
A Formal Semantics for Brahms Technical Report?

Richard Stocker1, Maarten Sierhuis2, Louise Dennis1, Clare Dixon1, Michael Fisher1

1 Department of Computer Science, University of Liverpool, UK
2 PARC, Palo Alto, USA

Contact: Richard Stocker (R.S.Stocker@liverpool.ac.uk)

1 Introduction

In this paper we present the reader with 41 rules to describe the formal semantics of
Brahms. With so many rules it is difficult to get a clear picture of how Brahms operates,
so we present the reader with Figures 1 and 2 to help explain the semantics.

To aid the reader we will follow the flow through the Brahms semantics in Figures 1
and 2. It should be noted that this is only the core aspects of the Brahms semantics, func-
tions such as suspension, detectables, variables, etc. have been removed for simplicity.
The Figures 1 and 2 have been drawn with a relation to traditional data flow diagrams
where rectangles with rounded edges start the data flow, rectangular boxes with sharp
edges represent a process, diamond boxes represent a yes/no choice, and an elongated
oval represents the termination state. Arrows are used in the diagrams to show how the
flow moves from process to process, arrows emanating from a diamond are labelled ei-
ther yes or no to signify which choice they represent. To help describe the flow through
these diagrams the states have been labelled A1-A22 and S1-S8. The agent’s states are
identified using A and the scheduler’s by S. It should be realised that the agent’s and
the scheduler diagrams are not mutually exclusive, i.e., some agent states require the
scheduler to be in a certain state before the agent is moved onto another state. Some
process states in the diagrams are shaded, these are to identify that non-determinism
can occur in these states, e.g., state A14 is shaded and refers to updating a belief or a
fact, the non-determinism here occurs because belief and fact updates are assigned a
‘certainty’, i.e., a percentage chance that the update will occur.

The scheduler, in Figure 2, starts off by initialising everything from agents, to ob-
jects, etc. in state S1. During this initialisation the scheduler informs the agents to start
executing, the scheduler then moves into S2 where it waits for a response from all the
agents. The agents, in Figure 1, start off by moving into A1 where they initialise them-
selves, then move on to A2 where they then wait for the scheduler. Once the agents
have received the command from the scheduler to start executing they move into state
A4 where they generate a set containing all active thoughtframes. The agent then cy-
cles through states A4, A5 and A6 where it executes all thoughtframes in the set and
checks for more thoughtframes to become active until no more thoughtframes are ac-
tive. The boxA6 is shaded because the thoughtframes are chosen non-deterministically.
The agent then moves into state A7 where a set of all active workframes is selected, if
this set is empty then the agent moves to A9 to set itself as idle. If there are active

? Work partially funded in the UK through EPSRC grants EP/F033567 and EP/F037201.

2 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

workframes then the agent moves to state A11 where it randomly selects one of these
workframes, again A11 is shaded due to this random choice. The semantics then check
whether the workframe is empty or not in A10, if the workframe deed stack is empty
then the agent is directed back to state A4 to process its thoughtframes. If the work-
frame deed stack is not empty then it pops the top element off the stack in A12. A13
then checks if the event is an activity or a conclude. If the event is a conclude then the
agent moves to state A14 where it processes this conclude, this state is shaded because
the belief and fact attributed to this conclude may or may not be updated based upon
the belief and fact certainty of the conclude. If the event is an activity then the agent
moves to state A15 where it selects a duration for this activity between the minimum
and maximum value, the box is shaded to represent this non-determinism. The agent
then sends this value to the scheduler in state A16 and waits for a response from the
scheduler. Once the scheduler receives all durations from all the agents it moves to state
S4 and calculates which is the shortest. If all the agents had found no active workframes
in stateA8 and moved to stateA9 then they would all have sent the scheduler a duration
of -1, if this is the case then the scheduler will be directed to states S7 and S8 from state
S5 to terminate the simulation. If the scheduler did find a duration greater than -1 in S5
then it moves its clock forward by this duration in state S6 and moves back to waiting
for a duration from all the agents in state S2. The agents will now have received a du-
ration from the scheduler and will move from A16 into A18, if the scheduler had sent
a -1 for the duration then they will move to A19 and terminate. When the scheduler
sends a duration greater than -1 the agents move into state A22 where they check to
see whether they have an activity to deduct time from, if they had set themselves idle
then they would not have a current activity to do this with. They then process states
A21 and A20 to update their clocks and deduct time from their activities, they are then
directed back to state A10 to continue popping events off the deed stack. Once the deed
stack becomes empty they will be directed from state A10 to A4 to start processing
thoughtframes and eventually move onto the next workframe.

2 Semantics: Notation

The following conventions refer to components of the system, and agent and object
states.

