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Abstract

The paper argues for the equipment of argument games with richer game-theoretic features.
Concretely, it tackles the question of what happens to argument games when proponent and
opponent are uncertain about the attack graph upon which they are playing. This simple
sort of uncertainty, we argue, caters for the modeling of several strategic phenomena of
real-life arguments. Using the argument game for the grounded semantics as a case study,
the paper studies the impact of uncertainty over the ability of argument games to deliver
adequacy with respect to their corresponding semantics.

1 Introduction

Abstract argumentation theory à la Dung offers a good level of abstraction from
which to study the idea of “justifiability” of arguments, intended as abidance to a
given standard of proof. Much research since [9] has been devoted to defining and
studying such standards of proof—the so-called extensions—in terms of structural
properties of attack graphs (see [19, 4, 2] for comprehensive overviews). Some
research has then focused on operationalizations of those definitions via two-player
games (see [19, 15] for extensive overviews).

The game-theoretic aspect of argumentation is evident in real-life argument,
where strategizing is a vital component of the activities of disputing and debating.
However, the sort of games studied thus far in argumentation are unable to capture
many of the epistemic and strategic issues that seem to permeate real debates.

The present paper is part of a research program which, in the intention of the
authors, should bring the theory of argument games to incorporate some of the rich
mathematical toolbox of modern game theory. Specifically, the paper sets out to
extend the standard theory of argument games to incorporate issues of uncertainty
regarding the underlying attack graphs upone which the games are played. Many
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real-life arguments seem to have this feature, e.g.: two politicians debating in front
of a heterogeneous audience consisting of groups of listeners evaluating the debate
with respect to different attack graphs; or a plaintiff and a defence lawyer arguing
in front of a judge whose interpretation of the available evidence is uncertain

Related work In recent years, techniques from theoretical economics have al-
ready found their way to abstract argumentation. However, interestingly enough,
there has been a clear bias in favor of techniques coming from the field of social
choice theory and mechanism design concerning, broadly speaking, the ‘aggrega-
tion’ of argumentation frameworks [6, 22, 20, 5].

Despite the game-like nature of real-life argumentation, applications of tech-
niques coming from game theory proper have been much rarer. The abovemen-
tioned literature on the operationalization of Dung’s semantics via games is in this
sense the richest. Its focus are two-player games—called argument games—where
the proponent of the game is assured to win the game if and only if the argument
she claims at the beginning of the game satisfies a given standard of proof. This
property is called adequacy and constitutes also the focus of the present paper. Con-
cretely, we will be aiming at generalizing the notion of adequacy to cover games in
which proponent and opponent may be uncertain about the graph upon which they
are playing the argument game.

Besides the abovementioned literature, we are only aware of [14], which stud-
ies a strategic zero-sum game with randomization, using it to obtain quantitative
refinements of some of Dung’s semantics. Recently, a few game theorists have
also taken up the challenge of modeling some features of real-life debates (e.g.,
[11]) but those contributions are framed at an even higher level of abstraction than
the one enabled by Dung’s framework. Neither [14] nor [11] are interested in the
question of adequacy of a game with respect to a given semantics.

Structure of the paper We will start by introducing just as much of abstract
argumentation that will be needed in the paper, and in particular the notion of
grounded extension. We then proceed by discussing in detail a game for the
grounded extension and proving its adequacy. That game is the main building
block of the present paper. We then introduce an original notion of uncertainty for
abstract argumentation consisting of a probability distribution over a set of attack
graphs. This notion of uncertainty is then studied providing a probabilistic version
of the grounded extension and two argument games modeling how proponent and
opponent can cope with that type of uncertainty. Issues of adequacy concerning
these games are then discussed, and a brief discussion section concludes the paper.
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2 Abstract argumentation

2.1 Attack graphs

We start by introducing the notion of argumentation framework, due to [9], which
we call here attack graph:

Definition 1 (Attack graphs). An attack graph is a tuple A = 〈A,�〉 where:

• A is a finite non-empty set—the set of arguments;

• �⊆ A2 is a binary relation—the attack relation.

The set of all attack graphs on a given set A is denoted A(A). The set of all attack
graphs is denoted A. With a � b we indicate that a attacks b, and with X � a we
indicate that ∃b ∈ X s.t. b � a. Similarly for a � X . Given an argument a, we
denote by JaKA the set of arguments attacking a: {b ∈ A | b � a}.

These relational structures are the building blocks of abstract argumentation
theory. The set A represents a set of further unanalyzed arguments or pieces of
evidence.1 Relation �, called the ‘attack’ relation, encodes the way arguments
attack one another. So, an attack graph is best viewed as a high-level representation
of the conflicts inherent within the information put forth by a set of arguments
or, also, as the atemporal representation of a debate where all evidence has been
revealed.

2.2 Solving attack graphs

By ‘solving’ an attack graph we mean selecting a subset of arguments that en-
joy some characteristic structural property. The idea behind Dung’s semantics for
argumentation is precisely that some structural properties of attack graphs can cap-
ture intuitive notions of justifiability of arguments or, if you wish, of standard of
proof—what in argumentation are usually called extensions. The study of struc-
tural properties of attack graphs provides therefore very general insights on how
competing arguments interact and how collections of them form ‘tenable’ or ‘jus-
tifiable’ argumentative positions.

2.2.1 The grounded extension

While many different structural standards of proof have been defined and studied
since [9], in this paper we focus on just one of them, the so-called grounded exten-
sion. This choice is dictated by properties of the grounded extension—namely its
uniqueness—that make it a particularly elegant concept, as well as by the fact that
the game corresponding to the grounded extension—to which we will turn in the

1 Bearing the abstract nature of attack graphs in mind, we will often feel free to interpret the
elements ofA both as arguments or evidences, although we will consistently use the term ‘argument’
throughout the paper.
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a b c a b

Fig. 1: Two simple examples of attack graphs.

next section—has been the first argument game studied in the literature [8] and is,
arguably, the one that is best understood.

The grounded extension is defined via this function:

Definition 2 (Characteristic function). Let A = 〈A,�〉 be an attack graph. The
characteristic function dA : ℘(A) −→ ℘(A) for A is so defined:

dA(X) = {a ∈ A | ∀b ∈ A : IF b � a THEN X � b}

For 0 ≤ k < ω we denote by dkA(X) the kth iteration of function dA on set X .

The function outputs, for each set of arguments, the set of arguments defended
by X . A set of argument X such that X ⊆ dA(X) is therefore able to defend
itself from external attacks. Intuitively, function d encodes how much each set of
arguments is able to defend in a given graph.

Definition 3 (The grounded extension). Let A = 〈A,�〉 be an attack graph. The
grounded extension of A is the least fixpoint of dA, in symbols: lfp(dA).

In other words, an argument is grounded if and only if it belongs to the smallest
fixpoint of the defence function. So, intuitively, it represents the smallest set of
arguments that support themselves. As such, it can be viewed as a very demanding
standard of proof. It is finally worth recalling that as a direct consequence of the
Knaster-Tarski theorem2 and the fact that the characteristic function can be easily
shown to be monotonic, the least fixpoint of the characteristic function exists for
any attack graph and equals the intersection of all pre-fixpoints of the defence
function, i.e.,

⋂
{X ⊆ A | dA(X) ⊆ X}.

Example 1. In Figure 1 we have:

• In the graph on the left: d(∅) = {c}, d({c}) = d2(∅) = {a, c} and
d({a, c}) = d3(∅) = {a, c}, which is the grounded extension.

• In the graph on the right: d(∅) = ∅, which is the grounded extension.

2 See [7].
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3 Argument games

While the study of different formal definitions of extensions constitutes the main
body of abstract argumentation theory, many researchers in the last two decades
have focused on ‘proof procedures’ for argumentation, i.e., procedures able to ad-
equately establish whether a given argument belongs or not to a given extension.
Many of such proof procedures have resorted to abstractions coming from game
theory and have given rise to a number of different types of games, called dialogue
or argument games.3

The sort of results that drive this literature are called adequacy theorems and
have, roughly, the following form: argument a has property S (e.g., belongs to
the grounded extension) if and only if the proponent has a winning strategy in the
dialogue game for property S (e.g., the dialogue game for the grounded extension)
starting with argument a.

3.1 An argument game for the grounded extension

This section introduces an argument game for the grounded extension (game for
grounded in short), which will be the starting point of the investigations presented
here. Although quite some literature on variants of this game already exists, we
feel the need to furnish this introductory section with a fair amount of detail.

We do this for several reasons: first, different variants of the game have been
proposed (e.g., in [19, 15]); second, the presentations of the game in the literature
are not always in line with formats of presentation typically followed in game the-
ory, which is a drawback for the purpose of the present paper, specifically aiming
at a closer link with game theory; third, the only published4 proof of adequacy of
a game for grounded we are aware of, namely the one given in [15], adopts an
unusual—with respect to adequacy proofs for games in, e.g., logic or theoretical
computer science—format where winning strategies are subjected to extra con-
ditions5. The proof we will give is of the standard form mentioned above, i.e.,
“argument a belongs to the grounded extension if and only if the proponent has a
winning strategy in the game for the grounded extension started at a”. Casting ad-
equacy in this format is an essential stepping stone for the game-theoretic study of
these games we pursue in the rest of the paper and its probabilistic generalization
(Theorem 2).

3 The contributions that started this line of research are the unpublished technical report [8] and
[13, 23]. Cf. [15] for a recent overview.

4 According to [19], a proof was given in the unpublished technical report [8].
5 Roughly, the format adopted there reads: “a belongs to the grounded extension if and only if the

proponent has a winning strategy such that the set of proponent’s arguments in the winning strategy
is conflict free”.
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Dialogues P wins O wins

`(a) < ω t(s) = O t(s) = P
`(a) = ω never always

Tab. 1: Winning conditions for the game for grounded given a terminal dialogue
a.

3.1.1 Notation

We will need the following notation. Let a ∈ A<ω ∪ Aω be a finite or infinite
sequence of arguments in A, which we will call a dialogue. To denote the nth

element of a, for 1 ≤ n < ω, of a dialogue a we write an, and to denote the
dialogue consisting of the first n elements of a we write a|n. The last argument of
a finite dialogue a is denoted h(a). Finally, the length `(a) of a is n if a|n = a,
and ω otherwise.

3.1.2 The game

We start with the formal definition, but the reader might wish to combine this with
the informal reading coming next.

Definition 4 (Argument game for grounded). The argument game for grounded is a
functionD(.) which for each attack graphA yields structureD(A) = 〈N,A, t, m, p〉
where:

• N := {P,O}—the set of players consists of proponent P and opponent O.

• A is the set of arguments in A.

• t : A<ω −→ N is the turn function. It is a (partial6) function assigning one
player to each finite dialogue in such a way that, for any 0 ≤ m < ω
and a ∈ A<ω, if `(a) = 2m then t(a) = P , and if `(a) = 2m + 1
then t(a) = O. I.e., even positions are assigned to the proponent and odd
positions to the opponent.

• m : A<ω −→ A is a (partial) function defined as:

m(a) = Jh(a)KA

I.e., the accessible moves at a are the arguments attacking the last argument
of a. The set of all dialogues compatible with m—the legal dialogues of
the game—is denoted D. Dialogues a for which m(a) = ∅ or such that
`(a) = ω are called terminal, and the set of all terminal dialogues of the
game is denoted T .

6 The function is partial because only sequences compatible with the move function m need to be
considered.
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• p : T −→ N is the payoff function in Table 1 associating a player—the
winner—to each terminal dialogue.

Dialogue games are played starting from a given argument a. When a is explicitly
given we talk about an instantiated dialogue game (notation, D(A)@a).

Here is an informal description of the game. The two players play the game by
alternating each other (opponent starts) and navigating the attack graph along the
‘being attacked’ relation, both having the same move function. The winning con-
ditions state that the proponent wins whenever she manages to state an argument
to which the opponent cannot reply, i.e., an argument with no attackers. Then, in
accordance with the saying ‘he who laughs last laughs best’, she wins. However,
notice that the winning conditions are somewhat asymmetric as the proponent not
only loses when she is stuck with no counter-arguments, but also when the game
loops in an infinite dispute.7

Remark 1 (Argument games & game theory). From the point of view of game
theory,8 the games in Definition 4 can be classified as two-player zero-sum (the
range of payofss being {1, 0}) extensive games with perfect information and with
fully aware players. In argumentation-theoretic terms, this means that those games
model arguments with the following properties: two arguers exchange arguments;
of the two arguers one wins the debate, while the other loses; both arguers always
know what the current argument is, i.e., intuitively, they always know what position
they occupy in the game with respect to the underlying attack graph.

3.1.3 Strategies and winning positions

The different ways in which proponent and opponent can play an argument game
are called strategies:

Definition 5 (Strategies). Let D = 〈N,A, t, m, p〉, a ∈ A and i ∈ N . A strategy
for i in the instantiated game D@a is a function: σi : {a ∈ D − T | a0 =
a AND t(a) = i} −→ A telling i which argument to chose at each non-terminal
dialogue a in D@a. The set of terminal dialogues compatible with σi is defined as
follows: Tσi = {a ∈ T | IF t(a|n) = i THEN an+1 = σi(a|n)} .

So, in the game for grounded, a strategy σP will encode the proponent’s choices
in dialogues of odd length, while σO will encode the opponent’s choices in dia-
logues of even length. Observe that, in a game for grounded, a strategy σP and
a strategy σO—i.e., a strategy profile in the game-theory terminology—together
determine one terminal dialogue or, in other words, TσiP ∩ TσO is a singleton.

What matters of a strategy is whether it will guarantee the player that plays
according to it to win the game. This brings us to the notion of winning strategy,
and the related one of winning position.

7 Infinite arguments might sound puzzling, but they should simply be taken as models of an irre-
solvable deadlock, e.g.: “yes it is!”, “no it isn’t!”, “yes it is!”, “no it isn’t!”.

8 Cf. [16] for an overview.
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Definition 6 (Winning strategies and arguments). Let D = 〈N,S, t, m, p〉, a ∈ A
and i ∈ N .

• A strategy σ is winning for i in D@a if and only if for all a ∈ Tσ it is the
case that p(a) = i.

• An argument a is winning for i iff there exists a winning strategy for i in
D@a. The set of winning positions of D for i is denoted Wini(D).

• An argument a is winning for i in k rounds iff there exists a winning strategy
for i in D@a such that for all a ∈ Tσi , `(a) + 1 ≤ k, that is, i can always
win in at most k steps. The set of winning positions in k rounds is denoted
Winki (D).

As observed in Remark 1 dialogue games are two-player zero-sum games with
perfect information. It follows from the so-called Zermelo’s theorem [24] that these
games are determined, in the sense that either P orO possesses a winning strategy,
and hence that each argument in an attack graph is either a winning position for P
or a winning position for O.

Example 2. Consider Figure 2 with the following interpretation of the attack
graph: a = “The witness saw the defendant leaving the crime scene a few min-
utes after the murder happened”, b = “The witness is unreliable as she is short-
sighted”, c = “Although short-sighted, the witness is reliable since she was waring
glasses”, d = “The witness is unreliable as the crime scene was not illuminated
and she was too far away to recognize the defendant”. Here P has no winning
strategy, but not because of any infinite dispute, rather, simply because O, at his
first turn, can move to argument d—which is his winning strategy—whereP cannot
reply. Note that if O makes a ‘mistake’ by playing b then P can win by reinstating
a via c.

3.1.4 Adequacy

Now all ingredients are in place to study the property we are interested in, viz. the
adequacy of the game of Definition 4 with respect to the grounded extension. We
first prove a slightly stronger result: an argument a belongs to the kth iteration of
the characteristic function on the empty set of arguments, if and only if P has a
winning strategy in the game initiated at a, which she can carry out in at most 2k
steps.

Lemma 1 (Strong adequacy of the game for grounded). LetD(A) = 〈N,S, t, m, p〉
be the dialogue game for grounded on graph A and a ∈ A:

a ∈ dkA(∅) ⇐⇒ a ∈Win2k
P (D(A)).

Proof. We proceed by induction on the depth d of the subtree σ(D(A)@a) yielded
by the winning strategy σ (recall Definition 5).
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[B:] We have the following equivalences:

a ∈ d0
A(∅) ⇐⇒ @b : b � a [Definition 2]

⇐⇒ a ∈Win0
P(D(A)) [Definition 6]

[S:] If a ∈ dnA(∅) ⇐⇒ a ∈ Win2n
P (D(A)) (IH) then a ∈ dn+1

A (∅) ⇐⇒ a ∈
Win

2(n+1)
P (D(A)). [LEFT TO RIGHT] Assume a ∈ dn+1

A (∅). This means that
∀b : b � a,∃c : c � b and such that c ∈ dnA(∅) which, by IH, is equivalent to
c ∈Win2n

P (D(A)). So, by Definition 4, for any O’s move b at position a, P has a
counter-argument c from which she has a winning strategy in 2n rounds. Hence, by
Definition 6,P can win the game at a in 2n+2 rounds, i.e., a ∈Win

2(n+1)
P (D(A)).

[RIGHT TO LEFT] Assume a ∈ Win
2(n+1)
P (D(A)). This means that, for any O’s

move b at a, P has a counter-argument c from which she has a winning strategy
in 2n rounds. By IH, this is equivalent with c ∈ dnA(∅) and by Definition 2 we
conclude that a ∈ dn+1

A (∅). This completes the proof.

As a consequence, an argument belongs to the grounded extension of an argu-
mentation framework if and only if the proponent has a winning strategy for the
dialogue game for grounded (in that argumentation framework) instantiated at that
argument.

Theorem 1 (Adequacy of the game for grounded). Let D(A) = 〈N,S, t, m, p〉 be
the dialogue game for grounded on graph A and a ∈ A:

a ∈ lfp(dA) ⇐⇒ a ∈WinP(D(A)).

Sketch of proof. The claim is proven by the following series of equivalences:

a ∈WinP(D(A)) ⇐⇒ a ∈
⋃

0≤k<ω
Win2k

P (D(A))

⇐⇒ a ∈
⋃

0≤k<ω
dkA(∅)

⇐⇒ a ∈ lfp.dA

The first equivalence holds by the winning conditions of Definition 4 and Definition
6: P wins if and only if she can force the game to reach an unattacked argument in
an even number of steps. The second equivalence holds by Lemma 1 and the third
one by the finiteness assumption in Definition 1 and general fixpoint theory.9

3.2 On the game-theoretic ‘meaning’ of adequacy

The study of argument games has been thrust by their use as proof procedures
for Dung’s semantics [15]. In fact, the importance of theorems like Theorem 1 is

9 See [7, Ch. 8].
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a

d

b

c

a O

d P b P

c O

Fig. 2: An attack graph (left) and its dialogue game for grounded (right). Posi-
tions are labeled by the player whose turn is to play. P wins the terminal
dialogue abc but loses the terminal dialogue ad.

that they guarantee the argument game at issue to be a sound (if proponent has a
winning strategy then the the argument is grounded) and complete (if the argument
is grounded, then proponent has a winning strategy) proof procedure with respect
to the corresponding semantics.

However, beyond their mere proof-theoretic use, literature in argumentation
has also advanced a view of these games as viable models of procedural rules, or
protocols, for debates (good examples of this line of research are [18, 17]). At the
same time, other literature (e.g., [1]) has pointed out, convincingly in our view, that
Dung’s extensions can be soundly viewed as abstract models of standards of proof
in debates. Viewed in this light, adequacy has rather to do with whether a given
debate protocol is successful in implementing a given standard of proof. We use
the word “implement” here in the technical sense in which it is typically used in
game theory10 or social software [21].

Elaborating on this, a standard of proof like grounded can be viewed as a social
choice function deciding for each argument whether the proponent should be con-
sidered to have proven the argument, or whether the opponent should be considered
to have disproven it. The game will then let proponent and opponent interact in a
strategic setting and will be said to implement the standard of proof—or to be ad-
equate with respect to it—whenever the outcome dictated by the standard of proof
coincides with the outcome reached by the game in equilibrium, where equilibrium
means, in the limited context of zero-sum games (recall Remark 1), the outcome
that either of the players can enforce by playing her winning strategy.

The remaining of the paper will push this game-theoretic view of adequacy, in-
vestigating how the ability of argument games to successfully implement standards
of proof fares in presence of uncertainty.

10 We refer in particular to the so-called implementation theory. See [16, Ch. 10].
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a b a b

Fig. 3: The belief space of Example 3. We will refer to the graph on the left asAL
and the one on the right as AR.

4 Uncertainty in argumentation

In this section we look at structures that model a type of uncertainty concerning
the lack of information about what the attack graph upon which a given standard
of proof—in our case the grounded extension—should be applied.

4.1 Beliefs

Let A be a finite set of attack graphs over a given set of arguments A: A ⊆ A(A).
A belief on A is a probability distribution ∆(A) over A (the belief space). A belief
will be denoted as a sequence α1, . . . , αn of probabilities 0 < α ≤ 1 summing up
to 1, e.g.: B = 〈0.5, 0.5〉 or B = 〈0.1, 0.8, 0.1〉. We will take care that the order
of the sequence provides the information to assign the right probability to the right
graph.

It is worth stressing that—as customary in game theory —these probabilities
can be legitimately read in several different ways, all getting interesting interpreta-
tions in the context of argumentation. We mention the two we will be using in the
paper: first, a probability distribution can be interpreted as the belief that one agent
holds when uncertain about the actual attack graph upon which a given argument
will be evaluated, e.g., the attack graph endorsed by a listener; second, a probabil-
ity distribution can be interpreted as the proportions of different ‘types’ of listeners
in a population of listeners, viz. the percentage of agents endorsing graph A1, the
percentage of agents endorsing graph A2, and so on. We illustrate these notions
with two toy examples:

Example 3. Two politicians have to openly debate during the election campaign
about cutting taxes vs. increasing public services: let argument a be “taxes should
be cut” and b be “public services should be improved”. They both believe that 70%
of the public do not consider the two arguments incompatible and are ready to sup-
port both, while the remaining 30% do consider the two arguments incompatible
and, moreover, find argument b stronger than a (see Figure 3). The politicians’
belief are modeled by distribution B = 〈0.7, 0.3〉.

Example 4. Assume again the arguments a, b, c and d of Example 2. A prosecutor
and a defense lawyer are arguing about argument a. They are uncertain of how
the judge is going to interpret the evidence at hand. They believe that it is 10%
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a

d

b

c a

d

b

c a

d

b

c

Fig. 4: The belief space of Example 4. In further discussing the example, we will
refer to the three graphs as A1,A2 and A3 in the obvious order.

probable that the judge would not recognize b as legitimate evidence against a,
while accepting the other the evidence of d against a and c against b. They also
believe that with probability 50% the judge will not accept evidence d against a,
while admitting c against b and b against a. Finally, they believe with probability
40% that she would admit b against a but reject d against a and of c against b. This
belief space is represented in Figure 4.1 and the belief is B = 〈0.1, 0.5, 0.4〉.

4.2 Probability of being grounded

A belief induces, for each argument, the probability of it to be proven with respect
to the fixed standard of proof. Let g : A×A −→ {0, 1} be the function recording
whether a given argument belongs to the grounded extension of a given graph in
the belief space A:

g(A)(a) =

{
1 IF a ∈ lfp(dA)
0 OTHERWISE

(1)

With this auxiliary function at hand, we can formulate the following definition:

Definition 7 (Grounded in belief). Let B = ∆(A) be a belief and a an argument.
The probability of a to belong to a grounded extension given B is given by the
following formula:

pB(a) =
∑
A∈A

B(A) · g(A)(a).

So, a is said to be grounded in B with probability α if and only if pB(a) = α.

Obviously, by Theorem 1, value pB(a) also expresses the probability of the
proponent to have a winning strategy in the argument game for grounded played at
a given belief B. Similarly, 1− pB(a) denotes then the probability that a does not
belong to a grounded extension, and therefore the probability that the opponent has
a winning strategy in the argument game for grounded instantiated at a.

Example 5 (Example 3 continued). Recall Example 3. We have quite simply that
pB(a) = 0.7 and pB(b) = 1.
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Remark 2 (Audiences). Examples 3 and 4 have illustrated the idea of a probabil-
ity distribution over attack graphs in terms of proportions of types of listeners, or
as plain uncertainty over the type of one listener. The role of listeners or audiences
has already been object of attention within the argumentation theory community
(e.g., [12, 3]). In those works audiences are modelled as extensions of attack
graphs inducing preferences or rankings over sets of arguments, which then re-
fine the evaluation of arguments in possibly different ways. In essence, we pursue
the very same aim here, namely the representation of different ways of evaluating
arguments. However, in order to more easily link with game-theoretic concepts,
we do it via probability distributions over graphs rather than by introducing extra
preferential structure within attack graphs.

5 Arguing on the basis of beliefs

The previous section has presented probability distributions over attack graphs—
which we called beliefs—as a viable modeling tool for a type of uncertainty in
abstract argumentation, and it has shown how it naturally yields a probabilistic
version of the grounded extension. This section addresses the related question of
how an argument game would proceed under the assumption that proponent and
opponent hold a same belief.

We contemplate two possibilities which, from a game-theoretic point of view,
lead to two very different models:

Perfect information: In this case the belief is taken to encode the expectation of
an agent with respect to a lottery drawn on the possible attack graphs, under
the assumption that the result of the lottery can be observed before proponent
and opponent start exchanging arguments. In other words, a move by Chance
selects an attack graph, with the probabilities dictated by the belief, after
which proponent and opponent play the game for grounded on the selected
graph.

Imperfect information: In this case the belief is taken to encode the expectation
of an agent with respect to the same lottery, but under the assumption that
the result of the lottery cannot be observed before the argumentation starts.
Like above, a move by Chance first selects an attack graph, but proponent
and opponent do not know which one has been selected.

The next sections study the sort of games arising by these two interpretations of
the uncertainty represented in a belief, with a particular emphasis on how they
influence adequacy with respect to the grounded semantics.

5.1 Perfect information on the initial chance move

Example 6 (Example 3 continued). During the campaign the two politicians will
be invited by one journalist to a face off debate about the issues a and b. The
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pool of possible journalists interviewing them is representative of the 〈0.7, 0.3〉
distribution in the public opinion, and both politicians know the ‘type’ of each
journalist, i.e., whether she endorses the graph on the left of Figure 3 or the one
on the right. Before the inverview even takes place the politician arguing for a can
thus be sure she will argue successfully—she will convince the journalist—in at
least 70% of the cases.

Abstractly, proponent and opponent do not know which attack graph Chance
will select, but they know that each graph will be selected with a given probability
and that they will be able to observe it upon starting to play.

5.1.1 The game

The key idea behind the game is that the probability distribution on the underly-
ing graphs determine the payoff a player obtains when the opponent runs out of
arguments on the selected graph.

Definition 8 (Argument games with perfect information on Chance moves). The
perfect information argument game is a function DP (.) which for each belief B
yields structure DP (B) = 〈NP , AP , tP , mP , pP 〉 where:

• NP = {P,O,Chance}.

• AP = {〈a,A〉 | a ∈ A AND A ∈ A} ∪ {ι}, i.e., the set of positions of the
game are arguments indexed by a graph, plus an initial ‘empty’ argument ι.
Dialogues are denoted s. Given a pair 〈a,A〉, notation 〈a,A〉l denotes a,
viz. the argument in the pair, and 〈a,A〉r denotes A, viz. the graph in the
pair. Similarly, for a dialogue s, we denote by sl the sequence of arguments
occurring in the pairs in s, i.e., if s is 〈a1,A1〉, . . . , 〈an,An〉, . . . then sl is
a1, . . . , an, . . ..

• tP is defined exactly like t in Definition 4 except for the fact that tP (ι) =
Chance. In dialogues starting with ι, to keep the turn of O and P at even
and, respectively, odd positions with respect to the initial argument chosen
by Chance, we use a length function `∗ so defined: `∗(s) = `(sl) − 1 for
a1 = ι.

• mP modifies m of Definition 4 as follows. For s = 〈ι〉, mP (s) ∈ {{〈a,A〉 | A ∈ A}}a∈A,
i.e., Chance chooses among sets of argument-graph pairs, where the argu-
ment is kept stable. Otherwise, if s 6= 〈ι〉, mP (s) = {〈a,A′〉 | h(sl) � a AND A′ = h(sr)}.
I.e., at a dialogue ending with 〈a,A〉, only counterarguments in A may be
selected.11 The set of terminal dialogues TP is defined in the obvious way.

11 Notice that, as a consequence, for all pairs 〈a,A〉, 〈a′,A′〉 in a dialogue compliant with mP ,
A = A′.
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• pP : {P,O} × TP −→ [0, 1] is the payoff function defined as follows:

pP (i)(s) = B(A) · w(i)(sl)

whereA is the graph occurring in all pairs in s andw(i)(s) =

{
1 IF p(sl) = i
0 OTHERWISE

encodes for a given terminal dialogue s in and player i, whether i wins the
dialogue sl in the underlying game for grounded. I.e., for i, the payoff func-
tion assigns to each terminal dialogue 1 · B(A) if that dialogue is winning
for i (according to the game for grounded) in the underlying graph, and 0
otherwise.

This game is always initiated at the designated empty argument ι. We say that
DP (B) is instantiated at argument a (in symbols, DP (B)@a) if and only if m(ι) =
{〈a,A | A ∈ A〉}, i.e., if Chance can choose only initial moves containing argu-
ment a.

Figure 5 illustrates the game as it models the perfect information interpretation
of Examples 3 and 4. More concisely, the game can also be viewed as a probabil-
ity distribution over the set of argument games based on the graphs in the belief
space. This distribution represents the moves available to Chance and their respec-
tive probability and is taken, in the definition of the payoff function, to weight the
wins and losses of proponent and opponent.

Remark 3. A few characteristics of the game must be observed: first, by the set
up of the payoff function, a player will obtain a non-negative payoff in a terminal
dialogue if and only if the opponent has a payoff 0; second, the oucome of the
game can rightly be seen as a probability distribution over the simple state space
{P wins,P loses} where the initial move by Chance is the randomizing device.

5.1.2 Strategies

The definitions of strategy, winning strategy and winning argument are modified to
account for the new structure of the game.

Definition 9. Let DP (B)@a be a perfect information game for belief B instanti-
ated at a, and i ∈ {P,O}:

• A strategy for i is a tuple ρ = 〈σAi 〉A∈A where each σAi is a strategy of i in
D(A)@a, viz., the game for grounded on A.12

• The value of strategy ρi is determined by the sum of the minimal payoffs
determined by each strategy. Let v(σAi ) = min

{
pP (i)(s) | sl ∈ TσA

i

}
be

12 To be precise ρ should assign pairs 〈a,A〉 at each choice point, but since the graph remains
constant throughout any dialogue, our formulation is considerably simpler.
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the minimal payoff obtainable by i playing σ. The value of ρi is then defined
by
∑

σA
i ∈ρi

v(σAi ).13

• The set of arguments for which i has a strategy with value at most α is
denoted Winαi (DP (B)).

So, the way proponent and opponent can play this game is by randomizing,
according to their belief, over winning strategies they have available in the under-
lying games for grounded. Each winning strategy in the underlying games will
contribute a strictly positive value to their payoff.

5.1.3 Probabilistic adequacy

The game presented can be shown to be adequate with respect to the probabilistic
version of the grounded extension, yielding a probabilistic generalization of the
original adequacy result.14

Theorem 2 (Probabilistic adequacy). Let DP (B) be a perfect information game
for belief B, a ∈ A and 0 < α ≤ 1:

α = pB(a) ⇐⇒ a ∈WinαP(DP (B))

Sketch of proof. Let Aa = {A ∈ A | g(A)(a) = 1}. From Definition 7 we obtain
the following equations:

pB(a) =
∑
A∈A

B(A) · g(A)(a) =
∑
A∈Aa

B(A)

We prove the implication in both directions. [LEFT TO RIGHT] Assume α ≤
pB(a). By Theorem 1 it follows that there exists a largest set of strategies

{
σAi
P

}
1≤i≤n

where n = |A|, such that each σAi
P is winning in D(Ai)@a. From which we have

that α =
∑
A∈A v(σAi ) and hence, by Definition 9, a ∈ WinαP(DP (B)). [RIGHT

TO LEFT] This direction is similar and can be obtained by arguing again by Theo-
rem 1 and Definition 9.

Intuitively, an argument belongs to the grounded extension with a given proba-
bility if and only if that probability is the best payoff that proponent can guarantee
for herself in the game. The game can therefore be viewed as a procedure success-
fully implementing the standard of proof modeled by the grounded extension in
settings where there is a shared uncertainty between proponent and opponent.

13 Since the game at issue is strictly competitive, we are assuming that players play by maximizing
their minimal payoffs (cf. [16, Ch. 2]). Notice, however, that minimization is in this case trivial as
all payoffs always have the same value: strictly positive if σA

i is winning, 0 otherwise.
14 Theorem 1 is the special case of Theorem 2 where the belief space is a singleton and B = 〈1〉.
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ι Chance

〈a,AL〉
〈0.7, 0〉

〈a,AR〉 O

〈b,AR〉 P
〈0, 0.3〉

ι Chance

〈a,A1〉

〈d,A1〉
〈0, 0.1〉

〈a,A2〉

〈b,A2〉

〈c,A2〉 O
〈0.5, 0〉

〈a,A3〉 O

〈b,A31〉 P
〈0, 0.4〉

Fig. 5: The rendering of Example 3 (left) and Example 4 (right) as argument games
with perfect information over one initial chance move: the two politicians
expecting to be interviewed by a pool of known journalists; and a prosecu-
tor and defense lawyer expecting a judge to be drawn for the trial from a
pool of known judges.

5.2 Imperfect information on the initial chance move

Example 7 (Example 6 continued). Assume now the two politicians will be in-
terviewed, as above, by a group of journalists representative of the population’s
distribution 〈0.3, 0.7〉. However, this time, they do not know the types of these
journalists. How will the debate proceed?

In the example proponent and opponent do not know the type of their listener.
In other words, although they know what the probability is of each graph, they do
not know for sure with respect to which graph their dialogue will be evaluated by
the listener.

5.2.1 The game

Two intuitions will back the set up of our model: first, if players do not have
information about which graph has been picked by Chance, then players will argue
by attempting any attack that would be compatible with at least one of the graphs
in the belief space; second, they will argue ‘by best bet’ will put forth arguments
according to what is believed to be the most plausible graph.

From a modeling point of view it should then be possible that the game gen-
erates dialogues that are incompatible with some of the underlying graphs. This
motivates us to introduce the following auxiliary notion. For a graph A and dia-
logue a, let aA denote the largest subsequence of a which is legal with respect to
D(A), i.e., which belongs to its possible dialogues. Clearly, it can be the case that
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aA = a. Define now the following functions:

lP(aA) =

{
1 IF t(aA) = O AND `(aA) < ω
0 OTHERWISE

lO(aA) =

{
0 IF t(aA) = O AND `(aA) < ω
1 OTHERWISE

Intuitively, the function records when a player has had ‘the last word’ in the largest
dialogue in a compatible with A, keeping the asymmetry typical of the payoff
function of the game for grounded (recall Table 1).

Example 8. Recall Example 3 and Figure 3. Consider sequence ab. We have that
abAR

= ab and abAL
= a. As to the ‘last word’ function we have: vP(abAL

) = 0
and vO(abAL

) = 1; vP(abAR
) = 0 and vO(abAR

) = 1.

Definition 10 (Imperfect information argument games). The imperfect informa-
tion argument game is a function DI(.) which for each belief B yields structure
DI(B) = 〈N I , AI , tI , mI , pI〉 where:

• N I , AI , tI are as in Definition 4.

• mI is defined as:

mI(a) =
{
a ∈ A | ∃A ∈ A : a ∈ mA(h(a))

}
.

where mA denotes the move function in the game for grounded on graph A.
I.e., the available moves at a are those arguments which may be moved in at
least one of the graphs in A. As usual, a dialogue of length ω or such that
mI(a) = ∅ is called terminal. The set of terminal dialogues is denoted Z.

• pI : N × Z −→ [0, 1] is the payoff function defined as follows:

p(i)(a) =
∑
A∈A

B(A) · li(aA) (2)

I.e., the payoff for i in a terminal dialogue a is determined by how often
player i expects—according to B—to have the last word in a.

For a ∈ A, DI(B)@a denotes the imperfect information argument game instanti-
ated at a.

Here are two examples. The game on the right of Figure 6 is the game modeling
Example 7. The game in Figure 7 models the imperfect information version of
Example 4 where the plaintiff and defense layer do not know the identity of the
judge that will be selected for the trial.

A few observations: the move function allows arguers to put forth any argument
that attacks the last uttered one in some of the available attack graphs; the payoff
function is designed to ignore, for each graph in the belief space, those parts of
dialogues that are illegal with respect to the given graph; the game is still a zero-
sum game, although payoffs range over [0, 1] instead of {1, 0} (recall Remark 1).
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ι Chance

〈a,AL〉
0.7

〈b,AL〉
〈1, 0〉

〈a,AR〉
0.3

O

〈b,AR〉 P
〈0, 1〉

a O

b P
〈0.7, 0.3〉

Fig. 6: The rendering of Example 7 by a canonical imperfect information game
with information sets—the dotted lines—(left), and its representation as
the game of Definition 10 (right). Notice that the payoffs of histories of in-
formation sets, i.e., the weighted sum of all the histories in the information
set (e.g., 1 · 0.7 + 0 · 0.3), coincide with the payoffs of our game computed
by function pP : pPP(ab) = 0.7.

Remark 4 (Imperfect information). Readers versed in game theory must have no-
ticed that we have introduced the game of this section as a perfect information
game but, technically, we have modeled it in Definition 10 as a perfect information
game. In fact, we have not used any of the machinery typically employed in game
theory to account for imperfect information (e.g., information sets [16, Ch. 11]).
This modeling solution is possible because of the peculiar sort of uncertainty we
are studying, which is due to one initial Chance move and which is the same for
each player. This allows us to collapse information sets (i.e., all pairs 〈a,A〉 for a
given a) to a single arguments (a itself) and, consequently, histories consisting of
information sets to sequences of arguments. Hence, the game form is essentially the
same. Finally, our payoff function pP calculates payoffs precisely as the weighted
sum of the payoffs of the dialogues that would constitute a history of information
set. Figure 6 gives a concrete example of this correspondence.

5.2.2 Strategies

We define now strategies and their values.

Definition 11. Let DI(B)@a be an imperfect information game for belief B in-
stantiated at a:

• Strategies are defined as in Definition 5. Like in the case of the game for
grounded, a pair of strategies 〈σP , σO〉 describes a terminal dialogue. We
denote the set of strategies available to player i, Σi.
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• The value of strategy σP is given by:

min
σO∈ΣO

(pI(〈σP , σO〉))

I.e., the value of a strategy σP equals the minimum payoff that P can obtain
via that strategy under all possible O’s responses.15 The same definition
applies for O.

• The set of arguments for which i has a strategy with value at most α is
denoted Winαi (DP (B)).

5.2.3 Adequacy failure

Ideally, we would now like to show that the imperfect information game is still
adequate with respect to a probabilistic version of the grounded extension, along
the line of Theorem 2: α = pB(a) ⇐⇒ a ∈ WinαP(DI(B)). However, it turns
out that this is not the case. A counterexample can be obtained by building the
game for Example 4, and is given in Figure 7.

This failure is due to two concurrent factors. The first is, clearly, the imperfect
information assumption over the moves by Chance. The second has to do with a
structural constraints of the game for grounded, namely the fact that players can
move only one argument at the time. This means that players must sometimes
‘sacrifice’ good arguments simply because they are less probable (e.g.,O in Figure
7).

We conjecture that adequacy can be restored for the imperfect information
game while retaining it in the other games, for instance by allowing players move
sets of arguments (see [10]). The technical implications of such a more general
set-up is left for future work.

6 Conclusions and future work

Starting from the argument game for the grounded extension, the paper has dis-
cussed a probabilistic model of uncertainty in argumentation which lead to a prob-
abilistic version of the grounded extension, and to the specification of two different
types of argument games modeling two different ways uncertainty influences the
game for grounded. The paper has also discussed a specifically game-theoretic
view on adequacy results for argument games and, after proving the adequacy of
the game for grounded (Theorem 1), it has established the same result for the prob-
abilistic grounded extension (Theorem 2), and has shown how and why adequacy
is disrupted in imperfect information argument games.

Future work will aim at relaxing the assumption that proponent and opponent
share one same belief. Dropping this assumption would lead, in the case of im-
perfect information, to variable-sum games. Furthermore, more refined techniques

15 This is the idea behind the game-theoretic notion of maximinimization [16, Ch. 2] and is natu-
rally applicable to all zero-sum games.
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a O

d P
〈0.9, 0.1〉

b P

c O
〈0.6, 0.4〉

Fig. 7: Although the probability of a belonging to the grounded extension is 0.5,
P has in a a strategy with value 0.6. This is due to the fact that O has to
choose whether to play d or b. Choosing b he guarantees himself a bet-
ter payoff (0.4 instead of 0.1), but still lower than his winning probability
(under perfect information) of 0.5.

for epistemic modeling could be employed to support players reasoning about each
others’ beliefs.
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[22] P. A. Tohmé, G. A. Bodanza, and G. R. Simari. Aggregation of attack re-
lations: A social-choice theoretical analysis. In S. Hartmann and G. Kern-
Isberner, editors, Foundations of Information and Knowledge Systems (FolKS
2008), pages 8–23, 2008.

[23] G. Vreeswijk and H. Prakken. Credulous and sceptical argument games for
preferred semantics. In Proceedings of the 7th European Workshop on Logic
for Artificial Intelligence (JELIA’00), LNAI, pages 239–253. Springer, 2000.
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