction of modal literals depend on the edges yet to be built (as
given below). Also note that by satisfying the implications in the modal clauses, all def-
inition symbols hold exactly where the corresponding modal literals hold. That is, we
also delete any nodes η which do not satisfy posa,l ⇔ ♦a l and we have that posa,l ∈ V
if and only if ♦a l ∈ V , for all literals l and agents a ∈ An.

Let the initial states of the graph be those which satisfy all the right-hand sides of
initial clauses. If all initial states are deleted, then the graph is empty.

Given a non-empty set of nodes, we construct the set of a-edges, Ea, as follows. For
each η, η′ ∈ N and each a ∈ An, there is an a-edge from η to η′. This ensures that
the tautology true ⇒ �a true is satisfied by every node in G. For every node η, delete
a-edges as follows: if �∗(l′ ⇒ �a l) ∈ T and η |= l′, then delete any edges from η to
η′ labelled by a such that η′ 6|= l. This ensures that all positive a-clauses are satisfied
by any nodes in G. Next, consider any nodes that do not satisfy the negative a-clauses
in T . For each node η and for each agent a ∈ An, if �∗(l′ ⇒ ¬�a l) is in T , η |= l′

and there is no a-edge between η and a node that satisfies ¬l, then η is deleted. This
ensures that all negative a-clauses are satisfied by all nodes η ∈ G. It also follows, by
this construction, that all definition clauses are satisfied by all nodes η ∈ G.

The graph obtained after performing all possible deletions is called reduced be-
haviour graph.

We first show that a set of clauses is satisfiable if, and only if, the reduced graph for
this set of clauses is non-empty.

Lemma 3. Let T be a set of clauses. T is satisfiable in K(n) if and only if the reduced
behaviour graph G constructed from T is non-empty.
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Proof. (⇒) Assume that T is a satisfiable set of clauses. If we construct a graph from T ,
we generate a node for each each maximal consistent set of literals and modal literals.
Nodes are deleted only if they do not satisfy the set of literal clauses or the implications
in modal clauses. Then we construct a-edges from each node to every other node, only
deleting edges if the right-hand side of some positive a-clause is not satisfied. Similarly
nodes are deleted if negative a-clauses cannot be satisfied. Hence a satisfiable set of
clauses will result in a non-empty graph.

(⇐) Assume that the reduced graph G = 〈N , E1, . . . , En〉 constructed from T
is non-empty. To show that T is satisfiable we construct a model M from G. Let
M = (W, w0,R1, . . . ,Rn, π). Given the set PT of propositional symbols (includ-
ing the definition symbols) occurring in the set of clauses T , let wi ∈ W , where
0 6 i 6 2|PT | − 1. There is a function node : N → W mapping each consistent
set of literals and modal literals to names of nodes such that node(η′) = w0 for η′

some initial node and each node is mapped to a different name. Let Ra = Ea and let
π(wj)(p) = true if, and only if, node(η) = wj and p ∈ η. ut

Lemma 4. Let T be an unsatisfiable set of clauses in K(n). A contradiction can be
derived by applying the resolution rules given in Section 3.

Proof. Given a set of clauses T , construct the reduced behaviour graph as described
above.

First assume that the initial and literal clauses are unsatisfiable. Thus all initial nodes
will be removed from the reduced graph and the graph becomes empty. From the com-
pleteness of classical resolution there is a series of resolution steps which can be ap-
plied to the right-hand side of these clauses which lead to the derivation of false. We
can mimic these steps by applying the IRES1, IRES2 or LRES resolution rules to the
initial and literal clauses to derive start⇒ false or true⇒ false.

If the non-reduced graph is not empty and we have that both (1) �∗(l′ ⇒ �a l) and
(2) �∗(l′′ ⇒ ¬�a l) are in T , then, by construction of the graph, any node containing
both l′ and l′′ is removed from the graph. The resolution rule MRES applied to (1) and
(2) results in �∗(true ⇒ ¬l′ ∨ ¬l′′), simulating the deletion of nodes that satisfy both
l′ and l′′.

Next, if the non-reduced graph is not empty, consider any nodes that do not satisfy
the negative a-clauses in T . For each node η and for each agent a ∈ An, if �∗(l ⇒
¬�a l′) is in T , η |= l and there is no a-edge between η and a node that satisfies ¬l′,
then η is deleted.

Let Cηa in T be the set of positive a-clauses corresponding to agent a, that is, the
clauses of the form �∗(lj ⇒ �a l′j), where lj and l′j are literals, whose left-hand side
are satisfied by η. Let Rηa be the set of literals in the scope of �a on the right-hand
side from the clauses in Cηa, that is, if �∗(lj ⇒ �a l′j) ∈ Cηa, then l′j ∈ Rηa. From the
construction of the graph, for a clause �∗(l ⇒ ¬�a l′), if η |= l but there is no a-edge
to a node containing ¬l′, it means that ¬l′, Rηa, and the right-hand side of the literal
clauses must be contradictory. As ¬l′ alone is not contradictory and because the case
where the right-hand side of literal clauses are contradictory by themselves has been
covered above (by applications of LRES), there are five cases:
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1. Assume that Rηa itself is contradictory. This means there must be clauses of the
form �∗(l1 ⇒ �a l′′),�∗(l2 ⇒ �a ¬l′′) ∈ Cηa, where η |= l1 and η |= l2. Thus we
can apply NEC2 to these clauses and the negative modal clause �∗(l ⇒ ¬�a l′)
deriving �∗(true ⇒ ¬l1 ∨ ¬l2 ∨ ¬l). Hence the addition of this resolvent means
that η will be deleted as required.