Agents: ag is used to express the identity of an agent, e.g., agAlex would represent
an agent named Alex, while Ag represents the set of all agents. When referring to
arbitrary agents we use names such as i and j, and when we are referring to the
number of agents we use n. For example, when we use the term ∀agi ∈ Ags we
are referring to all arbitrary agents in the set of all agents, and when we are using
something that requires two arbitrary agents, such as communication, we will say
that arbitrary agent agi communicates to arbitrary agent agj .

Beliefs: b represents the atomic formula of a belief, while B represents a set of beliefs.
In Brahms the overall system may have beliefs which are represented by Bξ.

Facts: f represents the atomic formula of a fact, while F represents a set of facts.
Workframes: Workframes are represented as the tuple

A Formal Semantics for Brahms Technical Report 3

Fig. 1. Overview of a Brahms Agent’s Semantics

4 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

Fig. 2. Overview of the Scheduler’s Semantics

A Formal Semantics for Brahms Technical Report 5

〈W g,W pri,W r,WD,W V ,Wins〉

Where
– W g is the workframe’s guard.
– W pri is the workframe’s priority. Priorities are represented in Brahms as a

natural number, N, however in this semantics we add decimal values to these
numbers to account for priorities of suspended, impassed and current work-
frames over generic workframes yet to be instantiated.

– W r is the workframe’s repeat variable. The repeat variable can take the values
true, false, and once.

– WD is the workframe’s detectables. This is a tuple 〈dg, dtype〉, where dg repre-
sents the detectables guard condition and dtype represents the detectables type;
impasse, continue, complete, or abort.

– W V is the workframe’s variables, βV for the current workframe. A single
variable is identified using v, each variable has a type which is identifed by
vtype which can take the values forone, foreach, and collectall.

– 〈W0...Wn〉 is a set representing instansiations of the workframe. These instan-
tiations are necessary when a workframe contains variables, an instantiation is
created for every possible combination of assignments that the variables can
have; variables can be assigned to agents, objects and locations.

– W Concludes is used to represent all the conclude statements inside the work-
frames stack of instructions. This is used when a workframe has been instructed
to process only concludes and ignore actvities.

When referring to workframes W refers to any arbitrary workframe, β represents
the current workframe, e.g., βpri would refer to the current workframe’s priority,
andWF represents a set of workframes. Occasionally to save space in the tuple we
represent the first 6 elements of the workframe tuple as Wd, i.e., the workframe’s
header data. This shortened form of the tuple looks as follows 〈Wd,Wins〉 where
Wins represents the stack of instructions the workframe is to perform, such as con-
cludes and activities.

Thoughtframes: Thoughtframes are represented in a similar fashion except α repre-
sents the current thoughtframe, TF represents a set of thoughtframes, while T
represents any arbitrary thoughtframe.

Activities and Concludes: Activities and concludes are broken down into the follow-
ing types

– Prim Actt is a primitive activity of duration t.
– Comms(agj , b)t is a communication activity to agent j, sending belief b with

a duration t.
– Move(Loc = new)t is a move activity from the current location Loc to the

new location new t.
– conclude(b) is a conclude asserting the belief b.
– conclude(f) is a conclude asserting the fact f .

Environment: In this semantics additional details outside of the agent’s and object’s
own perceptions are referred to as belonging to the environment. To represent this
environment we use the identification ξ.

6 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

Time: T represents the time in general, while a specific duration for an activity is
represented by t. The time T is always associated with either an agent, object or
the environment, e.g., Ti refers to current time of agent agi and Tξ refers to the time
of the global clock, or the system clock, in the environment. Time is represented as
a natural number, N, with the exception of the termination condition which takes
the value of -1.

Stage: The semantics are organised into “stages”. Stages refer to the names of the
operational semantic rules that may be applicable at that time, wild cards (∗) are
used to refer to multiple rules with identical prefixes. There is also a “fin” stage
which indicates an agent is ready for the next cycle, and an “idle” stage which
means it currently has no applicable thoughtframes or workframes. To describe the
stage of an agent i we use the notation agstagei

Methods: To keep the semantic rules as simple as possible we shorten some actions
into Java like method calls. The methods used are as follows:

– MinTime(∀agi|Ti ∈ Bξ). This method is used when all the agents have in-
formed the scheduler of when their next activity is due to finish. This method
examines all the durations of all the agent’s activities and identifies which is
the smallest, ∀agi|Ti ∈ Bξ expresses that the method examines the durations,
in the environment’s belief base, for all the agents.

– Max Pri(). This method is used to find the thoughtframe or workframe of the
highest priority, e.g., Max Pri(∀T ∈ TF i|Bi |= T g) finds the thoughtframe
in the set of all thoughtframes such that the thoughtframe’s guard condition is
met in the agent’s belief base.

