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Abstract

Although combinatorial auctions have received a great deal of attention from
the computer science community over the past decade, research in this domain has
focused on settings in which a bidder only has preferences over the bundles of
goods they themselves receive, and is indifferent about how other goods are allo-
cated to other bidders. In general, however, bidders in combinatorial auctions will
be subject to externalities: they care about how the goods they are not themselves
allocated are allocated to others. Our aim in the present paper is to study such com-
binatorial auctions with externalities from a computational perspective. We first
present our formal model, and then develop a classification scheme for the types
of externalities that may be exhibited in a bidder’s valuation function. We then
develop a bidding language for combinatorial auctions with externalities. The lan-
guage uses weighted logical formulae to represent bidder valuation functions. We
then investigate the properties of this representation: we study the complexity of
the winner determination problem, and characterise the complexity of classifying
the properties of valuation functions. We then present two approaches to winner
determination for our bidding language: an exact approach based on integer linear
programming, and approximation methods.

1 Introduction

Combinatorial auctions have been closely studied over the past decade [5]. In a com-
binatorial auction, a number of goods are simultaneously put to auction, and agents can
submit bids for bundles of goods. Within the computer science/AI literature, four main
aspects of combinatorial auctions have been considered: bidding languages, where the
goal is to design compact, expressive, natural, and computationally tractable languages



for defining bidder valuation functions [19]; mechanism design, where the goal is typ-
ically to design bidding, allocation, and payment schemes so that bidders are incen-
tivised to truthfully report their valuation function [20]; winner determination, where
the goal is typically to compute efficiently a social welfare-maximising allocation of
goods to bidders, given a representation of bids/preferences [24, 18]; and preference
elicitation, where the goal is to elicit efficiently a valuation function from a potential
bidder.

Although details differ, a common model for such combinatorial auctions is the
following. We have a set Z of goods to be auctioned to agents N' = {ay, ..., a,}, and
each agent a; € N has preferences represented by a valuation function, v; : 2% — R,
assigning a numeric value to every possible bundle of goods. Implicit within this frame-
work is a rather significant (and arguably rather unrealistic) assumption: that bidders
only have preferences over the allocation of goods that they receive, and are indifferent
about how other goods are allocated to other agents. This point is very well-known
in the economics literature, where the term externality is used to describe the effect
that a transaction has on an individual that is not directly involved in the transaction.
If the individual is adversely affected by the transaction, then the externality is said to
be negative, while if the individual benefits from the transaction, then the externality
is positive. In a combinatorial auction with externalities, bidders have preferences not
just over the bundles of goods they receive, but also over the way in which other goods
are allocated to others. This holds even in the extreme case where a bidder is allocated
no goods: they may still have preferences over the way in which goods are allocated to
others, and if the externalities are sufficiently severe, such a bidder may even be moti-
vated to pay the auctioneer to prevent another agent being allocated some good, even
though they themselves are allocated nothing: see [15] for a case study of this, where
the goods in question are nuclear weapons!

We emphasise that this is not an artificial consideration: externalities are extremely
common in auctions. For example, consider spectrum auctions. In such auctions,
telecommunications companies bid for licenses to exploit electromagnetic spectrum.
From the point of view of a company, it is beneficial to have licenses in geographically
contiguous locations — this makes it easier/cheaper to provide services. Conventional
combinatorial auction models can directly capture such preferences. However, from
the point of view of a company, it is also bad if another company is allocated licenses
in geographically contiguous locations, since this makes them more competitive. This
is a negative externality, which cannot be captured using conventional combinatorial
auction models [5].

In this paper we consider the computational aspects of combinatorial auctions with
externalities. We begin by presenting our formal model. In Section 3, we develop a
classification of some types of externalities that may be exhibited in a bidder’s valuation
function. In Section 4, we develop a bidding language for combinatorial auctions
with externalities. The language uses weighted logical formulae to represent bidder
valuation functions (cf. [13, 17, 26, 6, 26]). Given this representation, we investigate
the complexity of the winner determination problem, and the complexity of classifying
the properties of valuation functions we identified in Section 3. We then present two
approaches to winner determination for our bidding language: an exact approach based
on integer linear programming, and an approximation method.



2 Basic Definitions

We start by assuming a finite, non-empty set Z = {z1,...,z,} of atomic goods. We
assume these goods are indivisible and that each good is unique. We use Z, 7', Z1, . ..
as variables ranging over subsets of Z. Next, we assume a finite, non-empty set
N = {ag,a1,...,a,} of agents (ak.a. bidders). We use G,G’, Gy, ... as variables
for subsets of A/, and we refer to such subsets as groups.

Allocations: An allocation is a function o : N' — 2% such that a(ay), ..., a(a,)
partitions Z. The intended interpretation is that «(a;) is the set of goods allocated to
agent g; under allocation «. Let A(Z, ') denote the set of all possible allocations over
N, Z. Where N, Z are clear from context, we omit reference to them and write A.
Observe that the inverse of an allocation « defines a mapping from Z to A/; we denote
this inverse by &. Thus if &(z) = a;, then good z € Z is allocated to agent a; € N
under allocation ¢, i.e., z € a(a;).
When we need to write allocations explicitly, we use the following notation:

{(Zo;a0), (Z1;a1), ..., (Zy;an)}
with the intended meaning that Z; is the bundle of goods allocated to agent a;.

Example 1 Suppose N' = {ag,a1,a2} and Z = {z1,22}. Then the feasible alloca-
tions are:

ao = {({z,22}500), (D;a1), (0; az) }
ar = {(0a0), ({z1,22}a1),  (05a2) }
az = {(0;a0), H{za}an), ({z2}; a2) }
as = {({z2};00), ({z1}san), (0; a2) }
as = { ({z}a0), ({z2}; 1), (0;a2) }
as = {(0;a0), (0;a1), ({z1,22}5a2)  }
as = {(0;a0), ({z2};a1), ({z1};a2) }
ar = { ({z2}a0), (0;a1), ({z1};a2) }
as = {({ztiao), (0;a1), ({z2}; a2) }

Valuation Functions: In the literature on combinatorial auctions, a valuation function
for an agent a; € N is usually understood as a function v; : 22 5 R, i.e., a function
that gives the value v;(Z) to agent a; € N of the bundle of goods Z C Z. Implicit
in such a definition of valuation functions is the idea that a valuation depends only on
the goods that are allocated to a;, and not on the way that goods are allocated to other
agents. In the present paper, we will be concerned with valuation functions for agents
that take into account not just the goods allocated to that agent, but also the way that
goods are allocated to others. Thus, for our purposes, a valuation for agent a; € A is
a function v; : A — R. Let V(Z, ) denote the set of valuation functions over Z, \;
again, where context makes Z, N clear, we simply write V.

Example 2 For the allocations as defined in Example 1 let valuation functions for
every agent involved in the auction be:



Ya eAVo (Oz) =0

vl(ao) = Vl(OZ5) =7 VQ(CV()) =1 V2(C¥5) =1
vi(ag) =12 vi(ag) =4 va(a1) =6 vo(ag) =5
Vl(ag) =4 V1 (017) =0 V2(Oé2) =3 V2(Oé7) =3
V1(Oé3) =6 Vl(()és) =2 VQ(O(?,) =5 VQ(Oés) =3
V1(Oé4) =10 VQ(O[4) =9

Combinatorial Auctions with Externalities: Bringing the above components to-
gether, we say a combinatorial auction with externalities is a tuple

<Z7Navlv"'7vn>

where Z is the set of goods, AV is the set of agents, and v; € V is the valuation function
for agenta; € .

Winner Determination: The WINNER DETERMINATION problem in this setting is
analogous to conventional combinatorial auctions: given (Z, N, v1,...,v,), the aim is
to find an allocation o* that maximizes social welfare:

Before we can say much about this problem, of course, we need to fix on a representa-
tion for the valuation functions v;; we consider this below.

It is worth making some remarks on the relationship of this problem to the stan-
dard winner determination problem, as the existence of externalities raises a number
of additional issues. Notice that bidders in our setting have valuations over allocations
in which no item is assigned to them. If such externalities are negative and severe
enough, then bidders will have an incentive to pay the auctioneer for not selling any-
thing. Perverse as it may seem, such a solution might be efficient from the point of view
of utilitarian social welfare. In [15], the following example of this situation is given.
In the early 1990s, some nations from the former Soviet Union found themselves in
possession of nuclear weapons, even though they themselves had no aspirations to be
a nuclear state. Both Russia and the USA were concerned about the nuclear weapons
falling into the wrong hands. They therefore made payments to these countries, in ef-
fect to ensure that the nuclear weapons were not made available to third parties. Such
a possibility is not taken into account in most standard auction mechanisms: the auc-
tioneer is not paid by those who do not win the item not to sell it.

3 Allocations and Valuations

Implicit in our definition of valuation functions v; : A — R is the idea that the value
an agent obtains is not dependent only on the goods it is allocated, but also on the way
that other goods are allocated to other agents. Our aim in this section is to dig deeper
into this idea: we investigate the structure of allocations and valuation functions, with
the ultimate aim of classifying the different types of externalities that may be exhibited
by valuation functions. Before we can classify valuation functions in this way, we first
need to investigate the structure of allocations.



3.1 Allocation Structure

We say that two allocations «, o/ are individually equivalent with respect to a group
of agents G C N if the allocation of each agent ¢; € G under « is the same as its
allocation under «’. We denote the fact that o and o’ are individually equivalent with
respect to G by @ ~¢ «'. Formally:

Definition 1 (Individual equivalence w.r.t. G)
oy ~g az Iiff Va; € G:ag(a;) = as(a;).

Example 3 Recall Example 1. For G = {ay}, there are the following individual inter-
nal equivalence relationships oy ~g Qo ~g Q5 ~g g, Q3 ~g Qr, and g ~g Og.
For G = {a1}, we have o ~g a5 ~G a7 ~G asg, Qg ~g a3, and ay ~g og. For
G = {a2}, ap ~g a1 ~g a3 ~g Q4, ay ~¢ as, and ag ~g a7. Finally, for any
combination of two agents from N, i.e. {ag, a1}, {ao,az2} and {a1,az2} as well as for
N, no equivalence of this type exists.

We say that two allocations ay, aiy are collectively equivalent with respect to a
group of agents G C A if the allocation to the group G under o is the same as its
allocation under ao. Note that with this notion, we are not concerned with how goods
are allocated within the group G, only with the set of goods that are allocated to G. We
denote the fact that or; and a5 are collectively equivalent with respect to G C N by
a1 =g ao. Formally:

Definition 2 (Collective equivalence w.r.t. G)

oy =g o Iff U Oél(ai) = U az(ai)~

a,€eG a;€G

Example 4 Example 1 again. For G = {ag, a1}, we have g =g a1 =g az ~g Qu,
g g Oasg, and g =g Q7.

For singleton groups G = {a;}, individual and collective equivalence coincide:
Va; € N )Vay,ap € A g ~igy an iff ar =gy oo,
Furthermore, all allocations are collectively equivalent w.r.t. G = N:
Vai, a0 € A: oy & Q.

We can also define individual and collective equivalence with respect to sets of goods,
rather than with respect to sets of agents. We say two allocations o and a4 are indi-
vidually equivalent with respect to a set of goods Z C Z if these goods are allocated to
the same agents in both a; and a,. With a slight abuse of notation, we write a; ~z o
to mean that goods Z C Z are allocated to the same agents in vy as in oo, Formally:

Definition 3 (Individual equivalence w.r.t. Z)

a1 ~z Q9 lﬁc VzeZ: dl(Z) = O?Q(Z).



Example 5 With respect to Example 1, if Z = {z1} then we have: ag ~z ay ~z as,
ay ~z Qg ~z a3, and as ~z Qg ~z Qr,

With another abuse of notation, we write a; =z o to mean that «; and o agree on
the group of agents that receives goods Z C Z:

Definition 4 (Collective equivalence w.r.t. Z)
oy ~z g ff {di(z) |z €Z} ={da(z) |z € Z}.

Again, for singleton sets of goods Z = {z}, individual and collective equivalence w.r.t.
Z coincide:
Vz € Z,Val,ag cA:o ~i Qg iff aq R} Q2.

Example 6 Wirth respect to Example 1, if Z = {z1,22} then we have for example
a9 Ry ag and oy Xz as.

Valuation Function Structure: It makes sense to classify the various different types
of externality that may exist in our setting. We do this with reference to the properties
of allocations that were discussed above. Later in this paper, we will consider the com-
putational problem of classifying valuation functions with respect to these properties.

We start with the simplest case: no externalities! We say that a valuation v; : A —
R for agent a; € N is externality free if it only depends on the goods allocated to agent
a;. Formally:

Definition 5 (Externality Freeness) Valuation function v; : A — R is said to be ex-
ternality free iff:

Vag,ap € Aoy ~y az implies vi(ay) = vi(az).

Example 7 Consider the auction defined in Examples 1 and 2. Valuation function v is
trivially free of externalities, since it gives 0 for all allocations. However, vy is subject
to externalities. For example, although oy ~,, ag, we have vi(ay) # vi(ag): in this
case, if ai is allocated good zs, then it would prefer as not to be allocated z;.

Of course, the point of the paper is to consider valuation functions that do not have this
property. The next property we consider is that externalities take a very simple struc-
tural form, where a valuation function can be additively decomposed into a collection
of simpler valuation functions.

Definition 6 (Additively decomposable valuations) Formally, v; : A — R is said to
be additively decomposable if there exists a collection of n functions {v* : 2% — R :

ie N}

vii2Z 5 R
v2:2%2 5 R
vf’:ZZ%R

such that Vo € A we have:

vil) = 3" vi(a(a)).

ajEN



An even simpler kind of valuation function is as follows.

Definition 7 (Primitively decomposable valuations) A valuation function v; : A —
R is said to be primitively decomposable if there exists an m X n matrix M; of real

numbers such that Vo € A:
vi(ar) = Z Z Milk, j).
4 EeN z€a(a)

Thus, with primitively decomposable valuation functions, M;k, j] represents the value
that agent a; would obtain if good z; was allocated to agent a;. Notice that primitively
decomposable valuation functions have a very succinct representation: we only need
to represent an m X n matrix of reals.

Both of the above possibilities, of course, represent somewhat extremal cases. We
therefore consider other types of externality, as follows. First, suppose that an agent
only cares about the goods received by a particular group of agents; the particular allo-
cation of goods to agents outside this group or within it are not a concern. (Externality
freeness is a special case where the group of agents in question is a singleton consisting
of the agent itself.) There are two further obvious possibilities here. The first is that the
valuation function is sensitive to the allocation of goods to players within the group,
while the second is that the valuation function is only sensitive to the goods that are
allocated to the group as a whole (i.e., is not sensitive to which agents within the group
receive which particular goods, only to the goods allocated to the group overall).

We then say that a valuation function v; is individually sensitive to G C N if
the values it assigns only depend on the allocations of goods to individual member of
G. Formally, individual sensitivity of v; with respect to G is given by the following
condition:

Definition 8 (Individual sensitivity w.r.t. G) A valuation function v; is said to be in-
dividually sensitive w.r.t. G C N iff:

Vag,as € A:ay ~g ag implies vi(ar) = vi(asg).

A valuation function v; is collectively sensitive to G C N if the values it assigns only
depends on the collective allocation of goods to G.

Definition 9 (Collective sensitivity w.r.t. G) A valuation function v; is said to be col-
lectively sensitive w.rz.t. G iff:
Va,a' € A:a~g o implies vi(a) = vi(a').

In a similar vein to the above, we might consider agents that are sensitive only
to how a particular set of goods are allocated. We will say a valuation function v; is
individually sensitive to goods Z C Z if the value of v; only depends upon who is
allocated goods in Z.

Definition 10 (Individual sensitivity w.r.t. Z) A valuation function v; is said to be in-
dividually sensitive w.r.t. Z C Z iff:

Var,ag € A:aq ~z ag implies vi(ay) = vi(az).



And finally, we can think of agents who are concerned not with which individuals
receive which goods, but which groups receive them.

Definition 11 (Collective sensitivity w.r.t. Z) A valuation function v; is said to be col-
lectively sensitive w.r.t. Z C Z iff:

Voai,an € A:aq =~z as implies vi(ar) = vi(az).

4 A Bidding Language

A common problem now arises: how to succinctly represent valuation functions v; :
A — R. In the literature on bidding languages for combinatorial auctions [3, 19], a
common approach is to allow a bidder to submit a number of atomic bids of the form
(Z,p), where Z C Z and p € R,. The semantics of a bid (Z, p) is that “T would be
prepared to pay p to be allocated goods Z”. An agent’s atomic bids are aggregated
into a valuation function using, for example, “OR” or “XOR” constructions [19]. This
approach does not work for our scenarios, since an agent is not just concerned with
goods allocated to himself, but also about how goods are allocated to others. We instead
propose a weighted rule bidding language for combinatorial auctions with externalities,
which derives inspiration from the weighted formula representations that have been
used to represent preferences and valuation functions in other areas of AT (cf. [13, 17,
26, 6, 26]). With this approach, we specify agent g;’s valuation function v; as a set of
rules R;, with each rule taking the form (condition, value), where condition is a logical
predicate over allocations A, and value € R, . To obtain the value of an allocation «
given a set of rules R, we sum the values x of all the rules (¢, x) in R whose condition
(p is satisfied by a.

A Language for Conditions: First, we define a language for the conditions of our
rules. The condition language is essentially that of conventional propositional logic,
except that primitive propositions are replaced with expressions for referring to alloca-
tions. These expressions are of the form g; : z, where @; € N is an agentand z € Z
is a good. The intended interpretation of the expression g; : 7 is, naturally enough, that
agent a; is allocated good z. We refer to an expression of the form a; : z as an atomic
allocation. To obtain the condition language, we allow atomic allocations to be com-
bined with the conventional connectives of classical Boolean logic (—, V). Formally,
the grammar for conditions is as follows:

pu=a;:z| 20V

where a; € N and z € Z. The other connectives of classical Boolean logic (A — “and”,
— — “implies”, > — “if, and only if”, etc.), may be defined as abbreviations in terms
of =, V in the conventional manner (e.g., ¢ — ¥ = (= V )).

Where o € A is an allocation and ¢ is a condition, we write & = ¢ to mean that
the allocation « satisfies condition . Formally, the relation |= is inductively defined
as follows:

alEaziffz € a(a);



a |= —p iff it is not the case that a |= ¢;
akEeVyiffal=poral= .

Where ¢ is a condition in this language, let A/ () denote the set of agents named in ¢,
and let Z () denote the set of goods named in . For example, if ¢ = (a; : z3) A (aq :
z7) then () = {a1,as} and Z(p) = {z3,27}.

Rules: A rule is a pair (¢, x) where ¢ is a condition and x € R is areal. A set of
rules R defines a valuation function v as follows:

vr(a) = Z X;
(piXi) ER:arl=pi
If all rules in R have equal weight, then we say that R is homogeneous.
We refer to our representation as the weighted rule representation.

4.1 Basic Properties of Weighted Rules
We first establish basic properties of weighted rule representation:
Theorem 1

1. The weighted rule representation can capture all valuation functions. More pre-
cisely, Vv € V, IR such that v = vg.

2. For some classes of valuation functions, the weighted rule representation is ex-
ponentially more succinct than the explicit representation.

3. For some classes of valuation function, the smallest weighted rule representation
requires a number of rules that is exponential in [N U Z|.

Proof 1 For item (1), it suffices to note that given an allocation o« we can define a
“canonical” condition @, such that &' |= @, iff ' = a:

oo= A A @

4 eEN \z€a(a)

Items (2) and (3) follow easily from well-known results in Boolean function theory:
essentially, Boolean formulae provide a representation that in many cases is exponen-
tially more succinct than the extensive representation, but in the worst case we need
formulae of size exponential in the number of Boolean variables [27].

Now, although our condition language borrows much from Boolean logic, it is impor-
tant to understand that the logic of conditions is rather different. To see this, consider
the following. Let us say a condition is positive if it contains only the Boolean op-
erators V, A. Negation cannot be defined in classical Boolean logic using only these
operators, and as a consequence, the satisfiability problem for positive Boolean formu-
lae is trivially solvable in polynomial time. However:



Theorem 2 The satisfiability problem for positive conditions is NP-complete.

Proof 2 Membership is obvious; for hardness we reduce SAT. Let p be an instance
of SAT over Boolean variables x1, ... ,x;, which we assume w.l.o.g. is in CNF. We
obtain a condition ©* from by systematically substituting for each positive literal x
that occurs in @ the atomic allocation a1 : x, and for each negative literal —x that
occurs in ¢ the atomic allocation a; : x. Notice that ©* is a positive condition.
Then define N, = {aT,a.} and Z, = {x1,...,xc}. Now, there exists an allocation
a € A(Z2,,N,) such that o |= ¢ iff ¢ is satisfiable.

Note that this result does not imply that negations in our condition language can be
defined using positive conditions! Theorem 2 raises an interesting question, namely,
for what classes of condition is the satisfiability problem easy. We now identify one
such class. Let us say a formula ¢ is read once if no good is named more than once in
¢ !. For example, the formula (ag : z0) A —(ap : z1) is read-once, while the formula
(ap : z0) V (a1 : z0) is not (since zg is named twice). Then the following is easy:

Theorem 3 All positive read-once conditions are satisfiable, and moreover, it is pos-
sible to compute a satisfying allocation for a positive read-once formula in polynomial
time.

The proof is simple, but is used later, and so we state it in full.

Proof 3 Construct the parse tree of condition @: interior nodes in the tree will be
either N\ or V, while leaves will be atomic allocations. Let sg be the root of the tree. We
construct a function L which maps nodes of the tree to sets of atomic allocations. We
start with leaves. If a leaf node s is a; : z then define L(s) = {a; : z}. We then iteratively
repeat the following, until L is defined for all nodes in the parse tree: For each interior
node s such that L is defined for all of s’s children, then define L(s) as follows: if s is
an V node, then define L(s) to be the smallest size set L(s") such that s" is a child of s
(if there are multiple such children, pick the one that is leftmost in the parse tree); if s
is an A node, then define L(s) = L(s1) U - -- U L(sy) where sy, . .., s are the children
of s. When L labels all states, define allocation o, by ay(a;) = {z | a; : z € L(s¢)}.
Note that since p is read once, every good is allocated to at most one agent, so o, is
well defined. Then o, = .

4.2 Classifying Valuation Functions

In Section 3, we gave a preliminary classification scheme for valuation functions. Now
that we have a representation for valuations, it is interesting to ask how hard it is to
classify valuation functions represented using this scheme. We start with the decision
problem EXTERNALITY FREENESS, where we are given a rule set R (over Z, N), and
we are asked whether vy is free of externalities.

IRead-once formulas have been studied for combinatorial auctions with no externalities both from a
preference elicitation and winner determination perspective in [28]. Note that our usage differs slightly from
the regular use of the term “read once” in logic, where it is usually taken to mean that no Boolean variable
occurs more than once in a formula.

10



Theorem 4 EXTERNALITY FREENESS is co-NP-complete.

Proof 4 Membership is obvious. For hardness, we show that the complement is NP-
hard by reduction from SAT. The complement problem involves checking whether:
dag,as € At ay ~g as and vi(ay) # vi(az). Let ¢ be a SAT instance over
variables x1,. .., x; which we assume w.l.o.g. is in CNE. Define N' = {at,a, a4},
Z = {x1,...,x,d}, and define condition ¢’ by replacing positive literals x; in @ by
(aT : x;) and negative literals —x; by —(at : x;). Then define ©* = ' A (aq : d), and
define R = {(p*,1)}. It is easy to see that then p is satisfiable iff vi is not externality
free.

We can also consider the decision problems: INDIVIDUAL SENSITIVITY W.R.T.
G, COLLECTIVE SENSITIVITY W.R.T. G, INDIVIDUAL SENSITIVITY W.R.T. Z, and
COLLECTIVE SENSITIVITY W.R.T. Z. For example, in the problem INDIVIDUAL SEN-
SITIVITY W.R.T. G, we are given a rule set R (over Z, ), and a set of agents G C N,
and we are asked whether vy is individually sensitive w.r.t. G; the other problems are
formulated in the obvious way. Using Theorem 4, we can directly prove:

Theorem S The decision problems INDIVIDUAL SENSITIVITY W.R.T. G, COLLEC-
TIVE SENSITIVITY W.R.T. G, INDIVIDUAL SENSITIVITY W.R.T. Z, and COLLECTIVE
SENSITIVITY W.R.T. Z are all co-NP-complete.

Proof 5 The first two results follow from Theorem 4; the others can be obtained by
similar reductions, which we omit in the interests of space restrictions. We show that the
complement problem is NP-hard by reduction from SAT. In the complement problem,
we are asked whether:

3051,0[2 S .A Ly ~Yg Qo and V,'(O[l) 7§ V,‘(O&Q).

Let ¢ be an instance of SAT over Boolean variables x1,...,x;, which we assume
w.l.o.g. is in CNF. We create an instance of INDIVIDUAL SENSITIVITY W.R.T. G as
follows. Define N' = {ar,ay,a4,a.}, and Z = {x1,...,x,d}. Define p* using the
same transformation as used in the proof of Theorem 2, and define v = ¢* A (a4 : d).
Define R = {(, 1)} and G = {at,a, }. We claim that ¢ is satisfiable iff the instance
created is not individually sensitive to G. (— ) Assume  is satisfiable; then we can con-
struct an allocation o yielding vr («) = 1 in which a, is allocated good d, but there
is another allocation differing only in the allocation of d (to a.) in which vg (a3) = 0.
Hence the instance is a positive instance of the problem. (<) Assume the instance is
individually sensitive to G. Then there exist valuations o, ag such that vg(ay) = 1
and vi(az) = 0. Since vg(a1) = 1, then ay = v, which implies a1 = ¢*, and so
from o we can construct a satisfying assignment for .

5 Winner Determination

Let us now turn to the WINNER DETERMINATION problem for the weighted rule
representation. An instance of the problem for this representation will be a tuple

11



(Z,N,R1,...,Ry), where for each a; € N, R; is a rule set defining a;’s valuation
function.

Complexity: We start by establishing some results on the complexity of the WIN-
NER DETERMINATION problem assuming the weighted rule representation of valua-
tion functions:

Theorem 6

1. The WINNER DETERMINATION problem for the weighted rule representation is
FPNP-complete.

2. The WINNER DETERMINATION problem for homogeneous rule sets is
ppNPllog R U U R complete.

Proof 6 For (1), first notice that the associated decision problem (does there exist an
allocation o with social welfare at least k) is easily seen to be NP-complete from
Theorem 2. This implies membership in FP', since all optimization problems whose
decision problem is in NP are in FP"* [21, p.416]. For hardness, we reduce the opti-
mization problem MAX WEIGHT SAT [21, p.416]. An instance of MAX WEIGHT SAT
is given by a set of propositional clauses 1, . . . ,1,, over Boolean variables x1, . . . , xp,
together with integer weights w1, . .., w, for each clause. The aim is to find the valua-
tion that maximises the sum of weights of clauses satisfied by the valuation. As in the
SAT reduction of Theorem 2, we create two agents N' = {at,a, }. For each clause
; with weight w;, we create a rule (¥}, w;) in R+, where 1* is obtained by the same
transformation on Boolean formulae that we used in the reduction of Theorem 2: re-
place positive literals x with at : x and negative literals —x with a : x. Set R = {.
Any social welfare maximising allocation o for this problem will yield a solution to
the given MAX WEIGHT SAT problem: set a variable x to true if o* allocates it to
aT, and set it false if o* allocates it to a. Notice that the form of the instance con-
structed matches the statement of the theorem. For (2), note that if all rules have equal
weights, then an allocation that maximises social welfare will be one that maximises
the number of rules with conditions satisfied. Next, notice that the following problem
is trivially seen to be NP-complete: “given (N, Z, R1,...,R,) and k € N, does there
exist an allocation satisfying at least k rules?” Now, there are |Rq U --- U R,| rules
in total, so we can find the allocation that maximises the number of satisfied rules by
using binary search, requiring O(log |R1 U --- U R,|) queries to an NP-oracle for the

problem we just described. Our first query will set k = f%}, if the an-

\R1U-~~UR,¢|+1W
1

swer is “no” we query with k = | , while if the answer is “yes” then

we query with k = fw] and so on; we converge on the correct value in
O(log |Ry U --- UR,|) queries. Hence the problem is in FpNIog R U UR] - fpp
hardness, we can reduce MAX SAT problem [21, p.186]; the construction is essentially

identical to that used in item (1), with all rule weights set to 1.

Exact Winner Determination: Integer Linear Programming is one of the most suc-
cessful and widely-used practical approaches to solving computationally complex op-
timization problems [2, pp.65—-67]. We now show how the winner determination prob-
lem for our weighted rule representation can be solved by ILPs. First, some definitions
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are needed. Where ¢ is a condition, then we denote the set of sub-formulae of ¢ by

sf (¢):

{,x}Usf() Usf(x) ifpo=9Vxorp=1Ax
sf(e) = {¥Usf(¥) if o =—¢
{a; : 7} ifo=a;:z,a,eN,z€ Z.

Where R = {(¢1,x1), ..., (@, xx) } is a set of rules, we define the set c/(R) by:

AR = |J o).

(pixi)ER

Let (Z,N,R1,...,R,) be an instance of the WINNER DETERMINATION problem
using the weighted rule representation: we produce an ILP as shown in Figure 1. The
construction makes use of two sets of variables: for each a; € A and z € Z, a variable
alloc(a;,z) € {0,1}, used to indicate whether good z is allocated to agent g; in the
optimal allocation computed by the ILP (alloc(a; : z) = 1) or not (alloc(a; : z) = 0);
and for each ¢ € cl(R1U---UR,), avariable 7(1)) € {0, 1}, used to indicate whether
the condition 1 is satisfied by the optimal allocation computed by the ILP (7(¢)) = 1),
or not (7(¢)) = 0).
Notice that the construction yields a polynomial number of constraints.

Theorem 7 Any allocation defined by a solution to the ILP in Figure 1 for input in-
stance (Z,N',R1, ..., Ry) is a solution to the WINNER DETERMINATION problem
Jor (Z,N,Ri,...,Ra).

Proof 7 First notice that any solution does indeed define an allocation, in that it allo-
cates every good to exactly one agent by constraint (4). Next, let a* be an allocation
defined by a solution o to the ILP: we claim that ¥y € cl(R1 U ---UR,), o = ¢ if
7(p) = 1 in the solution o. The proof is by induction on the structure of . The induc-
tive base is for atomic allocations a; : z, and is given by (5). Now assume the result
is proved for strict sub-formulae of ¢. For the inductive step, we reason by cases: the
case where  is of the form ¢ = —) is given by constraint (6); o = Y V X is given by
constraints (7)—(9); and @ = b N\ x is given by constraints (10)—(12). Finally, the ob-
Jective function (1) ensures the allocation is optimal. Note that the only unknowns are
variables alloc(a;, z); all variables T(1) are dependent. Finally, note that the values x;
in the objective function (1) are constants.

Approximate Winner Determination: The ILP framework above of course has worst
case running time exponential in the size of the auction. This raises the question of
whether it is possible to find a polynomial time approximation algorithm for winner
determination, i.e., an polynomial time algorithm that is guaranteed to compute an
allocation with some guarantee of performance [2]. We start with a negative result.

Theorem 8 The WINNER DETERMINATION problem with the weighted rule repre-
sentation cannot be approximated in polynomial time within any approximation ratio
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maximize:

subject to constraints:

7(1, )
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Figure 1: ILP for winner determination.
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r(m), where r(-) is any polynomial time computable function, unless P = NP. This
claim holds even for problem instances with only 2 agents, and with conditions which
are only positive formulae, and with the weights in the weighted rule representation
assumed to all have value 1.

Proof 8 We use the reduction from the proof of Theorem 2. We encode any instance of
SAT by a polynomial size instance of the WINNER DETERMINATION problem such that
deciding an existence of a feasible solution to the WINNER DETERMINATION problem
with positive social welfare is equivalent to deciding if the given SAT instance is a
“Yes” instance.

Given an instance @ of SAT over Boolean variables x1, . . . , X, let p* be the positive
condition obtained as in the proof of Theorem 2, and N, = {aT,a}.

We define the following instance of the WINNER DETERMINATION problem. The
set of goods is Z = {x1,...,Xn}, and the set of agents is N = {at,a,}, and both
agents have the same set of rules, containing just one rule, R, = R4, = {(¢*,1)}.

Suppose now that we are given a polynomial time r(m)-approximation algorithm A
for the WINNER DETERMINATION problem. We consider two cases. Suppose first that
the given SAT instance is a “Yes” instance, i.e., there exists an allocation satisfying
condition p*. This allocation has social welfare 2, and we can assume that any other
allocation (which does not satisfy ©*) has social welfare 0. Thus, because algorithm
A has a finite approximation ratio, in this case, A has to output an allocation which
satisfies p*.

Suppose now that the given SAT instance is a “No” instance, i.e., there does not ex-
ist any satisfying allocation. Therefore, any allocation has in this case a social welfare
of zero.

We have thus argued that algorithm A can distinguish in polynomial time “Yes”
and “No” instances of the SAT problem, which would imply that P = NP.

Theorem 8 essentially establishes that there is no hope for a polynomial time approx-
imation algorithm with any performance guarantees (even as bad as 27°"(") where
poly(m) is a fixed polynomial of m) which works on all cases (unless P = NP). How-
ever, this does not imply that we cannot identify certain classes of problem instances
that can be approximated. To illustrate this, we give an approximation method for
instances with positive read-once rules.

We first prove that the WINNER DETERMINATION problem with only positive read-
once rules still remains hard to approximate, but, on the other hand we will show that
it is much more tractable now.

Two allocations o; : N — 2% and ap : N — 222 are compatible if for all
Z € 21 N 2y, we have d;(z) = da(z). Given a set of positive read-once conditions
C={¢1,--.,%}, we say that a given allocation «, such that a |= ¢ for some ¢ € C,
collides with a condition ¢’ € C\ {} if there exists an allocation &’ such that &/ = ¢’
and allocations o and o’ are not compatible.

Theorem 9 Consider WINNER DETERMINATION with n agents and m goods, where
each agent has only one positive read-once rule with weight 1, and assume that for any
condition, any allocation that satisfies this condition collides with at most A € N other
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conditions in the instance. Assume also that for any given condition, any satisfying
allocation for this condition allocates at most d € N goods to the agents.

This problem cannot be approximated in polynomial time within an approximation
ratio of:

1. n'=°, for any constant § > 0,
A, for some absolute constant € > 0,
0(d/ log(d)),

m'/2=% for any constant § > 0,

N

unless P = NP.

In the proof of this theorem, we slightly relax the definition of the WINNER DETER-
MINATION problem, in that we do not require anymore that a feasible solution must
allocate all the goods, which corresponds now to the fact that we show lower bounds
and we consider this problem as an optimization, and not necessarily decision, prob-
lem.

Proof 9 We present a polynomial approximability-preserving reduction from a well
known d-SET PACKING problem [7]. The problem is given an universe U of m € N
elements and a family S = {S1,...,S,} C 2Y of n subsets of U, each of size at most
d (ie., |S;| < d, forany S; € S), compute a subfamily S’ C S of pairwise disjoint
subsets (called a packing) of maximum size, i.e., such that |S’| is maximized.

Given an instance of d-SET PACKING we define the following instance of the
WINNER DETERMINATION problem. The set of goods is Z = U and the set of
agents is N = {1,...,n}. We define the following positive read-once formula: p; =
(/\zeSi(i :2)) , which is true if all goods from set S; are assigned to agent i and, pos-
sibly, some other goods outside his set as well. Each agent i € {1,...,n} has the
Sollowing rule R; = {(pi, 1)}. It is straightforward to argue now that if we are given
a set packing of size k, then we can easily obtain an allocation with social welfare of
k. And, conversely, if we are given an allocation of social welfare k, then we can easily
obtain a set packing of size k. Observe, however, that in this case a feasible allocation
may also allocate to an agent goods outside his set, but then we can always repair
the solution by simply declaring these goods as not being allocated to this agent. This
does not change the size of the packing. d-SET PACKING is known to be NP-hard to
approximate within O(d/log(d)) [12], which implies claim 3. The remaining claims
follow from a standard reduction of the d-SET PACKING problem to the MAXIMUM
INDEPENDENT SET problem. We will outline this reduction here for completeness.
Recall, that the MAXIMUM INDEPENDENT SET problem, given an undirected graph
G = (V,E), asks for a maximum size independent set V' C V of G, i.e., a set V' such
that no two vertices from V' are adjacent; formally, for any u,v € V', (u,v) & E. For
a given instance of the d-SET PACKING problem, we define an instance G = (V,E) of
the MAXIMUM INDEPENDENT SET problem as follows: V. = S = {S1,...,S,} and
E={(8.S;): i #jNS,S; € VAS;NS; # 0}. (We note here, that we can assume
very special instances of d-SET PACKING problem, in which each e € U appears in
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precisely two input sets {S1,...,S,}.) Observe now, that the defined parameters of
the WINNER DETERMINATION problem translate into the MAXIMUM INDEPENDENT
SET instance as follows: |V| = n, |E| = m, and A is an upper bound on the maxi-
mum degree of graph G. The remaining claims follow now by the hardness results for
the MAXIMUM INDEPENDENT SET problem in [29, 11] (claims 1 and 4), and in [1]
(claim 2).

We will now provide almost tight upper bounds (i.e., approximation algorithms) for
the instances with positive read-once conditions, which are close to the lower bounds
proven in the first two claims of Theorem 9.

Theorem 10 Consider WINNER DETERMINATION with n agents and m goods, where
each agent i’s set of rules R; has only positive read-once rules (possibly, |R;| > 1)
with arbitrary weights, and assume that for any condition, any allocation that satisfies
this condition collides with at most A € N other conditions in the instance. (Note,
that we allow here for arbitrary externalities.) Then, there is a polynomial time A-
approximation algorithm for this problem.

Proof 10 Let us first observe that a straightforward |R1 U - - - U R, |-approximation
algorithm simply outputs any feasible allocation (obtained using the proof of Theo-
rem 3) to the condition which has the largest weight, say w. Obviously, the optimum
solution cannot have social welfare better than w - |[R1 U --- U R,|. Now, observe
that |R1 U - - - U R,|-approximation garantee becomes n for the instances from the
proof of Theorem 9 which prove n*~°-hardness of approximation. Also, note that
A < Ry U - UTR,| and thus we focus now on A-approximation algorithms. We
now define a A-approximation algorithm. Let initially R = R U - --UR,, and alloca-
tion 3 = (. As a first step, choose a rule (p,w) € R with the largest weight w and let
« be the allocation obtained for ¢ using Theorem 3. Update R := R\ {(¢,w)} and
B := (allocation B combined with o). We now “eliminate” all allocations from all
rules R which collide with o as follows: for any atomic allocationi:z,i € N, z € Z,
which appears in «, replace any occurrence of the atomic formulae j : zwithj € N'\{i}
in all conditions in R, with special symbol f (for forbidden). (Note, that this can be
done in linear time.) If after this operation there are any rules (©',w') € R where ¢’
has only £’s as atomic formulae, then update R := R\ {(¢,w')} for all such rules.
Now, iteratively choose a rule (p,w) € R with the largest weight w in the current set
R. Now let a be the allocation obtained for ¢ using Theorem 3 with an additional con-
straint that partial allocations containing f are avoided. Update R := R\ {(p,w)},
B = (allocation 3 combined with «). “Eliminate” all colliding allocations: for any
atomic allocation i : z, i € N, z € Z, which appears in «, replace any occurrence of
the atomic formulae j : z with j € N\ {i} in all conditions in R, with symbol £. If
after this operation there are any rules (¢',w') € R where ¢’ has only £’s as atomic
Sformulae, then update R := R\ {(¢’,w')} for all such rules. Repeat iteratively the
steps described above until possible. Finally, output the current allocation B. Observe
first, that despite the fact that this algorithm iterates potentially over sets of exponen-
tially many allocations (each single condition may have exponentially many feasible
allocations), its running time is strongly polynomial. This follows immediately from
the fact that each iteration allocates at least one more good to some agent; thus the
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number of iterations is at most m. To see that its approximation guarantee is A\, notice
that each time it chooses the largest weight rule from the current set R (this rule can
be satisfied as it must contain at least one non-f atomic subformula), and it eliminates
at most A other allocations with smaller weights. Thus, in each such iteration, we gain
at least 1/ A-fraction of social welfare that any optimum allocation could gain.

6 Conclusions & Related Work

While there is a large literature on auctions and combinatorial auctions in economics
and computer science, relatively little work has considered externalities in auctions. In
economics, Jehiel and Moldovanu is probably the most notable example of such work
[14]; the authors distinguish between allocative externalities (where agents care about
the allocation of items to others), and informational externalities (where the utility of
an agent is affected by the information held by others). The main focus of their analysis
is on mechanism design (e.g., some impossibility results for mechanism design with
informational externalities). In computer science, Salek and Kempe consider a special
case of a combinatorial auction with externalities in which every buyer is interested in
only one specific bundle of goods [23]. For these single-minded auctions they derive
sufficient conditions for a truthful allocation and propose an \/m-approximation algo-
rithm for maximizing social welfare. The algorithm is essentially tight unless P=NP.
Conitzer and Sandholm [4] present a general formalization of domains with external-
ities, and investigate the complexity of various decision problems in this setting, for
several kinds of externality. However, they derive most of the results under the as-
sumption that the effect of one variable on an agents utility is independent of the effect
of another variable on that agents utility. This disallows, in particular, the combinatorial
auctions with externalities, unless there are no complementarities or substitutabilities
among the items. More recently, a number of authors have focused on externalities in
online advertising (non-combinatorial) auctions (see, e.g. [8, 16, 10, 9, 22]).
Mechanism design is an obvious issue for future work. There is much more work to
be done on both exact and approximate winner determination for our bidding language.
Finally, it would be interesting to look at alternative bidding languages, allowing more
expressive forms of bids to be submitted — see, e.g., the discussion in [25].
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