
Coalition Structure Generation for
Self-Interested Agents in a Dialogue

Game

Luke RILEY a,1, Katie ATKINSON a and Terry PAYNE a

a Department of Computer Science, University of Liverpool, UK.

Abstract. Since the seminal work of Dung, Argumentation Frameworks have been
shown to find solutions to n-person cooperative games. In multi-agent systems,
decentralised methods for multi-agent system coalition structure generation have
been proposed. This paper offers the first dialogue game that utilises argumenta-
tion frameworks to find a coalition structure and a payoff vector in a decentralised
manner. The payoff vector found is in the core set of stable solutions if the core
is non-empty. This dialogue game also puts restrictions on the payoff vectors that
can be proposed so that the most unfair ones are discarded. Lastly an algorithm is
described that allows the agents to find out if the core is empty.

Keywords. Dialogue games, argumentation, coalition structure generation, cooperative
game theory

1. Introduction

Coalition formation is the process of agents recognising that cooperation between other
agents can occur in a mutually beneficial manner and then choosing an appropiate set of
agents, named a coalition, to collaborate with to achieve some goal (or complete some
task).

Forming coalitions in multi-agent systems (MAS) has been shown to be an impor-
tant topic, for example [11] details it has proved useful in: e-commence (where coalitions
can take advantage of price discounts); e-business (where coalitions can form to satisfy
market niches); distributed sensor networks (where coalitions can form to track targets);
and distributed vehicle routing (where coalitions of delivery companies can form to re-
duce costs). The cost of finding the best coalitions that satisfy all agents can be high,
both computationally, and in terms of the necessary communication overhead due to the
exponential number of possible coalitions and the possible self-interested behaviour of
agents.

Coalition formation takes place in n-person cooperative games originally defined in
[18]. The payoff for a coalition is traditionally measured numerically in characteristic
function games where the value of a coalition is not influenced by the other coalitions
in the system [6,9,18]. In transferable utility n-person cooperative games (TU games), a
payoff vector x is then used to distribute the group’s payoff to the individual agents. A
coalition structure (CS) is a set of coalitions in a system and finding an optimal coali-

1Correspondence to: Department of Computer Science, University of Liverpool, L69 3BX, UK. Tel.: +44
(0)151 795 54271; E-mail: L.J.Riley@liverpool.ac.uk

tion structure (CS∗) that maximises social welfare is known as the coalition structure
generation (CSG) problem [11].

As a general overview, the coalition formation process for a n-person cooperative
game can be described as 3 stages [11]:

1. Coalition value calculations - This involves computing the expected payoff of
each possible coalition (usually each subset of n agents - an exponential amount).

2. Coalition structure generation - Agents are then organised into a coalition
structure (preferably an optimal one that maximises social welfare).

3. Determining the payoff distribution - If the n-person cooperative game is a
TU game then the payoff of each coalition in the coalition structure is divided
between the agents of the system in a stable manner (see Section 2.2).

In the MAS literature there are various decentralized algorithms proposed for benev-
olent agents to solve the first two stages of the coalition formation process (and so the
CSG problem) while constraining the worst case run time (see [6] for a review). The al-
gorithms distribute the coalition value calculations among the agents instead of perform-
ing all the computation in one place so that there is no system bottleneck. The agents
then communicate in some form to find a CS* (there could be multiple).

There has been less focus in MAS on decentralized protocols for CSG with self-
interested agents. The field of cooperative game theory (CGT) is used to find the possible
arising CSs when a system is full of self-interested agents, but many CGT solution con-
cepts make the assumption that the coalitions have already formed and offer no methods
to form them from a MAS perspective [16].

The use of dialogue games has been shown to be a valid method to constrain the
communications of self interested agents in self-interested environments [17]. Dialogue
games are based on the theory of speech acts [15] and are rule governed interactions
where each player moves by making utterances (in the form of locutions) according to
a defined set of rules but in a flexible manner [10]. In self-interested environments a
protocol is needed to set the rules as to what agents can or cannot do. In [17], dialogue
games are identified as a satisfactory method for describing to agents what is allowed
and forbidden in self-interested environments. Without a protocol, [17] argues that agent
communication in self-interested environments can become chaotic.

The dialogue game proposed in this paper, named the CSG dialogue game, allows
agents to build, in a decentralised manner, argumentation frameworks (AFs) [8] that have
previously been shown to enable CSG (e.g. [1]). The advantage of using AFs for CSG
is that the preferred extension of an AF always holds the best coalition structure for the
agents given the dialogue history (as the dialogue example in Section 3.6 demonstrates).
Argumentation schemes, which are patterns of reasoning that when instantiated provide
presumptive justification for the particular conclusion of the scheme [2], are also used
in the CSG dialogue game. The argumentation schemes allow the agents in the CSG
dialogue game to assert arguments for different coalitions and payoff vectors.

The main significance of this paper is to propose a dialogue game that finds a coali-
tion structure and a payoff vector in a static TU game (a TU game where the coalition’s
payoffs do not change). The result of this dialogue will be an optimal coalition structure
and a stable outcome for the participating dialogue agents when the core is non-empty
(given enough time and utterences). To find a stable solution of a static TU game that has
an empty core is outside the scope of this paper and left for future work.

The rest of the paper is structured as follows: Section 2 describes the relevent back-
ground of the CGT and argumentation fields. Section 3 details the CSG dialogue game
including the AF, the argumentation schemes, the restrictions placed on the CGT solu-
tion concepts, an algorithm to find when the core is empty and an example. Section 4
discusses related work and Section 5 discusses future work and concludes.