– selectV ar(). This method matches all the agents/objects/locations that meet
the requirements set out in the workframe or thoughtframe’s guard condition
and assigns each set of agents etc. to a workframe or thoughtframe instance.

– Random(). This method is used to show a that random selection is being made,
e.g.,Random(W0...Wn) randomly selects a workframe out of the set of work-
frames W0...Wn.

– concludes(W1...Wn). This method is used in the rule Var all, it takes all the
workframes instances W1...Wn and extracts all the conclude statements from
it. This rule is needed because a collectAll variable takes all the conclude
statements from every instance and processes them at the same time.

3 Semantics: Structure

The operational semantics are broken up into two parts; the scheduler semantic rules
and the agents semantic rules. We use a 5-tuple description (shown in Definition 1)
to represent the state of the scheduler, a 9-tuple description (shown in Definition 2) to
represent the state of the agent, and a transition rule (shown in Definition 3) to show how
the states transform. We use first-order logic with set theoretic operations, but restricted
to the sets available within the semantic structures, to express when the rule is active
and to state how the tuple changes when the rule fires.

Definition 1. The system configuration is a 5-tuple description 〈Ags, agi, Bξ, F, Tξ〉
where

A Formal Semantics for Brahms Technical Report 7

Ags - is the first element of the tuple in the set of all agents;
agi - is the second is the current agent under consideration;
Bξ - is the third is the belief base of the system;
F - is the fourth is the set of facts in the environment;
Tξ - is and the fifth is the current time of the system;

Definition 2. The agents and objects within a system have a 9-tuple representation
〈agi, T ,W, stage,B, F, Ti,TF ,WF 〉 where

agi - is the first element is the identification of the agent;
T - the second is the current thoughtframe;
W - the third is the current workframe;
stage - the fourth is the stage the agent is at;
B - the fifth is the set of beliefs the agent has;
F - the sixth is the set of facts;
Ti - the seventh is the time of the agent;
TF - eighth is the set of thoughtframes the agent has;
WF - and the ninth is the agent’s set of workframes.

The fourth element of the tuple, the stage, explains which set of rules the agent is cur-
rently considering or if the agent is in a finish (fin) or idle (idle) stage.

〈StartingTuple〉

ActionsPerformed−−−−−−−−−−−−−−−−−−→
ConditionsRequiredForActions

〈ResultingTuple〉

Fig. 3. Simplified Template for the Operational Semantics Transition Rules

Definition 3. A transition rule is denoted by Figure 3 where

〈StartingTuple〉 - represents the system’s or the agent’s
tuple before the rule is applied;

ConditionsRequiredForActions - states the conditions required for the rule
to fire;

ActionsPerformed - represents the actions performed by the

8 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

rule;
ResultingTuple - represents the tuple after the rule

has fired;

3.1 Timing

The timing in Brahms works by the use of a global system clock coupled with agents
having their own internal clocks. The system scheduler asks each agent how long each
of their activities are, finds the time of the shortest activity and then tells each agent to
move their clock forward by this time. However it should be noted that during a simula-
tion agents are not aware of their internal clocks, the clocks are used behind the scenes
to keep all agents synchronised. Traditionally Brahms simulations are modelled with a
‘Clock’ agent to broadcast a simulation time to all the agents to give them an awareness
of time. Workframes that the agents are currently working on can be interrupted if a
new higher priority thought/workframe becomes active, or if a fact change in the sys-
tem causes an impasse via a detectable. The following structure shows how agents are
moved forward in time by the scheduler. It shows every agent from Ag0 to Agn being
moved forward in time, once an agent moves forward in time it reaches an intermediary
point X where it will then make a Choice on its next set of actions. ξ represents the
scheduler, showing that all the agents and the scheduler move as one from time point to
time point.

Ag0
LocalClock+t−−−−−−−−→ X,X

Choice−−−−→ Ag′0
.
.
.

Agn
LocalClock+t−−−−−−−−→ X,X

Choice−−−−→ Ag′n

ξ
LocalClock+t−−−−−−−−→ ξ′

4 Semantic Rules

4.1 Scheduler Semantics

The scheduler is the central system of Brahms, it decides when and what value the
global clock will take and it starts and terminates the execution of the system. For the
scheduler to start/continue execution all agents must be in a ‘fin’ (finished) or ‘idle’
(idle) state and the global clock must not be less than zero. For Brahms to terminate
all the agents need to be in an idle state where they have no workframes/thoughtframes
which have their guard condition met.

Sch run. Start agents running for the new clock tick. This rule states that if all agents
in the system are either in a finished or idle state and the global clock is not minus one
then all agents are directed to the ‘Set Act’ semantic rule.