2. Assume that ¬l′ and Rηa is contradictory. Then, Cηa in T contains a clause as
�∗(l1 ⇒ �a l′) where, from the definition of Cηa, η |= l1. Thus, by an applica-
tion of MRES to this clause and �∗(l ⇒ ¬�a l′), we derive �∗(true⇒ ¬l1 ∨ ¬l)
and η is removed as required.

3. Assume that ¬l′ and the right-hand side of the literal clauses are contradictory. By
applying LRES to the set of literal clauses, we obtain �∗(true ⇒ l′) and use this
with �∗(l ⇒ ¬�a l′) to apply NEC1 and generate �∗(true ⇒ ¬l) which will
delete η as required.

4. Assume that Rηa and the right-hand side of literal clauses all contribute to the con-
tradiction (but not ¬l′), applying NEC3 to the relevant clauses will delete η as
required.

5. Assume that ¬l′, Rηa and the right-hand side of the literal clauses all contribute
to the contradiction. Thus, similarly to the above, applying NEC1 to the relevant
clauses will delete η as required.

Summarising, IRES1, IRES2 and LRES remove from the graph nodes related to
contradictions in the set of literal clauses. The rule MRES also simulates classical res-
olution, removing from the graph those nodes related to contradiction within the set
of modal literals. The inference rule NEC1 deletes parts of the graph related to con-
tradictions between the literal in the scope of ¬�a ¬, the set of literal clauses, and the
literals in the scope of �a . The resolution rule NEC2 deletes parts of the graph related
to contradictions between the literals in the scope of �a . Finally, NEC3 deletes parts of
the graph related to contradictions between the literals in the scope of �a and the set of
literal clauses. These are all possible combinations of contradicting sets within a clause
set.

If the resulting graph is empty, the set of clauses T is not satisfiable and there is
a resolution proof corresponding to the deletion procedure, as described above. If the
graph is not empty, by Lemma 3, a model for the satisfiable set of clauses T can be
built. ut

After exhaustively applying deletions to the graph, if the graph is empty, by
Lemma 4, which establishes the completeness of RESK, there is a proof by the res-
olution rules shown in Section 3. For the logics of confluence, if the graph is not empty,
we have to check whether we can build a model for T , where Gp,q,r,s

a holds. The fact
that this is possible is given by the following lemmas.

Lemma 5. Let T be an unsatisfiable set of clauses in reflexive systems. A contradiction
can be derived by applying the resolution rules given in Section 3 and RES0,1,0,0

a .

Proof. Consider any normal modal logic where each binary relationRa is reflexive. We
construct a graph G = 〈N , E1, . . . , En〉 for T as described in the completeness proof
for RESK. We show that by applying the resolution rule RES0,1,0,0

a any non-reflexive
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node in G is deleted. Consider a node η and a ∈ A, but (η, η) 6∈ Ea. There are two
cases: either there are no a-edges out of η; or an a-edge leads from η but there is no
a-edge from η to itself.

For the former, from the construction of the graph G, recall that an a-edge from η to
η′ is only removed if η |= l, but η′ 6|= l′, for some positive a-clause �∗(l⇒ �a l′) ∈ T .
Therefore, if there are no a-edges out of η, there must be some a-clauses of the form
�∗(l1 ⇒ �a l′1), �∗(l2 ⇒ �a l′2), . . . , �∗(lk ⇒ �a l′k), such that for each j = 1, . . . , k,
η |= lj and either

∧
j l
′
j is contradictory (e.g. when l′j = ¬l′h for j, h = 1, . . . , k)

or when
∧
j l
′
j and the set of clauses from the right-hand side of the literal clauses is

contradictory. Note that we assume that this node does not have any unsatisfied negative
a-clauses as such a node would have been previously deleted by the related deletion
rule. For the case

∧
j l
′
j is contradictory there must be two clauses (1) �∗(l1 ⇒ �a l′1)

and (2) �∗(l2 ⇒ �a ¬l′1) such that η |= l1 and η |= l2. Applying RES0,1,0,0
a to each

of these clauses we obtain (3) �∗(true ⇒ ¬l1 ∨ l′1) and (4) �∗(true ⇒ ¬l2 ∨ ¬l′1).
By applying LRES to (3) and (4), we obtain (5) �∗(true ⇒ ¬l1 ∨ ¬l2). Adding the
resolvent (5) to the clause set deletes η from the graph. The case where

∧
j l
′
j and the

set of clauses from the right-hand side of the literal clauses is contradictory is similar.
By the completeness of classical resolution we can again derive a clause that removes
η.