2. Background

2.1. Transferable Utility Games

An n-person cooperative game is: G = 〈N,v〉 where N is the set of agents and v is
the characteristic function (v(2N)→ R), which assigns every possible coalition a real
numeric payoff [18]. An outcome of a TU game is a CS and payoff vector pair, de-
noted: 〈CS,x〉 where CS is a set of coalitions, denoted {C1, ...,Ck},. Static TU games
are TU games where a coalition’s payoff does not change. In TU games an agent can
only be a member of one coalition, so a TU game coalition structure takes the form [6];
CS = {C1, ...,Ck} such that:

•
⋃k

j=1 C j = N and
• Ci∩C j = /0 for any i, j ∈ {1, ...,k}, i 6= j.
The first condition states that the union of all the coalitions in the TU game is equal

to the full set of agents in the game. The second condition states that coalitions should not
share any agent, otherwise this would be an overlapping coalition game [6]. The payoff
vector is then fully denoted [6]: x = (x1, ...xn) ∈ Rn where xi ≥ 0 for all i ∈ N and so xi
denotes the payoff that agent i receives. Throughout the paper x(C) is written to denote
the total payoff ∑i∈C xi of a coalition C⊆N under x and x〈C〉 is written to denote the part
of x that has individual payoffs only for agents of C.

2.2. Cooperative Game Theory Solution Concepts

The most popular solution concept to find stability in the CGT field is known as the core,
which corresponds to the set of feasible payoff vectors where no subset of agents of the
system have an incentive to deviate from the current coalition game outcome [6,9]. The
core for a set of agents N can be defined using the following [6,9]:

Definition 1: The core:- A payoff vector x = (x1, ...,xn) and a coalition Structure CS =
(C1, ...,Ck) is in the core iff:

• ∀C ⊆ N, x(C)≥ ν(C) and
• x(C j) = ν(C j) for any C j ∈CS
The first condition is the non-blocking condition; if this condition does not hold for

some group of agents, C, then they have a reason to deviate and divide the payoff of
ν(C) between themselves. The second condition is the feasibility condition; in the core
no side payments between coalitions are allowed, so all of the payoff of a coalition has
to be divided between its members.

Two problems with the core are that it can sometimes be empty and some core
outcomes can be classified as unfair [6,9], see the following example take from [19].

Example 1: Given a coalition game 〈N,v〉 where N = {1,2},
v({1})= v({2})= 5 and v({1,2})= 20, the proposed core outcome is 〈{{1,2}},x(15,5)〉.

This outcome is in the core since every agent is receiving at least as much as it would
get in every possible different coalition. The outcome can be seen as unfair because
even though both agents earn the same amount by themselves, when joined together as a
coalition, agent 1 gets all the additional payoff.

To tackle these issues a few stability concepts have been introduced that are never
empty and have different fairness properties, for example the kernel and nucleolus.

The kernel and nucleolus were introduced to define tighter stability restrictions than
the core. These restrictions use the idea of coalitional excess, which is the additional
amount each potential coalition C currently earns over or under v(C). Stability is then
measured by comparing the excesses. The kernel is the set of payoff vectors where the
maximum excess between the players are balanced and the nucleolus is the payoff vector
that have the lexicographically smallest excess.

The relation between the stability concepts mentioned so far are [14]:
1. nucleolus ⊆ kernel
2. nucleolus ⊆ core (if non-empty)

The protocol detailed in this paper will find a solution in the core (if the core is non-
empty) but this solution will sometimes overlap with the kernel and nucleolus depending
on the values of the coalitions in the TU game. Any solution the protocol finds in the core
will follow certain fairness principles (detailed in section 3.4.1) so that the most unfair
core payoffs are not found.

2.3. Argumentation Frameworks

In the CSG dialogue game, an agent can propose arguments for a coalition and a payoff
vector. To evaluate all the instantiated arguments in the CSG dialogue game to determine
their acceptability they will be organised into an Argumentation Framework (AF). AFs
are a means to represent and reason with different, possibly conflicting data. AFs use
graphs of nodes and arcs, where the nodes represent abstract arguments, having no inter-
nal structure, and the arcs represent attacks between the arguments [8]. An AF is defined
as:

Definition 2: An Argumentation Framework is a tuple AF = (Args, R) where Args is a
set of arguments and R is a binary attack relation R⊆ Args×Args.

In an AF, where Args = {a1, ...,an}, an attack a1Ra2 is said to defeat a2 if a1 has
not been defeated by another argument in the AF. A set of arguments S is acceptable iff
∀ax ∈ Args if ax attacks an argument ay where ay ∈ S there ∃az ∈ S where az defeats ax.
S is a preferred extension of the AF if S is the maximal acceptable set of arguments.

3. The CSG Dialogue Game

3.1. The CSG Dialogue Game Overview

The CSG dialogue game can be used by self-interested agents willing to partake in a
static TU game. A static coalition game is used as they are the traditional, oldest and
most-studied style of n-person cooperative games [6,9,18]. The locutions available to the
players of the game, inspired by [2], are join, assert reject, close and leave (outlined in
Table 1) and the pre/post conditions of the full set of dialogue moves are defined later
in the paper in Table 2. The CSG dialogue game is designed to be turn based, so that
an algorithm to check if the core is empty can be developed. This paper assumes that a

Table 1. The informal meaning of the moves

Move Format Meaning
join 〈i, join,an〉 Agent i wants to be included in the dialogue and is willing to form the best coali-

tion it can with any other agents in the dialogue. To join, the agent must assert its
individual payoff.

assert 〈i,assert,an〉 Agent i believes the coalition and payoff vector proposed in an will improve on i’s
current payoff.

re ject 〈i,re ject,an〉 Agent i believes another agent has misrepresented the value of the coalition in an
and believes this coalition currently cannot offer a fair payoff. Agent i can only
reject its current best coalition (or this is wasted communication).

close 〈i,close〉 An agent closes the dialogue if it does not believe it has any more moves available.
If every agent’s last move was a close move, without another move in-between, then
the dialogue is over.

leave 〈i, leave〉 As the agents are self-interested, agents may want to leave at any point. An agent
utters a leave move if it wants to quit. An agent may only utter a leave move if it has
joined the dialogue. Leaving is final and cannot be undone, to stop additional com-
putational overheads. All arguments that include i are removed from the dialogue.
Also all other arguments that use an argument that included agent i as evidence for
an improved payoff are also removed.

suitable enforcement mechanism, in the form of a reject argumentation scheme is used
to ensure the agent’s assertions are truthful.