A Formal Semantics for Brahms Technical Report 9

RULE: Sch run

〈Ags, agi, Bξ, F, Tξ〉

ag
i
′ =agi[ag

stage
i ∈{fin,idle}/agstage

i ∈{Set Act}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀agi∈Ags|ag

stage
i ∈{fin,idle}∧(Tξ 6=−1)

〈Ags, agi′ , Bξ, F, Tξ〉

Sch rcvd. Receives the activity durations from all agents. This rule identifies when the
Scheduler has received all the durations from all agents. It states that if all agents are
in a waiting or idle state then the Scheduler will check all the agents end activity times,
calculate the smallest value and set its time to this. For this rule to activate all the agents
need to be considering the rules Pop PA∗, Pop MA∗ or Pop CA∗ where * represents
a wild card for any suffix of the word.

RULE: Sch rcvd

〈Ags, agi, Bξ, F, Tξ〉

Tξ′=Tξ[Tξ/Tξ+MinTime(∀agi|Ti∈Bξ)]−−→
∀agi∈Ags|stage∈{Pop PA∗,Pop MA∗,Pop CA∗)}∨idle,(Tξ 6=−1)

〈Ags, agi, Bξ, F, Tξ′〉

the notation agi′ = agi[ag
stage
i ∈ {fin, idle}/agstage

i ∈ {Set Act}] indicates that the
stage value of agi has been replaced by Set Act .

Sch term. This termination condition happens when all agents are in an idle state, to
signal the termination it sets the global clock to minus one.

RULE: Sch Term

〈Ags, agi, Bξ, F, Tξ〉

Tξ′=Tξ[Tξ/Tξ=−1]

−−−−−−−−−−−−−−−→
∀agi∈Ags|stage∈{idle}

〈Ags, agi, Bξ, F, Tξ′〉

4.2 Agent Semantics

The Brahms system operates on a simple cycle of handling:

Thoughtframes → Detectables →Workframes

10 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

4.3 Set * rules

Rules with the prefix of ‘Set *’ are used at the start of every cycle. These are used to
determine whether or not the agent/object will be idle (no active workframe or thought-
frame) for the duration of this cycle. Those that are idle will do nothing until this rule
is next invoked by the system, those that are not idle are directed to checking thought-
frames.

Set Act. If the agent is currently checking ‘Set *’ rules, has no current thoughtframe
and the agent has a workframe or a thoughtframe with its guard condition met then
this rule directs the agent to the ‘Tf *’ rules. Whether or not the agent has an active
workframe or not is not an issue.

RULE: Set Act
〈agi, α, β,Set ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Set ∗}/agstagei ∈{Tf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α∈{∅}∧(∃T ∈TFi |Bi|=T g∨∃W∈WFi |Bi|=Wg)

〈agi, α, β,Tf ∗, Bi, F, Ti,TF i,WF i〉

Set Idle. If the agent has no current thoughtframes or workframes with their precondi-
tions met then place the agent in an idle state. Additionally the agent can not have an
active thoughtframe but can possibly have an active workframe.

RULE: Set Idle
〈agi, α, β,Set ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Set ∗}/agstagei ∈{idle}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α∈{∅}∧β∈{∅}∧¬∃T ∈TFi |Bi|=T g∧¬∃W∈WFi |Bi|=Wg

〈agi, α, β, idle, Bi, F, Ti,TF i,WF i〉

4.4 Tf * rules (Thoughtframes)

The agent is now in a state where it is selecting a thoughtframe to run. The agent will
not have any thoughtframes currently active. When selecting the thoughtframe to run
it will choose the thoughtframe with the highest priority, but if there is more than one
then a random selection will be made.

Tf Select. If there is a thoughtframe(s) with preconditions met then perform a selection
based on the thoughtframe’s priority. The agent can not have a current thoughtframe but
can possibly have an active workframe. The thoughtframe is selected using the Max pri
method which choses the thoughtframe based on the priority. The agent is then passed
onto rules to execute the thoughtframe, the chosen rule depends on the repeat variable
of the thoughtframe(true, false or once).

RULE: Tf Select
〈agi, α, β, Tf ∗, Bi, F, Ti,TF i,WF i〉

α′=α[α/Max Pri(∀T ∈TFi|Bi|=T g)]∧agi[ag
stage
i ∈{Set ∗}/agstagei ∈{Tf true,Tf false,Tf once}]

−−−→
α∈{∅}∧∃T ∈TFi|Bi|=T g

A Formal Semantics for Brahms Technical Report 11

〈agi, α′, β, {Tf true,Tf false,Tf once}, Bi, F, Ti,TF i,WF i〉

Tf true (Repeat = true). If the repeat variable on the thoughtframe is true then the
agent is just directed to ‘Pop Tf*’ rules.