Next consider the second case for some node η, where there are edges out of η but no
edge from η to itself. As we have attempted to construct as many edges as possible from
every node, there must be a clause as (6) �∗(l1 ⇒ �a l′1) such that η |= l1 and η 6|= l′1.
By applying RES0,1,0,0

a to (6) we obtain (7) �∗(true⇒ ¬l′1 ∨ l1). As η 6|= ¬l′1 ∨ l1, by
adding of (7) to the clause set, η is deleted as required.

Note that RES0,0,0,1
a is not required for completeness as it can be simulated by other

inference rules. Assume that �∗(true ⇒ D ∨ l) is in T . Recall that for all literals l
occurring in T , the definition clauses �∗(posa,l ⇒ ¬�a ¬l) and �∗(¬posa,l ⇒ �a ¬l)
are also in T . Applying RES0,1,0,0

a to �∗(¬posa,l ⇒ �a ¬l) results in �∗(true ⇒
posa,l∨¬l). Applying LRES to�∗(true⇒ posa,l∨¬l) and�∗(true⇒ D∨ l) results
in�∗(true⇒ D∨posa,l), which is semantically equivalent to�∗(¬D ⇒ ¬�a ¬l), the
resolvent of RES0,0,0,1

a from �∗(true⇒ D ∨ l). ut

Note that, as the conclusion of the inference rule RES0,1,0,0
a is a propositional

clause, we do not need to deal with nesting of definition symbols in this case.
We need the following lemma:

Lemma 6. Let T be a satisfiable set of clauses in K(n), l be a literal occurring in T ,
where l is not a definition symbol, and G be the reduced behaviour graph for T . Let
η, η′ be nodes in G such that (η, η′) ∈ Ea and η′ |= l. Then η |= posa,l.

Proof. Assume (η, η′) ∈ Ea and η′ |= l, but η 6|= posa,l. As every node is a maxi-
mally consistent set of literals and modal literals, if η 6|= posa,l, then η |= ¬posa,l. By
construction of G, ¬posa,l holds exactly where �a ¬l holds. Therefore, η |= �a ¬l. By
the graph construction, the edges from η to nodes that do not satisfy ¬l are removed.
As η′ 6|= ¬l, there should be no edge (η, η′) ∈ Ea, which contradicts with our initial
assumption. Therefore, if (η, η′) ∈ Ea and η′ |= l, we have that η |= posa,l. ut
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Lemma 7. Let T be an unsatisfiable set of clauses in modally banal systems. A con-
tradiction can be derived by applying the resolution rules given in Section 3 and
RES1,0,0,0

a .

Proof. Consider any normal modal logic where each binary relationRa is modally ba-
nal. We construct a graph G = 〈N , E1, . . . , En〉 for T as described in the completeness
proof for RESK. We show that by applying the resolution rule RES1,0,0,0

a any node that
does not satisfy the frame conditions is deleted. Consider a node η, a ∈ A, (η, η′) ∈ Ea,
but η 6= η′.

First note that if η 6= η′, there must be a literal l such that η |= l and η′ 6|= l. As
there is an edge from η to η′, by Lemma 6, we have that η |= posa,¬l. By the graph
construction every node satisfies the definition clauses, therefore if η |= posa,¬l, we
also have that η |= posa,¬l ⇒ ¬�a l. Applying RES1,0,0,0

a to �∗(posa,¬l ⇒ ¬�a l) we
obtain �∗(true ⇒ ¬posa,¬l ∨ ¬l), which is not satisfied in η. Therefore, η is deleted
as required.

Assume now that �∗(l⇒ ¬�a ¬l′) ∈ T and η |= l. From the previous and because
all modal negative modal clauses are satisfied in the graph, there must be an edge (η, η)
in Ea and η must satisfy l′, otherwise the node would have been removed. That is, if
η 6|= l′, by adding �∗(true ⇒ ¬l ∨ l′), the resolvent of RES1,0,0,0

a from �∗(l ⇒
¬�a ¬l′), we have that η is deleted. This deletion corresponds to applications of LRES
to �∗(true⇒ ¬l ∨ l′) and the set of literal clauses that together imply ¬l′.

Note that RES0,0,1,0
a is not required for completeness as it can be simulated by

other inference rules. Assume that �∗(true⇒ D∨ l) is in T . Recall that for all literals
l occurring in T , the definition clause �∗(posa,¬l ⇒ ¬�a l) is also in T . Applying
RES1,0,0,0

a to �∗(posa,¬l ⇒ ¬�a l) results in �∗(true ⇒ ¬posa,¬l ∨ ¬l). Applying
LRES to �∗(true ⇒ D ∨ l) and �∗(true ⇒ ¬posa,¬l ∨ ¬l) results in �∗(true ⇒
D ∨ ¬posa,¬l), which is semantically equivalent to �∗(¬D ⇒ �a l), the resolvent of
RES0,0,1,0

a from �∗(true⇒ D ∨ l) in T . ut

Note again that, as the conclusion of the inference rule RES1,0,0,0
a is a propositional

clause, we do not need to deal with nesting of definition symbols in this case.

Lemma 8. Let T be an unsatisfiable set of clauses in symmetric systems. A contradic-
tion can be derived by applying the resolution rules given in Section 3 and RES1,1,0,0

a .

Proof. Consider any normal modal logic where each binary relation Ra is symmetric.
We construct a graph G = 〈N , E1, . . . , En〉 for T , as described in the completeness
proof for RESK. We show that by applying the inference rule RES1,1,0,0

a any non-
symmetric edge between two nodes is deleted. Consider any pair of nodes η and η′

such that there is some a ∈ An and (η, η′) ∈ Ea, but (η′, η) 6∈ Ea.
From the construction of the graph G, we have tried to construct as many edges as

possible. That is, there must be some positive a-clause of the form �∗(l ⇒ �a l′), such
that η′ |= l and η 6|= l′ (i.e. η |= ¬l′). Applying RES1,1,0,0

a to �∗(l ⇒ �a l′), we obtain
�∗(¬l′ ⇒ �a ¬l). As η |= ¬l′ and η′ |= l, from the construction of the graph, the
resolvent of RES1,1,0,0

a removes the edge (η, η′) from Ea as required.
Note that RES0,0,1,1

a is not required for completeness of the proof method for sym-
metric systems. Assume that �∗(true ⇒ D ∨ l) is in T . By applying RES0,0,1,1

a to
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�∗(true⇒ D ∨ l) we obtain �∗(¬D ⇒ �a posa,l), which removes from the graph all
edges from nodes that satisfy ¬D to nodes that do not satisfy posa,l.

Assume (η, η′) ∈ Ea, where η |= ¬D, but η′ 6|= posa,l. If η′ 6|= posa,l, be-
cause every node is a maximally consistent set of literals and modal literals, then
η′ |= ¬posa,l. As every definition clause is satisfied at every node, if η′ |= ¬posa,l
and η′ |= ¬posa,l ⇒ �a ¬l, then every edge from η′ to nodes that satisfy l are re-
moved. As η |= D ∨ l and η |= ¬D, we have that η |= l. Therefore, by construc-
tion of the graph, there is no edge (η′, η) in Ea. Now note that applying RES1,1,0,0

a

to �∗(¬posa,l ⇒ �a ¬l) results in �∗(l ⇒ �a posa,l). As η |= l, in order to satisfy
�∗(l ⇒ �a posa,l), the edges from η to nodes that satisfy posa,l must be removed. As
η′ 6|= posa,l, the edge (η, η′), where η |= ¬D and η′ |= ¬posa,l is also removed, as
required. Therefore, RES0,0,1,1

a is not needed for completeness. ut

Although the resolvent of RES0,0,1,1
a is a modal clauses, it does not refer to defini-

tion symbols. In this case, therefore, we do not need to deal with the nesting of definition
symbols.

Lemma 9. Let T be an unsatisfiable set of clauses in serial systems. A contradiction
can be derived by applying the resolution rules given in Section 3 and RES0,1,0,1

a .

Proof. Consider any normal modal logic where each binary relation Ra is serial. We
construct a graph G = 〈N , E1, . . . , En〉 for T , as described in the completeness for
RESK. We show that by applying the inference rule RES0,1,0,1

a any non-serial node is
deleted. Consider any node η such that there is some a ∈ A and there is no η′ such that
(η, η′) ∈ Ea.

From the construction of the graph G, we have tried to construct as many edges
as possible. If there are no a-edges out of η, then there must be positive a-clauses of
the form �∗(l′1 ⇒ �a l1), �∗(l′2 ⇒ �a l2), . . . , �∗(l′k ⇒ �a lk), such that for each
j = 1, . . . , k, η |= l′j but no node satisfies both

∧
j lj and the set of literal clauses. By

applying RES0,1,0,1
a , we add�∗(l′j ⇒ ¬�a ¬lj) for j = 1, . . . , k. From the construction

of the graph η does not satisfy these clauses and η is removed. Applying MRES, NEC1,
NEC2, or NEC3 (as described in the completeness argument for K(n)) will achieve the
deletion of η. ut

There is only one inference rule for serial systems and this rule does not make use
of definition symbols. In this case again, we do not need to deal with nested literals.

Lemma 10. Let T be an unsatisfiable set of clauses in 5−1 systems. A contradiction
can be derived by applying the resolution rules given in Section 3 and RES0,1,1,1

a .

Proof. Consider any normal modal logic where each binary relation Ra respects the
frame conditions for G0,1,1,1

a . We construct a graph G = 〈N , E1, . . . , En〉 for T accord-
ingly to the completeness argument for RESK. We show that by applying the inference
rule RES0,1,1,1

a any edge that does not satisfy the frame conditions is deleted.
Consider nodes η, η′ in Ea for some a ∈ A, where (η, η′) ∈ Ea, but there is

no η′′ such that (η, η′′) and (η′, η′′) are in Ea. Note that if the right hand side of the
positive modal clauses in Cηa contradicted with the set of literal clauses, then there
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should not be an edge from η to η′. Thus, if there is no such η′′, then Rηa ∪ Rη′a is
contradictory. Therefore, there must be clauses �∗(l1 ⇒ �a l) and �∗(l2 ⇒ �a ¬l)
such that η |= l1 and η′ |= l2. Recall that the definition clause �∗(posa,l ⇒ ¬�a ¬l)
is in the set of clauses. Applying MRES to �∗(posa,l ⇒ ¬�a ¬l) and �∗(l2 ⇒ �a ¬l)
results in �∗(true ⇒ ¬l2 ∨ ¬posa,l). Applying RES0,1,1,1

a to �∗(l1 ⇒ �a l) results
in �∗(l1 ⇒ �a posa,l). As �∗(posa,l2 ⇒ ¬�a ¬l2) is in the set of clauses, by applying
NEC1 to �∗(l1 ⇒ �a posa,l), �∗(posa,l2 ⇒ ¬�a ¬l2), and �∗(true⇒ ¬l2 ∨¬posa,l)
we obtain�∗(true⇒ ¬l1∨¬posa,l2), which is equivalent to�∗(l1 ⇒ �a ¬l2). Because
η |= l1 and η′ 6|= ¬l2, the edge (η, η′) is removed as required.

Note that RES1,1,0,1
a is not required for completeness. Assume that �∗(l ⇒ �a l′)

is in the set T of clauses. Applying RES1,1,0,1
a to �∗(l⇒ �a l′) results in �∗(posa,l ⇒

¬�a ¬l′), which removes from the graph all nodes that satisfy posa,l but do not satisfy
¬�a ¬l′. Assume (η, η′) ∈ Ea, where η′ |= l. By construction of the graph, as (η, η′) ∈
Ea and η′ |= l, by Lemma 6, we have that η |= posa,l. We consider two cases:

1. If there are no edges out of η′, then, by construction of the graph, we have that η′ |=
¬posa,l′ . Now, applying RES0,1,1,1

a to �∗(l⇒ �a l′) results in �∗(l⇒ �a posa,l′).
As η′ 6|= posa,l′ , the edge (η, η′) is removed from the graph. As posa,l′ is no longer
satisfied at η, η is removed from the graph.

2. If there are edges (η′, η′′) ∈ Ea, but there are no edge (η, η′′), then there must
be a clause as �∗(l1 ⇒ �a l2) such that η |= l1 and η′′ 6|= l2. Moreover, η′

satisfies �a ¬l2 and ¬posa,l2 , otherwise the edge relation would meet the frame
conditions for 5−1 systems. Applying RES0,1,1,1

a to �∗(l1 ⇒ �a l2) results in
�∗(l1 ⇒ �a posa,l2). As η′ 6|= posa,l2 , the edge (η, η′) is removed from the graph.
Because posa,l is no longer satisfied at η, the node is removed from the graph.

Next, we show that, although the application of RES0,1,1,1
a to clauses whose right-

hand sides are of the form �a posa,l′ (resp. �a ¬posa,l′ ) is correct, it is not needed
for completeness. Note that applying RES0,1,1,1

a to a clause as for instance �∗(l ⇒
�a posa,l′) might cause the method to be non terminating, as an unrestricted number of
nested literals as posa,posa,l′ could be generated.

Assume that �∗(l ⇒ �a posa,l′) (resp. �∗(l ⇒ �a ¬posa,l′)) was obtained from
previous applications of an inference rule from any of the relevant proof systems (i.e.
RES1,1,0,0

a , the inference rule for B; RES0,1,1,1
a , the inference rule for 5−1; RES1,0,1,1

a ,
one of the inference rules for 5; or RES1,1,1,1

a , the inference rule for G1). Also as-
sume there is a node η such that η |= l. Applying RES0,1,1,1

a to �∗(l ⇒ �a posa,l′)
(resp. �∗(l ⇒ �a ¬posa,l′)) would result in �∗(l ⇒ �a posa,posa,l′ ) (resp. �∗(l ⇒
�a posa,¬posa,l′ )). Firstly, if there are no edges out of η, then we have that adding
�∗(l ⇒ �a posa,posa,l′ ) (resp. �∗(l ⇒ �a posa,¬posa,l′ )) to the set of clauses will not
remove further edges and, therefore, there is no need to add it in the set of clauses. Thus,
assume that there is a node η′, such that (η, η′) in Ea. As �∗(l ⇒ �a posa,l′) (resp.
�∗(l ⇒ �a ¬posa,l′)) is in the set of clauses and, by construction of the graph, this
clause is satisfied at all nodes. Because η |= l and (η, η′) ∈ Ea we have that η′ |= posa,l′

(resp. η′ |= ¬posa,l′ ), otherwise the edge (η, η′) would have been removed from the
graph. By construction of the graph, there must exist a node η′′ such that both (η, η′′)
and (η′, η′′) are in Ea, otherwise the frame conditions for 5−1 would not have been met
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and the edge (η, η′) would have been removed from the graph. As �∗(l ⇒ �a posa,l′)
(resp.�∗(l⇒ �a ¬posa,l′)) is in T , η |= l, and (η, η′′) ∈ Ea, we have that η′′ |= posa,l′