In static TU games, a coalition’s value does not change during the coalition forma-
tion process. But an agent could attempt to assert an erroneous coalition value by de-
ceitfully highering it. A rational agent would not assert an erroneous lower value as this
could only negatively affect the agents final payoff. Deceitfully highering a coalition’s
payoff may help one agent but could hinder others as the CSG dialogue game may rec-
ommend that agents join the coalition with the misrepresented value. Truthful agents are
allowed to assert a coalition’s lower value. The lowest value asserted in the CSG dialogue
game for each coalition is taken as its true value (see the maxValue later). Agents may
use the reject locution if they disagree with a coalition’s payoff and determine that a fair
payoff vector cannot be found with the coalition’s correct payoff.

Some of the recent MAS literature provides various algorithms to split up the coali-
tion value calculations (e.g. the DCVC algorithm [11]), yet the only condition used to
split up the coalition value calculations in the CSG dialogue game is: i ∈C. This means
that any agent of a coalition can assert an argument for that coalition. This is not the
optimal method to compute coalitions structures as agents have to compute the value for
2n−1 coalitions instead of the optimal method which is where each agent computes the
value of a distinct subset of all the coalitions. But the condition i ∈ C is used as self-
interested agents cannot be trusted to assert coalitions when only others would benefit2.
So even though the outcome of this CSG dialogue consists of a CS and payoff vector
pair, individual agents will only be able to argue over the subsets of both that concern it.

CSG dialogue games will only be feasible for small sets of agents or coalition games
with restrictions such as: coalition games represented via a combinatorial structure (e.g.
induced sub-graphs [6]); constrainted coalition games [12]; or CSG dialogue games with
a predefined end time.

2Unless a sufficient enforcement mechanism is used, but this is outside the scope of this paper.

Before a dialogue commences the mechanism designer, as the overall controller of
the dialogue game, has to set the following variables, which ensure finite execution time.

• The timelimit for agents to join the dialogue, denoted t, where t ∈ N. This is the
duration any agent has to announce if it wants to be in the dialogue.

• The increment values, set using the inc function of Defn. 5. They are the amounts
proposed payoff vectors have to be raised by for the agents to consider the pro-
posal. The inc function returns a real number from the set R≥ 0.

• The dialogue end time, denoted et, where et ∈N can be used if there are any time
restrictions and the best CS found by that point will be returned. This is the only
variable that does not have to be set for every game.

Once the mechanism designer has set these variables a new dialogue game can com-
mence. The dialogue, based on [2], is denoted Ds

r where r is the timepoint of the first
move of the dialogue and s the timepoint of the last, where r,s ∈ N. The moves of the
dialogue can be referred to individually as mr, ...,ms. Individual moves are abstractly
defined as mn = 〈in,αn,an

m〉, where in is the agent who asserted the move mn, αn is the
name of the move mn and an

m is the argumentation scheme of the move mn. The following
functions act over an individual move:

• Utterer(mn) = in. This function will return the agent who uttered mn.
• Type(mn) = αn. This function will return mn’s name.
• Argue(mn) = an

m. This function will return the argument of the move mn. The
empty set will be returned if the move does not have an argument.

Every time an agent makes an utterence of move mn, the argumentation scheme re-
turned by Argue(mn) is stored in a publicly readable commitment store (CoSt)[2]: An
individual commitment store for a CSG dialogue (Ds

r), for every agent i∈N a commit-
ment store of agent i at time-point s is denoted CoSts

i . A combined commitment store
for a CSG dialogue (Ds

r) with participants N and time-point s is denoted CoSts
N where

CoSts
N =

⋃
∀i∈N CoSts

i . If s = 0 then CoSts
N = /0.

3.2. The Coalition Argumentation Schemes

Abstract arguments themselves are not always useful for representing instantiated ar-
guments, that is, arguments with some internal structure or content. To reason on the
best coalitions to form from a game theortic perspective, argumentation schemes are
used, instantiated and then placed in an argumentation framework. Instantiations of ar-
gumentation schemes attack other instantiations of argumentation schemes under pre-
defined conditions, which attack either the premises, inference rules or conclusions of
the scheme. In the CSG dialogue game, all attack rules focus on the conclusions of the
argumentation schemes (that is, whether to form the coalition or not). The two new ar-
gumentation schemes used in this paper are: C -Arguments and R-Arguments, which
make use of the concepts defined earlier, in Section 2.

A C -argument should be instantiated when an agent wants a coalition C to form. So
the conclusion of a C -argument is that C should form. It is informally described as:

C -Argument: Agent i asserts that coalition C should form, since given the current
payoff of the agents of C, denoted xs−1〈C〉, and the coalition payoff of vs(C), then the
payoff vector of xs〈C〉 should be implemented as xs〈C〉 offers an equal or better, fairer
payoff for all of C.

A R-argument should be instantiated when an agent i refuses to join a coalition C.
This can happen when i finds that the value given for a coalition C does not match the

value expected as reported by the characteristic function and the real value would not
allow a fairer payoff, as defined in section 3.4.1. So the conclusion of a R-argument is
that C should not form. This argumentation scheme is used to stop manipulations in the
CSG dialogue game and it is informally described as:

R-Argument: Agent i asserts that coalition C should not form, as the coalition’s
value, previously asserted as vs−1(C), is wrong and with the correct value vs(C) a fair
payoff cannot be found.