RULE: Tf true
〈agi, α, β,Tf true, Bi, F, Ti,WF i,TF i〉

agi[ag
stage
i ∈{Tf true}/agstagei ∈{Pop Tf∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
αr=true∧β∈{∅}

〈agi, α, β, Pop Tf∗, Bi, F, Ti,TF i,WF i〉

Tf once (Repeat = once). If repeat variable is set to once, change to false then move to
‘Pop Tf*’ rules.

RULE: Tf once
〈agi, α, β,Tf once, Bi, F, Ti,TF i,WF i〉

α′=α[αr=once/αr=false]∧TF ′
i=TFi[α/α

′]∧agi[ag
stage
i ∈{Tf once}/agstagei ∈{Pop Tf∗}]

−−−→
αr=once∧β∈{∅}

〈agi, α, β,Pop Tf ∗, Bi, F, Ti,TF i,WF i〉

Tf false(Repeat = false). If repeat variable is set to false, then delete thoughtframe
from the set of thoughtframes.

RULE: Tf false
〈agi, α, β,Tf false, Bi, F, Ti,TF i,WF i〉

TF ′
i=TFi[TFi−α]∧agi[ag

stage
i ∈{Tf false}/agstagei ∈{Pop Tf∗}]

−−→
αr=false∧β∈{∅}

〈agi, α, β,Pop Tf ∗, Bi, F, Ti,TF ′i,WF i〉

Tf exit. If there are no thoughtframes to be executed then the agent is directed towards
checking all the detectables.

RULE: Tf exit
〈agi, α, β, Tf ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Tf ∗}/agstagei ∈{Det ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−→
¬∃T ∈TFi|B|=T g∧α∈{∅}

〈agi, α, β,Det ∗, Bi, F, TiTF i,WF i〉

12 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

4.5 Wf * rules (Workframes)

The agent is now in a state where it is selecting a workframe to run. When selecting the
workframe to run it will choose the workframe with the highest priority, if there is more
than one workframe with the highest priority then a random selection is made between
these workframes.

Wf select. If there is no current workframe then a simple selection process occurs tak-
ing the workframe with the highest priority. The agent must have no workframes or
thoughtframes assigned to it.

RULE: Wf Select

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉
β′=β[β/Max Pri(∀W∈WFi|Bi|=Wg)]∧agi[ag

stage
i ∈{Set ∗}/agstagei ∈{Wf true,Wf false,Wf once}]

−−−→
α∈{∅}∧β∈{∅}∧∃W∈WFi|Bi|=Wg

〈agi, α, β′, {Wf true,Wf false,Wf once}, Bi, F, Ti,TF i,WF i〉

Wf suspend. If an agent is currently working on a workframe, but there exists a work-
frame with its guard condition met that has higher priority then the current workframe
is suspended and the progress the agent has made through this workframe is recorded.
The priority of the suspended workframe is increased by 0.2, priorities are usually in-
tegers but this gives suspended workframes higher priority over those which normally
would have the same priority. Note. βd represents the workframe’s deed stack and βins
refers to the workframe’s instructions, such as the workframe’s repeat values, etc.

RULE: Wf Suspend

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉
β′=β[βpri/(βpri+0.2)]∧WF ′

i=WF ′
i[WFi∪β′]∧β′′∈{∅}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

α∈{∅}∧β/∈{∅}∧∃W∈WFi|Bi|=Wg∧Wpri>(βpri+0.3)

〈agi, α, β′′,Wf ∗, Bi, F, Ti,TF i,WF i′〉

Wf true (Repeat = true). If there does not exist such a workframe with a greater pri-
ority then execute the currently selected workframe. 0.3 is added to the current work-
frames priority when checking whether to suspend, so that the current workframe is not
suspended for another suspended workframe of priority only 0.2 higher. The agent is
then passed onto rules for processing variables, rules with prefix ‘Var *’

RULE: Wf true

〈agi, α, β,Tf true, Bi, F, Ti,WF i,TF i〉
agi[ag

stage
i ∈{Wf true}/agstagei ∈{Pop Wf∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
βr=true∧α∈{∅}∧¬∃W∈WFi|Bi|=Wg∧Wpri>βpri+0.3)

〈agi, α, β, Pop Wf∗, Bi, F, Ti,TF i,WF i〉

A Formal Semantics for Brahms Technical Report 13

Wf once (Repeat = once). If the current workframe has the repeat value once then the
repeat value of this workframe is changed to false and the agent is passed onto rules for
processing variables.