(resp. η′′ |= ¬posa,l′ ). As (η′, η′′) ∈ Ea, we have that η′′ |= ¬�a ¬posa,l′ (resp.
η′′ |= ¬�a posa,l′ ), that is, posa,posa,l′ (resp. posa,¬posa,l′ ) holds exactly where posa,l′
(resp. ¬posa,l′ ) holds. Therefore, the inclusion of �∗(l ⇒ �a posa,posa,l′ ) (resp.
�∗(l ⇒ �a posa,¬posa,l′ )) in the set of clauses will not cause further deletions of ei-
ther edges or nodes. ut

Lemma 11. Let T be an unsatisfiable in functional systems. A contradiction can be
derived by applying the resolution rules given in Section 3 and RES1,0,1,0

a .

Proof. Consider any normal modal logic where each binary relation Ra is functional.
We construct a graph G = 〈N , E1, . . . , En〉 for T as in the completeness proof for
RESK. We show that by applying the inference rule RES1,0,1,0

a any edge that does
not satisfy the frame conditions is deleted. Consider nodes η, η′, and η′′ in N , where
(η, η′), (η, η′′) ∈ Ea for some a ∈ A, but η′ 6= η′′.

If η′ 6= η′′ then there must be a literal, say l, such that η′ |= l and η′′ 6|= l. Because
(η, η′) ∈ Ea and η′ |= l, by Lemma 6, we have that η |= posa,l. By construction,
all nodes satisfy the definition clauses. In particular, η |= posa,l ⇒ ¬�a ¬l. Applying
RES1,0,1,0

a to �∗(posa,l ⇒ ¬�a ¬l) results in �∗(posa,l ⇒ �a l). By construction of
the graph, as η′′ |= ¬l, the edge (η, η′′) is removed from the graph, as required. ut

As the conclusion of RES1,0,1,0
a does not refer to definition symbols,we do not need

to deal with nested literals in this case.

Lemma 12. Let T be an unsatisfiable set if clauses in Euclidean systems. A contradic-
tion can be derived by applying the resolution rules given in Section 3 and RES1,0,1,1

a .

Proof. Consider any normal modal logic where each binary relation Ra is Euclidean.
We construct a graph G = 〈N , E1, . . . , En〉 for T , as described in the completeness
proof for RESK. We show that by applying the rule RES1,0,1,1

a any non-Euclidean edges
are deleted.

Suppose that �∗(l ⇒ ¬�a ¬l′) is in the set of clauses and there is a node η such
that η |= l. Then, there must be a node η′ ∈ N , such that (η, η′) ∈ Ea and η′ |= l′;
otherwise the negative a-clause would not be satisfied and η would have been removed
during the graph construction. Now, suppose that there is no a-edge from η′ to a node
η′′ that satisfies l′, which implies that η′ 6|= posa,l′ . Then, the a-edge relation is not
Euclidean, because �a ¬�a ¬l′ does not hold at η. Applying the rule RES1,0,1,1

a , we
obtain the clause �∗(l ⇒ �a posa,l′). Because η |= l, we have that η |= �a posa,l′ .
Therefore, by construction of the graph, any edges from η to nodes that do not satisfy
posa,l′ are removed from the graph. In particular, as η′ 6|= posa,l′ , the edge (η, η′) is
removed from the graph, as required.

We show that RES1,1,1,0
a is not needed for completeness. Consider nodes η, η′, η′′ ∈

N such that (η, η′) and (η, η′′) are a-edges in Ea, but (η′, η′′) is not an a-edge in Ea.
Thus the a-edge relation is not Euclidean. Recall that a-edges from η′ to η′′ are only
removed from the graph if there is a clause as �∗(l⇒ �a l′) such that η′ |= l, but η′′ 6|=
l′. Applying MRES to �∗(l ⇒ �a l′) and �∗(posa,¬l′ ⇒ ¬�a l′), a definition clause in
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T , we obtain (1) �∗(true ⇒ ¬l ∨ ¬posa,¬l′). Applying RES1,0,1,1
a to �∗(posa,¬l′ ⇒

¬�a l′) results in (2) �∗(posa,¬l′ ⇒ �a posa,¬l′). Applying NEC1 to (2), �∗(posa,l ⇒
¬�a ¬l) (a definition clause in T ), and (1) results in �∗(true⇒ ¬posa,l ∨ ¬posa,¬l′).
Now, as (η, η′) ∈ Ea and η′ |= l, by Lemma 6, η |= posa,l; also, as (η, η′′) ∈ Ea and
η′′ |= ¬l′, by Lemma 6, η |= posa,¬l. As η 6|= ¬posa,l ∨ ¬posa,¬l′ , η is removed from
the graph as required.

Next we show that, although it is correct, we do not need to apply RES1,0,1,1
a to

clauses of the form �∗(l ⇒ ¬�a ¬posa,l′). Such a clause can be obtained, for in-
stance, from an application of RES0,1,0,1

a (the inference rule for D) to a clause of
the form �∗(l ⇒ �a posa,l′), which can be obtained from applications of other in-
ference rules for other systems to positive modal clauses (e.g. RES1,1,1,1

a , the inference
rule for G1). The application of RES1,0,1,1

a to �∗(l ⇒ ¬�a ¬posa,l′) would result in
�∗(l ⇒ �a posa,posa,l′ ), which removes from the graph the nodes η |= l for each there
are no η′ and η′′ such that both (η, η′) and (η′, η′′) are in Ea, but η′′ 6|= l′. Assume
�∗(l⇒ ¬�a ¬posa,l′) is in T and there is a node η such that η |= l. Because all clauses
are satisfied at every node of the graph and η |= l, we have that there is a node η′ such
that (η, η′) ∈ Ea and η′ |= posa,l′ . As every node satisfies the definition clauses, we
have that η′ |= posa,l′ ⇒ ¬�a ¬l′ and, by classical reasoning, η′ |= ¬�a ¬l′. Therefore,
there must be a node η′′ such that (η′, η′′) ∈ Ea and η′′ |= l′. If not, η′ is deleted from
the graph as �∗(posa,l′ ⇒ ¬�a ¬l′) is not satisfied at η′; then, η is also removed from
the graph as, after the removal of η′, the clause �∗(l ⇒ ¬�a ¬posa,l′) is not satisfied
at η. Thus, the effect achieved by adding the conclusion �∗(l ⇒ �a posa,posa,l′ ) to the
clause set is the same of that of having �∗(l ⇒ ¬�a ¬posa,l′) in the set of clauses.
Therefore, applying RES1,0,1,1

a to clauses of the form �∗(l ⇒ ¬�a ¬posa,l′) is not
needed for completeness. ut

Lemma 13. Let T be an unsatisfiable set of clauses in convergent systems. A contradic-
tion can be derived by applying the resolution rules given in Section 3 and RES1,1,1,1

a .

Proof. Assume the behaviour graph G = 〈N , E1, . . . , En〉 for T is not empty. If T is
satisfiable in G1,1,1,1

a , by correspondence theory, we have that for all η in G, a ∈ An,
if (η, η′) and (η, η′′) ∈ Ea, then there exists η′′′ such that both (η′, η′′′) and (η′′, η′′′)
are in Ea. We show next that nodes that do not satisfy this condition have edges deleted
from the graph and that these deletions correspond to applications of the inference rule
RES1,1,1,1

a .
If there is no η′′′ such that (η′, η′′′) ∈ Ea, then by the graph construction there must

be a clause as �∗(l1 ⇒ �a l2) such that η′ |= l1, but η′′′ 6|= l2. By applying RES1,1,1,1
a

to �∗(l1 ⇒ �a l2), we introduce �∗(posa,l1 ⇒ �a posa,l2) to the set of clauses. Now,
because η′ |= l1, we have that η |= posa,l1 . By the semantics of the implication, we
have that η must satisfy �a posa,l2 . Now, η′′ cannot satisfy posa,l2 , as if this was the
case, there should be a node that would be the successor of both η′ and η′′. Therefore,
the edge (η, η′′) is removed from the graph. Reasoning is similar, if (η′′, η′′′) 6∈ Ea.

Next, we show that we do not need to apply the inference rule RES1,1,1,1
a to clauses

of either form �∗(posa,l1 ⇒ �a l2), �∗(¬posa,l1 ⇒ �a l2), �∗(l1 ⇒ �a posa,l2), or
�∗(l1 ⇒ �a ¬posa,l2). From the above, note that the graph construction ensures that
if the graph meets the frame conditions for convergent systems, then a node is either
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isolated (i.e. there no edges in or out of the node) or the a-edge relation is serial (taking
η and η′ to be the same node in the above argumentation).

First, if the node η is isolated, then by applying RES1,1,1,1
a to the clause

�∗(posa,l1 ⇒ �a l2) (resp. �∗(¬posa,l1 ⇒ �a l2), �∗(l1 ⇒ �a posa,l2), and �∗(l1 ⇒
�a ¬posa,l2)) would result in �∗(posa,posa,l1

⇒ �a posa,l2) (resp. �∗(posa,¬posa,l1
⇒

�a posa,l2), �
∗(posa,l1 ⇒ �a posa,posa,l2

) and �∗(posa,l1 ⇒ �a posa,¬posa,l2
). Recall

that positive modal clauses only remove edges from the graph. As there are no edges
out of η to be further deleted, the addition of these conclusions to the clause set will not
affect the a-relation with respect to isolated nodes.

Now assume there are nodes η, η′ ∈ G such that (η, η′) ∈ Ea. By the graph con-
struction for convergent systems, there must be a node η′′ such that (η′, η′′) ∈ Ea.

Applying RES1,1,1,1
a to �∗(posa,l1 ⇒ �a l2) (resp. �∗(¬posa,l1 ⇒ �a l2)) would

result in �∗(posa,posa,l1
⇒ �a posa,l2) (resp. �∗(posa,¬posa,l1

⇒ �a posa,l2)). The
effect of adding �∗(posa,posa,l1

⇒ �a posa,l2) (resp. �∗(posa,¬posa,l1
⇒ �a posa,l2))

to the set of clauses is to remove from the graph any edges (η, η′) ∈ Ea from a node
η where η |= posa,posa,l1

(resp. posa,¬posa,l1
) to η′ where η′ 6|= posa,l2 . Let η be a

node such that η |= ¬�a ¬posa,l1 (resp. η |= ¬�a posa,l1 ), which is semantically equiv-
alent to posa,posa,l1

(resp. posa,¬posa,l1
). By the graph construction, there must be a

node η′ such that (η, η′) ∈ Ea and η′ |= posa,l1 (resp. η′ |= ¬posa,l1 ). By the graph
construction for convergent systems, as η′ is not an isolated node, then there must be
a node η′′ such that (η′, η′′) ∈ Ea and η′′ |= l1. Now, because �∗(posa,l1 ⇒ �a l2)
(resp. �∗(¬posa,l1 ⇒ �a l2)) is in the clause set, (η′, η′′) ∈ Ea, and η′ |= posa,l1
(resp. η′ |= ¬posa,l1 ), we have that η′′ |= l2. By Lemma 6, η′ |= posa,l2 . There-
fore, by construction, if there is an a-edge from η, which satisfies ¬�a ¬posa,l1 (resp.
η |= ¬�a posa,l1 ), to η′′, then the existing clauses already ensure that η′′ |= posa,l2 .
Thus, adding �∗(posa,posa,l1

⇒ �a posa,l2) (resp. �∗(posa,¬posa,l1
⇒ �a posa,l2))

to the clause set will not delete further a-edges from the graph and is not needed for
completeness.

Now assume that �∗(l1 ⇒ �a posa,l2) (resp. �∗(l1 ⇒ �a ¬posa,l2)) is in the
clause set. Applying RES1,1,1,1

a to �∗(l1 ⇒ �a posa,l2) (resp. �∗(l1 ⇒ �a ¬posa,l2))
would result in �∗(posa,l1 ⇒ �a posa,posa,l2

) (resp. �∗(posa,l1 ⇒ �a posa,¬posa,l2
)).

Adding this to the clause set removes from the graph the a-edges from nodes η such
that η |= posa,l1 to nodes η′ where η′ 6|= posa,posa,l2

(resp. η′ 6|= posa,¬posa,l2
).

We show that this is not possible, i.e. if (η, η′) ∈ E and η |= posa,l1 , then we have
that η′ |= posa,posa,l2

(resp. η′ |= posa,¬posa,l2
). Assume there is a node η such

that η |= posa,l1 . By the graph construction, there must me a node η′ such that
(η, η′) ∈ Ea and η′ |= l1. By the graph construction for convergent systems, as η′

is not an isolated node, there must be a node η′′ such that (η′, η′′) ∈ Ea. As we have
that �∗(l1 ⇒ �a posa,l2) (resp. �∗(l1 ⇒ �a ¬posa,l2)) is in the clause set and η′ |= l1,
as all clauses are satisfied at all nodes, then η′′ |= posa,l2 (resp. η′′ |= ¬posa,l2 ).
As (η′, η′′) ∈ Ea, we have that η′ |= ¬�a ¬posa,l2 (resp. η′ |= ¬�a posa,l2 . There-
fore, no further edges will be deleted by adding �∗(posa,l1 ⇒ �a posa,posa,l2

) (resp.
�∗(posa,l1 ⇒ �a posa,¬posa,l2

)) to the set of clauses; thus they are not needed for
completeness.



28 Cláudia Nalon, João Marcos, and Clare Dixon

Theorem 2. Let T be an unsatisfiable set of clauses in Gp,q,r,s
a , with p, q, r, s ∈ {0, 1}.

A contradiction can be derived by applying the resolution rules for RESK, given in
Section 3, and Table 3.

Proof. By Lemmas 5, 7, 8, 9, 10, 11, 12, and 13.

A.3 Termination

Termination of the proof method for logics of confluence is ensured by termination
of the proof method for K(n), given in [18], and by the fact that the resolution rules
RESp,q,r,sa do not need to be applied to clauses which would result in nested definition
symbols. Therefore, all the corresponding definition clauses can be introduced at the
beginning of the proof. As a given set of clauses contains only finitely many propo-
sitional symbols, from which only finitely many SNF clauses can be constructed and
therefore only finitely many new SNF clauses can be derived.

Theorem 3. The resolution-based calculi for logics of confluence terminate.

Proof (Sketch). From the completeness proof, the introduction of a literal such as
posa,posa,l

for an agent a and literal l is not needed. We can show that the restrictions
imposed by such clauses, together with the resolution rules for each specific logical
system, are enough to ensure that the corresponding condition frame already holds. As
the proof method does not introduce new literals in the clause set, there is only a finite
number of clauses that can be expressed. Therefore, the proof method is terminating.