The attack rule for the instantiated argumentation schemes is: A newly asserted ar-
gument as about a coalition C, attacks any other argument ap previously asserted in the
dialogue, that shares a member of C. This attack is used so that agents can only be part
of one coalition.

The following functions operate over any an; Coal(an) returns the coalition C pro-
posed in an; Vect(an) returns the section of the new payoff vector xn〈C〉 proposed in an;
Val(an) returns the value vn(C) of the coalition proposed in an.

The above argumentation schemes are for the traditional static TU game. In the
future more information can be added to the schemes and the attack rules can be changed
to make the CSG dialogue game applicable to different types of coalition games.

3.3. Coalition Argumentation Framework

Now to find the outcome of the CSG dialogue game (〈CS,x〉), firstly the preferred exten-
sion (PE) of the AF is found. Then the agents systematically consider the internal struc-
ture of the abstract arguments in the PE by looking at the instantiated versions of these
abstract arguments. To find the outcome, firstly the preferred extension (PE) of the AF
is found. Then the CS is the collection of all the coalitions proposed by the instantiated
versions of the abstract arguments present in the PE that are C -arguments and x is the
conjunction of all the payoff vector subsets that are proposed by the same C -arguments.
Elements of the R-arguments in the PE are not in the outcome of the coalition game
since a R-argument conclusion is for the proposed coalition to not form. The following
functions are used to find the outcome of a coalition game, while only the PayVect and
CoalStruct functions directly find the coalition game outcome, all other functions are
used to help the agents work towards finding a core stable outcome if one exists:

• PE(CoSt) = Φ. Where Φ is the preferred extension of CoSt given the attack re-
lations taken from the instantiated argumentation schemes of the given CoSt fol-
lowed by the removal of all R-arguments.

• CoalStruct(CoSt) = λ . ∀an ∈ PE(CoSt), Coal(an) ∈ λ . This function returns the
set of all the coalitions in the instantiated argumentation schemes of the preferred
extension (minus the R-arguments) of the given CoSt.

• PayVect(CoSt) = x, where x = (xp, ...,xq). ∀an ∈ PE(CoSt),∀x′j ∈ Vect(an) then
x j = x′j. This function returns as one tuple the payoffs of all the individual agents
in the instantiated schemes of the preferred extension (minus the R-arguments)
of the given CoSt.

• CoalStructVal(CoSt) = ∑an∈PE(CoSt) Val(an) . This function finds the value of the
coalition structure of the given CoSt.

• FairPayDist(CoSt,an). This function restricts the most unfair payoffs from being
asserted. If a payoff that is deemed unfair is found in the given an then ⊥ is
returned, else > is returned. Further details in Section 3.4.1.

• maxVal(CoSt,an) = coalVal(ap) if ∃ap ∈ CoSt where Coal(ap) = Coal(an) and
¬∃aq ∈ CoSt where Coal(aq) = Coal(an) and CoalVal(aq) < CoalVal(ap) else
maxVal(CoSt,an) = coalVal(an) . This function returns the maximum value that
the coalition returned by Coal(an) can be in the dialogue, which is the small-
est value asserted in the dialogue so far. This is to stop agents manipulating the
dialogue by inflating a coalition’s worth.

• BestCoal(CoSt, i) =C. ∀C′ ∈ CoalStruct(CoSt), if i ∈C′ then C =C′. This func-
tion returns the best coalition for the given agent i.

• DiaAgs(Ds
r) = N. ∀mp ∈ Ds

r where Type(mp) == join then Utterer(mp) ∈ N iff
¬∃mq ∈ Ds

r where Type(mq) == leave and Utterer(mq) == Utterer(mp).
This function returns the agents currently in the dialogue. To get a complete view
of the agents in the system this function should only be called after the time limit
for the agents to join the dialogue has passed.

• DiaOpen(Ds
r) = ⊥ if either (et < currentTime) or ∀i ∈ DiaAgs(Ds

r), ∃mp ∈ Ds
r

where Type(mp) = close and p≥ s−|DiaAgs(Ds
r)| else DialogueOpen(Ds

r) =>.
This function returns whether the dialogue is open (>) or closed (⊥). For a dia-
logue to be closed either the time has run out or every agent has asserted a close
move without a different move inbetween.

In the CSG dialogue game only one PE can exist, so no attack cycles can be made.
This is according to the argumentation scheme attack rules, which state that no argument
can ever attack another argument asserted after it. This rule is in place as newer argu-
ments should have fairer payoff vectors and so will attack older arguments that have less
fair payoff vectors (according to the fairness rules defined in section 3.4.1). Therefore
computing the preferred extension of this CSG dialogue game takes time linear in the
number of arguments [8].

3.4. Formalising the Argumentation schemes

The formal definition of the two argumentation schemes (informally described in section
3.2) at timepoint s in dialogue Ds

r are:

Definition 3: A C -argument C = 〈i,C,xs−1〈C〉,vs(C),xs〈C〉〉 s.t: i ∈ C; C ⊆ N;
xs−1〈C〉 ∈PayVect(CoSts−1

N); MaxVal(CoSts−1
N ,C)≥ vn(C); and FairPayDist(CoSts−1

N ,C , i)=
>.

A C -argument can only be asserted if the FairPayDist function returns > else the
argument is invalid because an unfair payoff has been suggested.

Definition 4: A R-argument R = 〈i,C,xm〈C〉,vn(C),xn〈C〉〉 s.t: i ∈C; C ⊆ N; xm〈C〉 ∈
PayVect(CoSts−1

N); MaxVal(CoSts−1
N ,R)> vn(C); and FairPayDist(CoSts−1

N ,R, i)=⊥.
A R-argument can only be asserted if the FairPayDist function returns ⊥ else the

R-argument is invalid since there is no reason to object to the R-argument’s coalition, as
the payoff of the coalition of R can be distributed in a fair manner. If an agent disagrees
with a previously asserted coalition’s value but still thinks that a fair payoff can be found
with the new coalition’s value then the agent should use a C -argument, as the maxVal
function was created to deal with these issues.

Now the formalised attack rule (described in Section 3.2) for an argument as is: as

attacks every argument ap in CoSts−1
N if Coal(as)∩Coal(ap) 6= /0.

3.4.1. Ensuring Fair Payoff Distributions

The kernel and nucleolus offer payoff vectors that are more stable and so can be classi-
fied as fairer than the standard definition of the core, but this CSG dialogue game does
not focus on using these stability concepts for a few reasons relating to the communica-
tion and computation costs, which are important issues in coalition structure generation
protocols [6]. Firstly an algorithm for computing one side payment for a payoff vector
heading towards a kernel-stable payoff is in the best case: O(n2n) [16]. For the CSG dia-
logue game, even though it is true that the worst case complexity will still be exponential
(as there can be an exponential amount of coalitions to check), the best case is signifi-
cantly less. The CSG dialogue game finds core payoffs (with fairness constrictions) and
so unlike [16], agents in the CSG dialogue game do not have to look at all the potential
coalitions before computing one side payment for a new payoff vector. Instead in the best
case they only have to look at one coalition and see if a payoff vector can be found that
is fairer than the current payoff vector by satisfying Defn. 6 below.

The protocol for coalition structure generation provided by [16] also requires in the
best case that all the agents: communicate all of the coalition’s value to all of the other
agents; communicate their personal optimal CSs to other agents; take part in a voting
method to choose the final CS*; and all agents involved in the final CS* decision should
transmit the details of the calculations that led to the decision of the CS* to all other
agents. All of these combined requirements leads to high communication costs, even in
the best case. The CSG dialogue game’s communication requirements are significantly
smaller in the best case. For example, the CS requiring the least communication in a CSG
dialogue game is the CS of singleton coalitions (e.g. for a 3-person game, the coalition
structure of singletons would be: CS= {{1},{2},{3}}). For an n person game then 2n di-
alogue moves are required to form the CS of singletons (n join moves and n close moves)
but [16] would require significantly higher amounts of communication (e.g. for all agents
to communicate the entire exponential amount of coalition values to each other).

As the nucleolus is a subset of the kernel, the same problems in finding the kernel
that are highlighted above are present also for finding the nucleolus. In fact, to the authors
knowledge, there does not exist a decentralised method to find the nucleolus and an
optimal coalition structure at the same time.

During the dialogue, an agent i will only be able to deviate from the current CS by
asserting a new coalition C if i ∈C and all agents of C (including i) receive an incentive.
The actual additional incentive amount agents must receive above their current payoff to
defect to another coalition is set using Defn. 5, which ensures that the CS* is found when
no more moves are possible, as increasing the social welfare does not incur a cost.
Definition 5: inc(CoSt,an, i) = 0 iff

CoalStructVal(CoSt ∪{an})> CoalStructVal(CoSt) or
CoalStructVal(CoSt ∪{an}) == CoalStructVal(CoSt) and
|Coal(an)|> |BestCoal(CoSt, i)|

else inc(CoSt,an, i)> 0
In the CSG dialogue game if an agent wants to assert a new argument an, then an

needs to pass the following test (defined in Defn. 6), which checks if an results in the
payoff vector converging towards core stability. The first bullet point of Defn. 6 ensures
individual rationality and that the new payoff for all agents of C is greater than or equal
to their previous payoff. The second bullet point ensures that no utility is lost out of the
game. The third bullet point negates the unfair payoff criticism of the core by ensuring

all agents get either an equal split of the coalition’s payoff or each agent j that can get
a greater payoff elsewhere is given at least that payoff in this coalition. The additional
pay to agent j (above the equal split of the coalition’s payoff) is taken equally from the
remaining agents (unless this would motivate others to deviate).
Definition 6: The fairPayDist(CoSt,an, i) function, where C = Coal(an), CS = Coal-
Struct (CoSt ∪ {an}), x = PayVect(CoSt ∪ {an}) and x′ = PayVect(CoSt), returns ⊥
unless the following are satisfied, if so the function returns >:

• ∀ j ∈C, x j ≥ ν({ j}) and x j ≥ x′j + inc(CoSt,an, i)
• ∑ j∈C x j = Val(an)
• double split← split’← 0

C′′←C′←C
while C′′ 6= /0 do

boolean equal← true

split← split ′

|C′′|
for all j ∈C′′ where x′j + inc(CoSt,an, i)≥

v(C)

|C|
− split do

x j← x′j + inc(CoSt,an, i)

split’← split’ −v(C)

|C|
+ x j

C′←C′\{ j}
equal← false

if equal == true then
for all k ∈C′′ do

xk←
v(C)

|C|
- split

C′←C′\{k}
C′′←C′

3.5. Checking if the core is empty

This dialogue game can only find solutions to a coalition game if the core is not empty
and so a valid question is: how do the agents know if the core is empty? To find the
answer to the question the agents should communicate in stages: Firstly they should
join the dialogue; secondly they should compute the coalition’s values; and thirdly each
agent i should assert either a C -argument where the inc function returns 0 (if one can be
found, as this coalition will improve social welfare) or assert a C -argument where the
inc function returns > 0 (as this coalition will improve the payoff for agent i but not the
social welfare), else the agent should assert a close move.