RULE: Wf once
〈agi, α, β,Wf once,Bi, F, Ti,TF i,WF i〉

βr=once∧α∈{∅}∧β′=β[βr=once/(βr=false]∧WF ′
i=WFi[β/β

′]∧agi[ag
stage
i ∈{Wf once}/agstagei ∈{V ar ∗}]

−−−→
¬∃W∈WFi|Bi|=Wg∧Wpri>βpri+0.3

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF ′i〉

Wf false(Repeat = false). If the current workframe has the repeat value false then it is
deleted from the set of workframes and the agent is passed onto processing variables.

RULE: Wf false
〈agi, α, β,Wf (false), Bi, F, Ti,TF i,WF i〉

WF ′
i=WFi[WFi−β]∧agi[ag

stage
i ∈{Wf false}/agstagei ∈{V ar ∗}]

−−→
βr=false∧¬∃W∈WFi|Bi|=Wg&Wpri>βpri+0.3

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF ′i〉

4.6 Det * rules (Detectables)

Detectables are additional guards contained within a workframe which when activated
(though facts not beliefs) will trigger a belief update from the facts and will then decide
how the rest of the workframe will be executed. The possible executions are Continue,
Complete, Impasse and Abort.

Det cont. When a detectable’s guard condition is met and the detectable is of type
Continue then the workframe updates its beliefs from the facts detected and carries on
unchanged.

RULE: Det cont
〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉

B′
i=Bi∪d

g∧agi[ag
stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−→
∃d∈βD|dg|=F∧dtype=continue∧(¬∃d′inβD|d′g|=F∧(d′type=impasse∨d′type=abort∨d′type=complete))

〈agi, α, β,Wf ∗, B′i, F, Ti,TF i,WF i〉

Here d is used to represent a detectable, βD is the workframe β’s set of detectables. No-
tation to express parts of the detectables: dg represents the detectables guard condition
and dtype refers to the detectables type whether it is continue, complete or abort.

Det comp. When a detectable’s guard condition is met and the detectable is of type
complete then the workframe updates its beliefs from the facts detected and deletes all
activities from the workframe leaving only concludes.

RULE: Det comp

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉

14 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

β′=β[βins/β
Concludes]∧B′

i=Bi∪d
g∧agi[ag

stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−→
∃d∈βD|dg|=F∧dtype=complete∧(¬∃d′inβD|d′g|=F∧(d′type=impasse∨d′type=abort))

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

βConcludes is used to refer to conclude events within the workframe β.

Det impasse. When the detectable is of type impasse the beliefs are updated from the
facts detected but the workframe is suspended. To suspend the workframe a new work-
frame is created out of this workframe instance and added to the set of workframes
with repeat set to false. The priority of this new workframe is fractionally larger than
the previous (but smaller than a suspended).

RULE: Det impasse

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉

β′=β[βpri/(βpri+0.1)∧βg∪¬dg)]∧B′
i=Bi∪d

g∧WF ′
i=WFi∪β′∧agi[ag

stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−→
∃d∈βD|dg|=F∧dtype=impasse∧(¬∃d′inβD|d′g|=F∧d′type=abort)

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

Det abort. If the detectable is of type abort then the belief base is updated and the
agent’s assignment to the workframe is removed.

RULE: Det abort

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉

β′∈{∅}∧B′
i=Bi∪d

g∧agi[ag
stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∃d∈βD|dg|=F∧dtype=abort

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

Det empty. If there are no active detectables found then the agent is moved to the
‘workframes’ rule set denoted ‘Wf *’.

RULE: Det empty
〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−→
¬∃d∈βD|dg|=F

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉

A Formal Semantics for Brahms Technical Report 15

4.7 Var * rules (Variables)

Variables are used to represent quantification in Brahms. Variables operate on both
workframes and thoughtframes, however for simplicity only workframes have been
modelled to handle variables. Thoughtframes would operate variables in exactly the
same way.

RULE: Var empty
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Var ∗}/agstagei ∈{Pop ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−→
β/∈{∅}∧βV ∈{∅}

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. Where βV represents the variables contained within workframe β.

Var set. Workframes with variables have an additional stack. This additional stack
stores instances of the workframe with the differing instantiations that can be created
with the variables. If the set of options is empty then a selection process called ‘select-
Var()’ is called. ‘selectVar()’ will match all agents/objects which match the name and
conditions, assign each to an instance of the workframe then places the instances onto
the stack. Note. 〈βd, [∅], [βins]〉 represents a workframe β with a deed stack d, a set of
empty workframe instances and the workframe’s set of instructions βins

RULE: Var set
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉

β′=〈βd,[∅∪selectVar()],βins〉−−−−−−−−−−−−−−−−−−→
β=〈βd,∅,βins〉

〈agi, α, β′,Var ∗, Bi, F, Ti,TF i,WF i〉

Var one. When the variable is of type ‘forone’ and a set of workframe instances has
been generated then the first workframe instance is selected and set as the current work-
frame. The subset of variables in the workframe are then deleted. This is how Brahms
performs unification.

RULE: Var one
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉

β′=〈βd,Random(W0 ...Wn),βins〉∧agi[ag
stage
i ∈{Var ∗}/agstagei ∈{Pop ∗}]

−−−→
β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=forone

〈agi, α, β′,Pop ∗, Bi, F, Ti,TF i,WF i〉

‘Random’ refers to a random selection of one of the instances and ‘vtype’ represents
the variables type (forone, foreach or collectall).

Var each. When the variable is of type ‘foreach’ and the subset of the workframe is
not empty then the instances of the workframes are added to the set of workframes
and the first instance is set as the current workframe. The instances are given a slightly

16 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

increased priority and a repeat value of false so they will never be repeated. This repre-
sents Brahms operating on a multitude of tasks sequentially.

RULE: Var each

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
WF ′

i=WFi∪(W0[W
pri
0 /(βpri+0.1),Wr

0 /W
r
0 =false]...Wn[W

pri
n /(βpri+0.1),Wr

n/W
r
n=false])

−−−→
β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=foreach

〈agi, α,W0,Pop ∗, Bi, F, Ti,TF i,WF i〉

Var all. The ‘collectall’ variable operates in a similar fashion to the previous variables,
however when it selects the first workframe from the subset it merges all the concludes
from the other work frames into this workframe. This effectively is how Brahms handles
a job which has multiple consequences, e.g., By completing task A, I also complete task
B.

RULE: Var all

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
β′=concludes(W0...Wn)∧agi[ag

stage
i ∈{Var ∗}/agstagei ∈{Pop ∗}]

−−→
β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=forall

〈agi, α, β′,Pop ∗, Bi, F, Ti,TF i,WF i〉

concludes(W1...Wn) is a method which takes all the workframe instances W1...Wn

and extracts the concludes statements.

4.8 Pop * rules (Popstack)

Thoughtframes and workframes all have their own stack of instructions. These rules
presented demonstrate how the events are “popped” off these instruction stacks. The
events can be activites or concludes, so these rules show how Brahms treats these dif-
ferent instructions.

Pop Wfconc*. When a conclude action is found it is removed from the top of the
instruction stack. Concludes can update the beliefs, the facts or both. Three different
rules are used for concludes: one for updating beliefs; one for facts; and one for both.
Brahms additionally has probabilities that beliefs will be updated, these probabilities
have not been taken into account in these semantics. Pop Wfconc* is neccessary only
for workframes, there is no rule Pop Tfconc* thoughtframes since there are no activi-
ties to interupt execution.

RULE: Pop WfconcB

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

B′
i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−→

b∈Bi∧β=〈βd,conclude(b′)belief ;βins〉

A Formal Semantics for Brahms Technical Report 17

〈agi, α, β,Pop ∗, B′i, F, Ti,TF i,WF i〉

The “belief” superscript on the conclude is to show the conclude is for updating beliefs
only. The statement conclude(b′) represents a conclude statement a belief update b′ and
B′
i = (Bi/b) ∪ b′ represents removing the old belief where b and replacing it with the

new belief b′.

RULE: Pop WfconcF

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
F=(F/f)∪f ′−−−−−−−−−−−−−−−−−−−−−→

f∈F∧β=〈βd,conclude(f ′)fact ;βins〉

〈agi, α, β,Pop ∗, Bi, F ′, Ti,TF i,WF i〉

RULE: Pop WfconcBF

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
F ′=(F/b)∪b′∧B′

i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b∈Bi∧b∈F∧β=〈βd,conclude(b′)belief ∧fact ;βins〉

〈agi, α, β,Pop ∗, B′i, F ′, Ti,TF i,WF i〉

Pop concWf*. When agents have finished performing an activity they need to finalise
belief updates before they can flag themselves as finished for the cycle. This rule here
is for doing exactly this, if a conclude is the next event it will carry out the belief/fact
update. Here only ‘Pop concWfB’ is described, this shows how it is done with just
belief updates. Fact and belief/fact updates will be as previously shown.

RULE: Pop concWfB

〈agi, ∅, β,Pop concWf ∗, Bi, F, Ti,TF i,WF i〉

B′
i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−→

b∈Bi∧β=〈βd,conclude(b′)belief ;βins〉

〈agi, α, β,Pop concWf ∗, B′i, F, Ti,TF i,WF i〉

Pop notConc. This rule is for when the agent is finalising beliefs after an activity but
has not found a conclude event, the event could be an activity or simply empty.