As communication happens in these stages and agents assert social welfare improv-
ing arguments first, the core can be checked to be non-empty under a certain condition:
for all arguments asserted in the dialogue for the same coalition C and with the same
value for v(C), if there does not exist an agent in these arguments that has a strictly in-
creasing or decreasing payoff over time, then the core is empty. The reasons for this are
the following:

1. If a coalition C is in the outcome of a CSG dialogue and a payoff has been found
in the core then for all arguments in the dialogue for C that share the coalitions

final v(C) value then these arguments will include at least one agent who has a
strictly increasing/decreasing payoff.

2. If the core is non-empty then the dialogue is finite.
3. If the core is empty then the dialogue is infinite, therefore certain conditions will

be met.

Discussion for point 1: If agent 1 was the first agent to assert coalition C with the
payoff x〈C〉where C = {1, i, ..., j} then agents i, ..., j will have an opportunity to object to
this payoff by asserting an C -argument, which will be called an core-objection to C. An
agent i will object to coalition C if agent i can get a higher payoff from another coalition.
So a core-objection means that the first condition of the core (∀C ⊆ N, x(C)≥ v(C)) did
not hold for the initial C and x〈C〉 proposed by agent 1.

Every objection counts as a new proposal, so if agent i objected to agents 1’s pro-
posal by asserting C′ = {i, p, ...,q} and x′〈C′〉 then all agents p, ...,q now have a turn to
object to this outcome. If coalition C can incorporate this objection then it will be even-
tually reasserted by an agent with the payoff vector x′′〈C〉 and this time; ∀ j ∈C′∩C then
x′′j 〈C〉 ≥ x′j〈C′〉.

As each agent j always objects to a coalition by asserting a coalition that offers j the
best payoff, given the conditions previously mentioned, then the agents that object the
most, continue to raise their payoffs given the dialogue history and the agents that object
the least continue to lose payoff given their dialogue history. If there exists a coalition
where all the agents object to the payoff then this coalition cannot form as all the agents
can get more payoff elsewhere. So there must always be at least one agent in every
coalition in a core stable coalition game outcome that never objects to the coalitions
payoff and so these agents will always lose payoff after every objection. As these agents
always lose some payoff after every objection then there exists at least one agent i in
every coalition C in a core stable game outcome with a strictly decreasing payoff in the
arguments for C where v(C) is equal to the final value of C (so there has been no deceitful
values in these arguments).

As regards point number 2, as the objections increase the strongest agents payoffs,
eventually a time will be reached when (∀C ⊆ N, x(C) ≥ v(C)) is satisfied as the value
of all coalitions are finite and static. When this time is reached, then no more core-
objections can be formed as a core payoff has already been found. The second condition
of the core (x(C) = v(C)) is also satisfied for every dialogue assertion according to bullet
point 2 of Defn. 6.

Regarding point number 3, when the core is empty then there will always exist an
agent that can object to the current payoff as (∀C ⊆ N, x(C) ≥ v(C)) is never satisfied
and so CSG dialogue games with an empty core become infinite unless stopped. As the
dialogues become infinite, yet the payoffs of the coalitions are finite and the permutations
of the payoff vectors are also finite if the inc function is set correctly, then an infinite
dialogue can be identified when either a previous payoff vector is repeated or a series
of payoff vectors that were converging in one direction, stop, then start converging to
another direction (this happens when the potential core payoff vector set is non-existent).

So to identify when the core is non-empty, the agents should run in algorithm 1,
which is a summary of the issues just discussed.

Algorithm 1. Algorithm to play the CSG dialogue game to find out if the core is empty

1. In the first stage, agents join the dialogue and assert their individual payoff.
2. In the second stage agents compute all their assigned coalition values.
3. In the third stage, agents may assert a previously unasserted coalition or assert a

coalition that has previously been asserted but change its payoff vector. If an agent i is
asserting a coalition, agent i should first check that no other coalition in the TU game
exists that can offer a higher, fairer individual payoff for i given the history of dialogue
utterances (if two coalitions C j and Ck can be asserted and both can offer agent i the
same payoff, than Ck should be choosen if |Ck| > |C j|, if both coalition’s have the
same amount of agents then the choice can be random). A data structure maybe used
here to order the coalitions, so that all coalitions do not have to be searched. Reject
moves can also be performed.

4. Once a payoff vector of a coalition C has been changed via asserting the argument as,
the agents should check:
• ∀an ∈ CoSt then an ∈ γ if C = Coal(as), Val(an) = Val(as) and γ = acceptable.

This gathers all arguments for C that do not have a known deceitful value in.
• If ∀i ∈ C, where ∀ap,aq ∈ γ either xp

i > xq
i or xp

i < xq
i does not hold when xp ∈

Vect(ap), xq ∈ Vect(aq) and p < q then the core is empty.
If the core is empty then the game can be abandoned or a compromise can be agreed
on, such as: the current CS can be taken.

5. In the fifth stage each agent should check if any additional utterences have been made
since its last move. If yes than the agent should repeat the algorithm from stage 3 else
the agent should utter a close move.

3.6. A Dialogue Example

Now that the formalism has been established, the dialogue pre and post conditions can
be introduced in Table 2.

A full example can now be developed in Table 3 and Figure 1. As can be seen in
Table 3, communication happens in stages: firstly the agents join the dialogue and assert
their individual payoff; secondly the agents assert new coalitions or modify previously
asserted coalitions’ payoff vectors to gain fairer payoffs; finally when each agent can find
no other variables that satisfy the argumentation scheme restrictions they utter a close
move.

The AF generated from the example in Table 3 can be seen in Figure 1 where the
argument number corresponds to the move number. Finding the outcome (〈CS,x〉) of the
CSG dialogue after move n requires computing the preferred extension of the AF of Fig-
ure 1 for the arguments: A1 to An. The preferred extension, after the CSG dialogue game
of Table 2 has completed, is: {A1,A8}. When looking at the instantiated argumentation
schemes of A1 and A8 we can see that the CS = {{1},{2,3}} and the payoff vector
is x(4,11,13). As all agents only uttered a close move when no more moves could be
asserted, we find that this CS is the optimal CS of the game and x is inside the core.

4. Related Work

So far in the argumentation and dialogue literature, a few attempts have been made to
detail coalition formation techniques such as [1,8,3,4,5]. Yet the majority of the argu-
mentation based coalition formation papers refer to the idea of stability but do not further

Table 2. The formal definitions of the moves available to the agents in the Dialogue Ds
r . All moves are de-

scribed in Table 1 of section 3.2

Move Format Pre-conditions Post-conditions
join 〈i, join,an〉 (DiaOpen(Ds

r) = >)
∧ (an = C) ∧
(currentTime < t) ∧
(i /∈ DiaAgs(Ds

r)) ∧
(Coal(an) == {i}) ∧
(¬∃mp ∈ Ds

r where
Type(mp) == leave and
Utterer(mp) == i)

The instantiated argumentation scheme, an, of the join
move is added to the commitment store: CoSts

i =

CoSts−1
i ∪ an.

assert 〈i,assert,an〉 (DiaOpen(Ds
r) = >) ∧

(an = C) ∧ Coal(an) /∈
CoalStruct(CoSts−1

n)

The instantiated argumentation scheme, an, of the as-
sert move is added to the commitment store: CoSts

i =

CoSts−1
i ∪ an.

re ject 〈i,re ject,an〉 (DiaOpen(Ds
r) = >) ∧

(an = R) ∧ (i ∈ Coal(an))
∧ (bestCoal(i,CoSt) ==
Coal(an)) ∧
(CoalVal(an) ≤
MaxVal(CoSts,an))

The instantiated argumentation scheme, an, of the re-
ject move is added to the commitment store, then
all the arguments in the commitment store that have
the same coalition as an are removed as they have
an invalid coalition value: CoSts

i = CoSts−1
i ∪ an. If

an == R then ∀am ∈CoSts−1
n , am ∈ γ iff anRam and

Coal(an) == Coal(am). CoSts
n =CoSts−1

n \ γ .

close 〈i,close〉 (DiaOpen(Ds
r)=>)∧ (i∈

DiaAgs(Ds
r))

If DialogueOpen(Ds
r)==⊥ then the dialogue has fin-

ished and the outcome of the CSG dialogue game is
〈CoalStruct(CoSts

N), PayVect (CoSts
N)〉

leave 〈i, leave〉 (DiaOpen(Ds
r)=>)∧ (i∈

DiaAgs(Ds
r))

As agents are self interested, they can leave when-
ever they want. To allow for this, once a leave move
is uttered by agent i, then the committment store
must update and remove all coalitions from which
agent i was a member. Also if an utterance of a
coalition with agent i has changed the payoff of
another coalition, then the other coalition needs to
be removed also, for fairness issues: ∀ap ∈ CoSts−1

n
where i ∈ Coal(ap) then ap ∈ γ and ∀aq ∈ CoSts−1

n
where aqRap, Coal(aq)∩Coal(ap) 6= /0 and ∃x j,xk ∈
Vect(aq) where x j 6= xk then aq ∈ γ . CoSts

n =CoSts−1
n

\ γ .

clarify exactly what cooperative game theory solution concepts they are using and so
are ambiguous on exactly what type of coalition game their frameworks can be used for.
An interesting exception to this is [8], where Dung used n-person games to demonstrate
the correctness of his argumentation frameworks. He showed that argumentation frame-
works can be used to represent von Neumann-Morgenstein and core stable games. But
Dung did not investigate how these solutions can be collaboratively built by multi-agent
systems in a decentralised manner. This issue is investigated here.

Amgoud [1] again showed that argumentation frameworks could be used to solve the
coalition structure generation problem and detailed different argumentation semantics so
that a solution can always be found. But these semantics and formalism do not show
a complete link to cooperative game theory, as [1] leaves out the details of the payoff
vectors. Also [1] does not offered a n-person dialogue game to find an optimal coalition
structure (CS*), but does detail a two person dialogue game to find if one coalition is in
the CS*. Again all of these issues are dealt with in this paper.

Table 3. This table details a CSG dialogue for a G = 〈N,v〉where N = {1,2,3}, v({1})= v({2})= 4, v({3})=
5, v({1,2}) = 8, v({1,3}) = 18, v({2,3}) = 24, v({1,2,3}) = 12. A move at timepoint s is of the following
form: the agent’s identifier; the move type; and (if not a close move) an argumentation scheme instantiation i.e
a C -argument of the form 〈i,C,xs−1〈C〉,vs(C),xs〈C〉〉. The attack rule is apRaq iff Coal(ap) ∩ Coal(aq) 6= /0
and argument ap is asserted after aq. For the dialogue to finish, n close moves need to be asserted consecutively.

Move No. Move CS x
1 〈1, join,〈1,{1},(−),4,(4)〉〉 {{1}} x(4)
2 〈2, join,〈2,{2},(−),4,(−,4)〉〉 {{1},{2}} x(4,4)
3 〈3, join,〈3,{3},(−,−),5,(−,−,5)〉〉 {{1},{2},{3}} x(4,4,5)
4 〈1,assert,〈1,{1,3},(4,−,5),18,(9,−,9)〉〉 {{2},{1,3}} x(9,4,9)
5 〈2,assert,〈2,{2,3},(−,4,9),24,(−,12,12)〉〉 {{1},{2,3}} x(4,12,12)
6 〈3,assert,〈3,{1,3},(4,−,12),18,(5,−,13)〉〉 {{2},{1,3}} x(5,4,13)
7 〈1,close〉 {{2},{1,3}} x(5,4,13)
8 〈2,assert,〈2,{2,3},(−,4,13),24,(−,11,13)〉〉 {{1},{2,3}} x(4,11,13)
9 〈3,close〉 {{1},{2,3}} x(4,11,13)
10 〈1,close〉 {{1},{2,3}} x(4,11,13)
11 〈2,close〉 {{1},{2,3}} x(4,11,13)

Figure 1. The AF generated via the CSG dialogue of Table 3

The idea of using dialogue games for coalition formation can be traced back to [7].
In [7] a dialogue game for agents to form a coalition is detailed but [7] does not show
how a CS can be generated, which can be found with the CSG dialogue game.

Lastly, distributed coalition structure generation methods in multi-agent systems for
benevolent agents have received a lot of recent attention [6]. Distributed coalition struc-
ture generation methods for self-interested agents have received significantly less atten-
tion. The main exception is [16] which looks for kernal stable coalitions; some of the
differences of this paper are detailed in Section 3.4. More differences include; deceitful
values should be detected earlier in the CSG dialogue game; and the whole protocol will
not have to restart if a deceitful/erroneous coalition value is found.

5. Conclusion and Future Work

In this paper, an argumentation-based dialogue to find coalition structures has been pro-
posed. The novel contribution of this paper is therefore: an n-person dialogue game that
can find game theoretic stable coalition structures with explicit individual payoff for each
agent if the core is non-empty; and a coalition structure that maximises social welfare
can be found given certain conditions detailed in the paper. Additionally the paper dis-
cusses the restrictions placed on the core so that the most unfair core payoffs can never

be suggested and an algorithm is detailed that shows how the agents can find out if the
core is empty. Lastly the CSG dialogue offers the MAS community another way to solve
the CSG problem for self-interested agents in TU games with computation and commu-
nication costs that are less than [16] in the best case. This paper outlines the framework
that will be built on by future research to be applicable to different types of coalition
games.

In the future I will aim to implement the ε-core solution concept so that a game
theoretic stable solution can be found in every static TU game.

Lastly creating an enforcement mechanism for the agents so that the search space of
coalitions values can be more efficiently divided between them would lead to minimis-
ing the computation time of finding the CS* and a stable payoff. This problem of min-
imising the computation time has stimulated lots of research with benevolent agents (e.g.
[11]) yet so far little research has been conducted on efficiently computing self-interested
agents’ optimal coalition structures.

References

[1] L. Amgoud. An argumentation-based model for reasoning about coalition structures. The second Inter-
national Workshop on Argumentation in Multi-Agent Systems, ArgMAS’2005, pages 217–228, 2005.

[2] E. Black and K. Atkinson. Dialogues that account for different perspectives in collaborative argumenta-
tion. In Proc. of the 8th Conf. on Autonomous Agents and Multi-Agent Systems, pages 867–874, 2009.

[3] G. Boella, D. Gabbay, A. Perotti, and S. Villata. Coalition formation via negotiation in multiagent
systems with voluntary attacks. In Proceeding of the 22nd Benelux Conference on Artificial Intelligence
(BNAIC), 2010.

[4] N. Bulling and J. Dix. Modelling and verifying coalitions using argumentation and atl. Inteligencia
Artificial, pages 45–73, 2010.

[5] C. Cayrol and M. Lagasquie-Schiex. Coalitions of arguments: A tool for handling bipolar argumentation
frameworks. Intelligent Systems, pages 83–109, 2010.

[6] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of Cooperative Game Theory.
Morgan & Claypool Publishers, 2011.

[7] F. Dignum, B. Dunin-Keplicz, and R. Verbrugge. Agent theory for team formation by dialogue. In Proc.
of the 7th Int. Workshop on Agent Theories, Architectures and Languages, pages 141 –156, 2000.

[8] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

[9] D. Gillies. Some theorems on n-person games. PhD thesis, Princeton University, 1953.
[10] P. McBurney and S. Parsons. Dialogue games for agent argumentation. Argumentation in Artificial

Intelligence, pages 261–280, 2009.
[11] T. Rahwan. Algorithms for Coalition Formation in Multi-Agent Systems. PhD thesis, University of

Southampton, 2007.
[12] T. Rahwan, T. Michalak, E. Elkind, P. Faliszewski, J. Sroka, M. Wooldridge, and N. Jennings. Con-

strained coalition formation. In The Twenty Fifth Conference on Artificial Intelligence (AAAI), 2011.
[13] L. Riley, K. Atkinson, and T. Payne. Coalition structure generation for self interested agents in a dialogue

game. Technical Report ULCS-12-004, University of Liverpool, 2012.
[14] T. Rombouts. Solutions Of Argumentation In Cooperative Game Theory. PhD thesis, University of

Utrecht, 2004.
[15] J. Searle and D. Vanderveken. Foundations of Illocutionary Logic. Cambridge University Press, 1985.
[16] O. Shehory and S. Kraus. Feasible formation of stable coalitions among autonomous agents in non-

super-additive environments. Computational Intelligence, 15(3):218–251, 1999.
[17] C. Sierra, J. A. Rodriguez-Aguilar, P. Noriega, M. Esteva, and J. L. Arcos. Engineering multi-agent

systems as electronic institutions. European Journal for the Informatics Professional, 5:33 –39, 2004.
[18] J. von Neumann and O. Morgenstern. The Theory of Games and Economic Behavior. Princeton Uni-

versity Press, 1944.
[19] M. Wooldridge. An Introduction to MultiAgent Systems Second Edition. John Wiley & Sons, 2009.