RULE: Pop notConc

〈agi, α, β,Pop concWf ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
β=〈βd,(Prim Act∨Move∨Comms);βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

18 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

Pop PA*. When a primitive activity is started the agents send the duration of their
current activity to the scheduler. The scheduler receives all the activity times then de-
termines which activity time is the smallest and updates its own clock based on this
duration. When an agent’s time is different to the system clock’s it then changes ac-
cordingly and subtracts the time increment from the duration of its activity.

Pop PASend. This is the rule the agent’s use to send the duration of their next event to
the scheduler.

RULE: Pop PASend
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−→
Tξ=Ti∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Pop PA(t>0). This rule is invoked when the agent’s time is no longer the same as the
schedulers time. Additionally this rule checks whether the current activity’s duration
will be greater than zero after updating the times and durations.

RULE: Pop PA(t>0)
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

t′=(Tξ−Ti)∧Ti=Tξ∧Prim Actt=Prim Actt[t/t′]∧agi[ag
stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−→
Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop PA(t=0). This rule is for when the agent’s activity is due to finish at the end of the
next clock tick. This rule directs the agent to only executing conclude statements before
finishing for the cycle.

RULE: Pop PA(t=0)
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Ti=Tξ∧β=〈βd,βins−Prim Actt〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,Pop concWF∗, Bi, F, Ti,TF i,WF i〉

Pop move*. Move activities are very similar to primitive activities, except when the ac-
tivity terminates a belief update is performed to change the agents and the environments
beliefs of the agent’s current location. This belief update occurs when the agent notices
that the duration of the move has reached zero after the clock update. Pop moveSend.
This is the rule the agent’s use to send the duration of their next event to the scheduler.

RULE: Pop moveSend

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

A Formal Semantics for Brahms Technical Report 19

Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ=Ti∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. ‘Loc = new’ refers to the allocation of the location to the new location.

Pop move(t>0). Like for primitive activities, the move activity needs a rule for when
the activity still has time remaining after the clock tick.

RULE: Pop move(t>0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
t′=(Tξ−Ti)∧Ti=Tξ∧move(Loc=new)t=move(Loc=new)t[t/t′]∧agi[ag

stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−→
Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop move(t=0). Likewise, the move activity needs a rule for when the activity duration
ends.

RULE: Pop move(t=0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Ti=Tξ∧β=〈βd,βins−move(Loc=new)t〉∧B′

i=Bi[Loc=old/Loc=new]∧F ′=F [Loc=old/Loc=new]
−−−→

Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,Pop concWF∗, B′i, F ′, Ti,TF i,WF i〉

Note. ‘old’ refers to the previous location of the agent.

Pop comm*. Communication is very similar to a move activity, except the agent doesn’t
update its own beliefs or the environments beliefs but it updates another agents beliefs.
Pop commSend. Sends the scheduler the time of next event when processing a com-
munication.

RULE: Pop commSend

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−−−−→

Tξ=Ti∧β=〈βd,Comms(agj ,b′)t;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. Comms(agj , b′) represents a communication to agent j, sending the belief b′.

Pop comm(t>0). For when the communication has time remaining after the system
clock tick.

RULE: Pop comm(t>0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

20 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

t′=(Tξ−Ti)∧Ti=Tξ∧Comms(agj ,b
′)t=Comms(agj ,b

′)t[t/t′]∧agi[ag
stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−−→
Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,Comms(agj ,b′)t;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop comm(t=0). Rule for when the communication activity duration ends.

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Ti=Tξ∧β=〈βd,βins−Comms(agj ,b

′)t〉∧B′
j=Bj [b/b

′]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,Comms(agj ,b′)t;βins〉∧b∈Bj

〈agi, α, β,Pop concWF∗, Bi, F, Ti,TF i,WF i〉

Note. Belief exchange via communication is handed directly in Brahms, i.e. when an
agent communicates with another, it directly changes the other agent’s beliefs.

Pop emptyTf. Concludes do not use up any simulation time during execution, since
thoughtframes only contain concludes then an agent will keep executing thoughtframes
until it no longer has any to execute. This rule is for selecting a new thoughtframe when
the current one becomes empty.

RULE: Pop emptyTf

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

α∈{∅}∧agi[ag
stage
i ∈{Pop ∗}/agstagei ∈{Tf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α=〈αd,∅〉

〈agi, α, β,Tf ∗, Bi, F, Ti,TF i,WF i〉

Pop emptyWf. A workframe which only contains concludes will act like a thought-
frame. This rule is for such workframes so the agent can keep select another workframes
when the current one becomes empty.

RULE: Pop emptyWf

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
β∈{∅}∧agi[ag

stage
i ∈{Pop ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
β=〈β,∅〉

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉

