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Abstract

In this thesis we study the empire colouring problem as defined by Percy

Heawood in 1890 for maps whose dual planar representation is a tree and

have empires formed from exactly r vertices.

We define the reduced graph of one such tree as being the graph formed

by replacing each empire in the tree by a single vertex such that an edge is

present between two vertices u and v of the reduced graph if there was an edge

in the original tree joining a vertex belonging to the empire corresponding

to u to a vertex belonging to the empire corresponding to v. We then give

several results on a number of structural properties of these graphs assuming

that the underlying tree is a random labelled tree, and compare them to

those of other types of random graphs with the same number of edges.

The main contribution of this thesis is a set of results on the worst-case

and average-case properties of the empire colourings of trees having an upper

bound s on the number of distinct colours used. We first show that if each

empire contains exactly r countries, the empire colouring problem can be

solved using no more than 2r colours on maps whose dual planar graph is a

tree. Furthermore we give an inductive method for building instances that

require these many colours. Then, motivated by the results of an empirical

investigation of a number of colouring heuristics, we study the proportion of

trees on a given number of vertices for which the empire colouring problem

can be solved with s ≤ 2r colours. We prove that for every fixed positive

integer r there exists a very precise lower bound on s beneath which almost

all trees will admit no r-empire s-colouring. For larger values of s we are



then able to give constant positive lower bounds on the probability that s

colours are sufficient to colour a random tree.
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Chapter 1

Introduction

Graph theory is the branch of discrete mathematics concerned with the

structure and properties of graphs, mathematical entities which can be used

as models for binary relationships between objects within a set. A graph

G = (V, E) consists of a pair of sets such that the elements of E are unordered

pairs of elements of V . In this thesis the elements of V will be called vertices

(singular: vertex) and the elements of E edges, however elsewhere elements

of V may be referred to as nodes or points and elements of E as lines. In this

thesis, unless otherwise stated, we will follow Graph Theory by R. Diestel [26]

for all graph theoretic definitions and notations.

The map colouring problem is one of the most famous graph theoretic

problems. In 1852, Francis Guthrie put forward the conjecture, now known as

the Four Colour Theorem, that four colours are sufficient to colour any map in

such a way that no two regions sharing a border of non-zero length are given

the same colour. (But regions may be given the same colour if they only meet

at a single point, for example the states of Utah, Colorado, New Mexico and

Arizona at the Four Corners in the USA). Of course in practice cartographers

will often use more colours than are necessary, possibly for aesthetic reasons

1
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Figure 1.1: The first graph is properly coloured, however the second is not
as adjacent vertices 5 and 6 are both green.

or because the colours represent something such as population levels.

This can be converted into graph theoretic terms by representing the

regions as vertices and putting an edge between two vertices if and only if

their corresponding countries share a border. It is quite easy to see that any

map can be converted into a planar graph (i.e. a graph that can be drawn on

a piece of paper without any line crossing) in this way and vice-versa. The

resulting graph can be coloured by assigning a single colour to each vertex

(in place of colours we can equivalently use the integers 1, 2, . . .), a proper

colouring is one in which no two adjacent vertices are given the same colour.

A colouring using exactly s colours is called an s-colouring, and χ(G), the

chromatic number of G, is the smallest positive s for which G admits a proper

s-colouring [17, 22].

Although the map colouring problem directly relates to planar graphs,

there is no reason why graph colouring should be restricted to this type

of structure. While non-planar graph colouring loses its connection to the

original cartographical context it still has many practical applications. For

example it can be used to produce a time-table for a number of end-of-

year exams. Each exam could be seen as the vertex of a graph, with an

edge joining two vertices if there are students taking both exams (and hence

scheduling both at the same time would lead to a clash). If each possible

2



timeslot is represented by a different colour then a proper colouring would

correspond to a timetable with no clashes [9]. The book Graph Colouring

Problems [49] by T. R. Jensen and B. Toft lists over 200 different problems

related to graph colouring.

Obviously the chromatic number of an arbitrary graph may be quite

large. For example, for any n, the complete graph Kn has chromatic number

n. However, we can place restrictions on the graphs being considered and

ask about the number of colours needed to colour properly any member of a

given family of graphs. All planar graphs are four-colourable [8]; any graph

with maximum degree ∆ that is not a complete graph or odd-cycle can be

coloured properly with ∆ colours [19]; for large positive integers n, most of

the graphs on n vertices containing less than 2.015n edges are colourable

properly with just three colours [3].

The focus of this thesis is in fact on a particular colouring problem. Mov-

ing back to the planar graph colouring and its relationship to the colourabil-

ity of cartographic maps, there exist certain countries in the world which are

split into two or more non-contiguous regions. For example Alaska is consid-

ered to be part of the United States of America and Kaliningrad is part of

Russia. To emphasise that these are in fact two parts of the same country it

makes sense to give both regions the same colour. In the same paper in which

he refuted a previous “proof” of the Four Colour Theorem [43] Percy John

Heawood drew on this to suggest the following variation of graph colouring:

suppose the vertices of a given graph are partitioned in a number of blocks, or

empires, each consisting of r different vertices: we want to colour the graph

using as few colours as possible in such a way that adjacent vertices receive

different colours unless they belong to the same empire. Heawood was able to

prove that for planar graphs and any r ≥ 2, 6r colours are always sufficient,

3



and in the case r = 2 there exist graphs requiring the full 12 colours. It has

since been shown that for any r ≥ 2 there are planar graphs requiring 6r

colours [47].

The main aim of this thesis is to study such empire colourings on trees

(i.e. connected graphs with no cycles). We will prove that if each empire

consists of exactly r ≥ 1 vertices then 2r colours are always sufficient to

solve the given empire colouring problem, and there are trees requiring 2r

colours. Furthermore we will investigate the colourability of n-vertex trees

chosen uniformly at random. When considering randomly generated, rather

than arbitrary graphs, the focus changes from seeking worst-case results to

average-case results. Just a single example of a graph requiring s colours is

enough to set s as a lower bound for the minimum number of colours needed

to solve the empire colouring. However, when we consider random graphs,

the question arises as to whether graphs requiring a relatively large number

of colours are common or if there is something unusual about them (meaning

that they will only very rarely turn up as the outcome of the random graph

generation process). When we consider properties of random graphs, usually

what we are concerned with is the probability of the graph possessing this

property as the number of vertices tends to infinity. We will find exact

and asymptotic expressions for the first two central moments of two random

variables related to the number of s-empire colourings of an n-vertex random

tree whose vertex set is partitioned into empires of size r. This in turn will

enable us to prove that, for each r ≥ 1, there exists a positive integer sr < r

such that, for large n, almost all n-vertex trees need more than sr colours,

and then to give lower bounds on the proportion of such graphs that are

colourable with s > sr colours.

We complete this introduction by presenting a short outline of the rest

4



of the thesis. In Chapter 2 we will illustrate a number of “general-purpose”

mathematical concepts and results that will be used throughout the thesis.

The initial part of Chapter 3 contains a precise definition of the problem

we are studying and the graph models we will work with. The remainder

of the chapter is, apparently, a detour from our main topic. We will study

a number of combinatorial properties of a particular type of random graph.

Properties of interest will be related to vertex degrees, connectivity, and the

presence of certain small subgraphs. Finally the results obtained will be

compared to similar results valid for other types of random graphs. Such

investigation is not completely unrelated to the study of the empire coloura-

bility of random trees since the problem of colouring the empires in a random

tree is equivalent to that of colouring the vertices of one of the random graphs

studied here.

The last two chapters focus directly on the empire colouring problem

on trees. In Chapter 4, we first describe our worst-case results and then

analyse empirically a number of colouring heuristics. We prove that for all

r ≥ 2, there exists an algorithm that can properly colour all trees on empires

containing exactly r countries each, using at most 2r colours and furthermore

there exist trees where 2r colours are necessary. We also provide evidence

supporting the claim that such worst-case results are rather pessimistic: there

are heuristics (inspired by similar work on colouring other types of graphs

[3, 65]) capable of colouring random trees with relatively few colours.

Finally in Chapter 5 we will present the main contribution of this thesis.

Starting from a precise characterisation of the central moments of a random

variable counting the number of s-empire colourings of a random tree with

vertex set partitioned into empires of size r, we will be able to obtain upper

and lower bounds on the probability that a random tree will have at least

5



one proper colouring using s colours. For every r we find a value sr such

that almost all large random trees admits no empire colouring using at most

sr colours. Furthermore we complement this result by proving that if s is

sufficiently larger than sr (roughly about twice that value, for large values

of r) then a non-negligible proportion of the set of tree on n vertices, with

vertex set partitioned into empires of size r, can be coloured with s colours,

provided n is large enough.

6



Chapter 2

Mathematical Preliminaries

In this Chapter we will cover a number of general mathematical results that

will be used regularly throughout this thesis. We start with a quick review

of well-known results and definitions in Linear Algebra, then we mention

a number of relevant analytic and combinatorial concepts. In particular

we describe a few simple approximations to the exponential and logarithm

functions, harmonic numbers and multinomial coefficients which will be used

in Chapter 5. The chapter is ended with a quick review of basic terminology

and facts from Probability Theory.

2.1 Linear Algebra

In this thesis we will only use elementary linear algebra. All of our definitions

can be found in standard textbooks such as [66]. If n and m are positive

integers, an m by n matrix A is a table of (real) numbers with m rows and

n columns, if m = n then the matrix is square. The numbers in the matrix

are called elements, Ai,j refers to the element in the ith row and jth column.

If two matrices A and B are such that the number of columns of A equals

7



the number of rows of B, then the matrix AB is such that for any i and

j, element (AB)i,j is equal to the sum
∑n

k=1 Ai,kBk,j. The transpose of a

matrix A, denoted AT , is the matrix such that for any i and j, AT
i,j = Aj,i,

if A = AT the matrix is symmetric.

A matrix A in which all elements Ai,j with i 6= j are zero is called a

diagonal matrix. The identity matrix Im is the m by m diagonal matrix

in which all non-zero elements are equal to one. We define the matrices

Onem and Zerom as m by m matrices consisting entirely of ones or zeroes

respectively.

A row vector is a 1 by n matrix and a column vector is an m by 1 matrix.

If v is a column vector whose elements are not all zero and with Av = λv for

some scalar value λ then v is called an eigenvector of A with eigenvalue λ.

A set of vectors v1, . . . ,vm are linearly independent if the only set of scalar

values λ1, . . . , λm such that
∑m

i=1 λiv
i = 0 is the set where all λi = 0. Any n

by n matrix A has up to n linearly independent eigenvectors, the eigenvalues

of these define the spectrum of A. In this thesis the spectrum of a matrix

A will be denoted by Spec A and represented as a two row table containing

the list of distinct eigenvalues of A in the top row, and their corresponding

multiplicities (the number of independent eigenvectors corresponding to each

given eigenvalue) in the bottom row.

The determinant is a function that associates a number, |A|, to every n

by n square matrix A. If a matrix A is diagonalisable, meaning there exists

an invertible matrix S such that S−1AS = Λ is diagonal, then Λ’s diagonal

elements (i.e. entries Λi,i, for each i ∈ {1, . . . .n}) are the eigenvalues of A.

Furthermore, in such a case, the determinant of A is equal to the product of

its eigenvalues.

In Chapter 5 we will often manipulate various matrices which can be

8



associated with graphs. In particular if G is a(n undirected) graph on n

vertices, then its adjacency matrix A(G) is an n times n real symmetric

matrix such that, for each i, j ∈ {1, . . . , n},

A(G)i,j =







1 {i, j} ∈ E(G)

0 otherwise

The Laplacian matrix L(G) of the graph G is an n times n real symmetric

matrix such that, for each i, j ∈ {1, . . . , n},

L(G)i,j =







degG(i) i = j

−1 i 6= j, {i, j} ∈ E(G)

0 otherwise

(here degG(i) is the number of vertices of G that are adjacent to vertex i).

2.2 Simple Analytical Preliminaries

In this thesis, the usual floor and ceiling notation ⌊x⌋ and ⌈x⌉ represent a real

number x being rounded down or up respectively to the nearest integer. The

Kronecker delta δi,j is a function such that δi,j = 1 if i = j, zero otherwise.

All logarithms are taken to base e.

We will use the standard Landau symbols (like O(φ) or Ω(φ)) in our

asymptotic calculations. In particular, if f and g are two real functions,

then f(x) ∼ g(x) represents the fact that limx→∞
f(x)
g(x)

= 1. In what follows

we will often use the right arrow “→” to denote limits. So, for instance, if f is

a real-valued function defined on positive integers the expression “f(n) → c

as n tends to infinity” (or “n → ∞”) is equivalent to limn→∞ f(n) = c.

9



2.2.1 Exponential and Logarithmic Functions

Here and in the rest of the thesis ex or exp(x) denotes the exponential func-

tion (defined for any real number x), whereas log(x) is the natural logarithm

of x, for x > 0. We now give a number of general results that will be used

throughout this thesis.

Lemma 2.1 For any real number z such that |z| ≤ 4
7
,

1 + z ≤ ez ≤ (1 + z)(1 + z2).

Proof. We can express ez as a Taylor series

ez = 1 + z +
z2

2
+

z3

3!
+ . . . =

∞∑

k=0

zk

k!
.

Hence, if z > 0 then ez > 1 + z. For the other inequality note that, since

z < 1,

ez ≤ 1 + z +
z2

2
+ z3

(
1

3!
+

1

4!
+ . . .

)

= 1 + z +
z2

2
+ z3

(

e −
(

1 +
1

1!
+

1

2!

))

.

Hence,

ez ≤ 1 + z +
z2

2
+ (e − 2.5)z3

≤ (1 + z)

(

1 +
z2

2

)

.

10



If z < 0 we can write ez as e−|z|. Set x = |z|, then e−x > 1 − x is again

obvious (implying ez > 1 + z). Also,

e−x = 1 − x +
x2

2
− x3

3!
+

x4

4!
−

∞∑

k=3

(

x2k−1

(2k − 1)!
− x2k

(2k)!

)

.

We can thus write

e−x ≤ 1 − x +
x2

2
− x3

3!
+

x4

4!
,

since the rightmost sum is positive for x < 1. Now, since 1− x
4
≥ 3

4
for x < 1,

we can write

x3

3!
− x4

4!
=

x3

3!

(

1 − x

4

)

≥ x3

8
.

Therefore,

e−x ≤ 1 − x +
x2

2
− x3

8
= 1 − x + x2

(
1

2
− x

8

)

.

Since x ≤ 4
7
,
(

1
2
− x

8

)

≤ (1 − x) and so

e−x ≤ 1 − x + x2(1 − x).

In other words, since z = −x, we can write e−x = ez ≤ (1 + z)(1 + z2).

Lemma 2.2 For any real number y such that |y| < 1
2
,

y − y2

2
+

y3

3
− y4

2
≤ log(1 + y) ≤ y − y2

2
+

y3

3
.

In particular, if y tends to zero, we have log(1 + y) = y − y2

2
+ o(y2).

Proof. For any real number y with |y| < 1,

log(1 + y) =
∞∑

k=1

(−1)k+1yk

k
. (2.1)
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The upper bound on log(1 + y) for y > 0 comes from discarding all terms for

k ≥ 4 (notice that since y < 1, the terms in the sum are strictly decreasing in

size). We can also obtain a lower bound by discarding all terms of equation

(2.1) for k ≥ 5 giving

log(1 + y) ≥ y − y2

2
+

y3

3
− y4

4
,

which is greater than the stated lower bound.

Similarly, for negative y and z = |y|,

log(1 + y) = log(1 − z) = −
∞∑

k=1

zk

k
.

Hence the upper bound holds trivially for any non-negative z < 1. As for

the lower bound, we can write

log(1 − z) ≥ −z − z2

2
− z3

3
− 1

4

∞∑

k=4

zk.

= −z − z2

2
− z3

3
− z4

4(1 − z)

≥ −z − z2

2
− z3

3
− z4

2
,

(where the second line uses the fact that
∑∞

k=0 zk = 1
1−z

, and the third uses

that z ≤ 1/2). The result follows by substituting back y = −z.

Let Hn = 1+ 1
2
+. . .+ 1

n
be the nth Harmonic number. The following result

gives an estimate on the difference Hn − Hm for sufficiently large integers n

and m.

Lemma 2.3 For all sufficiently large integers n and m, with n > m,

Hn − Hm = log
(

n

m

)

− n − m

2mn
+ O

(
1

m2

)

.
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Proof. The result follows from the well-known asymptotic expression (see

for instance [36, Equation (9.28)])

Hn = log n + γ +
1

2n
− 1

12n2
+

1

120n4
+ O

(
1

n6

)

,

where γ = 0.57721 . . . is the Euler-Mascheroni constant. By the definition of

O() there must be positive a constant C such that

Hn − log n − γ − 1

2n
≤ − 1

12n2
+

1

120n4
+

C

n6
< −C1

n2

for some positive constant C1 and n sufficiently large. Furthermore

Hn − log n − γ − 1

2n
≥ − 1

12n2
− C

n6
≥ −C2

n2

again for n sufficiently large. Therefore

log n + γ +
1

2n
− C2

n2
≤ Hn ≤ log n + γ +

1

2n
− C1

n2
.

Now we look at Hn − Hm. First

Hn − Hm ≤ log
n

m
− n − m

2nm
− C1

n2
+

C2

m2
≤ log

n

m
− n − m

2nm
+

C2

m2

for sufficiently large n and m, with m ≤ n. Furthermore, by the same

argument,

Hn − Hm ≥ log
n

m
− n − m

2nm
− C2

n2
.

The result follows.
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2.2.2 Multinomial Coefficients

For any positive integer n and non-negative integers m1, . . . , mt where

∑t
i=1 mi = n, the multinomial coefficient

(

n

m1, · · · , mt

)

=
n!

∏t
i=1 mi!

counts the number of ways in which n objects can be deposited into t bins

such that for all i ∈ {1, . . . , t}, bin i contains mi objects. We always assume

that t ≥ 2. When t = 2, instead of writing
(

n
m1,m2

)

we will use the equivalent

binomial coefficient notation

(

n

m1

)

=
n!

m1! (n − m1)!

(note that m2 = n − m1).

In Chapter 5 we will need to approximate particular multinomial coeffi-

cients near to “central” terms of the form

(

n
n
t
, · · · , n

t

)

(to avoid fiddling with integer parts assume that n/t is an integer). More

specifically let c be a positive real number and consider multinomial coeffi-

cients of the form:
(

ctn

m1, · · · , mt

)

(where we assume, for definiteness, that cn is an integer). To develop our

approximations it is convenient to define, for each i ∈ {1, . . . , t}, xi = mi−cn

14



and work with expressions like

(

ctn

cn + x1, · · · , cn + xt

)

instead. Notice that xi ∈ {−cn, . . . , ctn − cn} and
∑t

i=1 xi = 0. For each

tuple (x1, . . . , xt) satisfying these constraints define

fn(x1, . . . , xt) =
t∏

i=1

(cn)!

(cn + xi)!
(2.2)

(the dependence of f on c will not be shown as in all relevant cases c will be

a fixed constant). Notice that, since xt = −∑t−1
i=1 xi, fn(x1, . . . , xt) is really

describing a function of t − 1 (rather than t) variables (see Figure 2.1).

Furthermore we have

(

ctn

cn, . . . , cn

)

fn(x1, . . . , xt) =

(

ctn

cn + x1, . . . , cn + xt

)

. (2.3)

Thus fn(x1, . . . , xt) can be used to express an arbitrary multinomial coeffi-

cient (on the right-hand side of equation (2.3)) in terms of the central one.

We will soon prove asymptotic bounds on fn(x1, . . . , xt), but first we

study a particular expression that will be used for this proof. Let h be a

function defined on ZZ
+, the set of positive integers. Consider the function

Sp
n,h(n)(x, y) defined as follows for p ∈ {1, 2} and any integer x and y, with

y ∈ {1, . . . , x + 1}:

Sp
n,h(n)(x, y) =

1

(h(n) + x)p
+

1

(h(n) + x − 1)p
+ . . . +

1

(h(n) + x − y + 1)p

=
y−1
∑

k=0

1

(h(n) + x − k)p
.

Lemma 2.4 Let n, x, and y be non-negative integers, with y ∈ {1, . . . , x+1}.
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Figure 2.1: The red grid represents the set of triples (x1, x2, x3) in the domain
of f6 for c = 1. In this case each xi ranges in the set R = {−6, . . . , 12},
x3 = −x1 − x2, and values of x1 and x2 such that x1 + x2 > 6 are disallowed
because they force x3 out of R.

If h : ZZ
+ → ZZ

+ with h(n) = Θ(n), and x = o(h(n)), then there exists some

positive constant C such that

S2
n,h(n)(x, y) ≤ Cy

h(n)2

for n sufficiently large.

Proof. We can give an upper bound on S2
n,h(n)(x, y) by bounding above all
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terms in the sum by the term with the smallest denominator,

S2
n,h(n)(x, y) ≤ y

(h(n) + x − y + 1)2
=

y

h(n)2

(

h(n)

h(n) + x − y + 1

)2

.

Since both x and y are o(h(n)), there exists a positive constant C such that

h(n)

h(n) + x − y + 1
< C

for all sufficiently large n, the result follows.

Lemma 2.5 Let n be a positive integer. Let c be a fixed positive real number,

and assume that cn is an integer. Let t be a fixed integer, with t ≥ 2, and let

{x1, . . . , xt} be integers in the domain of fn with max |xi| = o(n). Then

fn(x1, . . . , xt) = exp

{

−
t−1∑

i=1

xi

cn

(
i∑

l=1

xl

)(

1 + O

(

max |xi|
cn

))}

.

Roughly speaking the result implies, via (2.3), that if all xi are much smaller

than n then the multinomial coefficient

(

ctn

cn + x1, · · · , cn + xt

)

is very close to the central term

(

ctn

cn, . . . , cn

)

.

Notice that the exponent of the exponential function in the statement above

is always non-positive as

t−1∑

i=1

xi

(
i∑

l=1

xl

)

=

(
∑t−1

i=1 xi

)2

2
+

∑t−1
i=1 x2

i

2
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and the square of any real number is always non-negative.

Proof of Lemma 2.5. We start by noticing that each tuple (x1, . . . , xt)

in the domain of fn must include both positive and negative values. As-

sume, without loss of generality, that x1, . . . , xi0 are all non-negative and

xi0+1, . . . , xt−1 are all negative.

An equivalent way of stating the condition that
∑t

i=1 xi = 0 is xt =

−∑t−1
i=1 xi. This can be rewritten as xt = x−

t + x+
t where x−

t is the negative1

part of xt and x+
t is the positive part with the two terms defined as:

x−
t = −

i0∑

i=1

xi, x+
t = −

t−1∑

i=i0+1

xi.

The terms in the product given in equation (2.2) can be rewritten as

xi−1
∏

k=0

1

cn + xi − k
For positive xi,

|xi|−1
∏

k=0

cn − k For negative xi.

The term for i = t is equal to (cn)!
(cn+xt)!

which can be rewritten as

(cn)!

(cn + x−
t )!

(cn + x−
t )!

(cn + xt)!
=






|x−
t |−1
∏

k=0

cn − k











x+
t −1
∏

k=0

1

cn + xt − k




 .

Without loss of generality, we can therefore write fn(x1, . . . , xt) as

the product of two functions which we denote by f+(x1, . . . , xt) and

f−(x1, . . . , xt) where

f+(x1, . . . , xt) =

(
i0∏

i=1

xi−1∏

k=0

1

cn + xi − k

)





|x−
t |−1
∏

k=0

cn − k




 , (2.4)

1Or, to be more precise, “non-positive”.
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(where the first product is over all those indices i ∈ {1, . . . , i0} for which xi

is strictly positive), and

f−(x1, . . . , xt) =





t−1∏

i=i0+1

|xi|−1
∏

k=0

cn − k










x+
t −1
∏

k=0

1

cn + xt − k




 . (2.5)

We will derive an asymptotic expression for fn(x1, . . . , xt) by studying f+

and f− in turn.

We first look at f+(x1, . . . , xt). By the way in which x−
t is defined, there

are exactly the same number of terms in either of the two products defining

f+. As such these can be merged together to give a single product as follows

f+(x1, . . . , xt) =
∏

i

xi−1∏

k=0

(

cn −∑i−1
l=1 xl − k

cn + xi − k

)

=
∏

i

xi−1∏

k=0

(

1 −
∑i

l=1 xl

cn + xi − k

)

.

To simplify notations call Ti =
∑i

l=1 xl. If xi ≤ 4
7t

(cn − t) for all

i ∈ {1, . . . , i0} then Ti ≤ 4
7
(cn − t), which in turn implies that for all

k ∈ {0, . . . , xi − 1}
∣
∣
∣
∣

Ti

cn + xi − k

∣
∣
∣
∣ ≤

4

7
.

Thus, using repeatedly Lemma 2.1, and noticing that Ti does not depend on

k, we have

f+(x1, . . . , xt) ≤ exp

{

−
i0∑

i=1

TiS
1
n,cn(xi, xi)

}

(2.6)

and, for large n,

f+(x1, . . . , xt) ≥ exp

{

−
i0∑

i=1

TiS
1
n,cn(xi, xi)

}
∏

i

xi−1
∏

k=0

(

1 +
(

Ti

cn + xi − k

)2
)−1

≥ exp

{

−
i0∑

i=1

TiS
1
n,cn(xi, xi)

}

exp

{

−
i0∑

i=1

(Ti)
2S2

n,cn(xi, xi)

}

.(2.7)
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Next, we approximate S1
n,cn(xi, xi). Notice that, for each i ∈ {1, . . . , i0},

if xi > 0 then S1
n,cn(xi, xi) is equal to Hcn+xi

−Hcn. Therefore, using Lemma

2.3, we have

S1
n,cn(xi, xi) = log

(

1 +
xi

cn

)

+ O

(

xi

(cn)2

)

.

As long as xi < cn
2

, by Lemma 2.2 we get

S1
n,cn(xi, xi) ≥ xi

cn
− 1

2

(
xi

cn

)2

+
1

3

(
xi

cn

)3

− 1

2

(
xi

cn

)4

+ h1
n(xi)

S1
n,cn(xi, xi) ≤ xi

cn
− 1

2

(
xi

cn

)2

+
1

3

(
xi

cn

)3

+ h2
n(xi)

(here we assume that h1
n(x) = O

(
xi

(cn)2

)

and h2
n(x) = O

(
xi

(cn)2

)

). From this,

as xi = o(n) for all i ∈ {1, . . . , i0}, we get2

S1
n,cn(xi, xi) =

xi

cn
+ O

((
xi

cn

)2
)

since the term (xi/cn)2 dominates all others. Thus

exp

{

−
i0∑

i=1

TiS
1
n,cn(xi, xi)

}

= exp

{

−
i0∑

i=1

Ti
xi

cn
+

i0∑

i=1

TiO

((
xi

cn

)2
)}

. (2.8)

We now concentrate on the right-most term in the lower bound on f+ in

(2.7). By Lemma 2.4, for large n, S2
n,cn(xi, xi) can be bounded above by

Cxi

(cn)2
,

2If 0 < lim xi/n < +∞ then all terms in the bounds must be added up and we get
much weaker bounds

K1 + h1
n(xi) ≤ S1

n,cn(xi, xi) ≤ K2 + h2
n(xi).
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for some positive constant C. Therefore

exp

{

−
i0∑

i=1

(Ti)
2 S2

n,cn(xi, xi)

}

≥ exp

{

−C
i0∑

i=1

(Ti)
2

(

xi

(cn)2

)}

.

Notice that, since
∑

i∈I xi ≤ |I|max |xi| (here I is any subset of {1, . . . , i0}),

the right-hand side in the expression above is at least as large as

exp

{

−Ct max |xi|
i0∑

i=1

Ti
xi

cn2

}

. (2.9)

Equation (2.8) and the bound (2.9) imply that

f+(x1, . . . , xt) = exp

{

−
i0∑

i=1

Ti
xi

cn
+

i0∑

i=1

TiO

(

xi max |xi|
cn2

)}

. (2.10)

Next we turn to f−(x1, . . . , xt). As with x−
t , x+

t is defined in such a way

that there will be the same number of terms in each product and so the two

products can be merged into one

f−(x1, . . . , xt) =





t−1∏

i=i0+1

|xi|−1
∏

k=0

cn − k










x+
t −1
∏

k=0

1

cn + xt − k






=
t−1∏

i=i0+1

|xi|−1
∏

k=0

cn − k

cn + xt −
∑t−1

l=i+1 |xl| − k

=
t−1∏

i=i0+1

|xi|−1
∏

k=0

cn − k

cn − Ti − k

=
t−1∏

i=i0+1

|xi|−1
∏

k=0

(

1 +
Ti

cn − Ti − k

)

,

where Ti =
∑i

l=1 xl. By repeatedly using Lemma 2.1, and noticing that Ti

does not depend on k, we have

f−(x1, . . . , xt) ≤ exp







t−1∑

i=i0+1

TiS
1
n,cn (−Ti, |xi|)






(2.11)
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and, for large n,

f−(x1, . . . , xt) ≥

≥ exp







t−1∑

i=i0+1

TiS
1
n,cn (−Ti, |xi|)







t−1∏

i=i0+1

|xi|−1
∏

k=0

(

1 +
(

Ti

cn − Ti − k

)2
)−1

≥ exp







t−1∑

i=i0+1

TiS
1
n,cn (−Ti, |xi|)






exp






−

t−1∑

i=i0+1

(Ti)
2S2

n,cn (−Ti, |xi|)





.

(2.12)

We will approximate the bounds on f−(x1, . . . , xt) as we did with

f+(x1, . . . , xt). Notice that, for each i ∈ {i0 +1, . . . , t−1}, S1
n,cn (−Ti, |xi|) =

Hcn−Ti
− Hcn−Ti−|xi|. Therefore, using Lemma 2.3, we have

S1
n,cn(−Ti, |xi|) = log

(

1 +
|xi|

cn − Ti − |xi|

)

+ O

(

xi

(cn)2

)

.

Then, using Lemma 2.2 to approximate the logarithm, we get

S1
n,cn(−Ti, |xi|) =

|xi|
cn − Ti − |xi|

− x2
i

2(cn − Ti − |xi|)2
+ o

(

x2
i

(cn)2

)

=
|xi|
cn

+ O

((
xi

cn

)2
)

.

Thus, remembering that for all i ∈ {i0 + 1, . . . , t − 1}, xi < 0, and therefore

|xi| = −xi

exp







t−1∑

i=i0+1

TiS
1
n,cn (−Ti, |xi|)






= exp






−

t−1∑

i=i0+1

Ti
xi

cn
+

t−1∑

i=i0+1

TiO

((
xi

cn

)2
)





.

(2.13)

Finally, as before, we bound the right-most term in the lower bound on
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f−. By Lemma 2.4, for large n, S2
n,cn(−Ti, |xi|) is at most

C2|xi|
(cn)2

,

for some positive constant C2. Therefore

exp






−

t−1∑

i=i0+1

(Ti)
2S2

n,cn (−Ti, |xi|)





≥ exp






−C2

t−1∑

i=i0+1

(Ti)
2 |xi|
(cn)2






.

Notice that, since
∑

i∈I xi ≥ −|I|max |xi| (here I is any subset of {i0 +

1, . . . , t − 1}), the last expression is no larger than

exp






−C2t max |xi|

t−1∑

i=i0+1

Ti
|xi|
cn2






. (2.14)

Remembering that for all i ∈ {i0 + 1, . . . , t − 1}, xi < 0, and therefore

|xi| = −xi, equation (2.13) and the bound (2.14) imply that

f−(x1, . . . , xt) = exp






−

t−1∑

i=i0+1

Ti
xi

cn
+

t−1∑

i=i0+1

TiO

(

xi max |xi|
cn2

)





. (2.15)

We now have asymptotic bounds for both f+(x1, . . . , xt) and f−(x1, . . . , xt).

By multiplying these together we get that

fn(x1, . . . , xt) = exp









−
i0∑

i=1

Ti
xi

cn
−

t−1∑

i=i0+1

Ti
xi

cn





(

1 + O

(

max |xi|
cn

))






= exp

{

−
t−1∑

i=1

Ti
xi

cn

(

1 + O

(

max |xi|
cn

))}

.
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2.2.3 The Change of Variables Theorem

In Chapter 5, in order to get precise estimates on the higher moments of a

particular random variable related to the number of proper empire colourings

of a random tree, we will need to solve expressions in the form

∫

D
e−

1
2
yAyT

dy,

where D is some subset of IRm, for some fixed m, and A is an m times m

matrix with real coefficients. We will do this by changing the variables over

which the function is integrated so as to give a more easily evaluated integral.

The forthcoming presentation follows [7, Chapter XI, Section 32].

When the variables of a function to be integrated are changed, this can

cause the content of the integration region D to be distorted. For this reason

it is necessary to consider the extent of this distortion in order to calculate

correctly the original integral.

Let F1(x) be a function integrated on t variables x = {x1, . . . , xt} and

F2(y) an equivalent function on variables y = {y1, . . . , yt} where each xi (1 ≤

i ≤ t) can be expressed in terms of the y variables using a transformation

xi = fi(y). To transform F1(x) into F2(y) and preserve the content of

the integration region we need the Jacobian Matrix corresponding to this

transformation. This matrix is of the form (here f stands for the vector of
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functions (f1(y), . . . , ft(y))):

Jf(y) =


















∂x1

∂y1

∂x1

∂y2
. . . . . . ∂x1

∂yt

∂x2

∂y1

∂x2

∂y2
. . . . . . ∂x2

∂yt

...
. . .

...

...
. . .

...

∂xt

∂y1

∂xt

∂y2
. . . . . . ∂xt

∂yt


















.

Thus a definite integral involving F1(x) can be transformed into one involving

F2(y) using the determinant of J to preserve the content of the integration

region:
∫

D
F1(x)dx =

∫

f−1(D)
F2(y)|Jf(y)|dy. (2.16)

The following result is the form of the change of variable theorem that

will be needed in Chapter 5.

Lemma 2.6 For each positive integer m, if A is an m times m non-singular

positive-definite real symmetric matrix with eigenvalues λ1, . . . , λm, then

∫

IRm
e−

1
2
yAyT

dy = (2π)
m
2

m∏

i=1

1√
λi

.

Proof. By the eigen decomposition theorem (see [12, pp 161–162]), if A

is a square matrix, B is a matrix of eigenvectors of A and Λ is a diagonal

matrix with the corresponding eigenvalues on the diagonal then

A = BΛB−1. (2.17)

Furthermore, if A is symmetric then B is an orthogonal matrix (and therefore

B−1 = BT ). Note that z = yB defines a particular variable transformation
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fB. Therefore, according to the method described above, we may write

∫

IRm
e−

1
2
yAyT

dy =
∫

IRm
e−

1
2
yBΛBT yT

dy =
∫

IRm
e−

1
2
zΛzT |JfB(z)|dz.

However, since B is orthogonal, the Jacobian determinant is 1 and so

∫

IRm
e−

1
2
yAyT

dy =
∫

IRm
e−

1
2
zΛzT

dz.

This can now be converted to a symmetric equation using the diagonal matrix

L in which each diagonal element is equal to 1 divided by the square root of

an eigenvalue of A. Clearly LΛLT = I and so

∫

IRm
e−

1
2
zΛzT

dz = |J|
∫

IRm
e−

1
2
wLΛLT wT

dw

= |J|
∫

IRm
e−

1
2
wIwT

dw

= |J|
∫

IRm
e−

1
2

∑
w2

i dw. (2.18)

where w = zL−1 and |J| is the Jacobian determinant of this transformation.

Note that L−1 is the diagonal matrix with (L−1)i.i =
√

λi, the Jacobian

matrix of the transformation is therefore equal to L and thus

|J| =
m∏

i=1

1√
λi

. (2.19)

Finally, it is well-known that

∫

IRm
e−

1
2

∑
w2

i dw = (2π)
m
2 . (2.20)

The result now follows from (2.18) and (2.20).
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2.3 Probability Theory

For all common probability theoretic terms see, for example, [38]. Here we

quickly recall a few important definitions and results.

Let Qn be an event describing a property of a random combinatorial

structure depending on some integer parameter n. To say that Qn holds

a.a.s., or asymptotically almost surely means that Pr[Qn] → 1 as n → ∞.

We will use B(n, p) and Po(λ) to denote the binomial and Poisson prob-

ability distributions, respectively. If L is a probability distribution then

X ≈ L denotes the fact that X is a random variable with distribution L.

The reader is referred to [38, Chapter VII] for the definitions of various modes

of convergence that are relevant to sequences of random variables. Here we

just introduce a couple of notations that will be used in the rest of the thesis.

More specifically, if X1, X2, . . . is a sequence of random variables, Xn
D→ Y

(resp. Xn
D→ L) denotes the fact that the sequence Xn converges in distri-

bution to the random variable Y (resp. to a(ny) random variable Y with

distribution L).

If X is a discrete random variable with values x1, x2, . . . , xn and for each

i ∈ {1, . . . , n}, Pr[X = xi] = pi, then the first moment or expectation of X,

EX, can be computed as the sum

EX =
n∑

i=1

pixi. (2.21)

The kth moment of X, denoted EXk is the expectation of the kth power of

X. In symbols we write

EXk =
n∑

i=1

pix
k
i . (2.22)

The variance of X, represented VarX is a measure of how far the possible
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values of X are spread out from its expected value. VarX can be calculated as

the second moment of X minus the square of its expectation. The standard

deviation of X is the square root of its variance.

The basic probabilistic tools that will be used in the forthcoming chapters

to prove many of our results are Markov’s and Chebyshev’s inequalities.

Markov’s inequality states that if X is a non-negative random variable

with finite expectation, then

Pr[X ≥ t] ≤ EX

t
for any t > 0. (2.23)

Chebyshev’s inequality states that for any random variable X where VarX

exists, for any t > 0

Pr[|X − EX| ≥ t] ≤ VarX

t2
. (2.24)

A consequence of Chebyshev’s inequality is that if EX > 0, then

Pr[X = 0] ≤ VarX

(EX)2
. (2.25)

Since the variance of X can be rewritten as EX2−(EX)2, the previous result

can be expressed as:

Pr[X = 0] ≤ EX2

(EX)2
− 1. (2.26)

And so by finding the first and second moments of X it is possible to give

bounds on the probability that X will be equal to zero.

The task mentioned above may be further simplified. If we know that

the random variable X may be decomposed into the sum of elementary 0-1
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random variables such that we can write X =
∑

α∈A Iα then, by linearity,

EX =
∑

α∈A

Pr[Iα = 1] (2.27)

and in fact, for any k ≥ 1,

EXk =
∑

Pr[Iα1 = 1 ∧ . . . ∧ Iαk
= 1], (2.28)

where the sum ranges over all possible k-tuples of values in A. Thus, for

instance, when we look at the number of empire colourings of random trees,

it will be convenient to compute the second moment using (2.28) rather than

the definition (2.22).

In Chapter 5 it will also be convenient to use a stronger version of Cheby-

shev’s inequality coming from the Cauchy-Schwarz inequality. Under the

same assumptions of (2.24)

Pr[X 6= 0] ≥ (EX)2

EX2
(2.29)

(this is mentioned for instance in [48, Equation (3.3)]).

2.3.1 The Method of Moments

In Chapter 3 we will show that the number of certain structures within a

random tree tends to a Poisson distribution. In this section we state two

Theorems that will be used to do this.

Let X is a random variable. If the moments of X are all finite and every

random variable with the same moments as X has the same distribution as

X, then the distribution of X is said to be determined by its moments. The

following theorem states an important property of all distributions deter-
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mined by their moments.

Theorem 2.7 Let Z be a random variable with distribution determined by

its moments. If X1, X2, . . . are random variables such that for all k > 0,

E(Xn)k → EZk as n → ∞ then Xn converges in distribution to Z.

For any random variable Sn, let E(Sn)t be the tth factorial moment of Sn,

defined as

E(Sn)t = E[Sn(Sn − 1) . . . (Sn − t + 1)].

The following variant of Theorem 2.7 is best suited to prove that the distri-

bution of a certain sequence of random variables depending on some integer

parameter n, approaches a Poisson distribution as n tends to infinity.

Theorem 2.8 Given a random variable Sn depending on n, if λ ≥ 0 is such

that as n → ∞

E(Sn)t → λt,

for all t ≥ 1 then Sn
D→ Po(λ).

Proofs of Theorems 2.7 and 2.8 can be found in, for example, [23, Theorem

4.5] and [48, Corollary 6.8] respectively.

The use of Theorems 2.7 or 2.8 aimed at finding the asymptotic distribu-

tion of some random variable, goes under the name the method of moments.

Any application of the method of moments is made possible by the ability to

estimate the moments of a particular random variable. Often the following

approach works. If S is a random variable, and we can write S =
∑

α∈A Zα,

where, for each α ∈ A, Zα is a random indicator, then E(S)t satisfies

E(S)t =
∗∑

α1,...,αt

Pr[Zα1 = . . . = Zαt = 1], (2.30)
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where
∑∗

α1,...,αt
is a sum over all sequences of distinct indices α1, . . . , αt ∈ A.
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Chapter 3

Models and Their Structural

Properties

The aim of this Chapter is twofold. We first give a precise definition of the

problem we are studying and the graph models we will work with. Then

we investigate a number of combinatorial properties of a particular type

of random graph. This investigation is related to the study of the empire

colourability of random trees since the problem of colouring the empires in

a random tree is equivalent to that of colouring the vertices of the random

graphs studied here. Thus understanding the structure of such graphs may

help in designing good colouring strategies.

3.1 The Empire Colouring Problem

In his 1890 paper [43] in which he refuted a previous “proof” of the Four

Colour Theorem, Percy John Heawood mentioned an extension of the map

colouring problem which has since come to be known as the empire colouring

problem.
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“The Problem, however, may be extended in another direction

without departing from ordinary surfaces. In actual maps a

“county” often consists of two detached portions, which are nev-

ertheless required to be coloured similarly. Even one such divided

county may require a fresh colour.”

In the same paper, Heawood went on to show that if each county consists of

at most r portions then 6r colours are sufficient to give a proper colouring

of the map. It was later shown that for all r > 1 there exist maps requiring

this many colours.

In graph-theoretic terms, given a graph G, a partition P of the vertices

of G and a positive integer s, the empire colouring problem asks if there

exists an s-colouring of G assigning distinct colours to all adjacent vertices

belonging to different “empires” - sets of vertices in P - but using the same

colour for all elements of each block of P . From now on an s-colouring will

be an s-empire colouring unless otherwise stated.

2 3t t1 4t t
6 5

t tJ
J
JJ�
�
�

��
��

�
�
�   
  

1 2t t5 4t t
6 3

t tJ
J
JJ�
�
�

��
��

�
�
�   
  

2 3t t1 4t t
6 5

t t���J
J
JJ

Figure 3.1: Simple examples of planar graphs whose vertex set is partitioned
into three empires each containing two vertices (vertices that are closest to
each other belong to the same empire).

Figure 3.1 shows three examples of graphs (in fact trees) whose vertex

set has been partitioned into empires of size two. In the rest of the thesis

we will be solely concerned with the case in which all empires contain the

same number of vertices. Also, notice that the first two graphs have the

same structure but different vertex labels. For the purpose of studying the
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empire colouring problem the actual labels of the vertices are unimportant

in the following sense: for any colouring of the leftmost graph there is a

corresponding colouring of the middle graph obtained by giving each vertex

the same colour as the vertex in its place in the first graph.

Let B = (Bi)i=1,...,n/r be the partition of V (G) into blocks B1, B2, . . .,

such that Bk contains vertices (k − 1)r + 1, (k − 1)r + 2, . . . , kr of G. For

each i ∈ {1, . . . , r}, we will denote by ki the vertex labelled (k − 1)r + i in

Bk. Note that, for r = 1, the blocks contain just a single vertex, and, for

r > 1 we always assume (even when we don’t state it explicitly) that n/r is

an integer1. From now on an instance of the empire colouring problem will

be a triple (G, r, s) where G is a graph, and r and s are positive integers,

with r ≤ n and such that n/r is a positive integer giving, respectively, the

size of the empires in B, and the number of available colours. C(G, r, s) will

denote the set of s-colourings for the given instance.

The empire colouring problem is a variant of the classical graph colouring

problem that has received less attention and, nevertheless, has a number

of interesting features. As it will become apparent very soon the problem

reduces to classical graph colouring but the two problems are not equivalent.

Also, the empire colouring problem is related to the colouring of graphs of

given thickness (the reader is referred to the work of Hutchinson [46] for

further details).

Given a graph G on n vertices, its r-reduced graph, Rr(G) is a graph on

vertices labelled 1, 2, . . . , n/r having an edge connecting vertices i and j for

each edge in G connecting a vertex u ∈ Bi to a vertex v ∈ Bj . We will

also say that G reduces to graph H or that H is the reduced graph of G,

if H = Rr(G), for some r ≥ 1. Note that Rr(G), in general, may contain

1A similar technical problem arises in the study of random r-regular graphs on n vertices
(see for instance [48, Chapter IX]) where rn must be even for the graphs to be defined.
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loops (if two vertices in Bi are adjacent) and parallel edges (if there are two

different edges in E(G) each joining a vertex in Bi to a vertex in Bj). Notice

also that if r = 1, reducing each empire to a single vertex has no effect and

so R1(G) ≡ G. Figure 3.2 shows the 2-reduced graphs (vertex labels not

displayed for clarity) corresponding to the graphs in Figure 3.1.
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Figure 3.2: The 2-reduced graphs of the graphs in Figure 3.1: two of those
graphs have the same reduced graph (the one on the left-hand side), the
other graph reduces to a graph with a loop. Vertex labels have been omitted
for clarity.

Given a colouring of Rr(G), we can easily define a(n empire) colouring

of G — for all 1 ≤ k ≤ n
r

give every vertex in Bk the colour of vertex k

in Rr(G). Thus, finding an element of C(G, r, s) is equivalent to deciding

whether Rr(G) admits a (standard) colouring using s distinct colours. This

fact was exploited by Heawood to prove that 6r colours are always enough to

solve an instance of the empire colouring problem with empires consisting of

at most r countries. More specifically, the r-reduced graph of a planar graph

on n vertices has n/r vertices and, obviously, at most 3n−6 edges. Thus the

average degree of any induced subgraph of G is less than 6r. This implies

that there exists a vertex v in such graph of degree less than 6r. Removing

v leaves a smaller graph with the same small average degree property, which

can be coloured recursively. Once this is done no more than 6r − 1 colours

will be in the neighbourhood of v. Hence v can be given a (spare) colour

from a palette of 6r colours.
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In the remainder of this chapter we analyse a number of additional struc-

tural properties of reduced graphs. Before doing that we need to make our

probabilistic setting more precise.

3.2 Prüfer Codes

From now one we will concentrate mostly on instances of the empire colour-

ing problem that consist of labelled trees. We next describe a well-known

method of generating trees that will be useful in our analysis as it allows us

to uniquely identify any tree with a string of integers.

Let P = {p1, . . . , pn−2} be an ordered sequence of n − 2 integers over

{1, . . . , n}, called a Prüfer code [60], and let Kn be the edgeless graph on n

vertices. We can associate a tree T (P ) to the given sequence by the following

method:

Algorithm PruferToTree(P )

Set T (P ) = Kn.

For all i, set Used[i] = false.

for i = 1 to n − 2 do

Set v = first vertex that does not appear in {pi, . . . , pn−2} and

with Used[v] = false.

Add edge (v, pi) to T (P ).

Set Used[v] = true.

end for

Set u and v as the two remaining vertices with Used[u] = Used[v]

= false.

Add edge (u, v) to T (P ).

Return T (P ).
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Notice that the process defines indeed a bijection between the set of

strings of length n − 2 over the alphabet {1, . . . , n} and the set of labelled

trees on n vertices. Also, following this method, the degree of a vertex v in

Tn(P ) is equal to the number of times it appears in P , plus one.

3.3 Random Graphs

The main results in this thesis concern the size of C(G, r, s) under the as-

sumption that G is a tree sampled uniformly at random among all trees on

n vertices2. From now on Tn will denote a random labelled tree on n vertices

(as defined for instance in [58]).

The rest of this chapter is devoted to the study of a number of structural

properties of Rr(Tn). But what is Rr(Tn)? Strictly speaking since Tn is a

random graph so is its r-reduced graph. More precisely Rr(Tn) will be the

typical element of a particular probability space (Ω,F , Pr). In this space,

Ω is the set of all graphs on n/r vertices. The second element of the triple

(Ω,F , Pr) is just the collection of all subsets of Ω. Finally Pr has the following

definition (here Θn is the set of all trees on n vertices, and H ∈ Ω):

Pr[H ] =
|{T ∈ Θn : Rr(T ) = H}|

nn−2
.

Note that different trees may have the same r-reduced graph, but each tree

corresponds to a single element of Ω. Conversely some graphs do not corre-

spond to any tree, in which case Pr[H ] = 0.

A number of remarks are in order. First, as a minor point, note that the

definition of (Ω,F , Pr) depends on positive integers n and r. Such depen-

2In this thesis we follow Janson et al. [48], and consider a random graph as a graph
generated by some predefined random procedure, formalised as a probability space, and a
mapping from this space into a family of graphs.
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dence will usually be kept implicit. Second, the definition above does not

assign the uniform measure to each element of Ω. It should be stressed that

we are not interested in sampling uniformly at random from Ω. We mentioned

that reduced graphs may help studying the empire colouring problem. This

is true also if we are interested in random instances. However to be able

to translate a result that, say, states that almost all (in the probabilistic

sense) 2-reduced graphs of trees are 3-colourable to a similar empire colour-

ing statement on trees we need to keep track, in probabilistic terms, of the

proportion of trees that correspond to a particular reduced graph. This is

the main reason behind our definition.

In the next section we will consider a number of properties of the r-

reduced graphs of Tn. Although not directly related to colouring these prop-

erties shed some light on the likely structure of Rr(Tn) and may help, in the

future, to devise efficient ways of solving the empire colouring problem, at

least on random trees.

3.4 Structural Properties of Rr(Tn)

In this section we study the degree sequence, the connectivity and the number

of copies of certain subgraphs in Rr(Tn). In particular we will prove that

vertex degrees have (asymptotically) Poisson distribution. We will show

that the connectivity of Rr(Tn) is a.a.s. either r − 1 or r. Finally we will

prove that the distribution of short cycles is also approximately Poisson and

we will obtain results on the presence of small cliques in Rr(Tn). All our

asymptotic results are valid in the limit as n, the number of vertices of the

random tree, tends to infinity.
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3.4.1 Vertex Degrees

If G is a graph, and v is a vertex in G, let degG(v) be the degree of v in G,

the number of vertices adjacent to v and let ∆(G) = maxv∈V (G) degG(v). For

any non-negative integer k, let Nk(G) be the number of vertices of degree

k in G. We will first look at the distribution of degRr(Tn)(v) for any fixed

vertex v of Rr(Tn). Then we will prove results on ∆(Rr(Tn)).

If Tn is a tree on n vertices, then the average degree of Rr(Tn) is equal to

the number of edges multiplied by two and divided by the number of vertices

giving

2(n − 1)
n
r

= 2r − 2r

n
< 2r.

Also, the degree of any vertex in Rr(Tn) must be at least r as each of the r

vertices in an empire has degree at least 1 in the underlying tree. The next

two lemmas give precise information about the distribution of degRr(Tn)(v)

for any fixed vertex v of Rr(Tn).
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Figure 3.3: A 2-reduced graph of a tree in which a vertex has degree n = 6.
The underlying tree is just a star centred at one of the vertices of empire 3.

Lemma 3.1 Let positive integers k, r, and n be given, with 1 ≤ r ≤ k ≤ n−
2+r. For any v ∈ V (Rr(Tn)) the number of trees Tn for which degRr(Tn)(v) =

k is
(

n − 2

k − r

)

rk−r(n − r)n−2−k+r.
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Proof. Our proof generalises a well known result about trees (See, for in-

stance [24]). We can count the number of trees reducing to graphs in which v

has degree k by working on the associated Prüfer codes (see Subsection 3.2).

As mentioned before, the degree of any vertex in Tn is equal to one plus the

number of times that vertex appears in the Prüfer code.

If the vertex v ∈ V (Rr(Tn)) has degree k then the degrees of the vertices

v1, . . . , vr ∈ V (Tn) representing the countries belonging to the empire denoted

by v must sum to k. As each vertex vi (for i ∈ {1, . . . , r}) appears degTn
(vi)−

1 times in the Prüfer code P representing Tn, the vertices will appear a total

of k − r times in P .

There are
(

n−2
k−r

)

possible choices for the elements of P which are equal to

some vi and rk−r choices for which vi each is equal to. The other n−2−k+r

elements may be equal to any of the n−r other vertices in V (Tn). The number

of codes corresponding to trees for which degRr(Tn)(v) = k is therefore:

(

n − 2

k − r

)

rk−r(n − r)n−2−k+r.

We can now give the distribution of the vertex degrees within Rr(Tn).

Recall from Section 2.3 that X ≈ L denotes the fact that X is a random

variable with distribution L.

Lemma 3.2 Let r be a fixed positive integer, and integer n ≥ r be such that

n/r is a positive integer. Then

degRr(Tn)(v) − r
D→ Po(r)

as n tends to infinity, for any v ∈ V (Rr(Tn)).
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Proof. From Lemma 3.1 it follows that the probability that a vertex in the

r-reduced graph of a random tree has degree k satisfies:

Pr[degRr(Tn)(v) = k] =

(

n − 2

k − r

)(
r

n

)k−r (

1 − r

n

)n−2−k+r

for any k ∈ {r, . . . , n − 2 + r}. In other words the random variable

degRr(Tn)(v) − r ≈ B
(

n − 2,
r

n

)

. (3.1)

The result now follows, for fixed values of r, from the well known relationship

between the binomial and the Poisson distribution (see, for instance, [38,

Chapter III]).

Vertices of minimum degree in Rr(Tn)

As mentioned before, no vertex of Rr(Tn) can have less than r edges attached

to it. The results in this section provide information about the number

Nr(Rr(Tn)) of vertices of minimum degree in Rr(Tn).

Lemma 3.3 Let positive integers r, and n be given, with r ≤ n and such

that n/r is a positive integer. Then

ENr(Rr(Tn)) =
n

r

(

1 − r

n

)n−2

ENr(Rr(Tn))2 = ENr(Rr(Tn)) +

[(
n

r

)2

− n

r

] (

1 − 2r

n

)n−2

.

Proof. Let Er(v) denote the event “degRr(Tn)(v) = r”, and let m = n
r
. We

can write

Nr(Rr(Tn)) =
m∑

v=1

IEr(v) (3.2)
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where IEr(v) is the random indicator for Er(v). By Lemma 3.2, Pr[IEr(v) =

1] =
(

1 − r
n

)n−2
. The result on ENr(Rr(Tn)) follows.

Also, by (2.28), we may write

ENr(Rr(Tn))2 =
m∑

u,v=1

Pr[IEr(v) = 1, IEr(u) = 1].

For any vertex v ∈ V (Rr(Tn)), by Lemma 3.2 the number of trees reducing

to graphs in which v has degree r is (n − r)n−2. Given two distinct vertices

u, v ∈ V (Rr(Tn)) the number of trees reducing to graphs in which both u and

v have degree r is equal to the number of Prüfer codes in which no vertex

from Bu or Bv appears. That is, the number of distinct (n − 2)-element

strings with elements chosen from a set of n − 2r vertices. It is easy to see

that there are (n − 2r)n−2 such strings. Hence

ENr(Rr(Tn))2 = ENr(Rr(Tn)) +

[(
n

r

)2

− n

r

] (

1 − 2r

n

)n−2

.

Theorem 3.4 Let r be a fixed positive integer and integer n ≥ r be such

that n/r is a positive integer. Then

Nr(Rr(Tn)) =
n

r

(

1 − r

n

)n−2

+ o(n) a.a.s.

Proof. For positive integers r and n, with n > r,

(

1 − 2r

n

)n−2

=
(

1 − r

n

)n−2 (

1 − r

n − r

)n−2

=
(

1 − r

n

)n−2 (

1 − r

n

)n−2
(

1 −
(

r

n − r

)2
)n−2

≤
(

1 − r

n

)2(n−2)

.
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From this and Lemma 3.3, it is easy to see that

VarNr(Rr(Tn)) ≤ ENr(Rr(Tn)).

Hence, by Chebyshev’s inequality,

Pr
[

|Nr(Rr(Tn)) − ENr(Rr(Tn))| ≥
√

nENr(Rr(Tn))
]

≤ 1

n

which implies the stated result.

Maximum Degree in Rr(Tn)

It has been shown by J. W. Moon in [57] that as n tends towards infinity,

the expected maximum degree of a random tree on n vertices satisfies

E∆(Tn) ∼ log n

log log n
,

and that for almost all trees on n vertices, and any positive constant ǫ, ∆(T )

satisfies:

(1−ǫ)
log n

log log n

log log log n

log log n
< ∆(Tn)− log n

log log n
< (1+ǫ)

log n

log log n

log log log n

log log n
.

(3.3)

These results can be used to give trivial upper and lower bounds on

the maximum degree of the r-reduced graph of a random tree ∆(Rr(Tn))

— clearly the maximum degree must be at least as much as the maximum

degree of the original tree, but no more than r times this. We can go further

than this and show that the lower bound is often much closer to the truth and

that for constant r, almost all trees have r-reduced graphs with maximum

degree close to log n
log log n

.
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Theorem 3.5 Let r be a fixed positive integer and integer n ≥ r be such

that n/r is a positive integer. Then for any constant ǫ > 0,

(1 − ǫ) log n

log log n
≤ ∆(Rr(Tn)) ≤ (1 + ǫ) log n

log log n
a.a.s.

Proof. The result for r = 1 was proved by Moon in [57]. For r ≥ 2, the

lower bound follows from equation (3.3), as an empire may contain a vertex

of maximum degree of the underlying random tree and r−1 vertices of degree

one. For the upper bound first note that by equation (3.1),

degRr(Tn)(v) − r ≈ B
(

n − 2,
r

n

)

.

We also note that classical Chernoff bounds on the upper tail of a binomial

random variable imply that (see [40]), if S ≈ B(n, p), then

Pr[S ≥ k] ≤
(

np

k

)k

ek−np (3.4)

for any k ≥ pn. Define k as

k =
(1 + ǫ) log n

log log n
− r − 1.

Then, by (3.4)

Pr

[

degRr(Tn)(v) >
(1 + ǫ) log n

log log n

]

≤
(

r log log n

(1 + ǫ) log n

) (1+ǫ) log n

log log n
−r−1

e
(1+ǫ) log n

log log n
−2r−1

≤
(

re

1 + ǫ

) (1+ǫ) log n

log log n

(

log log n

log n

) (1+ǫ) log n

log log n
−r−1

.(3.5)

We can rewrite this by taking both a logarithm and an exponent of terms
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within the equation

(

elog( re
1+ǫ)

) (1+ǫ) log n

log log n







(

elog log log n
) (1+ǫ) log n

log log n

(elog log n)
(1+ǫ) log n

log log n







(

log n

log log n

)r+1

=

=
(

elog n
)

(1+ǫ) log( re
1+ǫ )

log log n







(

elog n
) (1+ǫ) log log log n

log log n

(elog n)
(1+ǫ) log log n

log log n







(

log n

log log n

)r+1

, (3.6)

then by simplifying elog n to n and grouping together all powers of n we can

simplify (3.6) to

(log n)r+1

n
1+ǫ

log log n(log log n−log log log n−log( re
1+ǫ))(log log n)r+1

≤ (log n)r−1

n1+ǫ−C log log log n

log log n

(3.7)

for some positive constant C. Thus, by linearity of expectation, the expected

number of vertices of degree greater than k in Rr(Tn) is at most

(log n)r+1

nǫ−C log log log n

log log n

and the stated upper bound follows by Markov’s inequality.

3.4.2 Edges and Paths

In this subsection we will look at the presence of certain edges and paths

in Rr(Tn). Such a graph obviously contains n
r

vertices, equal to the number

of empires in the tree, and n − 1 edges which may include some loops and

parallel edges. The probability of a given edge e being in the reduced graph

Rr(Tn) depends on the existence of a number of edges in the underlying tree.

A similar assertion applies to longer acyclic paths.

We start by stating a result of J. W. Moon [56] that will be used in a

number of proofs throughout this chapter.
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Lemma 3.6 Given positive integer n, let F be a forest on n vertices con-

sisting of t = n − |E(F )| trees C1, . . . , Ct. The number of labelled trees on n

vertices with F as a subgraph is exactly

nn−|E(F )|−2
t∏

i=1

|V (Ci)|.

The next result follows easily from Lemma 3.6 and the fact that there are

nn−2 labelled trees on n vertices.

Corollary 3.7 The probability that a random labelled tree on n vertices con-

tains a given acyclic path on l edges is l+1
nl .

The r-reduced graph of a tree on n vertices contains an edge between two

vertices u and v if there is at least one edge in the underlying tree connecting

a vertex ui ∈ Bu to a vertex vj ∈ Bv. Similarly, a path {v(1), . . . , v(l+1)} exists

in Rr(Tn) if for any 1 ≤ i ≤ l there is an edge between v(i) and v(i+1), i.e. the

subgraph of the underlying tree induced by {v(i)
1 , . . . , v(i)

r , v
(i+1)
1 , . . . , v(i+1)

r }

contains at least one edge with one end-point in {v(i)
1 , . . . , v(i)

r } and the other

one in {v(i+1)
1 , . . . , v(i+1)

r }. In the next result let E(v(1), . . . , v(l+1)) denote the

event that Rr(Tn) contains an acyclic path v(1), . . . , v(l+1).

Lemma 3.8 Let r, and l be two fixed positive integers, and integer n ≥ r be

such that n/r is a positive integer. Let v(1), . . . , v(l+1) be l fixed empires in

Rr(Tn). Then, for sufficiently large n,

Pr
[

E
(

v(1), . . . , v(l+1)
)]

=
rl+1

nl





l∑

k=1

(r − 1)k−1
∑

c1,...,ck

k∏

j=1

cj



 (1 + o(1))

where the second summation is over all ways to choose k integers ci > 1

summing to l + k.
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Proof. Each of the l edges in the given path in Rr(Tn), may correspond

to one among r2 edges in the underlying random tree. This gives a total of

r2l possible subgraphs of the underlying random tree that will reduce to the

path v(1), . . . , v(l+1). We will call these subgraphs p1, . . . , pr2l. We have that

Pr
[

E
(

v(1), . . . , v(l+1)
)]

= Pr





r2l
⋃

i=1

(pi ∈ Tn)



 . (3.8)

Boole’s inequality tells us that (3.8) can be bounded above by

r2l
∑

i=1

Pr[pi ∈ Tn], (3.9)

and Bonferroni inequalities (see, for example [29, p. 100]) give us a lower

bound of

Pr





r2l
⋃

i=1

(pi ∈ Tn)



 ≥
r2l
∑

i=1

Pr[pi ∈ Tn] −
r2l−1∑

i=1

r2l
∑

j=i+1

Pr[(pi ∪ pj) ∈ Tn]. (3.10)

Finding an exact value for (3.9) and an upper bound on

r2l−1∑

i=1

r2l
∑

j=i+1

Pr[(pi ∪ pj) ∈ Tn] (3.11)

will therefore give us upper and lower bounds on the probability we are

looking for.

We will first find the value of (3.9), by Lemma 3.6, the probability of a

given subgraph pi being in Tn depends on the sizes of the connected com-

ponents of pi. Let k be the number of components and for 1 ≤ j ≤ k let

cj be the number of vertices in component j. We can calculate the number

of possible subgraphs satisfying given values of k and c1, . . . , ck by noticing

that we need to pick one vertex out of r for each of the l + 1 empires in the
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path, and also an additional one of the remaining r − 1 vertices for each of

the empires where two components meet. This gives a total of

rl+1(r − 1)k−1

choices for any given value of k and c1, . . . , ck. If r > 1, we can now sum over

all possible values of k and c1, . . . , ck to give that

r2l
∑

i=1

Pr[pi ∈ Tn] =
l∑

k=1

∑

c1,...,ck

rl+1(r − 1)k−1 1

nl

k∏

j=1

cj

=
rl+1

nl

l∑

k=1

(r − 1)k−1
∑

c1,...,ck

k∏

j=1

cj . (3.12)

We now look for an upper bound on (3.11). By Lemma 3.6, the proba-

bility

Pr[(pi ∪ pj) ∈ Tn]

is maximised when (pi ∪ pj) has only l + 1 distinct edges and each of these

edges is in its own component, hence we have the upper bound

Pr[(pi ∪ pj) ∈ Tn] ≤ 2l+1

nl+1
.

Noting that the sum in (3.11) has
(

r2l

2

)

terms, we now have an upper bound

on (3.11) of
r2l−1∑

i=1

r2l
∑

j=i+1

Pr[(pi ∪ pj) ∈ Tn] ≤
(

r2l

2

)

2l+1

nl+1
. (3.13)

Following (3.10), we can now obtain a lower bound on (3.8) by subtracting

(3.13) from (3.12)

r2l−1∑

i=1

r2l
∑

j=i+1

Pr[(pi ∪ pj) ∈ Tn] ≥ rl+1

nl





l∑

k=1

(r − 1)k−1
∑

c1,...,ck

k∏

j=1

cj



−
(

r2l

2

)

2l+1

nl+1
.
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3.4.3 Vertex Connectivity

We next turn to the (vertex-)connectivity of the graph Rr(Tn). Following [26,

p. 9 – 10], a non-empty graph G is connected if every pair of vertices in G is

linked by a path, and for any positive integer d, G is d-connected if |V (G)| > d

and G − X is connected for any set X ⊆ V (G) with |X| < d. Obviously

Rr(Tn) is connected since the original tree is connected and any path in that

graph is preserved in Rr(Tn). In fact there are likely to be multiple paths

between any two vertices u, v ∈ Rr(Tn) since each consists of r vertices in

the underlying tree and each of the r2 pairs of vertices ui ∈ Bu, vi ∈ Bv are

connected by a path in the tree. Note that by Theorem 3.4 Rr(Tn) a.a.s.

has minimum degree r, hence the removal of the r neighbours of a minimum

degree vertex disconnects the graph and so the connectivity of Rr(Tn) is

a.a.s. at most r. In this section we will show that, for each fixed r ≥ 2,

the probability that Rr(Tn) is r-connected is bounded above by a positive

quantity that approaches a value dependent on r (but independent of n) as

n tends to infinity and, furthermore, that Rr(Tn) is a.a.s. (r − 1)-connected.

The first result will follow as a corollary from an application of the method

of moments (see Section 2.3.1) to estimate the distribution of the number

of vertices of degree r, in Rr(Tn), which are incident to at least one pair of

parallel edges. The second one, for r ≥ 3, will be proved by estimating the

number of trees whose reduced graph would be disconnected by the removal

of a set S of (at most) r − 2 empires and showing that this number is small

compared to nn−2.
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Connectivity Upper Bound

Let v be a vertex in Rr(Tn), we call v a funny vertex if degRr(Tn)(v) = r and

v is incident to a double edge. Notice that the presence of a funny vertex v

in Rr(Tn) implies that the graph is not r-connected, as the removal of the

(at most) r − 1 neighbours of v would leave v as an isolated vertex.

Lemma 3.9 Let r and t be fixed positive integers with r ≥ 2, and n ≥ r

be such that n/r is a positive integer. For any set of t vertices v1, . . . , vt ∈

V (Rr(Tn)), the probability that v1, . . . , vt are funny vertices is

(

r

2

)t

rt (n − rt)n−2−t

nn−2
(1 + o(1))

as n tends to infinity.

Proof. For a vertex in Rr(Tn) to have minimum degree, each of its vertices

must be a leaf in Tn, the number of trees in which v1, . . . , vt are funny is

therefore equal to the number of trees on n − rt vertices

(n − rt)n−rt−2

multiplied by the number of ways to add t groups of r vertices as leaves such

that in each group two vertices have parents in the same empire. For each

group there are
(

r
2

)

choices for the two vertices that are to have parents in

the same empire, and r(n − rt) choices for the parent vertices. For each

1 ≤ j ≤ t the number of ways to choose the vertices within vj and their

parents is therefore
(

r

2

)

r(n − rt).
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We now must count the number of ways to choose parents for the remaining

r − 2 vertices in each group, we can give an upper bound by allowing any

remaining vertex in vj to choose any of the (n − rt) vertices in the tree as

its parent, giving a total of

(

r

2

)

r(n − rt)r−1 (3.14)

choices. This however, may overcount by counting trees more than once if

there is more than one double edge incident to vj. We therefore give a lower

bound by counting only trees in which there is exactly one double edge and

all other vertices have parents in different empires

(

r

2

)

r(n − rt)
r−2∏

l=1

(n − rt − rl) =

(

r

2

)

r(n − rt)r−1(1 + o(1)). (3.15)

It follows from (3.14) and (3.15) that the number of ways to add the rt

vertices such that v1, . . . , vt are funny is

(

r

2

)t

rt(n − rt)rt−t(1 + o(1)).

The result follows by multiplying this by the number of trees on n−rt vertices

and dividing by nn−2.

Let F (Rr(Tn)) be the number of funny vertices in Rr(Tn). Through an ap-

plication of the method of moments, the next result describes the asymptotic

distribution of F (Rr(Tn)).

Theorem 3.10 Let r be a fixed positive integer, with r ≥ 2, and integer

n ≥ r be such that n/r is a positive integer. Then

F (Rr(Tn))
D→ Po

((

r

2

)

e−r

)
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as n tends to infinity.

Proof. For fixed integer t ≥ 1, let E(F (Rr(Tn)))t be the tth factorial

moment of F (Rr(Tn)),

E(F (Rr(Tn)))t =
∗∑

v1,...,vt

Pr[v1, . . . , vt are funny vertices],

where the sum is over all t-tuples of distinct vertices v1, . . . , vt ∈ V (Rr(Tn)).

We can see that the number of ordered t-tuples is
(

n
r

)

t
, and by Lemma

3.9 the probability that all vertices are funny is

(

r

2

)t

rt (n − rt)n−2−t

nn−2
(1 + o(1)).

The tth factorial moment is therefore

E(F (Rr(Tn)))t =
(

n

r

)

t

(

r

2

)t

rt (n − rt)n−2−t

nn−2
(1 + o(1))

=
(

n

r

)t
(

r

2

)t

rt (n − rt)n−2−t

nn−2
(1 + o(1))

=

(

r

2

)t
(n − rt)n−2−t

nn−2−t
(1 + o(1)) (3.16)

If |z| ≤ 4
7
, Lemma 2.1 implies that

ez ≤ (1 + z)(1 + z2) ≤ (1 + z)ez2

,

which with some rearranging gives us that

1 + z ≥ ez−z2

. (3.17)
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Since r and t are fixed, for sufficiently large n we can therefore bound (3.16)

above by
((

r

2

)

e−r

)t

(1 + o(1)),

and below by
((

r

2

)

e−r− r2t
n

)t

(1 + o(1)).

The result follows by Theorem 2.8.

Let φr,n(k) denote the probability that Rr(Tn) contains k ≥ 0 funny

vertices. If Rr(Tn) contains one or more funny vertices, then the removal

of the r − 1 neighbours of one of these vertices would disconnect the graph.

The probability that Rr(Tn) is r-connected can therefore be bounded above

by φr,n(0). The following result is a direct consequence of Theorem 3.10.

Corollary 3.11 Let r be a fixed positive integer with r ≥ 2, and integer

n ≥ r be such that n/r is a positive integer. Then the probability that the

graph Rr(Tn) is r-connected is at most φr,n(0) and furthermore

φr,n(0) → e−(r
2)e−r

as n tends to infinity.

Connectivity Lower Bound

Let m, r and d be fixed positive integers and set n = mr. Let G be a

connected graph3 on m vertices. If, for some d < m − 1, G is not (d + 1)-

connected, then there exists a partition of V (G) into non-empty sets A, B,

and S, such that4 |S| = d and all edges in the graph are either internal to

3As we mentioned before, the r-reduced graph of a tree is always connected.
4We will only consider sets S containing exactly d vertices since if there is a smaller

cut-set then any set formed from this by adding more vertices to it while leaving A and
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Figure 3.4: An example of (A, B, S)-arborescence (left) obtained from the
r-reduced graph of a tree, with r = 2, d = 4, and m = 20. The sets of
blocks S, A, and B are represented as sets of vertices. To avoid cluttering
the picture only the four blocks of S have been represented as rectangles
enclosing two vertices each. The vertices of all blocks in A are to the left of
S, those blocks in B are to the right of S. The example on the right-hand
side describes a more general case in which FA ∪ FB is not a tree.

one of the blocks or join a vertex in S to a vertex in either A or B. If G is

the r-reduced graph of some graph H and G is not (d + 1)-connected, the

subgraph of H induced by the vertices in the blocks in A∪S (resp. B∪S) will

be denoted by FA (resp. FB) and will be such that each of its components

contains at least one vertex in one of the blocks of S. Note that FA∪FB is not

necessarily either connected or simple (see example on the right-hand side of

Figure 3.4), however if FA ∪FB is a tree (this is the case when G = Rr(Tn)),

we call the pair (FA, FB) an (A, B, S)-arborescence. We obtain an upper

bound on the number of trees on n vertices whose r-reduced graph would be

disconnected by the removal of a set S of d vertices by estimating the total

number of (A, B, S)-arborescences definable on a set of n vertices.

Given positive integers d, k, and n, positive integers c1, . . . , ck with

B non-empty will also disconnect the graph.
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∑k
i=1 ci = d, let hn,d(c1, . . . , ck) be the number of forests spanning a set V of

n + d vertices with k components such that, for each i ∈ {1, . . . , k}, the ith

component contains ci > 0 vertices in a given set S ⊆ V of size d and xi

other vertices in V \ S. Then

hn,d(c1, . . . , ck) ≤
(

d

c1, . . . , ck

)
∑

x1,...,xk

((

n

x1, . . . , xk

)
k∏

i=1

(xi + ci)
xi+ci−2

)

,

(3.18)

where the sum is over all k-tuples of non-negative integers x1, . . . , xk summing

to n. Note that equation (3.18) overcounts slightly by counting some trees

twice when ci = cj for some i 6= j.

The total number of (A, B, S)-arborescences on a set of n vertices is at

most

Zn,r,d =

1
2
⌊n

r
−d⌋

∑

b=1





(
n
r

n
r
− b − d, b, d

)
∑

cA,cB

hn−br−dr,dr(c
A
1 , . . . , cA

kA
)hbr,dr(c

B
1 , . . . , cB

kB
)



 ,

(3.19)

where the inner sum is over all ways to choose two non-empty sequences of

positive integers cA
1 , . . . , cA

kA
and cB

1 , . . . , cB
kB

adding up to dr. In the next

section we will prove an upper bound on this quantity that is valid for fixed

values of r ≥ 2 and d < r, and sufficiently large values of n. This in turn

leads to the following result, bounding the number of trees on n = mr vertices

whose r-reduced graph is (r − 1)-connected.

Theorem 3.12 Let r be a fixed positive integer with r > 1. There exists a

positive constant

C ≤ (((r − 2)r)!)222r(r−2)(r − 1)(r−1)r−2r(r−1)2−1

such that, for any fixed ǫ ∈
(

0, r−1
r

)

, if n is sufficiently large, then the number
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of trees Tn for which Rr(Tn) is not (r − 1)-connected is at most Cnn−3+ǫ.

From Theorem 3.12, our result on the typical connectivity of Rr(Tn) fol-

lows as a simple corollary.

Corollary 3.13 For any fixed integer r > 1, the r-reduced graph of a random

tree on n vertices is a.a.s. (r − 1)-connected.

Proof. By the previous Theorem, the number of trees on n vertices with

r-reduced graphs that are not (r−1)-connected is at most Cnn−3+ǫ for some

constant C. The probability that a random tree will have an (r−1)-connected

r-reduced graph is therefore at least

1 − C

n1−ǫ
.

The rest of this section is devoted to the proof of Theorem 3.12. We start

by working on hn,d(c1, . . . , ck).

Lemma 3.14 Let k and d be fixed positive integers. Then for any positive

integer n, for all positive integers c1, . . . , ck with
∑k

i=1 ci = d,

∑

x1,...,xk

(

n

x1, . . . , xk

)
k∏

i=1

(xi + ci)
xi+ci−2 ≤ (n + d)n+d−2.

Proof. Consider the sets of vertices W = {w1, . . . , wn}, S = {u1, . . . , ud}
and for 0 ≤ i ≤ d let di =

∑i
j=1 cj . Then,

(

n

x1, . . . , xk

)
k∏

i=1

(xi + ci)
xi+ci−2

counts the number of trees T1, . . . , Tk, where for 1 ≤ i ≤ k, the tree Ti con-

tains the vertices udi−1+1, . . . , udi
and all vertices in Wi, given some arbitrary
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partition of W into k (possibly empty) subsets W1, . . . , Wk where for each i,

|Wi| = xi. By summing over all x1, . . . , xk we consider all such partitions.

We can connect this sequence of trees by adding an edge (udi−1+1, udi+1)

for every 1 ≤ i ≤ k−1 to obtain a tree T with n+d vertices. By construction,

a different sequence of trees T1, . . . , Tk leads to a different tree T . Thus we

obtain that the number of different sequences of such trees T1, . . . , Tk is less

than or equal to the number of different trees T with n + d vertices, which is

(n + d)n+d−2.

Let r and d be fixed positive integers, with r > 1. For any positive integer

n define

Yn,r,d(a, b) =

(
n
r

a, b, d

)

(ar + dr)ar+dr−2(br + dr)br+dr−2.

By (3.18) and Lemma 3.14,





(
n
r

n
r
− b − d, b, d

)
∑

cA,cB

hn−br−dr,dr(c
A
1 , . . . , cA

kA
)hbr,dr(c

B
1 , . . . , cB

kB
)





is at most

((dr)!)2CYn,r,d

(
n

r
− b − d, b

)

,

where the positive constant C is the number of ways to choose two non-empty

sequences of positive integers cA, cB each summing to dr. This is equal to

(
dr∑

k=1

(

dr − 1

k − 1

))2

,

which is 22dr−2 by the binomial theorem. In what follows we will consider
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Yn,r,d(a, b) as defined on the set of positive integers a and b satisfying a+ b =

n
r
− d.

Lemma 3.14 enables us to simplify our counting. The quantity Zn,r,d can

be bounded above by Xn,r,d

(

1, n
2r

− d
2

)

where

Xn,r,d(b1, b2) = ((dr)!)222dr−2
b2∑

b=b1

Yn,r,d

(
n

r
− b − d, b

)

.

The remainder of our argument is a proof that this quantity is small compared

with nn−2.

To prove Theorem 3.12 we will split Xn,r,r−2

(

1, 1
2

⌊
n
r
− r + 2

⌋)

into two

parts:

Xn,r,r−2

(

1,
1

2

⌊
n

r
− r + 2

⌋)

≤ Xn,r,r−2(1, ⌊nǫ⌋)+Xn,r,r−2

(

⌊nǫ⌋, 1

2

⌊
n

r
− r + 2

⌋)

for some ǫ ∈ (0, 1) to be chosen later. The following lemma shows that, for

sufficiently large n, Yn,r,d(a, b) is maximised when either a or b is as large as

possible. This fact will be used in turn to prove upper bounds on the two

parts of Xn,r,r−2

(

1, 1
2
⌊n

r
− r + 2⌋

)

.

Lemma 3.15 Let d and r be fixed positive integers with r ≥ 3, d ≤ r − 2,

and integer n ≥ r be such that n/r is a positive integer. Then,

Yn,r,d(a + 1, b − 1) > Yn,r,d(a, b)

for any integer a and b with a > b ≥ 1, such that a + b = n
r
− d.

Proof. For a fixed positive d,

Yn,r,d(a + 1, b − 1)

Yn,r,d(a, b)
=

(
n
r

a+1,b−1,d

)

( n
r

a,b,d

)
(ar + dr + r)ar+dr+r−2

(ar + dr)ar+dr−2

(br + dr − r)br+dr−r−2

(br + dr)br+dr−2
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=
1

a + 1

(a + d + 1)(a+1)r+dr−2

(a + d)ar+dr−2
b
(b + d − 1)(b−1)r+dr−2

(b + d)br+dr−2
.(3.20)

Define the function f(x), for x ≥ 1, as

f(x) =
1

x + 1

(x + d + 1)(x+1)r+dr−2

(x + d)xr+dr−2
,

then (3.20) is equal to

f(a)f(b − 1)−1.

The statement of this Lemma therefore holds if f(x) is strictly monotone

increasing for x > 0. The first derivative of f(x) is equal to

(x + d + 1)rx+rd+r−3

(x + d)rx+rd−1
×

(x + 1)
(

r(x + d)(x + d + 1) log
(

x+d+1
x+d

)

+ 2
)

− (x + d)(x + d + 1)

(x + 1)2

which, for positive x and d, has the same sign as

r log
(

1 +
1

x + d

)

+
2(x + 1) − (x + d)(x + d + 1)

(x + d + 1)(x + d)(x + 1)
.

Using Lemma 2.1 we can bound this below by

r

x + d
− r

(x + d)2
+

2(x + 1) − (x + d)(x + d + 1)

(x + d + 1)(x + d)(x + 1)
=

=
(r − 1)x3 + ((2d + 1)r − (3d − 1))x2 + ((d2 + 2d − 1)r − (3d2 − 2))x + ((d + 1)r − d(d + 2))

(x + d + 1)(x + d)2(x + 1)
.

For positive x, d and r ≥ 3 with d ≤ r − 2, every bracketed term in the

last expression is non-negative and so f ′(x) > 0 for all x > 0. Hence f(x) is

strictly monotone increasing for x > 0 and the result follows.
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Proof of Theorem 3.12. For r = 2 the result is obvious since the reduced

graph of any connected graph is itself connected. For r > 2, we give an upper

bound on Zn,r,d and hence on the number of trees Tn for which the vertex

set of Rr(Tn) can be split in three sets A, B and S with |S| = r − 2, |B| = b

for some b ∈
{

1, . . . , 1
2
⌊n

r
− r + 2⌋

}

, and |A| = n
r
− b− (r− 2), and such that

there are no edges connecting A to B. First note that

Xn,r,r−2

(

1,
1

2

⌊
n

r
− r + 2

⌋)

≤ Xn,r,r−2(1, ⌊nǫ⌋) + Xn,r,r−2

(

⌊nǫ⌋, 1

2

⌊
n

r
− r + 2

⌋)

.

Lemma 3.15 allows us to bound Xn,r,r−2(1, ⌊nǫ⌋) above by making A as large

as possible in each term

Xn,r,r−2(1, ⌊nǫ⌋) ≤ (((r−2)r)!)222r(r−2)nǫ

((
n
r

n
r − r + 1, 1, r − 2

)

(n − r)n−r−2((r − 1)r)(r−1)r−2

)

.

The multinomial coefficient
( n

r
n
r
−r+1,1,r−2

)

is at most
(

n
r

)r−1
, thus

Xn,r,r−2(1, ⌊nǫ⌋) ≤ (((r − 2)r)!)222r(r−2)nǫ

((
n

r

)r−1

(n − r)n−r−2((r − 1)r)(r−1)r−2

)

≤ Cnn−3+ǫ (3.21)

for some constant 0 < C ≤ (((r − 2)r)!)222r(r−2)(r − 1)(r−1)r−2r(r−1)2−1.

Next we look at

Xn,r,r−2

(

⌊nǫ⌋, 1

2
⌊n

r
− r + 2⌋

)

,

this part of

Xn,r,r−2

(

1,
1

2
⌊n

r
− r + 2⌋

)

still contains a large number of terms, but each term is relatively small. By
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Lemma 3.15 moving vertices from B to A will increase the size of

Yn,r

(
n

r
− b − (r − 2), b, r − 2

)

.

We can therefore bound

Xn,r,r−2

(

⌊nǫ⌋, 1

2
⌊n

r
− r + 2⌋

)

above by

(((r−2)r)!)2 22r(r−2) n

2r
×

((
n
r

n
r
− r − ⌊nǫ⌋ + 2, ⌊nǫ⌋, r − 2

)

(n − r⌊nǫ⌋)n−r⌊nǫ⌋−2(r⌊nǫ⌋ + r2 − r)r⌊nǫ⌋+r2−r−2

)

.

In the expression above, the multinomial coefficient is at most
(

n
r

)⌊nǫ⌋+r−2
,

and thus we get (for n sufficiently large)

Xn,r,r−2

(

⌊nǫ⌋, 1

2

⌊
n

r
− r + 2

⌋)

≤ (((r−2)r)!)222r(r−2)rr2

r(r−1)nǫ

nn−2+ǫ(r2−r−2)−(r−1−ǫr)nǫ

.

For r ≥ 2 and 0 < ǫ < r−1
r

, this means that

Xn,r,r−2

(

⌊nǫ⌋, 1

2

⌊
n

r
− r + 2

⌋)

≤ C ′nn−3. (3.22)

for some constant 0 < C ′ ≤ (((r − 2)r)!)222r(r−2)rr2
. The result follows by

adding together (3.21) and (3.22).

3.4.4 Cycles

A tree by definition contains no cycles. However, for r ≥ 2, when an r-

reduced graph is generated from a tree Tn it is possible that a cycle will
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be created from one or more paths within Tn. Two paths p1 and p2 in Tn

describe a single path in Rr(Tn) if there exists an empire Bv such that both

p1 and p2 have end-points in {v1, . . . , vr}. A path in Tn forms a cycle in

Rr(Tn) if both of its end-points are in the same empire. Given a collection

of paths α in Tn, we call α an r-pre-cycle (sometimes omitting r when such

parameter is arbitrary, or clear from the context) of length k if the edges

of α form a k-cycle in the r-reduced graph of Tn. Figure 3.5 gives further

illustration.

2 3t t1 4t t
6 5

t tJ
J
JJ�
�
�

��
��

�
�
�   
  

Figure 3.5: The 2-reduced graph of the tree in the picture contains three
copies of the triangle spanning its three vertices. One copy is obtained as the
union of the edge {2, 5} and the path (1, 3, 6) in Tn. The other two are each
formed by three independent edges: they both contain {1, 3}, and {2, 5},
plus {4, 6} in one case and {4, 5} in the other one.

In what follows, let Xk(G) denote the number of k-cycles (for k ≥ 1) in a

given graph G (where a 1-cycle is a loop and a 2-cycle a pair of parallel edges

connecting two given vertices). Let Cm,k be the set of all possible k-cycles

on m labelled vertices. Note that |Cm,k| =
(

m
k

)

(resp. |Cm,k| = (m)k

2k
), for

k ≤ 2 (resp. for k > 2). Formally, Cm,k is a collection of graphs on m labelled

vertices each containing exactly k edges arranged in a single undirected cycle.

The m − k isolated vertices are irrelevant to our treatment, hence, in what

follows we will identify each element of Cm,k with the particular cycle it

contains.

We can find the expected number of k-cycles in Rr(Tn) by summing the

probabilities of occurrence for each cycle in Cm,k. The probability that a
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given cycle γ ∈ Cn
r
,k is formed by a collection of edges in Rr(Tn) depends on

the way these edges are related in the tree. The path-structure of a collection

of k edges in a tree is a sequence I = (i1, . . . , ik) of non-negative integers with

∑k
l=1 l · il = k where, for all 1 ≤ l ≤ k, il is the number of paths of length

l in the given collection of edges. Figure 3.6 represents graphically all valid

path-structures for a set of three edges: (3,0,0) (three independent edges),

(1,1,0) (one edge and a path of length two) and (0,0,1) (one path of length

three).

Let Ik be the set of all k-tuples (i1, . . . , ik) ∈ INk such that
∑k

l=1 l · il = k.

Define λk,r as

λk,r =
∑

I∈Ik

(

|I|
i1, . . . , ik

)

(r − 1)|I|

2|I|
k∏

l=1

(l + 1)il

(here |I| =
∑k

l=1 il).
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Figure 3.6: Possible ways in which three edges of a tree on n = 15 vertices
may form a 5-pre-cycle reducing to a triangle in the 5-reduced graph of the
structure (all other edges in the underlying tree are omitted for clarity).

Lemma 3.16 Let k, r, and n be positive integers, with r ≥ 2 and such that

n
r

is a positive integer not smaller than k. Let Tn be a tree on n vertices.

The number of possible r-pre-cycles consisting of k independent edges in Tn

is (
n
r

)

k

2k
(r(r − 1))k.
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Proof. For k ≤ 2 there are |Cn/r,k| =
(

n/r
k

)

ways to choose the participating

empires. We then choose two distinct vertices within each empire to be the

start and end points of the k edges, there are (r(r − 1))k ways to choose

these vertices, but we must divide this by two as when k = 1 (resp. k = 2) a

pre-cycle with edge {ui, uj} (resp. edges {ui1, uj1}, {ui2, uj2}) is identical to

a pre-cycle with edge {uj, ui} (resp. edges {ui2, uj2}, {ui1, uj1}).

For k > 2, we first need to choose an ordered list of k vertices within the

reduced graph on which the cycle is to be built, this can be done in
(

n
r

)

k

different ways. Notice however that reversing the order of the vertices or

choosing a different starting point does not change the cycle (e.g. {1, 2, 3, 4, 5}
is the same pre-cycle as {3, 4, 5, 1, 2} or {4, 3, 2, 1, 5}) and so we must divide

by 2k to avoid repetition. Having chosen a cycle on the empires, there are

then (r(r − 1))k choices for the vertices in the tree that are incident to the

edges.

Theorem 3.17 For fixed integers r > 1 and k ≥ 1 and integer n ≥ r tending

towards infinity,

EXk(Rr(Tn)) ∼ λk,r.

Proof. We can find the expected number of k-cycles by adding together

the probabilities of all possible cycles. By Lemma 3.6, sets of edges (in Tn)

with the same path structure will occur with the same probability. We can

therefore group these together and sum over all I ∈ Ik. Given a particular

I, we can build all possible pre-cycles with this path-structure by starting

with a pre-cycle on |I| independent “pseudo”-edges and then replacing each

pseudo-edge with a path of the correct length. By Lemma 3.16 the number
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of possible pre-cycles on |I| independent edges is

(
n
r

)

|I|
2|I| (r(r − 1))|I|,

we must then multiply this by the
(

|I|
i1,...,ik

)

ways of replacing the pseudo-edges

by the actual paths and the
(

n
r
− |I|

)

k−|I|
rk−|I| possible choices of vertices to

make up these paths. Finally we multiply by the probability of the pre-cycle

being present which, by Lemma 3.6, is

1

nk

k∏

l=1

(l + 1)il.

Putting all this together gives us that

EXk(Rr(Tn)) =
∑

I∈Ik

(

|I|
i1, . . . , ik

)
(

n
r

)

|I|
2|I| (r(r − 1))|I|

(
n

r
− |I|

)

k−|I|
rk−|I| 1

nk

k∏

l=1

(l + 1)il

=
∑

I∈Ik

(

|I|
i1, . . . , ik

)(
n

r

)

k

rk(r − 1)|I|

2|I|
1

nk

k∏

l=1

(l + 1)il

= λk,r

(
n

r

)

k

(
r

n

)k

. (3.23)

We can bound
(

n
r

)

k
above by

(
n

r

)k

,

and below by

(
n

r
− k + 1

)k

=
(

n

r

)k
(

1 − (k − 1)r

n

)k

,

from these bounds and equation (3.23) we see that

λk,r

(

1 − (k − 1)r

n

)k

≤ EXk(Rr(Tn)) ≤ λk,r.
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From this we get that for fixed r > 1 the expected numbers of k-cycles

for the first few k are:

EX1(Rr(Tn)) ∼ r − 1,

EX2(Rr(Tn)) ∼ (r − 1)2 +
3

2
(r − 1),

EX3(Rr(Tn)) ∼ 4

3
(r − 1)3 + 3(r − 1)2 + 2(r − 1),

EX4(Rr(Tn)) ∼ 2(r − 1)4 + 6(r − 1)3 +
25

4
(r − 1)2 +

5

2
(r − 1).

The asymptotic distribution of the number of k-cycles in Rr(Tn)

In the final part of this section we will use the method of moments to find

the asymptotic distribution of Xk(Rr(Tn)). We will prove that

E(Xk(Rr(Tn)))t ∼ (λk,r)
t

as n tends to infinity and hence conclude that Xk(Rr(Tn)) has asymptotically

a Poisson distribution with parameter λk,r.

Theorem 3.18 Let k and r be fixed positive integers, with r ≥ 2, and integer

n ≥ r be such that n/r is a positive integer. Then

Xk(Rr(Tn))
D→ Po(λk,r).

as n tends to infinity.

Proof. Let An,r,k be the set of all r-pre-cycles of length k on the vertices

of Tn, and for any α ∈ An,r,k let Zn,α be equal to one if all the edges of α are
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present in Tn, zero otherwise. Given α ∈ An,r,k, let α̂ be the cycle formed by

the edges of α in the r-reduced graph. We can now rewrite Xk(Rr(Tn)) as

Xk(Rr(Tn)) =
∑

α∈An,r,k

Zn,α.

This means that Xk(Rr(Tn)) meets all the conditions for equation (2.30) and

so the factorial moments of Xk(Rr(Tn)) can be expressed as

E(Xk(Rr(Tn)))t =
∗∑

α1,...,αt

Pr[Zn,α1 = . . . = Zn,αt = 1]

=
∗∑

α1,...,αt

Pr[α1, . . . , αt ∈ Tn].

A lower bound on this expression is obtained by considering only sets of

pre-cycles that will reduce to vertex disjoint cycles in Rr(Tn). Given the t

path structures I1, . . . , It for α1, . . . , αt, the number of ways to choose the

sets of vertices in which each pre-cycle is formed is

t∏

j=1





(
n
r
− k(j − 1)

)

k

2|Ij|



 rk(r − 1)|Ij|. (3.24)

There are also
t∏

j=1

( |Ij|
ij1, . . . , i

j
k

)

(3.25)

choices for how to replace the pseudo-edges with paths. By Lemma 3.6, the

number of trees on n vertices containing a given set of edges Ij is

nn−k−2
k∏

l=1

(l + 1)ij
l ,
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hence the probability of t disjoint pre-cycles being present is

Pr[α1, . . . , αt ∈ Tn] =
1

nkt

t∏

j=1

k∏

l=1

(l + 1)ij
l . (3.26)

Putting together equations (3.24), (3.25) and (3.26) and summing over all

{I1, . . . , It} gives

E(Xk(Rr(Tn)))t ≥

≥
∑

I1,...,It





t∏

j=1

((n
r − k(j − 1)

)

k

2|Ij |

)

rk(r − 1)|Ij |









t∏

j=1

(

|Ij |
ij1, . . . , i

j
k

)






1

nkt

t∏

j=1

k∏

l=1

(l + 1)i
j
l





=
1

nkt

∑

I1,...,It

t∏

j=1

(((n
r − k(j − 1)

)

k

2|Ij |

)

rk(r − 1)|Ij |
(

|Ij |
ij1, . . . , i

j
k

)
k∏

l=1

(l + 1)i
j
l

)

, (3.27)

and then by noticing that

(
n

r
− k(j − 1)

)

k

can be bounded below by

(
n

r
− k(t − 1)

)k

,

and taking everything that does not depend on j outside of the product we

can see that (3.27) is at least

(
r

n

)kt (n

r
− k(t − 1)

)kt ∑

I1,...,It

t∏

j=1

((

1

2|Ij |

)

(r − 1)|Ij |
(

|Ij |
ij1, . . . , i

j
k

)
k∏

l=1

(l + 1)i
j
l

)

=

(

1 − kr(t − 1)

n

)kt ∑

I1,...,It

t∏

j=1

((

|Ij |
ij1, . . . , i

j
k

)

(r − 1)|Ij |

2|Ij |
k∏

l=1

(l + 1)i
j

l

)

.
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By the multinomial theorem,

∑

I1,...,It

t∏

j=1

(( |Ij|
ij1, . . . , i

j
k

)

(r − 1)|Ij|

2|Ij|
k∏

l=1

(l + 1)ij
l

)

=

(
∑

I

(

|I|
i1, . . . , ik

)

(r − 1)|I|

2|I|
k∏

l=1

(l + 1)il

)t

and thus

E(Xk(Rr(Tn)))t ≥ λt
k,r

(

1 − kr(t − 1)

n

)kt

.

To bound the expression above, we can still group the terms as

∗∑

α1,...,αt

Pr[α1, . . . , αt ∈ Tn]

based on the path-structure of α1, . . . , αt, but of course, we need to account

for the fact that the cycles may not be disjoint. Given I1, . . . , It ∈ Ik, the

number of ways to choose the ordered sets of vertices on which each pre-cycle

is formed can be bounded above by

t∏

j=1





(
n
r

)

k

2|Ij|



 rk(r − 1)|Ij |, (3.28)

(note that this overcounts by including cases where edges from the various

pre-cycles form a cycle on the vertices of Tn as in Figure 3.7).
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Figure 3.7: The red and black edges form two 3-cycles in the reduced graph.
Individually, neither set forms a cycle in Tn, but taken together there is a
cycle on the leftmost three empires consisting of two black edges and one
red.
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When non-vertex disjoint cycles are allowed, it is possible that some pre-

cycles will share edges. We will now give a weak upper bound on the expected

number of sets of t pre-cycles within Tn where l > 1 of the edges appear in

multiple pre-cycles, and show that this is small compared to λt
k,r. If l edges

are shared between the pre-cycles then there are a total of kt − 2l vertices

making up the pre-cycles. The number of ways to choose the sets of vertices

on which each pre-cycle is formed is thus at most

Cnkt−2l,

for some constant C. By Lemma 3.6, the probability that Tn contains a given

set of kt − l edges can be bounded above by

2kt−l

nkt−l
,

hence the expected number of such sets of pre-cycles is at most

2kt−lC

nl
≤ C

n
, (3.29)

for some positive constant C.
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Figure 3.8: A vertex v participating in two different triangles in a 5-reduced
graph.

We next look at the probability that Rr(Tn) contains the cycles α̂1, . . . , α̂t

such that all pre-cycles are edge disjoint in Tn. Such pre-cycles may also be
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vertex disjoint, or there may be vertices that appear in more than one pre-

cycle. We will show that the probability of a given set of pre-cycles appearing

in the tree (as given by Lemma 3.6) is maximised when no vertex appears in

more than one pre-cycle.

Suppose that one vertex v of Tn appears in m different pre-cycles (say

α1, . . . , αm, without loss of generality), such that for any 1 ≤ i ≤ m, the

length of the path in αi containing v is li. Figure 3.8 gives an example for

m = 2, and k = 3 (for the given example l1 = 2, and l2 = 3, note that the

rightmost cycle contains a second component which has a vertex within the

empire containing v, but this is not counted as it does not contain v itself).

These paths form a connected component in Tn of size

(
m∑

i=1

li

)

+ 1

and hence by Lemma 3.6, the probability that Tn contains all the edges of

α1, . . . , αt is equal to the probability that it contains all of the paths that do

not contain v multiplied by

1

n
∑m

i=1
li

(

1 +
m∑

i=1

li

)

.

Next, consider a graph T ′
n that is identical to Tn except that instead of

all meeting at vertex v α1, . . . , αm all contain different vertices in the same

empire (Figure 3.9 gives a simple example for the graph in Figure 3.8). Now,

for each 1 ≤ i ≤ m there is a connected component of size li + 1 that was

in the shared component of Tn. Therefore by Lemma 3.6, the probability

that T ′
n contains all the edges of α1, . . . , αt is equal to the probability that it
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Figure 3.9: An empire participating in two different triangles in a 5-reduced
graph. Note that no vertex appears in more than one triangle.

contains all of the other paths multiplied by

1

n
∑m

i=1
li

m∏

i=1

(li + 1).

The probability is at its highest when all of the paths are vertex disjoint,

hence equation (3.26) can be used as an upper bound on probability.

We can now obtain an upper bound on the tth factorial moment of

Xk(Rr(Tn)) by putting together equations (3.25), (3.26), (3.28) and (3.29),

and summing over all {I1, . . . , It}

E(Xk(Rr(Tn)))t ≤

≤
∑

I1,...,It





t∏

j=1

((
n
r

)

k

2|Ij |

)

rk(r − 1)|Ij |









t∏

j=1

( |Ij |
ij1, . . . , i

j
k

)







1

nkt

t∏

j=1

k∏

l=1

(l + 1)i
j

l



+
C

n

=
1

nkt

∑

I1,...,It

t∏

j=1

(((
n
r

)

k

2|Ij |

)

rk(r − 1)|Ij |

( |Ij |
ij1, . . . , i

j
k

) k∏

l=1

(l + 1)i
j

l

)

+
C

n

≤
∑

I1,...,It

t∏

j=1

(( |Ij |
ij1, . . . , i

j
k

)
(r − 1)|Ij |

2|Ij |

k∏

l=1

(l + 1)i
j

l

)

+
C

n
,

and thus, invoking the multinomial theorem again,

E(Xk(Rr(Tn)))t ≤ λt
k,r +

C

n
.

The overall result now follows by Theorem 2.8.
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3.4.5 Cliques

Let Ks be a clique of size s, i.e. a complete subgraph on s vertices. As

with cycles, a tree will by definition contain no instances of Ks for s > 2,

however once again it is possible for the reduced graph Rr(Tn) to contain

higher cliques as a result of paths within Tn. Given a set of s distinct vertices

β = {v(1), . . . , v(s)} ∈ Rr(Tn), there is a clique in Rr(Tn) on β if for every pair

of empires (Bv(i) , Bv(j)) with i 6= j there exists at least one edge connecting

a vertex in the set {v(i)
1 , . . . , v(i)

r } to a vertex in {v(j)
1 , . . . , v(j)

r }.

Let Ys(Rr(Tn)) be the number of s-cliques in Rr(Tn). We already know

that

Y3(Rr(Tn))
D→ Po

(

4r3

3
− r2 +

1

3

)

.

(this is true because Y3(Rr(Tn)) ≡ X3(Rr(Tn))). The natural question is

what happens for k > 3. The next results show that large cliques in Rr(Tn)

are quite rare. Lemma 3.19 uses a simple counting argument to prove that

no r-reduced graph contains a copy of K2r+1. The subsequent Theorem, via

an elementary union bound, shows that, in fact, even K4 is rare in the r-

reduced graph of a random tree, as long as r is a fixed positive number. As

a corollary we obtain a full characterisation of the size of the largest cliques

in Rr(Tn), for any fixed value of r ≥ 1. In that result ω(G) is the size of the

largest clique in the graph G.

Lemma 3.19 For any positive integers r and n, with n ≥ r and such that

n/r is a positive integer, and any labelled tree Tn, the graph Rr(Tn) does not

contain any clique of size greater than 2r.

Proof. For any positive integer s, any induced subgraph of Tn consisting

of s empires (rs vertices) is itself an empire forest and as such has at most
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rs−1 edges, a clique on s vertices has one edge between each pair of vertices,

or

s(s − 1)

2

edges in total. A subgraph consisting of 2r empires may therefore have at

most 2r2 − 1 edges, while a K2r clique has

r(2r − 1) = 2r2 − r ≤ 2r2 − 1

edges. A subgraph on 2r + 1 empires however, may have at most 2r2 + r− 1

edges while a clique on the corresponding vertices in Rr(Tn) would need

r(2r + 1) = 2r2 + r > 2r2 + r − 1

edges. Since the number of edges required for the clique is more than may

be present on the subgraph, no clique of size greater than 2r may exist in

Rr(Tn).

Lemma 3.19 is valid for any tree Tn, and any value of r, even depending

on n. Also, note that the study of the size of the largest cliques in Rr(Tn) is

strictly related to the analysis of the chromatic properties of Rr(Tn) as the

size of the largest clique in a graph is a natural lower bound on its chromatic

number. In fact Theorem 4.1 in Chapter 4 provides an alternative proof of

Lemma 3.19. The next result shows that, in fact, much smaller cliques are

rare in the r-reduced graph of a random tree.

Theorem 3.20 For any fixed positive integer r, and integer n ≥ r such that

n/r is a positive integer, Rr(Tn) a.a.s. contains no clique of size at least four.

Proof. The result is obvious for r = 1. For r ≥ 2, the number of ways in
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which a set of four empires can be chosen from the n/r empires in Rr(Tn) is

(

n/r

4

)

<
(

n

r

)4 1

4!
,

for each set of empires there are at most r12 possible sets of six edges on the

vertices of these empires in Tn that will lead to a clique on the empires in

Rr(Tn). From this we have that there are at most

(
n

r

)4 r12

4!
(3.30)

sets of six edges in Tn corresponding to 4-cliques in Rr(Tn).

By Lemma 3.6, the number of trees on n vertices in which a given set of

six edges is present is maximised when no two edges share an end point, in

which case there are

64nn−8 (3.31)

trees containing these edges. By multiplying (3.30) and (3.31) and dividing

by the total number of trees on n vertices we can obtain an upper bound on

the probability of the reduced graph of a random tree containing at least one

K4

Pr[K4 ∈ Rr(Tn)] ≤ 64nn−8
(

n

r

)4 r12

4!

1

nn−2

=
8r8

3n2

= O
(

1

n2

)

.

As any larger clique must contain a K4 within it, this also serves as an upper

bound on the probability of Rr(Tn) containing any clique of size at least 4.
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Corollary 3.21 Let r be a fixed positive integer, and integer n ≥ r be such

that n/r is a positive integer. Then

Pr[ω(Rr(Tn)) = 2] ∼ e−λ3,r and Pr[ω(Rr(Tn)) = 3] ∼ 1 − e−λ3,r

as n tends to infinity.

Proof. By Theorem 3.20 Pr[ω(Rr(Tn)) > 3] tends to zero as n grows to

infinity. The event “ω(Rr(Tn)) = 3” is equivalent to “X3(Rr(Tn)) > 0”. By

the results in Section 3.4.4

Pr[ω(Rr(Tn)) = 3] → 1 − e−λ3,r .

Finally, clearly, since each graph Rr(Tn) contains at least one edge (for n ≥ 2)

Pr[ω(Rr(Tn)) = 2] = 1 − Pr[ω(Rr(Tn)) ≥ 3].

The (weak) consequence of the analysis in this section on the empire

colourability of random trees is that, for fixed values of r ≥ 2, there is,

asymptotically, a constant probability that Tn cannot be coloured with just

two colours (because it contains a triangle). In Chapter 5 we will improve on

this by showing that, in fact, for each r ≥ 2 there exists a value sr ≥ 2 such

that a random tree on n vertices C(Tn, r, s) is empty a.a.s. for any s ≤ sr.

76



3.5 Comparisons with Other Types of Ran-

dom Graphs

In this section we will look at how the structural properties of the reduced

graphs of random trees compare to those of other types of random graph,

primarily random regular graphs, random planar graphs, and the Erdős-

Rényi random graphs with a fixed number of edges. Since the number of

vertices and edges is fixed in Rr(Tn), we will consider random graphs on n/r

vertices, which are either regular graphs of degree 2r (denoted by Gn
r

,2r), or

uniformly distributed over the set of all graphs on n/r vertices with n−1 edges

(denoted by G(n
r
, n−1) or, when interested in planar graphs, by P (n

r
, n−1)).

A planar graph on m vertices can have at most 3m−6 edges and so obviously

no comparable graphs can be considered for r > 3, however as n grows large,

graphs on n
3

vertices with n−6 edges provide a reasonable comparison point

for r = 3. Note that such graphs are maximally planar (see [26, Chapter 4])

and as such they are triangulations.

In this section we deal with the properties considered in this chapter. We

defer a comparison of the chromatic properties of all these models to the

discussion at the end of Chapter 5.

3.5.1 Connectivity

Rr(Tn) must always be connected since the tree from which it was reduced

is also connected, however this is not necessarily the case with other types

of random graphs. In particular Erdős-Rényi graphs with a relatively low

number of edges are quite likely to be disconnected [16].

In the case of random regular graphs it has been shown in [14] that any

random regular graph of degree d ≥ 3 will a.a.s. be d-connected. This is a
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stronger claim than that given for Rr(Tn): in Theorem 3.12 it was proved

that Rr(Tn) is a.a.s. (r − 1)-connected.

Looking now at random planar graphs, it was shown in [53] that a ran-

dom planar graph with no restriction on the number of edges has at least a

probability of e−1 of being connected. It was conjectured in the same paper

that the true probability is closer to 0.95. When we fix the number of edges,

a planar graph with n
3

vertices and n−6 edges (i.e. a graph having a density

similar to that of R3(Tn), for any Tn) must be connected, since if the graph

was disconnected it would be possible to add an edge joining two components

(which is not possible in a triangulation. For completeness, we mention that

Gerke et al. [35] show that for any random planar graph on m vertices with

fixed number of edges qm with q < 3 there is always at least a constant

probability of the graph being disconnected, furthermore there is at least a

constant probability that the graph will contain an isolated vertex.

3.5.2 Degree Sequence

By definition all vertices of a regular graph have degree d, thus questions

about degree sequence are trivial for this kind of graph. For other types of

random graphs we can compare results about the degree with those found

for Rr(Tn).

Theorem 3.5 gives us that for any constant ǫ > 0,

(1 − ǫ) log n

log log n
≤ ∆(Rr(Tn)) ≤ (1 + ǫ) log n

log log n
a.a.s.

This is very similar to what can be proved for Erdős-Rényi random graphs
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with a constant average degree. Such graphs a.a.s. have maximum degree

Θ

(

log n

log log n

)

(this can be obtained from results on the related, so called, G(n, p) model [15,

Theorem 3.7, p.66]). Similarly, random planar graphs have maximum degree

Ω

(

log n

log log n

)

with probability 1 − o(1) [53]. Note however that, by a result of Gao and

Wormald [33],

∆(P (m, 3m − 6)) ∼ log m

log 4/3
− log log m

2 log 4/3

as m tends to infinity. Thus the maximum vertex degree in a random planar

triangulation is somewhat larger than that of R3(Tn).

A lot is known about the degree sequence of the Erdős-Rényi random

graphs. For each fixed d, the probability that a given vertex in a random

graph with average degree 2r has degree d is (1 + o(1)) (2r)d

d! e2r , as n tends

to infinity. (Achlioptas and Moore, for instance, refer to this as a folklore

result [3]). This is very qualitatively similar to the results on the degree

distribution of Rr(Tn) presented in this thesis (see Lemma 3.2 earlier on

in this chapter). Of course no vertex in Rr(Tn) can have degree less than

r. Thus, results on the minimum degree in Rr(Tn) are very different from

those relative to G(n
r
, n−1). In particular, any of the classical random graphs

considered in this section (except random regular graphs) will contain (many)

isolated vertices a.a.s.
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3.5.3 Cycles and Cliques

It has been shown in [68], that a random regular graph will a.a.s. contain

no copy of any given subgraph with more edges than vertices, hence as with

Rr(Tn) there will be a.a.s. no cliques of size four or larger. Also as with

Rr(Tn), for any tree Tn, any regular graph with degree 2r will contain no

copy of K2r+2 since this would require each vertex in the clique to have

degree at least 2r + 1. It is however possible, albeit unlikely, for a random

regular graph of degree 2r to contain a copy of K2r+1. Regarding cycles,

Bollobás showed in [13] that the numbers of short cycles of length i in a

random regular graph of degree d are independent random variables tending

to a Poisson distribution with mean

λi =
(d − 1)i

2i
.

This is quite close to the distribution for Rr(Tn) given by Theorem 3.18. The

averages in that case, for the first few values of i are as follows:

λ1,r = r − 1,

λ2,r = r2 − r + 1

2
,

λ3,r =
4r3

3
− r2 +

1

3
,

λ4,r = 2r4 − 2r3 +
r2 − 1

4

Similar results hold in G(n
r
, n−1). Since cycles of length i, for any i ≥ 3,

are strictly balanced graphs, and their automorphism group (the so called

dihedral group) has order 2i, results from [15, Chapter 4] suggest that the

number of copies of the cycle of length i in G(n
r
, n − 1) has asymptotically

Poisson distribution with parameter (2r)i

2i
. In fact the same argument entails
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that the number of complete graphs on i vertices in G(n
r
, n − 1) has asymp-

totically Poisson distribution with parameter (2r)i

i!
(the i! comes from the fact

that the automorphism group of the complete graph on i vertices is the set

of all permutations on {1, . . . , i}). Thus, for large values of n, G(n
r
, n − 1)

will, for instance, contain a copy of K4 with probability approximately equal

to 1 − exp
(

−2r4

3

)

whereas, by Theorem 3.20, the probability that Rr(Tn)

contains K4 is negligible.

Gerke et al. [35] prove that for random planar graphs with fixed number of

edges greater than the number of vertices, for any connected planar subgraph

H there exists some constant α > 0 such that the probability of the number

of vertex disjoint copies of H being less than αn is at most e−Ω(n). Hence

there will be a large number of short cycles and K4 cliques. Larger cliques

however will not be present since K5 is not planar.
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Chapter 4

The Empire Colouring Problem

on Trees

In this chapter we will consider the empire colouring problem on trees. As

explained in Section 3.1, for any r ≥ 1, finding a proper empire colouring of

a planar graph G is equivalent to finding a proper colouring of its r-reduced

graph Rr(G). Here, we are interested in estimating the chromatic number of

Rr(T ), where T is a tree on n vertices.

4.1 Arbitrary Graphs

Before considering random graphs, we look at the number of colours required

to give a proper colouring of the r-reduced graph of any tree. We bound the

number of colours required above by using a method similar to that used by

Percy John Heawood to show that all planar graphs are six-colourable [43].

This number is then shown to be necessary to properly colour the r-reduced

graphs of all trees through an inductive method to create trees requiring this

many colours.
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Theorem 4.1 Let r and n be positive integers such that n ≥ r and n/r is a

positive integer. Let Tn be a tree on n vertices. Then

χ(Rr(Tn)) ≤ 2r.

Proof. The proof is constructive. We will prove that an obvious modification

of Heawood’s heuristic (described at the end of Section 3.1) colours Rr(Tn)

using no more than 2r colours.

As explained in subsection 3.4.1, the average degree of the r-reduced

graph of any tree is strictly less than 2r. Due to this, there must always be

at least one empire in the graph with degree at most 2r − 1. If we select

one such empire and remove it from the graph, the induced graph resulting

from this is the reduced graph of a forest with n − r vertices. By the same

argument, this graph must also contain at least one empire of degree at most

2r−1 which can be removed. The process can be continued in this way with

the graph being decomposed by removing one empire at a time until none

are left.

With this done the graph can be built back up by adding the empires to

the graph in the reverse order from how they were removed. Each empire is

coloured as it is added using a simple greedy algorithm whereby the empire is

assigned the first colour not used by any of its neighbours. As the maximum

degree that any empire may have at the time it is added is 2r − 1, at most

2r colours will be required to colour the vertex and its neighbours.

Note that, in contrast with what happens in the context of arbitrary

planar graphs, for r = 1, the algorithm returns an optimal colouring of any

tree (of course finding an optimal colouring of a planar graph is NP-hard [34]).

Theorem 4.2 Let r and n be positive integers such that n ≥ r and n/r is a
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positive integer. There is a family of trees (T r)r≥1 such that

χ(Rr(T
r)) = 2r

for each r ≥ 1.

Proof. We define a family of trees (T r)r≥1 such that, for all integers r ≥ 1,

the reduced graph of T r is K2r, the complete graph on 2r vertices. The

tree T r will have v(r) = 2r2 vertices of which l(r) = r2 − r + 2 have degree

one. Furthermore, if C1 and C2 are two special vertices called the centres of

T r then there will be exactly r vertices of degree one, belonging to empires

1, 3, . . . , 2r − 1 at distance 2(r − 1) from C1 and r vertices of degree one,

belonging to empires 2, 4, . . . , 2r at distance 2(r − 1) from C2. These sets of

vertices are called Far1 and Far2 respectively.

The empire tree T 1 ≡ K2. Assume that T r−1 is given consisting of empires

of size r−1, labelled from one to 2(r−1), which satisfies all properties above.

Add r−1 new vertices belonging to empire 2r−1 and r−1 vertices belonging

to empire 2r. Connect each of the new vertices in empire 2r − 1 (resp. 2r)

with a distinct element of Far1 (resp. Far2). By adding one more vertex to

each empire we can change this so that any two empires are adjacent. Choose

one vertex from empire 2r − 1 (resp. 2r), and attach r new leaves belonging

to empires 2, 4, . . . , 2r (resp. 1, 3, . . . , 2r − 1) to this vertex. The resulting

tree is an r-empire tree. It has l(r) = l(r − 1) + 2(r − 1) vertices of degree

one and v(r) = v(r − 1) + 2(r − 1) + 2r vertices in total and reduces to K2r.

Remarks. The results in this section seem to solve the question of the

empire colourability of trees - the lower bound on the number of colours
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Figure 4.1: The trees T 1, T 2, and T 3 built following the method given in
Theorem 4.2. In each tree, the vertex labelled ij is the jth element of empire
i. Note that there is at least one edge between any pair of empires in each
tree and hence each reduces to a clique K2r.
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Figure 4.2: An example of a tree with r = 2 that does not reduce to a graph
containing K2r and yet requires 2r colours for a proper colouring.
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required is equal to the upper bound - however, this is not the whole story.

The trees defined in Theorem 4.2 all reduce to K2r, yet by Theorem 3.20 in

Chapter 3 the reduced graph of a random tree will a.a.s. contain no cliques

of size greater than three. Of course, the presence of a large clique is not

a necessary condition for a graph to require 2r colours - see for example

figure 4.2 which has r = 2 and chromatic number 4, but this small graph

contains six triangles when Theorem 3.17 predicted that even large graphs

would have only about 17
3

and many edges are in two different triangles, all

of which makes it unlikely to appear as a subgraph of Rr(Tn) for large n.

The obvious question that arises from this is as follows: “what number of

colours is required to give a proper r-empire colouring of almost all trees?”

Is it really the case that 2r-chromatic trees are sufficiently common that

this worst case will inevitably come up and the full 2r colours will be re-

quired, or taking the other extreme will the relative sparseness of the graphs

with no large cliques and few triangles mean that most are three-colourable

(It is known [39] that all planar graphs containing no triangles are three-

colourable)? Or does the true answer lie somewhere in between, possibly

depending on the value of r?

4.2 Colouring Algorithms

Before addressing the questions above from the asymptotic point of view,

it is instructive to investigate them empirically. In this section we provide

evidence supporting the following claims:

1. The value 2r is often a very crude upper bound on χ(Rr(T )).

2. There exist algorithms that return colourings using as few as at most

r + 3 colours for most trees.
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The claims will be justified by providing an empirical evaluation of the

performances of a number of simple heuristics for solving the given colouring

problem. We first look at a variant of Heawood’s strategy, based on peeling off

vertices of minimum degree. Then we will describe a revised version of such

minimum degree heuristic, inspired by the well-known Brooks’ algorithm [19].

Finally we will consider a simple list colouring strategy [49].

The final section of the chapter will investigate the possibility to devise

even better algorithms by pairing up the heuristics considered in this sec-

tion with a simple pre-processing strategy which has had applications in the

context of colouring random regular graphs [64, 65].

Experiment Design. With each of the algorithms described in below we

run the following experiment:

We take in turn r = 2, 3, 4, 5, 6, 10, and we run the algorithm

on the reduced graph of 400 random trees with n vertices, for

values of n equal to 120, 600, 1200, and then for n = 3000 ∗ i for

i ∈ {1, . . . , 20}. In each case we record the full distribution of

the number of graphs coloured with s colours for values of s up

to 2r.

In fact the tables in the following pages only show the distributions for s > sr,

where sr is the almost sure lower bound on χ(Rr(Tn)) proved in Theorem 5.1

of Chapter 5. The values of sr for the values of r considered in this chapter

are reported in Table 4.1.

Figure 4.3 at the end of the section helps in comparing the performances

of the three heuristics considered.

87



r 2 3 4 5 6 10
sr 2 3 3 4 4 6

Table 4.1: A.a.s. lower bounds on the chromatic number of Rr(Tn) for differ-
ent values of r.

4.2.1 Heawood Colouring

One of the simplest methods for finding an empire colouring of a tree is by

colouring its reduced graph using the greedy heuristic that is implicit in the

proof of Theorem 4.1. The graph is decomposed one empire at a time by

removing, each time, an empire with degree less than 2r. In fact at each step

our algorithm chooses a vertex of minimum degree. This process is repeated

until we are left with a single empire which is given colour 1. The graph is

then built up in the reverse order to which it was decomposed, with each

empire being coloured as it is added with the first colour not used by any of

its neighbours. In the following algorithm, the array Order lists the vertices

in the order in which they are to be coloured and the ith element in the array

Colour is the colour of vertex i. This algorithm will of course never use more

than 2r colours but it may use less, especially if most of the empires have

close to the minimum degree r when they are added to Order. The following

pseudo-code describes the strategy at hand.

Algorithm Heawood(H)

Set G = H. Set m = |V (H)|.

for i = 0 to m − 2 do

Set v = vertex of minimum degree in G.

Set Order[m − i] = v.

Set G = G − v.

end for

Set u = remaining vertex in G.

88



Set Colour[u] = 1.

for i = 2 to m do

Set v = Order[i].

Set G = G + v, adding an edge between v and any vertex of G if

this edge is present in H.

Set Colour[v] = First colour that is not used by any neighbour of

v.

end for

Return coloured graph.

n\r 2 3 4 5 6 10
120 (72,328) (184,216,0) (16,295,88,1,0) (120,257,22,1,0,0) (45,236,119,0,0,0,0,0) (221,91,13,0,0,0,. . . )
600 (0,400) (6,394,0) (0,88,308,4,0) (0,209,191,0,0,0) (0,20,314,66,0,0,0,0) (1,64,240,91,4,0,. . . )
1200 (0,400) (0,400,0) (0,19,381,0,0) (0,123,276,1,0,0) (0,0,288,112,0,0,0,0) (0,1,186,203,10,0,. . . )
3000 (0,400) (0,400,0) (0,0,400,0,0) (0,21,370,9,0,0) (0,0,183,217,0,0,0,0) (0,0,37,322,41,0,. . . )
6000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,393,7,0,0) (0,0,78,322,0,0,0,0) (0,0,1,283,116,0,. . . )
9000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,384,16,0,0) (0,0,21,377,2,0,0,0) (0,0,0,291,109,0,. . . )
12000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,373,27,0,0) (0,0,9,389,2,0,0,0) (0,0,0,207,192,1,0,. . . )
15000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,375,25,0,0) (0,0,3,393,4,0,0,0) (0,0,0,157,240,3,0,. . . )
18000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,368,32,0,0) (0,0,1,390,9,0,0,0) (0,0,0,140,260,0,. . . )
21000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,361,39,0,0) (0,0,1,390,9,0,0,0) (0,0,0,108,292,0,. . . )
24000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,351,49,0,0) (0,0,0,392,8,0,0,0) (0,0,0,100,299,1,0,. . . )
27000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,350,50,0,0) (0,0,0,387,13,0,0,0) (0,0,0,69,330,1,0,. . . )
30000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,353,47,0,0) (0,0,0,384,16,0,0,0) (0,0,0,56,343,1,0,. . . )
33000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,341,59,0,0) (0,0,0,396,4,0,0,0) (0,0,0,47,349,4,0,. . . )
36000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,327,73,0,0) (0,0,0,384,16,0,0,0) (0,0,0,48,349,3,0,. . . )
39000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,334,66,0,0) (0,0,0,384,16,0,0,0) (0,0,0,42,355,3,0,. . . )
42000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,332,68,0,0) (0,0,0,385,15,0,0,0) (0,0,0,25,371,4,0,. . . )
45000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,333,67,0,0) (0,0,0,391,9,0,0,0) (0,0,0,21,376,3,0,. . . )
48000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,323,77,0,0) (0,0,0,390,10,0,0,0) (0,0,0,16,382,2,0,. . . )
51000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,310,90,0,0) (0,0,0,383,17,0,0,0) (0,0,0,10,382,8,0,. . . )
54000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,304,96,0,0) (0,0,0,374,26,0,0,0) (0,0,0,15,373,12,0,. . . )
57000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,306,94,0,0) (0,0,0,378,22,0,0,0) (0,0,0,6,391,3,0,. . . )
60000 (0,400) (0,400,0) (0,0,400,0,0) (0,0,319,81,0,0) (0,0,0,376,24,0,0,0) (0,0,0,6,389,5,0,. . . )

Table 4.2: The number of colours used by the Heawood colouring algorithm.
Note that, by Theorem 5.1 (see also Table 4.1) for r = 2 a.a.s. either three
or four colours are needed, for r ∈ {3, 4} we need at least four (and at most
2r), for r ∈ {5, 6} we need at least five colours, and for r = 10, the minimum
value is seven.

Table 4.2 gives the number of colours used by the Heawood colouring

algorithm to colour (the r-reduced graphs of) random trees with n in the

range 120, . . . , 60000 and r in the set {2, . . . , 6, 10}. Even for graphs on only
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a few hundred vertices, the algorithm almost always uses the full 2r colours

for r = 2. However, for larger r, the number of colours used seems to level

out to values that are never larger than r + 2 (see the values in Table 4.2 or

the averages in the top diagram of Figure 4.3). We speculate that this may

be due to fact that during the process the minimum degree in the graph G

is always very small. Empirical evidence suggests that initially this quantity

is r, then it briefly goes up to r + 2 or r + 3 but then plunges down more and

more often to ever smaller values (even one towards the end of the process).

One obvious modification to the algorithm is that instead of colouring

each vertex with the first colour that is not used by its neighbours, we instead

use the unused colour that is most common in the graph so far. This however

does not seem to have any effect beyond changing the distribution of colours

so that instead of lower numbered colours being used more often, the colours

that were used a lot early on become the most common overall.

4.2.2 Brooks Colouring

Brooks’ Theorem [19] states that for any connected graph G that is not a

clique or an odd cycle, the chromatic number χ(G) is at most the maximum

degree of the graph ∆(G). This in itself is not particularly useful for the

graphs we are considering since by Theorem 3.5, almost all trees reduce to

graphs with maximum degree

log n

log log n
(1 + o(1)),

which is far too large. However, a method used in one of the proofs of such

result (see for example [26, Chapter 5, pages 99–100]) provides a possible

way to improve Heawood’s heuristic described in the last section.

90



As before, given a graph, we start by peeling off minimum degree vertices

until a single vertex is left. Then we put the vertices back in in reverse order.

Suppose that at an arbitrary stage of this process we have coloured all vertices

with some s colours. Suppose that we want to colour some empire v and that,

around v, we already have vertices coloured with all s distinct colours used

so far. We might solve the problem by increasing the number of available

colours (this is what is done in Heawood’s algorithm). Alternatively, for each

pair of colours i and j we may, as a last resort, look at the induced subgraph

Hi,j consisting of all empires of G− v coloured i or j. If the neighbours of v

coloured i and j lie in separate components of Hi,j then it is possible to switch

the colours in one of these components so that v now has two neighbours of

the same colour and one colour is left free. If this fails we will have to pick a

brand new colour, and the process will revert to mimic Heawood’s heuristic.

The results of the standard experiment for this refined heuristic are shown

in Table 4.3. The algorithm performs better than the Heawood algorithm

for all tested values of n and r. The magnitude of the improvements, and

the fact that, in some cases, they seem to be decreasing with the size of

the graphs considered prevents us from making any strong claim on this

algorithm. Nevertheless it seems a reasonable heuristic, at least for small

graphs.

4.2.3 List Colouring

In this section we present the greedy heuristic that seems to give the best

results. The algorithm List(H) takes as input a graph H that may already

be partially coloured.

Algorithm List(H)

Set m = |V (H)|.
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n \r 2 3 4 5 6 10
120 (369,31) (397,3,0) (190,210,0,0,0) (368,16,0,0,0,0) (224,175,1,0,0,0,0,0) (202,83,19,0,0,. . . )
600 (310,90) (398,2,0) (2,398,0,0,0) (306,94,0,0,0,0) (0,399,1,0,0,0,0,0) (67,329,4,0,0,. . . )
1200 (213,187) (397,3,0) (0,400,0,0,0) (166,234,0,0,0,0) (0,395,5,0,0,0,0,0) (0,378,22,0,0,. . . )
3000 (61,339) (380,20,0) (0,400,0,0,0) (9,391,0,0,0,0) (0,371,29,0,0,0,0,0) (0,256,144,0,0,. . . )
6000 (3,397) (338,62,0) (0,400,0,0,0) (0,400,0,0,0,0) (0,284,116,0,0,0,0,0) (0,75,325,0,0,. . . )
9000 (0,400) (249,151,0) (0,400,0,0,0) (0,400,0,0,0,0) (0,184,216,0,0,0,0,0) (0,14,386,0,0,. . . )
12000 (0,400) (202,198,0) (0,400,0,0,0) (0,400,0,0,0,0) (0,116,284,0,0,0,0,0) (0,2,398,0,0,. . . )
15000 (0,400) (130,270,0) (0,400,0,0,0) (0,400,0,0,0,0) (0,52,348,0,0,0,0,0) (0,0,400,0,0,. . . )
18000 (0,400) (71,329,0) (0,400,0,0,0) (0,400,0,0,0,0) (0,32,368,0,0,0,0,0) (0,0,400,0,0,. . . )
21000 (0,400) (61,339,0) (0,400,0,0,0) (0,400,0,0,0,0) (0,15,385,0,0,0,0,0) (0,0,400,0,0,. . . )
24000 (0,400) (34,366,0) (0,400,0,0,0) (0,400,0,0,0,0) (0,14,386,0,0,0,0,0) (0,0,400,0,0,. . . )
27000 (0,400) (29,371,0) (0,400,0,0,0) (0,400,0,0,0,0) (0,6,394,0,0,0,0,0) (0,0,394,6,0,. . . )
30000 (0,400) (9,391,0) (0,399,1,0,0) (0,400,0,0,0,0) (0,3,397,0,0,0,0,0) (0,0,398,2,0,. . . )
33000 (0,400) (7,393,0) (0,399,1,0,0) (0,400,0,0,0,0) (0,3,397,0,0,0,0,0) (0,0,395,5,0,. . . )
36000 (0,400) (4,396,0) (0,400,0,0,0) (0,400,0,0,0,0) (0,2,398,0,0,0,0,0) (0,0,391,9,0,. . . )
39000 (0,400) (5,395,0) (0,398,2,0,0) (0,400,0,0,0,0) (0,1,399,0,0,0,0,0) (0,0,390,10,0,. . . )
42000 (0,400) (1,399,0) (0,398,2,0,0) (0,400,0,0,0,0) (0,0,400,0,0,0,0,0) (0,0,381,19,0,. . . )
45000 (0,400) (0,400,0) (0,398,2,0,0) (0,400,0,0,0,0) (0,0,400,0,0,0,0,0) (0,0,387,13,0,. . . )
48000 (0,400) (0,400,0) (0,392,8,0,0) (0,400,0,0,0,0) (0,0,400,0,0,0,0,0) (0,0,373,27,0,. . . )
51000 (0,400) (1,399,0) (0,392,8,0,0) (0,400,0,0,0,0) (0,0,400,0,0,0,0,0) (0,0,371,29,0,. . . )
54000 (0,400) (0,400,0) (0,393,7,0,0) (0,400,0,0,0,0) (0,0,400,0,0,0,0,0) (0,0,373,27,0,. . . )
57000 (0,400) (0,400,0) (0,389,11,0,0) (0,400,0,0,0,0) (0,0,400,0,0,0,0,0) (0,0,362,38,0,. . . )
60000 (0,400) (0,400,0) (0,397,3,0,0) (0,400,0,0,0,0) (0,0,400,0,0,0,0,0) (0,0,368,32,0,. . . )

Table 4.3: The number of colours used by the Heawood colouring algorithm
with the colouring process improved using Brooks’ recolouring strategy.

for v = 1 to m do

Set List(v) as a list of all colours not used by the neighbours of

v.

end for

while empires are left uncoloured do

Set v = uncoloured vertex with shortest list. If two vertices have

lists of the same length, choose the one with the most uncoloured

neighbours

if List(v) is not empty then

Set c = the colour present in lists of the least number of neigh-

bours of v.

Set Colour(v) = c.

for all u such that u is a neighbour of v do

Set List(u) = List(u)-c.

end for
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else

Set Colour(v) = 2r.

end if

end while

Return coloured graph.

For this algorithm, each empire has a list of all available colours in the

range 1, . . . , 2r, initially all colours are available for each empire. At each

step, the empire with the shortest list is selected and given the colour in its list

that is in the smallest number of lists for neighbouring empires. Unlike the

Heawood and Brooks algorithms, it is possible for the list colouring algorithm

to use more than 2r colours, however tests suggest that this is extremely

unlikely.

n\r 2 3 4 5 6 10
120 (313,87) (383,17,0) (122,275,3,0,0) (332,59,0,0,0,0) (197,196,6,0,0,0,0,0) (199,84,14,0,. . . )
600 (296,104) (376,24,0) (1,398,1,0,0) (246,154,0,0,0,0) (3,375,22,0,0,0,0,0) (49,320,31,0,. . . )
1200 (273,127) (366,34,0) (0,399,1,0,0) (214,186,0,0,0,0) (1,379,20,0,0,0,0,0) (4,317,79,0,. . . )
3000 (298,111) (381,19,0) (0,398,2,0,0) (184,216,0,0,0,0) (0,382,18,0,0,0,0,0) (0,301,99,0,. . . )
6000 (283,117) (388,12,0) (0,398,2,0,0) (172,228,0,0,0,0) (0,380,20,0,0,0,0,0) (0,316,84,0,. . . )
9000 (282,118) (372,28,0) (0,400,0,0) (187,213,0,0,0,0) (0,379,21,0,0,0,0,0) (0,279,121,0,. . . )
12000 (291,109) (378,22,0) (0,398,2,0,0) (181,219,0,0,0,0) (0,380,20,0,0,0,0,0) (0,277,123,0,. . . )
15000 (284,116) (372,28,0) (0,398,2,0,0) (185,215,0,0,0,0) (0,388,12,0,0,0,0,0) (0,270,130,0,. . . )
18000 (292,108) (382,18,0) (0,400,0,0,0) (172,228,0,0,0,0) (0,389,11,0,0,0,0,0) (0,293,107,0,. . . )
21000 (277,123) (382,18,0) (0,399,1,0,0) (189,211,0,0,0,0) (0,388,12,0,0,0,0,0) (0,302,98,0,. . . )
24000 (285,115) (385,15,0) (0,398,2,0,0) (165,235,0,0,0,0) (0,373,27,0,0,0,0,0) (0,289,111,0,. . . )
27000 (297,103) (384,16,0) (0,399,1,0,0) (172,228,0,0,0,0) (0,381,19,0,0,0,0,0 (0,291,109,0,. . . )
30000 (282,118) (368,32,0) (0,399,1,0,0) (167,233,0,0,0,0) (0,374,26,0,0,0,0,0) (0,292,108,0,. . . )
33000 (303,97) (377,23,0) (0,399,1,0,0) (176,224,0,0,0,0) (0,368,32,0,0,0,0,0) (0,290,110,0,. . . )
36000 (275,125) (381,19,0) (0,399,1,0,0) (164,236,0,0,0,0) (0,380,20,0,0,0,0,0) (0,289,111,0,. . . )
39000 (278,122) (375,25,0) (0,399,1,0,0) (167,233,0,0,0,0) (0,379,21,0,0,0,0,0) (0,285,115,0,. . . )
42000 (285,115) (375,25,0) (0,398,2,0,0) (170,230,0,0,0,0) (0,385,15,0,0,0,0,0) (0,278,122,0,. . . )
45000 (288,112) (384,16,0) (0,400,0,0,0) (168,232,0,0,0,0) (0,378,22,0,0,0,0,0) (0,270,130,0,. . . )
48000 (275,125) (365,35,0) (0,399,1,0,0) (167,233,0,0,0,0) (0,380,20,0,0,0,0,0) (0,274,126,0,. . . )
51000 (281,119) (377,23,0) (0,398,2,0,0) (164,236,0,0,0,0) (0,385,15,0,0,0,0,0) (0,283,117,0,. . . )
54000 (268,132) (380,20,0) (0,400,0,0,0) (170,230,0,0,0,0) (0,381,19,0,0,0,0,0) (0,271,129,0,. . . )
57000 (267,133) (381,19,0) (0,399,1,0,0) (159,241,0,0,0,0) (0,373,27,0,0,0,0,0) (0,254,146,0,. . . )
60000 (278,122) (380,20,0) (0,399,1,0,0) (168,232,0,0,0,0) (0,384,16,0,0,0,0,0) (0,281,119,0,. . . )

Table 4.4: The number of colours used by the list colouring algorithm.

Table 4.4 shows the number of colours used by the list colouring algo-

rithm. This algorithm seems to give an improvement over the previous two

algorithms, as even with r = 2 it avoids using the maximum number of
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colours on many graphs. For r = 10 the algorithm used only eight or nine

colours for most graphs, less than half the upper bound.

Figure 4.3 compares the average number of colours used by the list colour-

ing algorithm (bottom diagram) with those used by the other two algorithms

we investigated earlier on.

4.3 Short Cycle Preprocessing

A further improvement on the performances of the colouring algorithms that

we have discussed so far can be made using a method suggested by Lingsheng

Shi and Nicholas Wormald to give asymptotic bounds on the chromatic num-

bers of random r-regular graphs [64, 65] for small fixed values of r.

The starting point is the observation that any even length cycle can

be coloured using two colours only whereas odd cycles need three colours.

Adding to this the fact that, in the reduced graphs of random trees, short

cycles are relatively few and far apart (see our analysis in Section 3.4.4 and

the discussion in Section 3.5.3), one may reasonably conceive that, by first

colouring every cycle of at most a given length A, we may devise a more

effective colouring heuristic.

We next describe an algorithm, Cycle(H, A), that takes as input an un-

coloured graph H containing no loops or parallel edges and an integer A ≥ 3.

As output, the algorithm returns a partial colouring of H such that all ver-

tices within cycles of length at most A are coloured. To simplify the process

we assume that, if one vertex is in at least two cycles, or two vertices from

different cycles are adjacent, then the colouring fails and the algorithm is

aborted. In what follows vertices are considered Bad if they have already

been coloured or are adjacent to a coloured vertex, the algorithm fails if
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Figure 4.3: The average number of colours used by each of the three algo-
rithms described in this section to colour the r-reduced graphs of trees on n
vertices for 2 ≤ r ≤ 6 and for r = 10.
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asked to colour a Bad vertex. We believe that, in analogy to what happens

for random regular graphs, because Rr(Tn) contains relatively few short cy-

cles (see Theorem 3.17 in Chapter 3), for sufficiently large n it is unlikely

that two will be intersecting or adjacent and therefore the process simplifica-

tion described above only marginally affects the performances of the whole

heuristic.

The algorithm works by looking at all paths of length 3 ≤ l ≤ A starting

at each vertex and seeing if they form a cycle.

Algorithm Cycle(H, A)

for v = 1 to n/r do

for l = 3 to A do

for all paths p ∈ H of length l, starting at v do

if the final vertex of p is v then

if the cycle p has not already been found then

if p contains a Bad vertex then

Colouring fails.

else

Colour the vertices of p.

Set the vertices of p and their neighbours as Bad.

end if

end if

end if

end for

end for

end for

Return partially coloured graph H.

We can use this short cycle preprocessing algorithm together with list

colouring to give an improved algorithm for colouring graphs.

Algorithm ListCycle(H)
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Set A to some VERY slow growing function of m = |V (H)|

if A < 3 then

G = H

else

G = Cycle(H,A)

end if

Return List(G)

Table 4.5 reports the results obtained by running Cycle(H,A) and then

the list colouring algorithm described in Section 4.2.3 on the partially

coloured graph resulting from Cycle(H,A) for r = 2 and different values

of n and A.

n\A 0 3 4 5 6
5000 (296,104) (278,46) (14,3) (0,0) (0,0)
10000 (293,107) (302,59) (59,8) (0,0) (0,0)
15000 (284,116) (299,70) (97,16) (0,0) (0,0)
20000 (291,109) (328,52) (125,21) (0,0) (0,0)
25000 (284,116) (328,54) (154,14) (0,0) (0,0)
30000 (282,118) (321,65) (188,25) (1,0) (0,0)
35000 (296,104) (316,69) (187,27) (1,0) (0,0)
40000 (291,109) (334,56) (225,30) (1,0) (0,0)
45000 (292,108) (316,78) (224,25) (0,0) (0,0)
50000 (271,129) (323,65) (240,30) (4,0) (0,0)
55000 (281,119) (320,66) (229,40) (2,0) (0,0)
60000 (276,124) (326,66) (244,34) (7,1) (0,0)
65000 (275,125) (329,64) (258,47) (7,1) (0,0)
70000 (291,109) (332,60) (252,35) (5,1) (0,0)
75000 (284,116) (327,67) (275,33) (17,1) (0,0)
80000 (290,110) (329,66) (263,40) (17,2) (0,0)
85000 (297,103) (321,74) (278,26) (16,2) (0,0)
90000 (284,116) (327,70) (278,36) (24,0) (0,0)
95000 (277,123) (329,68) (282,40) (27,1) (0,0)
100000 (279,121) (342,53) (290,40) (20,0) (0,0)
120000 (278,122) (329,67) (232,41) (40,4) (0,0)
150000 (284,116) (307,88) (310,41) (59,2) (0,0)
200000 (277,123) (330,67) (318,37) (103,8) (0,0)

Prop. 3-coloured 71.23% 83.23% 87.94% 93.85% —

Table 4.5: The number of trees on n vertices whose 2-reduced graphs were
properly three or four coloured by the list colouring algorithm with short
cycle preprocessing for cycles of length up to 6. 400 tests performed in each
case. Failed tests do not contribute to the tallies and so the numbers in each
element do not always add up to the number of tests. The last row gives the
proportion of all successful tests leading to graphs that were 3-coloured.
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The results suggest that larger values of A may allow more graphs to be

coloured with just three colours. Following Shi and Wormald’s we conjecture

that the analysis of the following strategy may lead to a proof that, in fact,

χ(R2(Tn)) = 3 a.a.s.

4.4 Conclusions

In this chapter we studied the empire colouring problem on trees. First we

proved that, for each positive integer r and n such that n ≥ r and n/r is a

positive integer, if Tn is a tree on n vertices, the chromatic number of Rr(Tn)

is no larger than 2r and sometimes 2r colours are necessary.

Then we studied empirically a number of colouring heuristics. The re-

sults of our analysis can be summarised as follows. First, even a rudimentary

minimum degree heuristic is quite good. The number of colours used is never

larger than r+3. Second, including a re-colouring heuristic similar to the one

used in the proof of Brooks theorem seems to further improve the colouring

results. The maximum number of used colours for r = 4, r = 5, and r = 10

is always at least one less than in the case of the minimum degree heuristic

mentioned before. Overall, the list colouring algorithm described in Section

4.2.3 seems to be the most effective of the three algorithms considered. Fi-

nally we argued that some kind of short cycle preprocessing may noticeably

improve the performances of the algorithms described, at least for sufficiently

large values of n.

We should note that the results obtained using the algorithms in this

chapter are promising even just from the combinatorial point of view. For

r > 2, any of the heuristics considered very rarely required 2r colours to

complete its job. This leads to the conjecture that 2r is a weak upper bound
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on the chromatic number of the r-reduced graph of a random tree and that

a careful combinatorial analysis of the number of s-colourings of Rr(Tn) may

lead to better results than those stated in Theorem 4.1.

3

3.2

3.4

3.6

3.8

4

0 20 40 60 80 100 120 140 160 180 200

Colours

Number of vertices (thousands)

A = 0
A = 3
A = 4
A = 5

Figure 4.4: The average number of colours used by the list colouring algo-
rithm to colour the 2-reduced graphs of trees on n = 5000 . . .200, 000 vertices
with short cycle preprocessing for cycles of length up to 5.
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Chapter 5

Bounds on χ(Rr(Tn))

Let Wr,s(Tn) = |C(Tn, r, s)| be the number of proper s-empire colourings of

a tree Tn whose vertex set is partitioned into blocks of size r. Also, define a

colouring to be balanced if all colour classes are the same size (we will, often

tacitly, consider only values of n that make this possible) and let W ′
r,s(Tn) be

the number of such balanced s-colourings of Tn.

The research question that lead to the results presented in this chapter

asked for the asymptotic distribution of Wr,s(Tn) in the hope of pin-pointing,

at least for sufficiently large n, the most likely values of χ(Rr(Tn)), the chro-

matic number of Rr(Tn) (or equivalently the minimum positive value of s such

that C(Tn, r, s) is non-empty). Although we fell short of fulfilling this plan,

we managed to characterise all central moments of Wr,s(Tn) and W ′
r,s(Tn).

This in turn leads us to some information on our original questions.

For each fixed integer r ≥ 2 and s ≥ 1, let

cr,s = s
1
r
−1(s − 1) (5.1)

Define sr as the largest positive integer s such that cr,s < 1. The main results
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in this chapter are as follows:

Theorem 5.1 For any fixed integer r ≥ 2, and any s ∈ {1, . . . , sr},

Wr,s(Tn) = 0 a.a.s.

Furthermore for large r,

sr =

⌈

r

log r

⌉(

1 + O

(

1

log log r

))

.

Table 5.1 gives the values of sr for the first few values of r.

Theorem 5.1 can be paired up with the following result which, in a sense,

gives a measure of its tightness. Informally, for any fixed r > 1, and s

sufficiently large, if n is large enough, C(Tn, r, s) will be non-empty with

positive constant probability.

Theorem 5.2 For any fixed integers r ≥ 2, and s ≥ 3 such that

r <
s

2
log(s − 1),

the probability that Wr,s(Tn) > 0 is bounded below by a quantity that ap-

proaches

e
s(s−2)(r−1)

(s−1)2 (r − 2r(s − 1)2 + (s − 1)4)
(s−1)2

2

s(s−1)2(s − 2)(s−1)2

as n tends to infinity.

r 2 3 4 5 6 7 8 9 10 . . . 20 . . . 50
sr 2 3 3 4 4 4 5 5 6 . . . 9 . . . 17

Table 5.1: Lower bounds on the chromatic number of Rr(Tn) for different
values of r.
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The proof of Theorem 5.1 (given in Section 5.2.1) is based on noticing

that for values of s and r such that cr,s < 1, EWr,s(Tn) = o(1). To prove

Theorem 5.2 we first obtain asymptotic bounds for the first two moments of

W ′
r,s(Tn) and then use the Cauchy-Schwarz inequality to give a lower bound

on the probability that there is at least one proper balanced colouring. As

balanced colourings are a special type of colouring, this also acts as a lower

bound on the probability that there is at least one proper colouring.

The rest of the Chapter is structured as follows. In Section 5.1 we will

define a family of graphs that are related to this colouring problem, and

use a method for enumerating spanning trees of such graphs to give exact

expressions for all moments of Wr,s(Tn) and W ′
r,s(Tn) for all values of r and

s greater than one. Then, in Section 5.2, we will use these expressions to

give bounds on the first moment of Wr,s(Tn) that will be enough to prove

Theorem 5.1. In Section 5.3 we study the second moment of W ′
r,s(Tn) and

give a proof of Theorem 5.2. The Chapter is then concluded by a section

speculating on further extensions of the work presented here, comparisons

with similar work in the literature, and open problems.

5.1 The Central Moments of Wr,s(Tn) and

W ′
r,s(Tn)

The aim of this section is to present exact formulas for the central moments

of the random variables Wr,s(Tn) and W ′
r,s(Tn).

As we saw in Chapter 2 (see Section 2.3), if we can write a random variable

X as a sum of random indicators, then its kth moment can also be written

as a sum of simpler terms (see expression (2.28)). Clearly both Wr,s(Tn) and
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W ′
r,s(Tn) satisfy this condition. For instance

Wr,s(Tn) =
∑

α

Iα

where α is a particular assignment of colours from {1, . . . , s} to a set of n

vertices and Iα = 1 if α is a proper s-(empire) colouring of Tn, zero otherwise.

Thus we may compute, say, EWr,s(Tn)k by listing all k-tuples of s-colourings

and counting, for each tuple, how many trees are properly coloured by each

of the colourings in the tuple. Crucial to our program is a method for enu-

merating trees on n vertices that are properly coloured by a given k-tuple

of s-colourings. After some preparatory work, such a method is described

in Section 5.1.3. Finally, in Section 5.1.4 we state and prove our results on

EWr,s(Tn)k and EW ′
r,s(Tn)k.

5.1.1 Colourings as Graph Homomorphisms

Colourings of a graph G can be seen as homomorphisms from G to another

graph whose vertices correspond to different colour classes [44]. A similar

correspondence holds for k-tuples of colourings.

For any integer s ≥ 2 and k ≥ 1, let a vertex of graph Bs,k be labelled

by a sequence ı ≡ (i1, . . . , ik) where ij ∈ {1, . . . , s} for each j ∈ {1, . . . , k}.

When lists of such sequences are needed we will assume they are produced

in lexicographic order and will denote the elements of such lists by ı(1),

ı(2), . . .. Thus ı(1) = (1, 1, . . . , 1), ı(2) = (1, 1, . . . , 2) and so on. If E is an

expression involving ı(j) for some j ∈ {1, . . . , sk}, then
∑

ı E(ı) (or
∏

ı E(ı)) is

a shorthand for
∑sk

j=1 E(ı(j)) (or
∏sk

j=1 E(ı(j))). Two vertices of Bs,k, labelled

ı and ı’, are adjacent if and only if ij 6= i′j for all j’s. Thus, Bs,k is an (s−1)k-

regular graph on sk vertices (see Figure 5.1 for a small example).
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Figure 5.1: The graph B3,2 for s = 3 and k = 2.

Any1 k-tuple of s-colourings in G defines a homomorphism h from G to

Bs,k: for each v ∈ V (G), h(v) is the vertex (i1, . . . , ik) ∈ V (Bs,k) if v receives

colour i1 by the first given colouring, colour i2 by the second one and so on.

Thus Bs,k is referred to as the constraint graph on the class of all k-tuples of

s-colourings.

The graphs Bs,k have a very nice structure and, as we will discover in

the next section, also play a role with respect to empire colourings. Before

moving to that, we end this section looking at a nice property of constraint

graphs that will be used later. In what follows κ(G) denotes the number of

spanning trees of a graph G.

Lemma 5.3 For each integer s ≥ 2 and k ≥ 1,

skκ(Bs,k) =
k∏

i=1

((s − 1)k − (−1)i(s − 1)k−i)(
k
i)(s−1)i

.

1In the current treatment we assume that each of the k colourings uses all s colours
available. Strictly speaking an s-colouring does not have to use all s colours available. In
fact our analysis will not need this assumption and the way in which we deal which such
“efficient” s-colourings is explained in Sections 5.1.2 and 5.1.3.
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Proof. By Kirchhoff’s matrix-tree theorem (see for example [42, Theorem

1.11, p 29–31]), the number of spanning trees of Bs,k is equal to the product

of all non-zero eigenvalues of the Laplacian matrix L(Bs,k) divided by the

number of vertices of Bs,k. For regular graphs of degree r > 0, the spectrum

of the Laplacian matrix can be retrieved from that of the corresponding

adjacency matrix: if L is an eigenvalue of A(Bs,k), then λ = r − L is an

eigenvalue of L(Bs,k). In the rest of the proof we find the spectrum of A(Bs,k).

Define the initial matrix A(Bs,0) as the 1 by 1 matrix (1). The matrix

A(Bs,k+1) can be built up recursively from smaller matrices. Any element

relating to two vertices with the same first index will be equal to zero and

hence there will be s copies of Zerosk along the diagonal. Where the first

index differs between two matrices the value of the element in A(Bs,k+1)

depends on whether or not the remaining k indices are the same, this is

of course an instance of A(Bs,k). Hence, A(Bs,k+1) can be obtained from

Ones − Is by replacing each zero element by Zerosk and each one element

by A(Bs,k).

A(Bs,k+1) =


















Zerosk A(Bs,k) . . . A(Bs,k) A(Bs,k)

A(Bs,k) Zerosk A(Bs,k) A(Bs,k)

...
. . .

...

A(Bs,k) A(Bs,k) Zerosk A(Bs,k)

A(Bs,k) A(Bs,k) . . . A(Bs,k) Zerosk


















Given integer i such that 0 ≤ i ≤ k, let l(k, i) = (−1)i(s − 1)k−i. Note

that, for each positive integer k, and i ∈ {0, . . . , k}, l(k, i) = −l(k + 1, i + 1).

We will show by induction on k that

SpecA(Bs,k) =






l(k, 0) . . . l(k, i) . . . l(k, k)

1 . . .
(

k
i

)

(s − 1)i . . . (s − 1)k




 . (5.2)
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When k = 0, A(Bs,k) = (1). This has one eigenvector (1) with eigenvalue 1,

satisfying (5.2). For k > 0, we build the eigenvectors of A(Bs,k+1) from those

of A(Bs,k). For each i such that 0 ≤ i ≤ k, there are
(

k
i

)

(s− 1)i eigenvectors

of A(Bs,k) with eigenvalues equal to l(k, i) = (−1)i(s − 1)k−i. Let vi be one

such eigenvector. We build up a new eigenvector wi consisting of s copies of

vi. Since A(Bs,k)vi = l(k, i)vi, it follows that

A(Bs,k+1)w
i = (s − 1)l(k, i)wi = l(k + 1, i)wi,

as, in each row, (s − 1) copies of vi are multiplied by A(Bs,k) while one is

multiplied by zero. This can be done for any of the eigenvectors, giving us
(

k
i

)

(s − 1)i eigenvectors with eigenvalues equal to l(k + 1, i) in A(Bs,k+1).

Also, for each i such that 0 ≤ i ≤ k, given an eigenvector vi of A(Bs,k)

with eigenvalue l(k, i) and integer j with 2 ≤ j ≤ s, we can build up another

eigenvector ui,j of A(Bs,k+1) defined as follows:

ui,j =


















−vi

z2

z3

...

zs


















,

where zl = vi if l = j, and a zero vector of length sk otherwise. When

A(Bs,k+1) is multiplied by ui,j, the first sk rows will be equal to l(k, i)vi since

the −vi section was multiplied by zero. The jth set of rows corresponding

to vi will be equal to −l(k, i)vi since the vi section was multiplied by zero.
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The other rows will be equal to l(k, i)vi − l(k, i)vi = 0. Hence

A(Bs,k+1)u
i,j = −l(k, i)ui,j = l(k + 1, i + 1)ui,j.

For each vi there are (s−1) possible places to put the second non-zero block

and so we have an additional
(

k
i

)

(s−1)i+1 eigenvectors with eigenvalues equal

to l(k + 1, i + 1).

The values i = 0 and i = k + 1 in A(Bs,k+1) receive eigenvalues from

only one place each — uk,j gives (s − 1)k+1 eigenvectors with eigenvalues

equal to (−1)k+1 and w0 gives one eigenvector with eigenvalue (s − 1)k+1.

For 1 ≤ i ≤ k eigenvalues come from both of the methods described above.

Hence, the number of eigenvectors with eigenvalues equal to l(k + 1, i) is:

(

k

i

)

(s − 1)i +

(

k

i − 1

)

(s − 1)i =

(

k + 1

i

)

(s − 1)i.

In total, we have defined

k+1∑

i=0

(

k + 1

i

)

(s − 1)i = sk+1

eigenvalues of a square sk+1 × sk+1 matrix. The spectrum of A(Bs,k+1) is

thus fully characterised and the result follows.

5.1.2 Operations on Graphs

We define the following operation on finite labelled graphs. Given graphs

G and H1, . . ., H|V (G)|, their lexicographic product is the graph, denoted

by G{H1, . . . , H|V (G)|}, obtained by replacing the ith vertex of G with Hi

for all i ∈ {1, . . . , |V (G)|}. In this process, the first2 vertex of Hi is re-

2We assume that there is a linear order on the vertex labels of the graphs.
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labelled
∑

j<i |V (Hj)| + 1, the second one
∑

j<i |V (Hj)| + 2, and so on, up

until the last vertex which is relabelled
∑

j≤i |V (Hj)|. There is an edge in

G{H1, . . . , H|V (G)|} between two vertices u ∈ Hi, v ∈ Hj (i 6= j) if and only

if there is an edge between i and j in G. Two vertices of G{H1, . . . , H|V (G)|}

originating in a given Hi are connected by an edge if and only if they were

connected by an edge in Hi.

Note that the definition can be extended to the case where some of the Hi

are empty. If Hi is the empty graph we define G{H1, . . . , Hi−1, Hi, Hi+1, . . . , H|V (G)|}
as

(G − i){H1, . . . , Hi−1, Hi+1, . . . , H|V (G)|}.

In the rest of this thesis we will be interested in one particular instance

of the operation defined above. Let r, s, and k be fixed positive integers,

with r ≥ 2 and s ≥ 2, and let (mı)ı∈[s]k be a sequence of sk non-negative

integers (when the fancy indexing of these sequences is not important we

will often forget it and denote (mı)ı∈[s]k simply using the standard vector

notation m). When N =
∑

ı mı sequences of this kind will be referred to as

sk-compositions of N . An sk-composition will be called balanced if for each

j ∈ {1, . . . , k} and c ∈ {1, . . . , s}, the sum of all mı with index ı such that

ij = c, multiplied by s equals N . The graph

Bs,k{mı(1)Kr, . . . , mı(sk)Kr}

(here an expression of the form mKr denotes the graph formed by m dis-

joint copies of Kr, with 0Kr being just another name for the empty graph)

has n = r
∑

ı mı vertices. The graph in the centre of Figure 5.2 is an

example of one such construction. The most important property of these

graphs is the fact that one can associate a k-tuple of s-colourings of a
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Figure 5.2: The graph B3,2 (left, with vertex labels represented by pairs of
colours), the graph B3,2{1K2, 1K2, 1K2, 1K2, 1K2, 1K2, 1K2, 1K2, 1K2} (cen-
tre), and a tree legally coloured by the two colourings (right, in red).

set of n vertices to each graph Bs,k{mı(1)Kr, . . . , mı(sk)Kr}: each vertex

originating from a vertex of mı(j)Kr is coloured ı(j) ≡ (i1, . . . , ik). Fur-

thermore this establishes a one-to-one correspondence between the span-

ning trees of Bs,k{mı(1)Kr, . . . , mı(sk)Kr} and the trees on n vertices that

are properly (empire) coloured by each of the s-colourings in the given

k-tuple, and are such that all vertices with labels in {1, 2, . . . , rmı(1)} re-

ceive colour 1 in each of the k colourings, all vertices with labels in

{rmı(1) + 1, rmı(1) + 2, . . . , r(mı(1) + mı(2))} receive colour 1 in the first k− 1

colourings and 2 in the kth one, and so on. Clearly every spanning tree of

Bs,k{mı(1)Kr, . . . , mı(sk)Kr} is a tree on n vertices that is properly coloured

by each of the s-colourings in the k-tuple, in the way mentioned above. Con-

versely, if there was a tree T on n vertices which was properly coloured

by the k given s-colourings in the way mentioned above, but did not span

Bs,k{mı(1)Kr, . . . , mı(sk)Kr} then at least one of its edges, say e ≡ {u, v}

would join two distinct copies of Kr either in the same mı(j)Kr or belonging

to mı(i′1)Kr and mı(i′2)Kr such that the tuples ı(i′1) and ı(i′2) are not pairwise

disjoint. But this would imply that for at least one of the k colourings there

will be a clash involving the vertices u and v.
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5.1.3 Enumeration of Spanning Trees in Certain Classes

of Graphs

An enumerative result by M. Rubey [63, Theorem 3.5], based on ideas appear-

ing in earlier work by Knuth [51], Kelmans [50], and Pak and Postnikov [59]

gives the number of spanning trees of graphs G{H1, . . . , H|V (G)|}.

To be able to state the result we need to introduce a number of particular

expressions. Given graphs G and H1, . . . , H|V (G)|, let

dG(v) =
∑

u∈V (G):{u,v}∈E(G)

|V (Hu)|

be the number of vertices in graphs Hu whose index u, seen as a vertex of G,

is adjacent to vertex v. Also, let fi(Hv) be the number of spanning rooted

forests of Hv with i connected components (i.e. the number of spanning

forests of Hv consisting of i trees each of which has a specific vertex identified

as the root). Let Kn denote the edgeless graph on n vertices.

These expressions look quite mysterious, but in all cases relevant to this

work they end up having rather simple expressions. So, for instance, if Hu is

Kmı(u)
for each u ∈ {1, . . . , s2}, where r

∑

ı mı = n, then dBs,2(ı) is equal to

∑

j1:j1 6=i1

∑

j2:j2 6=i2

m(j1,j2),

if ı= (i1, i2), or equivalently

n

r
−




s∑

j=1

m(j,i2) +
s∑

j=1

m(i1,j) − mı



 .

Furthermore, if
∑s

j=1 m(j,i) = n
sr

=
∑s

j=1 m(i,j) (i.e. if the sequence (mı)ı∈[s]2
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is balanced) then

dBs,2(ı) =
(s − 2)n

sr
+ mı. (5.3)

Similarly, fi(H) may be difficult to compute for an arbitrary graph H , but

fortunately we are only interested in the case H = Kr, for some fixed positive

integer r. In this case, since the i roots can be chosen in
(

r
i

)

ways it follows

that

fi(Kr) =

(

r

i

)

irr−i−1. (5.4)

We are now ready to state the result providing a formula for κ(G{H1, . . . , H|V (G)|}).

Theorem 5.4 Given finite labelled graphs G, and H1, . . . , H|V (G)|, the num-

ber of spanning trees of G{H1, . . . , H|V (G)|} is equal to

∏

v∈V (G),Hv 6=∅





|V (Hv)|
∑

i=1

fi(Hv)dG(v)i−1




∑

T

∏

v∈V (G),Hv 6=∅
|V (Hv)|degT (v)−1, (5.5)

where the second sum is over all spanning trees T of G[U ], where U = {v ∈

V (G) : Hv 6= ∅}.

The careful reader will have noticed that, in fact, Theorem 5.4 is a minor

extension of Rubey’s result. In our definition of G{H1, . . . , H|V (G)|} some

of the Hi’s may be empty. The result, whose proof does not require any

additional argument, is necessary to account for s-colourings that in fact

only use fewer than s distinct non-empty colour classes.

Theorem 5.4 and the correspondence described in Section 5.1.2 between

the spanning trees of Bs,k{mı(1)Kr, . . . , mı(sk)Kr} and a particular set of n-

vertex trees properly coloured by a given k-tuple of s-colourings allow us

to write down a formula for the number of such trees. To prove the result

it is convenient to introduce another instance of lexicographic product. In
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what follows, let B denote the graph Bs,k{Kmı(1) , . . . , Kmı(sk)
}. Note that the

equation

κ(B) =
∏

{ı:mı 6=0}
dBs,k

(ı)mı−1
∑

T

∏

{ı:mı 6=0}
(mı)

degT (ı)−1 (5.6)

follows easily from Theorem 5.4 after noticing that for each index ı, such

that mı > 0, fi(Kmı) = 1 (resp. 0) when i = mı (resp. i < mı), since Kmı

contains no edges. Furthermore, clearly,

Bs,k{mı(1)Kr, . . . , mı(sk)Kr} = B{Kr, . . . , Kr
︸ ︷︷ ︸

n/r times

}. (5.7)

Theorem 5.5 Let k and n be positive integers. Let r and s be positive

integers greater than one, and (mı)ı∈[s]k be an sk-composition of n/r. The

number of trees on n vertices that are properly coloured by the k-tuple of

s-colourings associated with the graph

Bs,k{mı(1)Kr, . . . , mı(sk)Kr}

in such a way that, for each j ∈ {1, . . . , k}, and ij ∈ {1, . . . , s} vertices with

labels in the set 




r
∑

ı′<ı
mı + 1, . . . , r

∑

ı′≤ı
mı







receive colours (i1, . . . , ik) is

∏

{ı:mı 6=0}
(rdBs,k

(ı) + r)mı(r−1)(rdBs,k
(ı))mı−1

∑

T

∏

{ı:mı 6=0}
(rmı)

degT (ı)−1. (5.8)

In this expression, function dBs,k
is defined w.r.t. the graph B and the sum

is over all spanning trees T of Bs,k[U ], where U = {ı : mı 6= 0}.

Proof. We work with the more convenient representation of Bs,k{mı(1)Kr, . . . , mı(sk)Kr}
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defined in (5.7). Since Kr has r vertices, it follows from Theorem 5.4 that

the number of spanning trees of B{Kr, . . . , Kr} is

r
n
r
−2

n
r∏

l=1

(
r∑

i=1

fi(l)dB(l)i−1

)

κ(B),

where the term fi(l) counts the number of spanning forests consisting of i

rooted trees in the lth copy of Kr (and is given by (5.4) as we saw earlier on).

Hence the number of spanning trees of Bs,k{mı(1)Kr, . . . , mı(sk)Kr} is

r
n
r
−2

n
r∏

l=1





r∑

i=1

(

r

i

)

irr−2

(

dB(l)

r

)i−1


κ(B).

Moving rr−2 out of the sum leads to

r(1− 1
r
)n−2

n
r∏

l=1





r∑

i=1

(

r

i

)

i

(

dB(l)

r

)i−1


κ(B),

and finally, using the identity

r∑

i=1

(

r

i

)

i

(

dB(l)

r

)i−1

= r

(

1 +
dB(l)

r

)r−1

,

and then moving another factor involving r out of the product, we get

r
n
r
−2

n
r∏

l=1

(r + dB(l))r−1κ(B). (5.9)

Finally, notice that as two vertices in B are adjacent if and only if they are

in subgraphs that are adjacent in Bs,k, all vertices of B originating from a

given empty graph Kmı will have exactly the same degree. Hence dB(l) will

take one value, namely rdBs,k
(ı(1)), for every l ∈ {1, . . . , m(1,...,1)}, the value

rdBs,k
(ı(2)) for l ∈ {m(1,...,1) + 1, . . . , m(1,...,2)}, and so on (see Figure 5.3).
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(ı)

Figure 5.3: The subgraph Kmı and its neighbours in B{Kr, . . . , Kr}. Every
vertex of B in a given empty subgraph Kmı is adjacent to the same set of
dBs,k

(ı) vertices. As each of these vertices will be replaced by Kr, dB(l) is

equal to rdBs,k
(ı) for any l in Kmı .

Thus we can write:

n
r∏

l=1

(r + dB(l))r−1 =
∏

{ı:mı 6=0}

(

r + rdBs,k
(ı)
)mı(r−1)

. (5.10)

The result follows by putting the values given in equations (5.6) and (5.10)

into (5.9).

Theorem 5.5 will be needed in the result giving exact formulae for

EWr,s(Tn)k and EW ′
r,s(Tn)k. For the asymptotic analysis of Section 5.3 it

will also be useful to compare expressions like (5.8) corresponding to differ-

ent sk-compositions of n/r. In particular it will be useful to find out under

which conditions on the sequence (mı)ı∈[s]k , the expression (5.8) is asymp-

totically very close to the one obtained assuming that mı = n
skr

, for all ı. As

with the multinomial coefficients in Subsection 2.2.2, it is useful to define for
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each ı,

xı = mı − cn

and work with expressions such as

κ
(

Bs,k{(cn + xı(1))Kr, . . . , (cn + xı(sk))Kr}
)

.

For each sk-tuple x = (xı(1), . . . , xı(sk)) such that −cn ≤ xı ≤ cskn − cn for

all ı and
∑

ı xı = 0 define

gn(x) =
κ
(

Bs,k{(cn + xı(1))Kr, . . . , (cn + xı(sk))Kr}
)

κ (Bs,k{cnKr, . . . , cnKr})
(5.11)

(the dependence of g on c is not shown as in all cases c will be fixed). The

following result describes the approximation on gn(x), for k = 2, that will be

used in Section 5.3.

Lemma 5.6 Let n be a positive integer. Let r and s be positive integers

greater than one. Let c be a fixed positive rational number, and assume that

cn is an integer. Finally let x be a vector formed by s2 integer numbers such

that −cn ≤ xı ≤ cs2n − cn for all ı, satisfying the following conditions:

1.
∑

ı xı = 0,

2.
∑s

j=1 x(j,i) =
∑s

j=1 x(i,j) = 0 for each i ∈ {1, . . . , s}, and

3. maxı |xı| = o(n
2
3 ).

Then

gn(x) = exp

{(

r

(s − 1)2cn
− r

2(s − 1)4cn

)
∑

ı
x2

ı + O

(

maxı |xı|3
n2

)}

as n tends to infinity.

115



Note that conditions 1. and 2. above imply that, in fact, gn(x) only depends

on (s − 1)2 of the s2 variables. This will be used in Section 5.3, when we

will apply Lemma 5.6 to estimate EW ′
r,s(Tn)2. Here we stick to the current

statement to keep the presentation as simple as possible.

Proof of Lemma 5.6. The numerator in the definition of gn(x) consists

of two parts, the product

∏

ı





cn+xı∑

j=1

fj

(

(cn + xı(1))Kr

)

dBs,2(ı)
j−1





and the sum over all spanning trees T of Bs,2

∑

T

∏

ı
(r(cn + xı))

degT (ı)−1

(the condition mı 6= 0 can be disregarded as |xı| is too small for it to happen).

In what follows we estimate the ratio of each of these two terms, for arbitrary

x to the corresponding ones for x = 0.

We first look at the sum. Each of its terms can be bounded as follows

(

rcn − r max
ı

|xı|
)s2−2

≤
∏

ı
(rcn + rxı)

degT (ı)−1 ≤
(

rcn + r max
ı

|xı|
)s2−2

while, of course, when xı = 0,

∏

ı
(rcn)degT (ı)−1 = (rcn)s2−2.

Therefore we have

(

1 − maxı |xı|
cn

)s2−2

≤
∑

T

∏

ı(r(cn + xı))
degT (ı)−1

∑

T

∏

ı(rcn)degT (ı)−1
≤
(

1 +
maxı |xı|

cn

)s2−2

,
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and, by Lemma 2.1, we can see that

∑

T

∏

ı(r(cn + xı))
degT (ı)−1

∑

T

∏

ı(rcn)degT (ı)−1
= exp

{

O

(

maxı |xı|
n

)}

.

We next look at the product. Theorem 5.5 gives us that

cn+xı∑

j=1

fj

(

(cn + xı(1))Kr

)

dBs,2(ı)
j−1 =

(

rdBs,2(ı) + r
)(cn+xı)(r−1) (

rdBs,2(ı)
)cn+xı−1

.

Using (5.3) we can thus write that the product is equal to

∏

ı

(

(s − 1)2rcn + rxı + r
)(cn+xı)(r−1) (

(s − 1)2rcn + rxı
)cn+xı−1

.

Dividing the terms in the product by their equivalent terms when x = 0

gives

∏

ı

(

1 +
xı

(s − 1)2cn

)cn+xı−1 (

1 +
xı

(s − 1)2cn + 1

)(cn+xı)(r−1)

. (5.12)

In the remainder of this proof we argue that, under the stated assumptions,

expression (5.12) behaves like

∏

ı

(

1 +
xı

(s − 1)2cn

)rcn+rxı
, (5.13)

for n tending to infinity and we prove that the approximation stated on gn(x)

is in fact valid for expression (5.13). To see the latter notice that

∏

ı

(

1 +
xı

(s − 1)2cn

)rcn+rxı
= exp

{
∑

ı

[

(rcn + rxı) log

(

1 +
xı

(s − 1)2cn

)]}

.
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By Lemma 2.2, if we replace each term within the sum with

(rcn + rxı)

(

xı
(s − 1)2cn

− x2
ı

2(s − 1)4c2n2
+

x3
ı

3(s − 1)6c3n3

)

and carry out all products we get the following upper bound on (5.13) (re-

membering that some simplifications occur because of assumption 1. on x).

exp

{
∑

ı

[

(rcn + rxı) log

(

1 +
xı

(s − 1)2cn

)]}

≤ exp

{(
1

(s − 1)2
− 1

2(s − 1)4

)
r

cn

∑

ı
x2
ı −

(
1

2(s − 1)4
− 1

3(s − 1)6

)
r

(cn)2

∑

ı
x3
ı

+
r

3(s − 1)6c3n3

∑

ı
x4
ı

}

.

The proof of the approximation for (5.13) can be completed using the other

half of Lemma 2.2 and assumption 3. on x.

To complete the proof of the lemma we will now argue that expression

(5.12) is asymptotically close to (5.13) as n tends to infinity. To see this

notice that, if x = o(n2/3) then

lim
n→∞

(

1 +
x

(s − 1)2cn

)−1

= 1.

Also, for any x and t

1 +
x

t + 1
=

(

1 +
x

t
+

1

t

)(

1 − 1

t + 1

)

=
(

1 +
x

t

)(

1 +
1

t + x

)(

1 − 1

t + 1

)

.

Using this we see that expression (5.12) is equal to

(1 + o(1))
∏

ı

(

1 +
xı

(s − 1)2cn

)rcn+rxı
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multiplied by

∏

ı

(

1 +
1

(s − 1)2cn + xı

)rcn+rxı (

1 − 1

(s − 1)2cn + 1

)rcn+rxı
. (5.14)

and the claim follows from assumption 3. on x since expression (5.14) tends

to one as n tends to infinity.

5.1.4 Main Result

We are now ready to derive an expression for the kth central moment of

Wr,s(Tn) and W ′
r,s(Tn).

For each positive integer k, Theorem 5.5 only counts, via the correspon-

dence described in Section 5.1.2, the number of trees on n vertices that are

properly coloured by a given k-tuple of s-colourings, but in such a way that

all vertices with labels in {1, 2, . . . , rmı(1)} receive colour 1 in each of the

k colourings, all vertices with labels in {rmı(1) + 1, rmı(1) + 2, . . . , r(mı(1) +

mı(2))} receive colour 1 in the first k− 1 colourings and 2 in the kth one, and

so on. The proportion of trees that are properly coloured by a k-tuple of

s-colourings described by some splitting with classes of size mı(1), . . . , mı(sk),

which we denote by Tr,k(mı(1), . . . , mı(sk)), is just that number divided by

nn−2 and multiplied by an appropriate multinomial coefficient. After some

rearranging this is:

(

n/r

mı(1), . . . , mı(sk)

)
∏

{ı:mı 6=0}

(

rdBs,k
(ı) + r

n

)mı(r−1) (
rdBs,k

(ı)

n

)mı−1

×

∑

T

∏

{ı:mı 6=0}

(
rmı
n

)degT (ı)−1

(5.15)

where the sum is over all spanning trees T of Bs,k[U ], where U = {ı : mı 6= 0}.

The kth central moment of Wr,s(Tn) or W ′
r,s(Tn) may then be obtained
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as a sum of terms of the form (5.15). The difference between the two cases

will only be in the number of terms in the sum. This is summarised by the

following statement.

Theorem 5.7 Let k and n be positive integers. Let r and s be positive

integers greater than one. Then the kth central moment of Wr,s(Tn) and

W ′
r,s(Tn) are both described by an expression of the form

∑

mı(1),...,mı(sk)

Tr,k(mı(1), . . . , mı(sk))

In the case of EWr,s(Tn)k (resp. EW ′
r,s(Tn)k) the outer sum is over all se-

quences (mı)ı∈[s]k that are sk-compositions (resp. balanced sk-compositions)

of n/r.

The exact formulae given in Theorem 5.7 represent the starting point

of the asymptotic analysis in the following sections. Also, we should point

out that the approach used to prove this result significantly generalises the

method used in [54] to compute EWr,s(Tn). In that paper we relied on

the very special structure of Bs,1{m1Kr, . . . , msKr} (see Figure 5.4), which

makes it easy to find the eigenvalues of its Laplacian matrix. The sought

expectation can then be computed resorting, essentially, to the matrix-tree

theorem. Unfortunately the method does not scale up, and this leads us to

the work presented here.
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Figure 5.4: The graph B4,1{2K3, 2K3, 3K3, 1K3}.

5.2 Approximating the First Moment of Wr,s(Tn)

and W ′
r,s(Tn)

In this section we start looking at asymptotic approximations for the mo-

ments of Wr,s(Tn) and W ′
r,s(Tn). We will first concentrate on the expecta-

tions. This will serve two purposes. First it will give us what we need to

prove Theorem 5.1. Second it will be a warm-up exercise for the more dif-

ficult problem of approximating the second moment of W ′
r,s(Tn), which will
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be addressed in Section 5.3.1 and 5.3.2, and will be the key result needed in

the proof of Theorem 5.2.

We start with a technical lemma.

Lemma 5.8 Let s, m and α be positive integers such that m/s is an integer.

Let m be an s-composition of m. Then

∏

{i:mi 6=0}

(

1 +
1

m
− mi

m

)αmi
(

1 − mi

m

)mi−1

≤
(

1 +
1

m
− 1

s

)αm (

1 − 1

s

)m−s

.

Proof. Firstly, note that when mi = 0,

(

1 +
1

m
− mi

m

)αmi
(

1 − mi

m

)mi−1

= 1,

and so the product is equal to the product over all i. For each i ∈ {1, . . . , s},

define xi = mi−m/s, and the discrepancy disc(m) of the sequence (mi)i=1,...,s

to be
∑s

i=1 |xi|. The result can be proved by induction on disc(m). If the

discrepancy is equal to zero there is nothing to prove. Otherwise we prove

that there exists another sequence m′ = (m′
i)i=1,...,s with disc(m′) < disc(m)

and such that

s∏

i=1

(

1 +
1

m
− mi

m

)αmi
(

1 − mi

m

)mi−1

≤
s∏

i=1

(

1 +
1

m
− m′

i

m

)αm′
i
(

1 − m′
i

m

)m′
i−1

.

Assume, without loss of generality, that m1 ≥ m2 ≥ . . . ≥ ms. If the mi

are not all equal to m
s

then it must be the case that m1 − ms ≥ 2. Define

m′
1 = m1 −1, m′

s = ms + 1 and m′
i = mi for all i ∈ {2, . . . , s−1}. The result
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will follow from the following inequality:

(

1 + 1
m
− m1

m

)αm1
(

1 − m1

m

)m1−1

(

1 + 1
m
− m′

1

m

)αm′
1
(

1 − m′
1

m

)m′
1−1

·
(

1 + 1
m
− ms

m

)αms
(

1 − ms

m

)ms−1

(

1 + 1
m
− m′

s

m

)αm′
s
(

1 − m′
s

m

)m′
s−1 ≤ 1.

(5.16)

(notice that as m′
i = mi for all i ∈ {2, . . . , s−1}, the product over m is equal

to the product over m′ multiplied by (5.16)). The part of (5.16) involving

m1 and m′
1, is equal to

(

m + 1 − m1

m + 1 − m′
1

)αm′
1
(

m − m1

m − m′
1

)m′
1−1 (

1 +
1

m
− m1

m

)α (

1 − m1

m

)

which can be further rewritten as

(

1 − 1

m + 1 − m′
1

)αm′
1
(

1 − 1

m − m′
1

)m′
1−1 (

1 +
1

m
− m1

m

)α (

1 − m1

m

)

.

(5.17)

Similarly, the part involving ms and m′
s is equal to

(

m + 1 − ms

m + 1 − m′
s

)αms
(

m − ms

m − m′
s

)ms−1 (

1 +
1

m
− m′

s

m

)−α (

1 − m′
s

m

)−1

and, again after trivial manipulations, we get

(

1 +
1

m + 1 − m′
s

)αms
(

1 +
1

m − m′
s

)ms−1 (

1 +
1

m
− m′

s

m

)−α (

1 − m′
s

m

)−1

.

(5.18)

We will now multiply together the various parts of expressions (5.17) and

(5.18) and show that they all come to less than one. We start with the two

left-most terms:

(

1 − 1

m + 1 − m′
1

)αm′
1
(

1 +
1

m + 1 − m′
s

)αms

≤
(

1 − 1

m + 1 − m′
1

)αm′
1
(

1 +
1

m + 1 − m′
s

)αm′
1
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=

(

1 − m′
1 − m′

s + 1

(m + 1 − m′
1)(m + 1 − m′

s)

)αm′
1

< 1.

Similarly

(

1 − 1

m − m′
1

)m′
1−1 (

1 +
1

m − m′
s

)ms−1

≤
(

1 − 1

m − m′
1

)m′
1−1 (

1 +
1

m − m′
s

)m′
1−1

=

(

1 − m′
1 − m′

s + 1

(m − m′
1)(m − m′

s)

)m′
1−1

< 1.

Finally,

(

1 +
1

m
− m1

m

)α (

1 − m1

m

)(

1 +
1

m
− m′

s

m

)−α (

1 − m′
s

m

)−1

=

=

(

m + 1 − m1

m + 1 − m′
s

)α (
m − m1

m − m′
s

)

,

which is smaller than one as m1 ≥ m′
s.

We are now ready to prove the main result on EWr,s(Tn). Recall that

cr,s = s
1
r
−1(s − 1) (as in (5.1).

Theorem 5.9 Let r and s be positive integers greater than one. Then, for

all positive integers n,

EWr,s(Tn) ≤ e
s(r−1)

s−1 ss

(s − 1)s
(cr,s)

n. (5.19)

Furthermore, for sufficiently large values of n,

EWr,s(Tn) ≥ e
s(r−1)

s−1
− rs2

n

(
r−1

(s−1)2
+ 1

12

)

s
3s
2

(s − 1)s

(
r

2πn

) s−1
2

(cr,s)
n. (5.20)
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Proof. Since Bs,1 = Ks, for any given sequence m1, . . . , ms with n = r
∑

i mi,

and for any i ∈ {1, . . . , s},

dBs,1(i) =
n

r
− mi.

Also,

∑

T

∏

{i:mi 6=0}

(
rmi

n

)degT (i)−1

=




∑

{i:mi 6=0}

rmi

n





s−2

= 1

(the first equality was proved by Rényi [61], the second one is obvious since

the mi add up to n/r). Using all this and Theorem 5.7 we can see that

EWr,s(Tn) is equal to

∑

m1,...,ms

(

n/r

m1, . . . , ms

)
∏

{i:mi 6=0}

((

1 − rmi

n
+

r

n

)mi(r−1) (

1 − rmi

n

)mi−1
)

,

(5.21)

the sum being over all s-tuples of non-negative m1, . . . , ms such that n =

r
∑

mi. In fact, by Lemma 5.8, we can write

EWr,s(Tn) ≤
∑

m1,...,ms

(

n/r

m1, . . . ,ms

)((

1 − 1

s
+

r

n

)n
r
(r−1) (

1 − 1

s

)n
r
−s
)

=
∑

m1,...,ms

(

n/r

m1, . . . ,ms

)(
s

s − 1

)s (s − 1

s

)n (

1 +
rs

(s − 1)n

) (r−1)n
r

= s
n
r

(
s

s − 1

)s (s − 1

s

)n (

1 +
rs

(s − 1)n

) (r−1)n
r

(5.22)

(where the last inequality follows from the generalised version of the binomial

theorem, as
∑

m1,...,ms

(
N

m1,...,ms

)

counts the number of ways to partition a set

of N elements into s blocks). The bound (5.19) now follows from (5.22) and

Lemma 2.1.

A lower bound on (5.21) is given by only considering the term of the sum
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corresponding to mi = n
rs

for all i. Hence

EWr,s(Tn) ≥
(

n/r
n
rs

, . . . , n
rs

)
∏

{i:mi 6=0}

((

1 − 1

s
+

r

n

) n
rs

(r−1) (

1 − 1

s

) n
rs

−1
)

=

(

n/r
n
rs

, . . . , n
rs

)((

1 − 1

s
+

r

n

)n
r
(r−1) (

1 − 1

s

)n
r
−s
)

=

(

n/r
n
rs

, . . . , n
rs

)(
s

s − 1

)s (s − 1

s

)n
(

1 +
rs

(s − 1)n

) (r−1)n
r

.(5.23)

By Stirling’s approximations

√
2πn

(
n

e

)n

≤ n! ≤
√

2πn
(

n

e

)n

e
1

12n (5.24)

for any n ≥ 1 (the two inequalities can be easily derived from the exact

expression for log(n!) given in [36, Chap. 9]). We can use this to prove that,

if n ≥ rs,
(

n
r

n
rs

, . . . , n
rs

)

≥
(

r

2πn

) s−1
2

s
n
r
+ s

2 exp

{

− rs2

12n

}

. (5.25)

By Lemma 2.1, for n sufficiently large compared to r and s,

(

1 +
rs

(s − 1)n

) (r−1)n
r

≥ exp

{

s(r − 1)

(s − 1)
− rs2(r − 1)

(s − 1)2n

}

. (5.26)

The bound (5.20) now follows from (5.23), (5.25), and (5.26).

Before moving to the proof of Theorem 5.1, for completeness, we discuss

a much simpler (and tighter) approximation for EW ′
r,s(Tn). The result will

be used in the proof of Theorem 5.2. For each integer r ≥ 2, and s ≥ 2, let

an = n− s−1
2 (cr,s)

n. (5.27)
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Lemma 5.10 Let r and s be positive integers greater than one. Then

E(W ′
r,s(Tn)) ∼ e

s(r−1)
s−1 s

3s
2

(s − 1)s

(
r

2π

) s−1
2

an

as n tends to infinity.

Proof. By Theorem 5.7, EW ′
r,s(Tn) = Tr,1

(
n
sr

, . . . , n
sr

)

. The following equal-

ities simply use the definition of Tr,1

(
n
sr

, . . . , n
sr

)

:

EW ′
r,s(Tn) =

(

n/r
n
sr

, . . . , n
sr

)
∏

{i:mi 6=0}

((

1 − 1

s
− r

n

) n
sr

(r−1) (

1 − 1

s

) n
sr

−1
)

=

(

n/r
n
sr

, . . . , n
sr

)(

1 +
sr

n(s − 1)

)n
r
(r−1) (

s − 1

s

)n−s

.

The result now follows from Lemma 2.1, Stirling’s approximation (5.24) to

handle the factorials involved in
(

n/r
n
sr

,..., n
sr

)

, and simple algebraic manipula-

tions.

5.2.1 Lower Bounds on χ(Rr(Tn))

In this section we give a complete proof of Theorem 5.1. By the Markov

inequality,

Pr[Wr,s(Tn) > 0] ≤ EWr,s(Tn),

for any given fixed value of r and s. By inequality (5.19) of Theorem 5.9

EWr,s(Tn) ≤ C(cr,s)
n,

where C is an expression depending on r and s but independent of n. Since

cr,s is a continuous function of r and s and, for fixed r > 0 and s > 1, it is

monotone increasing in s, the first part of the theorem follows easily from
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the definition of sr. The rest of the proof gives quantitative estimates on sr

that are valid for sufficiently large (but still fixed) values of r.

Set s′′ =
(

1 + 1
log log r

)
r

log r
. Then cr,s′′ is equal to

e
1
r

log(1+ 1
log log r )+ log r

r
− log log r

r

(

1 − log r log log r

r(1 + log log r)

)

which, by the lower bound of Lemma 2.1, is at least as large as

(

1 +
log r

r
+

1

r
log

(

1 +
1

log log r

)

− log log r

r

)(

1 − log r log log r

r(1 + log log r)

)

.

Since log(1 + y) > y − y2

2
(for any y < 1, as stated, say, in [15, page 5]), the

expression above is at least as large as

(

1 +
log r

r
+

1

r log log r
− 1

2r(log log r)2
− log log r

r

)(

1 − log r log log r

r(1 + log log r)

)

.

We now multiply things together. The product of the first two monomials in

the first term by the second term gives:

1 +
log r

r
− log r

r

log log r

1 + log log r
− (log r)2 log log r

r2(1 + log log r)
=

= 1 +
log r

r(1 + log log r)

(

1 − log r log log r

r

)

> 1.

The remaining pieces of the initial product give

(

1

r log log r
− 1

2r(log log r)2
− log log r

r

)(

1 − log r log log r

r(1 + log log r)

)

=

=
1

r log log r
− 1

2r(log log r)2
− log log r

r
− log r

r2(1 + log log r)
+

+
log r

2r2 log log r(1 + log log r)
+

log r(log log r)2

r2(1 + log log r)
.
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For large r, all the negative parts on the right-hand side are much smaller

than log r
r(1+log log r)

and so the lower bound on cr,s′′ is still larger than one. This

argument and the lower bound (5.20) on EWs.r(Tn) imply that, for n large

enough, the expected number of s-colourings is large provided s is an integer

larger than s′′.

A similar (but simpler) argument, proves that the expected number of

s-colourings is small provided s is small enough. Set s′ = r
log r

. This time

cr,s′ is equal to:

e
log r

r
− log log r

r

(

1 − log r

r

)

≤ e
log r

r

(

1 − log r

r

)

.

This time we use ex ≤ 1 + x + x2 + x3 (this is the upper bound of Lemma

2.1, and is valid if x < 4/7), to get an upper bound on the expression above.

The resulting upper bound is



1 +
log r

r
+

(

log r

r

)2

+

(

log r

r

)3




(

1 − log r

r

)

= 1 −
(

log r

r

)4

.

5.3 Approximating the Second Moment of

W ′
r,s(Tn)

In principle, the calculations used to obtain information about the first mo-

ment of Wr,s(Tn) and W ′
r,s(Tn) could be sharpened and extended to deal with

higher moments. However such calculations quickly become very messy as

we need to consider all the different ways in which vertices could be coloured

in each colouring. In this Section we turn our attention to W ′
r,s(Tn), the
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number of balanced s-colourings of a random tree whose vertex set is subdi-

vided into n/r empires, each of size r. Theorem 5.7 already gives us an exact

expression for EW ′
r,s(Tn)k, for each k ≥ 1. Here we derive approximations

for EW ′
r,s(Tn)2 given fixed values of r and s greater than one, as n tends

to infinity. Using these and Lemma 5.10 we will finally be able to prove

Theorem 5.2.

Recall from equation (5.27) that for each integer r ≥ 2 and s ≥ 2, an =

n− s−1
2 (cr,s)

n, where cr,s = s
1
r
−1(s − 1). The main result of this section is the

following:

Theorem 5.11 Let n be a positive integer. For each integer r ≥ 2, s ≥ 3,

and such that r < s
2

log(s − 1), there exists a function Φr,s(n) such that

EW ′
r,s(Tn)2 ≤ Φr,s(n)

and, furthermore,

Φr,s(n) ∼ e
s2(r−1)

(s−1)2 ss2+s+1(s − 2)(s−1)2

(s − 1)2s(r − 2r(s − 1)2 + (s − 1)4)
(s−1)2

2

(
r

2π

)s−1

× (an)2

as n tends to infinity.

To prove this we will need to argue that the main component of the sum

defining EW ′
r,s(Tn)2 consists of all terms close (in a sense that will be made

precise later) to the term

m =
(

n

s2r
, . . . ,

n

s2r

)

,

where mı(j) = n
s2r

for all j ∈ {1, . . . , s2}. More precisely, in Section 5.1.4 we
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saw that

EW ′
r,s(Tn)2 =

∑

m

Tr,2(m)

where the sum is over all balanced s2-compositions of n/r. This sum can be

split in two parts. A central one, over all balanced s2-compositions whose

Euclidean distance from m is at most ρ(n), for some function ρ(n) = o(n2/3),

and a peripheral one (referred to as the tail from now on) over all other

compositions. We will argue that the former carries all the useful information

about EW ′
r,s(Tn)2. To this end, first notice that, using definitions (2.2) and

(5.11), with c = (s2r)−1, and t = s2, we can write

∑

m:||m−m||2≤ρ(n)

Tr,2(m) = Tr,2 (m) ×
∑

x:||x||2≤ρ(n)

gn(x)fn(x)

(where x = m −m). In the next section, we will:

1. provide an asymptotic expression for Tr,2(m), and then

2. argue that,
∑

x:||x||2≤ρ(n)

gn(x)fn(x)

is bounded above by a quantity that is very close to

n
(s−1)2

2

∫

IR(s−1)2
e−

1
2
yAr,sy

T

dy (5.28)

as n tends to infinity (here Ar,s is an (s − 1)2 × (s − 1)2 non-singular

positive definite real symmetric matrix).

Because, modulo some trivial re-scaling, expression (5.28) essentially involves

the well-known Gaussian integral, the study of the spectrum of Ar,s enables

us to define an approximation for the central part of EW ′
r,s(Tn)2 sufficient

to prove Theorem 5.11. The proof of the Theorem is completed by a careful
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study of the tail of EW ′
r,s(Tn)2 which is carried out in Section 5.3.2.

5.3.1 The Central Part of EW ′
r,s(Tn)2

We start by proving a result about Tr,2(m).

Lemma 5.12 Let n be a positive integer and let r and s be positive integers

greater than one. Then

Tr,2 (m) ∼ e
s2(r−1)

(s−1)2 ss2+4

(s − 1)2s2 κ(Bs,2)
(

r

2πn

) s2−1
2

(cr,s)
2n

as n tends to infinity.

Proof. From (5.15), we can see that Tr,2 (m) is equal to

(
n
r

n
s2r

, . . . , n
s2r

)
∏

ı

(

rdBs,2(ı) + r

n

) n

s2r
(r−1) (

rdBs,2(ı)

n

) n

s2r
−1
∑

T

∏

ı

(
1

s2

)degT (ı)−1

(5.29)

where the sum is over all spanning trees of Bs,2. Note that, since any spanning

tree of Bs,2 has s2 − 1 edges,

∏

ı

(
1

s2

)degT (ı)−1

=
(

1

s2

)2(s2−1)−s2

.

Thus
∑

T

∏

ı

(
1

s2

)degT (ı)−1

=
(

1

s2

)2(s2−1)−s2

κ(Bs,2). (5.30)

Furthermore, since all blocks have the same size, dBs,2(ı) =
(

(s−1)2n
s2r

)

for all

ı, and hence

∏

ı

(

rdBs,2(ı) + r

n

)mı(r−1) (
rdBs,2(ı)

n

)mı−1

=
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= rn−s2 ∏

ı

(

(s − 1)2

s2r
+

1

n

) (r−1)n

s2r

(

(s − 1)2

s2r

) n

s2r
−1

= rn−s2

(

(s − 1)2

s2r

)n−s2 (

1 +
s2r

(s − 1)2n

)(r−1)n
r

=
(

s

s − 1

)2s2
(

1 +
s2r

(s − 1)2n

)(r−1)n
r
(

cr,s

s
1
r

)2n

. (5.31)

Thus

Tr,2 (m) =

(
n
r

n
s2r

, . . . , n
s2r

)

s4

(s − 1)2s2 κ(Bs,2)

(

1 +
s2r

(s − 1)2n

)(r−1)n
r
(

cr,s

s
1
r

)2n

.

The proof is completed using Lemma 2.1 to approximate

(

1 +
s2r

(s − 1)2n

)(r−1)n
r

in terms on exponential factions, and the relationship

(

n/r
n

s2r
, . . . , n

s2r

)

∼ s
2n
r

+s2
(

r

2πn

) s2−1
2

(which can be easily derived from Stirling’s approximations (5.24)) valid for

fixed values of r and s.

Next we look at
∑

x:||x||2≤ρ(n)

gn(x)fn(x).

In what follows let s(ı) be the number of elements equal to s in ı. Because

the sum is defined in terms of balanced compositions only, we can bound

it above by a sum over all possible values of xı (subject to the constraint

||x||2 ≤ ρ(n)) summed only for the (s− 1)2 indices ı having s(ı) = 0. In fact
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note that

x(s,s) = −
∑

ı6=ı(s2)

xı = −
∑

ı:s(ı)=0

xı −
∑

ı:s(ı)=1

xı (5.32)

and for any 1 ≤ l < s,

x(l,s) = −
s−1∑

i=1

x(l,i) x(s,l) = −
s−1∑

i=1

x(i,l). (5.33)

We will now argue that this expression is bounded above by expression (5.28).

To this end it is enough to show that, under the stated assumptions, gn(x)

and fn(x) can be bounded above by some exponential functions only involv-

ing the (s − 1)2 variables mentioned above. It will be a by-product of our

analysis that such functions have the form

e−
1
2n

zMr,sz
T

(5.34)

(where z ∈ ZZ
(s−1)2 and Mr,s is an (s − 1)2 × (s − 1)2 non-singular positive

definite real symmetric matrix) and thus only depend on the square of the

Euclidean norm of z. This, in turn, implies that

∑

x:||x||2≤ρ(n)

gn(x)fn(x) ≤
∑

z∈ZZ
(s−1)2

e−
1
2n

zAr,sz
T

and now it is not difficult to realise that, after the substitution y = z√
n

the

sum on the right-hand side is n
(s−1)2

2 times a Riemann sum for the func-

tion e−
1
2
yAr,sy

T

and, therefore, for n large, well approximated by (5.28). We

complete this part of the argument looking at the approximations on gn(x)

and fn(x). In what follows the expression δa,b stands for one (resp. zero) if

expressions a and b are equal (resp. different). We remind the reader that,
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by Lemma 2.5 and 5.6, under the stated assumptions on x, we have that

gn(x) = (1 + o(1)) exp

{(

1 − 1

2(s − 1)2

)

s2r2

(s − 1)2n

∑

ı
x2

ı

}

, (5.35)

fn(x) = (1 + o(1)) exp






−s2r

n

∑

ı:ı6=ı(s2)

xı




∑

ı′:ı′≤ı
xı′










. (5.36)

The fact that, when x are such that ||x||2 ≤ ρ(n), gn(x) and fn(x) are

approximated by expressions of the form (5.34) is a direct consequence of

the assumptions of Lemma 2.5 and 5.6, stating that the approximations

(5.35) and (5.36) are valid provided maxı xı = ||x||∞ = o(n2/3) and o(n)

respectively, the fact that ||x||∞ ≤ ||x||2 and the following property of the

sequences (xı)ı∈[s]2.

Lemma 5.13 Let s be a fixed integer greater than one, and let (xı)ı∈[s]2 be

a sequences of integer numbers satisfying:

1.
∑

ı xı = 0, and

2.
∑s

j=1 x(j,i) =
∑s

j=1 x(i,j) = 0 for each i ∈ {1, . . . , s}.

Then
∑

ı
x2

ı = 2
∑

ı:ı6=ı(s2)

xı




∑

ı′:ı′≤ı
xı′



 (5.37)

and

∑

ı:ı6=ı(s2)

xı




∑

ı′:ı′≤ı
xı′



 =
1

2

∑

ı:s(ı)=0

∑

ı′:s(ı′)=0

(1 + δi1,i′1
+ δi2,i′2

+ δı,ı′)xıxı′. (5.38)

Proof. To see the first identity, note that we can write

∑

ı
x2

ı =
∑

ı:s(ı)=0

x2
ı +

∑

ı:s(ı)=1

x2
ı + x2

(s,s).
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Using (5.32), we then have

∑

ı
x2

ı =
∑

ı:s(ı)=0

x2
ı +

∑

ı:s(ı)=1

x2
ı +




∑

ı:s(ı)=0

xı +
∑

ı:s(ı)=1

xı





2

and the result follows from the multinomial theorem.

The second one follows, similarly, using identity (5.33) to get rid of all xı

having s(ı) = 1. More specifically we can write:

∑

ı:ı6=ı(s2)

xı




∑

ı′:ı′≤ı
xı′



 =

=
1

2






∑

ı:ı6=ı(s2)

x2
ı +




∑

ı:ı6=ı(s2)

xı





2





=
1

2






∑

ı:s(ı)=0

x2
ı +

∑

ı:s(ı)=1

x2
ı +




∑

ı:s(ı)=0

xı +
∑

ı:s(ı)=1

xı





2





=
1

2









∑

ı:s(ı)=0

xı





2

+
∑

ı:s(ı)=0

x2
ı +

∑

ı:s(ı)=1

x2
ı +




∑

ı:s(ı)=1

xı





2

+ 2
∑

ı:s(ı)=0

xı
∑

ı:s(ı)=1

xı




 .

To complete the proof of the lemma we claim that




∑

ı:s(ı)=0

xı





2

+
∑

ı:s(ı)=0

x2
ı =

∑

ı:s(ı)=0

∑

ı′:s(ı′)=0

(1 + δı,ı′)xıxı′ , (5.39)

∑

ı:s(ı)=1

x2
ı =

∑

ı:s(ı)=0

∑

ı′:s(ı′)=0

(δi1,i′1
+ δi2,i′2

)xıxı′ , (5.40)

and finally that




∑

ı:s(ı)=1

xı





2

+ 2
∑

ı:s(ı)=0

xı
∑

ı:s(ı)=1

xı = 0. (5.41)
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To believe (5.39) simply note that monomials of the form xıxı′ occur

twice in the expression on the left-hand side if and only if ı= ı’.

Identity (5.40) can be understood similarly after noticing that, using

(5.33) repeatedly, we have

∑

ı:s(ı)=1

x2
ı =

s−1∑

i=1





s−1∑

j=1

x(i,j)





2

+
s−1∑

j=1

(
s−1∑

i=1

x(i,j)

)2

.

For each given i ∈ {1, . . . , s − 1}





s−1∑

j=1

x(i,j)





2

=
s−1∑

j1=1

s−1∑

j2=1

x(i,j1)x(i,j2),

and similarly, for given j ∈ {1, . . . , s − 1}

(
s−1∑

i=1

x(i,j)

)2

=
s−1∑

i1=1

s−1∑

i2=1

x(i1,j)x(i2,j).

This implies that the only monomials of the form xıxı′ which contribute to

the sum on the left-hand side of (5.40) are those sharing at least one element

of their index. Furthermore monomials of the form xıxı contribute twice.

Finally, we look at identity (5.41). We will argue that, after all terms

xı with s(ı) = 1 have been replaced by terms whose index does not contain

s using (5.33), each monomial of the form x2
ı occurs four times and each

monomial of the form xıxı′ with ı6= ı’ occurs eight times in




∑

ı:s(ı)=1

xı





2

(5.42)

and in

2
∑

ı:s(ı)=0

xı
∑

ı:s(ı)=1

xı (5.43)
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but with opposite signs and therefore the whole thing cancels out. The former

expression is equivalent to

∑

ı:s(ı)=1

∑

ı′:s(ı′)=1

xıxı′ .

Table 5.2 gives the contribution to different types of monomials xıxı′ coming

from different types of monomials in the expression (5.42). Note that the

x(i,j)x(i′,j′) x(i,j)x(i,j′) x2
(i,j)

x(i,s)x(i′,s) 2
x(s,j)x(s,j′) 2 2
x(s,j)x(i′,s) 2
x(s,j′)x(i,s) 2 2
x(s,j)x(i,s) 2 2
x(i,s)x(i,s) 2 1
x(s,j)x(s,j) 1

Table 5.2: Coefficients of x(i,j)x(i′,j′) in the expansion of (5.42).

twos in the first column, in all but the last entry in column two, and the only

two in column three, are due to the fact that the expression above contains

both xıxı′ and xı′xı. On the other hand, the two on the line labelled by

x(i,s)x(i,s) is due to the fact that x(i,j)x(i,j′) has coefficient two in the product

s−1∑

j=1

x(i,j) ×
s−1∑

j=1

x(i,j).

As to (5.43), using repeatedly (5.33) we have

∑

ı:s(ı)=1

xı =
s−1∑

i=1

x(i,s) +
s−1∑

j=1

x(s,j)

= −
s−1∑

i=1

s−1∑

j=1

x(i,j) −
s−1∑

j=1

s−1∑

i=1

x(i,j)

= −2
∑

ı:s(ı)=0

xı
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Hence

2
∑

ı:s(ı)=0

xı
∑

ı:s(ı)=1

xı = −4




∑

ı:s(ı)=0

xı





2

= −4
∑

ı:s(ı)=0

x2
ı − 8

∑

ı:s(ı)=0

∑

ı′:s(ı′)=0
︸ ︷︷ ︸

ı6=ı′

xıxı′

which completes the proof of identity (5.41).

We complete this section looking at the integral

∫

IR(s−1)2
e−

1
2
yAr,sy

T

dy.

By the change of variable Theorem (see Lemma 2.6 in Section 2.2.3)

∫

IR(s−1)2
e−

1
2
yAr,sy

T

dy = (2π)
(s−1)2

2

(s−1)2
∏

i=1

1√
λi

where λi are the eigenvalues of Ar,s. Lemma 2.6 also gives us a way to

compute the eigenvalues of Ar,s and thus get an explicit expression for the

integral above. The argument is spelled out in the rest of the section.

For the remainder of this section we will refer to the elements of matrices

(resp. vectors) using notation of the form (A)ı,ı′ (resp. vı), where ı= {i1, i2}

and ı’ = {i′1, i′2} are ordered 2-tuples with elements in the range {1, . . . s−1}
(as defined in subsection 5.1.1). By the lexicographic ordering of these tuples,

this is equivalent to writing (A)(s−1)(i1−1)+i2,(s−1)(i′1−1)+i′2
in standard matrix

notation. The reasoning behind this notation is that the values of i1, i2,

i′1 and i′2 will often be important in determining the values of elements of

matrices and vectors.
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For positive integers s, and r greater than one define

Xr,s = s2r

(

r − 2r(s − 1)2 + (s − 1)4

(s − 1)4

)

.

Let A′
s be the (s− 1)2 × (s− 1)2 real symmetric matrix defined through the

equation

(A′
s)ı,ı′ = (1 + δi1,i′1

+ δi2,i′2
+ δı,ı′).

It follows from the approximations (5.35) and (5.36) and from Lemma 5.13

that

Ar,s = A′
sXr,s. (5.44)

So, for instance, A2,2 is just the single number (−32),

A2,3 =














9 9
2

9
2

9
4

9
2

9 9
4

9
2

9
2

9
4

9 9
2

9
4

9
2

9
2

9














and, in general, if

A0 = Is−1 + Ones−1

then A′
s satisfies the following identity (each row and column is formed by

s − 1 blocks):

A′
s =














2A0 A0 . . . A0

A0 2A0 . . . A0

... . . .

A0 A0 . . . 2A0














.

As a consequence of the identity (5.44) the eigenvalues of Ar,s are equal

to Xr,s times the eigenvalues of A′
s, and therefore the value of (5.28) can be
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computed once we know the spectrum of A′
s. The next Theorem provides

the relevant information about A′
s. In its proof we will repeatedly use the

following well-known fact:

Lemma 5.14 Let N be a real number. Let M be a real symmetric matrix

with fixed row sum N . Then N is an eigenvalue of M.

Theorem 5.15 For any integer s ≥ 2,

SpecA′
s =






1 s s2

(s − 2)2 2(s − 2) 1




 .

Proof. To prove the result we will define (s − 1)2 linearly independent

eigenvectors of A′
s and retrieve the corresponding eigenvalues. Note that all

eigenvectors corresponding to different eigenvalues are linearly independent,

(see, for example, [62, Theorem 8.2, p. 186]) and so we will only prove linear

independence for sets of eigenvectors sharing the same eigenvalue.

We first claim that s2 is an eigenvalue of A′
s with multiplicity one. To

this end note that each row of A′
s has one element equal to four, 2(s − 2)

elements equal to two, and the remaining (s − 2)2 elements equal to one.

Thus the sum of the elements in each row is s2 and the claim now follows

from Lemma 5.14.

Next we argue that A′
s has (s−2)2 linearly independent eigenvectors with

corresponding eigenvalue equal to one. Let i and j be positive integers in the

range {2, . . . , s − 1}. Define the (column) vectors vi,j ∈ ZZ
(s−1)2 as follows:

(vi,j)ı =







1 ı = (1, 1) or ı = (i, j)

−1 ı = (i, 1) or ı = (1, j)

0 otherwise.

141



Note that the resulting (s − 2)2 vectors are linearly independent since the 1

in row (i, j) is unique to each of them. We now argue that

A′
sv

i,j = vi,j.

To believe this, note that the first element of A′
sv

i,j (indexed by the

pair (1, 1)) is always equal to one as, by definition, vi,j will add together

(A′
s)(1,1),(1,1) = 4, (A′

s)(1,1),(1,j) = 2 = (A′
s)(1,1),(i,1) (with negative sign) and

(A′
s)(1,1),(i,j) = 1. The same is true for the element indexed by the pair (i, j).

The element of index (1, j) is equal to minus one as it is formed by adding

(A′
s)(1,j),(1,1) = 2, (A′

s)(1,j),(i,1) = 2, (A′
s)(1,j),(1,j) = 4 (with the negative sign

as (vi,j)(1,j) = −1) and (A′
s)(1,j),(i,j) = 1. A similar argument applies to the

element of index (i, 1). Finally any other element of A′
sv

i,j is zero as the

contributions from A′
s cancel out.

Finally we show that A′
s has 2(s − 2) linearly independent eigenvectors

with eigenvalue s. First let i be a positive integer in {2, . . . , s−2} and define

vi ∈ ZZ
(s−1)2 as follows:

(vi)ı =







1 ı = (1, j), j ∈ {1, . . . , s − 1}
−1 ı = (i, j), j ∈ {1, . . . , s − 1}

0 otherwise.

We have

(vi)T = (1s−1, 0s−1, . . . , 0s−1,−1s−1, 0s−1, . . . , 0s−1)

(the first block is always 1s−1 and the only other non-zero block equals −1s−1

and is in position i). As before, notice that the resulting s − 3 vectors are
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linearly independent as the −1s−1 block is unique to each vector. Further-

more, the jth element in the product A′
sv

i is equal to s if j ∈ {1, . . . , s − 1}
(this follows essentially by Lemma 5.14, as A0 has fixed row sum equal to

s), −s if j corresponds to ı of the form (i, l) for some l ∈ {1, . . . , s − 1} and

zero otherwise. Therefore we have

A′
sv

i = svi.

To complete the definition of the spectrum of A′
s, consider the vectors wi

for i ∈ {1, . . . , s − 1} defined as follows:

(wi)ı =







1 ı = (1, j), j ∈ {1, . . . , s − 1} \ i

−1 ı = (j, i), j ∈ {2, . . . , s − 1}

0 otherwise.

The resulting s − 1 vectors are linearly independent, they are also linearly

independent from the vi eigenvectors as (wi){s−1,i} = −1, but (vl){s−1,i} = 0

for all l. We claim that

A′
sw

i = swi.

Table 5.3 gives an example for s = 4. In general, to prove this we look at

(A′
s)ıw

i, the scalar product of the row indexed by ı of A′
s and wi. Several

cases arise. We will describe explicitly only the case j 6= i. The case j = i

can be analysed similarly. If ı= (1, j) then the sum of the first s − 1 terms

is (2s − 2) (the 2 due to the fact that (wi)(1,i) = 0), and the final result is

s because of the contribution from the terms multiplying the elements of wi

equal to one. If ı= (l, j), for l ≥ 2 then the sum of the first s − 1 terms

is always (s − 1) (the 1, as before, due to the fact that (wi)(1,i) = 0) and

the final result is zero because wi has s− 2 components equal to one, one of

143





















4 2 2 2 1 1 2 1 1
2 4 2 1 2 1 1 2 1
2 2 4 2 1 2 1 1 2
2 1 1 4 2 2 2 1 1
1 2 1 2 4 2 1 2 1
1 1 2 2 2 4 1 1 2
2 1 1 2 1 1 4 2 2
1 2 1 1 2 1 2 4 2
1 1 2 1 1 2 2 2 4



















·



















1
0
1
0
−1
0
0
−1
0



















=



















4
0
4
0
−4
0
0
−4
0



















Table 5.3: The expression above shows the product A′
4w

2 and its result. It
is easy to verify that A′

4w
2 = 4w2.

them gets multiplied by two (the value of (A′
s)(l,j),(l,i)) and all the others are

multiplied by one.

The asymptotic expression for Φr,s(n) used in the statement of Theorem

5.11 can now be readily obtained by combining the expression for Tr,2 (m)

given in Lemma 5.12, using Lemma 5.3 which provides an expression for

κ(Bs,2), and

s1−s

(

2πn

Xr,s

) (s−1)2

2

an expression derived from (5.28) using the argument about the eigenvalues

of Ar,s and Theorem 5.15.
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5.3.2 Approximating the Tail of EW ′
r,s(Tn)2

In this section we complete the proof of Theorem 5.11. The following result

gives the required estimate on the tail of EW ′
r,s(Tn)2. Recall from equation

(5.27) that for each integer r ≥ 2 and s ≥ 2, an = n− s−1
2 (cr,s)

n, where

cr,s = s
1
r
−1(s − 1).

Theorem 5.16 Let n, s and r be positive constant integers with r ≥ 2, s ≥ 3

and

r <
s

2
log(s − 1).

Let ρ(n) be a function such that

lim
n→∞

ρ(n)

n1/2
= ∞.

Then
∑

m:||m−m||2≥ρ(n)

Tr,2(m) = o(a2
n) (5.45)

as n tends to infinity.

The crucial point in the proof of Theorem 5.16 will be the definition

of an upper bound for the tail of EW ′
r,s(Tn)2 (see Lemma 5.21 below) that

allows us to exploit, at least partially, the fact that the s2-compositions we

work with are balanced. It is not difficult to relate the sum in (5.45) to a

standard multinomial sum, and then use well-known techniques (dating back

to Hoeffding [45]) to bound this using large deviation inequalities. However

this leads to results that are too weak. To get a bound on sum in (5.45) that

suffices to prove Theorem 5.11 we will use the fact that
∑s

j=1 m(i,j) = n
sr

for

each i ∈ {1, . . . , s}. The whole sum will then be factorised into a number

of parts which only depend on s elements of m. Studying such components
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and their variations as m moves away from m will enable us to complete our

proof.

Before moving to the main result of this section we need to highlight a

few properties of three functions that will be important for our reasoning. In

what follows n, s and r are positive integers, s and r are greater than one,

and the three numbers are such that n
s2r

is an integer. Let m be a positive

integer in the range
{

n
s2r

, . . . , n
sr

}

, and for z ∈
{

m
2
, . . . , m − 1

}

define hn,m(z)

as

((s − 2)n + srz + sr)rz((s − 2)n + sr(m − z) + sr)r(m−z)

zz+1/2(m − z)m−z+1/2
.

Also, define the following functions of s-compositions of n
sr

:

H ′
n(m) =

(

n/sr

m1, . . . , ms

)
∏

i:mi 6=0

(

s − 2

s
+

r(mi + 1)

n

)rmi

and

Hn(m) =
(

n

sr

)

!
e

n
sr

(2π)
s
2

∏

i:mi 6=0

(
s−2

s
+ r(mi+1)

n

)rmi

m
mi+1/2
i

.

We start our investigation by showing that Hn(m) can be bounded above

by a function that only depends on the square of the Euclidean distance

between m and m (in what follows x = m − m). It should be remarked

that here and in the rest of this section, unless otherwise stated, m has s

components, each equal to n
s2r

. We keep the same notation we used at the

beginning of Section 5.3 to refer to a vector of size s2 because the two vectors

play similar roles.

Lemma 5.17 Let n, s and r be positive constant integers with r ≥ 2, and

s ≥ 3, and let m be an s-composition of n
sr

with ||x||2 = o(n) as n tends to
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infinity. Then Hn(m) can be bounded above by a function that approaches

(
sr

2πn

) s−1
2

(

(s − 1)2

s2− 1
r

)n
s s

5s
2

(s − 1)2s
e

(
s2r2

(s−1)2n
− s2r

2n

)

||x||22+ r

(s−1)2
− s2r

(s−1)2n
+ sr

12n

as n tends to infinity.

Proof. We first notice that

(
n
sr

)

!e
n
sr

(2π)
s
2
∏

i:mi 6=0 m
mi+1/2
i

, (5.46)

can be written as

(
n
sr

)

!e
n
sr

(2π)
s
2
∏s

i=1
n

s2r

n

s2r
+ 1

2

s∏

i=1

(
n

s2rmi

)mi+1/2

(in particular note that, because ||x||2 = o(n), no mi can be zero). Using

Stirling’s approximation as in (5.24) we can bound this above by

(
n
sr

) n
sr

+ 1
2 e

sr
12n

(2π)
s−1
2

n
s2r

n
sr

+ s
2

s∏

i=1

(
n

s2rmi

)mi+1/2

=
(

sr

2πn

) s−1
2

s
n
sr

+ s
2 e

sr
12n

s∏

i=1

(
n

s2rmi

)mi+1/2

.(5.47)

We now find an upper bound on the product in (5.47).

s∏

i=1

(
n

s2rmi

)mi+1/2

=
s∏

i=1

(

1 +
s2rxi

n

)−(mi+1/2)

≤
s∏

i=1

e−xi− s2r
n

x2
i− s2r

2n
xi

≤ e−
s2r
2n

||x||22

, (5.48)
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where the second line follows from Lemma 2.1 and the third one uses the

fact that
∑

i xi = 0. We can now bound (5.46) above by

(
sr

2πn

) s−1
2

s
n
sr

+ s
2 e

sr
12n

− s2r
2n

||x||22

. (5.49)

We now look at the product in Hn(m). Remembering that mi = n
s2r

+ xi,

and noting that as ||x||2 = o(n), no mi may be equal to zero. Thus

∏

i:mi 6=0

(

s − 2

s
+

r(mi + 1)

n

)rmi

is equal to

s∏

i=1

(

(s − 1)2

s2
+

r(xi + 1)

n

)rmi

=
(

s − 1

s

) 2n
s
−2s s∏

i=1

(

1 +
s2r(xi + 1)

(s − 1)2n

)rmi

.

Using Lemma 2.1 we can bound this above by

(
s − 1

s

) 2n
s
−2s s∏

i=1

e

(
r

(s−1)2
− s2r

(s−1)2n

)

(xi+1)+ s2r2

(s−1)2n
xi(xi+1)

,

which, remembering that
∑

i xi = 0 is equal to

(
s − 1

s

) 2n
s
−2s

e
s2r2

(s−1)2n
||x||22+ r

(s−1)2
− s2r

(s−1)2n . (5.50)

The result follows by multiplying together equations (5.49) and (5.50).

In the proof of Theorem 5.16 we will need to argue that H ′
n(m) is a

decreasing function of the Euclidean distance between m and m. This does

not seem easy. However we are able to prove that H ′
n(m) is asymptotically

not too far from Hn(m) (see Lemma 5.18 below), that the way in which

Hn(m) varies as the Euclidean distance ||m − m||2 increases is completely

described by the trend properties of hn,m(z), and finally that the latter has
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the right monotonicity, implying that Hn(m) is indeed a decreasing function

of ||m−m||2. We start with a result relating H ′
n(m) and Hn(m).

Lemma 5.18 Let n, s and r be positive constant integers with r ≥ 2, and

s ≥ 4, and let m be an s-composition of n
sr

. Then

e
−
∑

i:mi 6=0
1

12mi ≤ H ′
n(m)

Hn(m)
≤ 1

for n sufficiently large.

Proof. H ′
n(m) divided by Hn(m) is equal to

∏

i:mi 6=0

√
2πm

mi+1/2
i e−mi

mi!
. (5.51)

Using the bounds on n! in (5.24) we can sandwich the product in (5.51)

between e
−
∑

i:mi 6=0
1

12mi and one.

Next we analyse the way in which hn,m(z) varies.

Lemma 5.19 Let n, s and r be positive constant integers with r ≥ 2, s ≥ 3

and

r <
s

2
log(s − 1).

Let m be an integer number with n
s2r

≤ m ≤ n
sr

. Then, for n sufficiently

large, hn,m(z) is decreasing for z ∈
{

max
{

m
2
, m − n

s2r

}

, . . . , m − 1
}

.

Proof. We will prove that hn,m(z) is decreasing as a function of the real

variable z ∈
[

m
2
, m
)

. Since hn,m(z) is defined, continuous and strictly positive

for all z in this range, hn,m(z) is increasing if and only if log(hn,m(z)) is. The

first derivative of log(hn,m(z)) is

r log

(

1 +
sr(2z − m)

n(s − 2) + sr(m − z) + sr

)

+ log
(

m − z

z

)
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+
r2s(2z − m)(n(s − 2) + sr)

(rsz + n(s − 2) + sr)(rs(m− z) + n(s − 2) + sr)
+

2z − m

2z(m − z)
.(5.52)

This has a stationary point when z = m
2

.

We will now show that if r < s
2

log(s − 1), the derivative of log(hn,m(z))

is negative for all z > max
{

m
2
, m − n

s2r

}

, and thus hn,m(z) is monotonically

decreasing. Notice that

log
(

m − z

z

)

(5.53)

is negative when z > m
2

and that

r log

(

1 +
sr(2z − m)

n(s − 2) + sr(m − z) + sr

)

, (5.54)

r2s(2z − m)(n(s − 2) + sr)

(rsz + n(s − 2) + sr)(rs(m− z) + n(s − 2) + sr)
(5.55)

and

2z − m

2z(m − z)
(5.56)

are positive. By Lemma 2.1, for z ≥ m
2

, (5.54) can be bounded above by

sr2(2z − m)

n(s − 2) + sr(m − z) + sr
. (5.57)

We can now add equations (5.55), (5.56) and (5.57) together giving

(2z − m)

(

sr2

rs(m − z) + n(s − 2) + sr

(

1 +
n(s − 2) + sr

rsz + n(s − 2) + sr

)

+
1

2z(m − z)

)

≤ (2z − m)

(

2sr2

n(s − 2)
+

1

2z(m − z)

)

. (5.58)

We will now split the domain into two parts, the first where z ≥ Cm for

1/2 < C < 1 sufficiently large such that the magnitude of (5.53) is much

larger than (5.58) and the second where z < Cm and so 1
2z(m−z)

< 1
C(1−C)m2 .
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Expression (5.58) is maximised when z = m − 1 and hence can be bounded

above by

(m − 2)

(

2sr2

n(s − 2)
+

1

2(m − 1)

)

≤ 2sr2m

n(s − 2)
+

m − 2

2m − 2
<

2sr2m

n(s − 2)
+

1

2
,

noticing also that m ≤ n
sr

, we can bound this above by

2r

s − 2
+

1

2
. (5.59)

Remembering that r < s
2

log(s − 1) we can bound (5.59) above by

s log(s − 1)

s − 2
+

1

2
. (5.60)

When z ≥ Cm, we can also bound (5.53) above by

log
(

1 − C

C

)

, (5.61)

and when

C ≥ (s − 1)
s

s−2 e1/2

(s − 1)
s

s−2 e1/2 + 1
,

the sum of (5.59) and (5.61) is negative. Hence for all z ≥ Cm, h′
n,m(z) is

negative.

If max
{

m
2
, m − n

s2r

}

≤ z ≤ Cm, then

1

2z(m − z)
≤ 1

2C(1 − C)m2
,

and so we can give an upper bound on (5.58) of

(2z − m)

(

2sr2

n(s − 2)
+

1

2C(1 − C)m2

)

(5.62)
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We can now use equations (5.53) and (5.62) to give an upper bound on

d
dz

log(hn,m(z)) of ln,m(z), where ln,m(z) is defined as

ln,m(z) = log
(

m − z

z

)

+ (2z − m)

(

2sr2

n(s − 2)
+

1

2C(1 − C)m2

)

.

We take the first derivative of ln,m(z), giving

4sr2z(m − z) − mn(s − 2)

z(m − z)n(s − 2)
+

1

C(1 − C)m2
. (5.63)

Since z ≥ max
{

m
2
, m − n

s2r

}

, we will consider two cases, the first where

n
s2r

≤ m ≤ 2n
s2r

and z∗ = m
2

, and the second where 2n
s2r

≤ m ≤ n
sr

and

z∗ = m − n
s2r

. In each case we will show that ln,m(z∗) ≤ 0 for all sufficiently

large n, and that l′n,m(z) < 0 for all z∗ ≤ z ≤ Cm and sufficiently large n.

When n
s2r

≤ m ≤ 2n
s2r

and z∗ = m
2

, ln,m(z∗) is equal to zero, when 2n
s2r

≤

m ≤ n
sr

and z∗ = m − n
s2r

, ln,m(z∗) is at most

log





n
s2r

(s−1)n
s2r



+

(

(s − 2)n

s2r

)(

2sr2

n(s − 2)
+

1

2C(1 − C)m2

)

=

= log
(

1

s − 1

)

+
2r

s
+

(s − 2)r

2C(1 − C)n
,

which is negative for r < s
2

log(s − 1).

We now consider the first derivative of ln,m(z) given in equation (5.63),

this is negative if and only if for all z such that z∗ ≤ z ≤ Cm,

4sr2z(m − z) − mn(s − 2) < 0, (5.64)

and
∣
∣
∣
∣
∣

4sr2z(m − z) − mn(s − 2)

z(m − z)n(s − 2)

∣
∣
∣
∣
∣
>

1

C(1 − C)m2
. (5.65)
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When n
s2r

≤ m ≤ 2n
s2r

and z∗ = m
2

, the left hand side of (5.64) is at most

4sr2m2

4
− mn(s − 2)

= m(srm − n(s − 2))

≤ nm
(

2

s
− (s − 2)

)

, (5.66)

which is negative for all s ≥ 3.

When 2n
s2r

≤ m ≤ n
sr

and z∗ = m − n
s2r

, the left hand side of (5.64) is at

most

4sr2 n

s2r

(

m − n

s2r

)

− mn(s − 2)

= n
(

4r

s

(

m − n

s2r

)

− m(s − 2)
)

= n
(

m
(

4r

s
− (s − 2)

)

− 4n

s3

)

. (5.67)

If

4r ≤ s(s − 2),

then 4r
s
− (s − 2) ≤ 0 and so (5.67) is negative, otherwise (5.67) can be

bounded above by the case where m = n
sr

, and so the inequality holds if

n

sr

(
4r

s
− (s − 2)

)

<
4n

s3
(

4r

s
− (s − 2)

)

<
4r

s2

4r(s − 1) < s2(s − 2). (5.68)

Since

r <
s

2
log(s − 1),
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equation (5.68) holds whenever

2(s − 1) log(s − 1) < s(s − 2),

which is true for all s ≥ 3.

Finally, we need to show that inequality (5.65) holds for all m and z in the

range being considered. From (5.66), (5.67) and the fact that n
s2r

≤ m ≤ n
sr

and max
{

m
2
, m − n

s2r

}

≤ z ≤ Cm, we can see that the left hand side of

inequality (5.65) is at least

C1

n
,

for some positive constant C1. For sufficiently large n it is therefore larger

than the right hand side, and the inequality holds.

Since ln,m (z∗) < 0, and l′n,m(z) < 0 for all z∗ ≤ z ≤ Cm, it follows that

ln,m(z) < 0 for all z > z∗. As ln,m(z) is an upper bound on d
dz

log(hn,m(z)),

it therefore follows that for any z > z∗, s ≥ 4, and r such that

r <
s

2
log(s − 1),

d
dz

log(hn,m(z)) is negative and so hn,m(z) is decreasing.

We can now complete the investigation of the properties of functions

hn,m(z), Hn(m), and H ′
n(m) by showing that, under certain circumstances,

Hn(m) is a decreasing function of the Euclidean distance between m and

m. The result will follow from the fact that the growth of Hn(m) is in fact

described accurately by that of hn,m(z).

Lemma 5.20 Let n, s and r be positive constant integers with r ≥ 2, s ≥ 3

and

r <
s

2
log(s − 1),
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and let m be an s-composition of n
sr

with ||x||2 > 0. Then for sufficiently

large n, there exists some m′ with ||x′||2 < ||x||2 such that

Hn(m′) > Hn(m).

Proof. Let mi and mj be elements of m with mi = maxl ml, mj = minl ml

and mi ≥ mj + 2, and let m′ be defined such that m′
i = mi − 1, m′

j = mj + 1

and m′
l = ml for all 1 ≤ l ≤ s, l /∈ {i, j}. Firstly we will consider the case

where mj = 0. In this case

Hn(m′)

Hn(m)

is equal to

(
s−2

s
+ rmi

n

)rm′
i

(
s−2

s
+ r(mi+1)

n

)rmi
× m

mi+1/2
i

(m′
i)

m′
i
+1/2

×
(

s − 2

s
+

r

n

)r−1 n

r
=

=

(

1 − srn

(s − 2)n + sr(mi + 1)

)r(mi−1) (
s − 2

s
+

rmi

n

)r

×
(

1 +
1

mi − 1

)mi−1/2

mi

(
s − 2

s
+

r

n

)r−1 n

r

≥ Cn,

for some positive constant C. It therefore follows that if n is large enough,

Hn(m′) > Hn(m).

When mj > 0, we can easily see that

Hn(m′) = Hn(m)
hn,mi+mj

(m′
i)

hn,mi+mj
(mi)

.

Note that as mj is the minimum of all ml, it must be the case that mj < n
s2r

and hence mi > (mi + mj) − n
s2r

, therefore by Lemma 5.19, when s ≥ 3 and
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r < s
2

log(s − 1)

hn,mi+mj
(m′

i) > hn,mi+mj
(mi).

The next lemma formalises the way in which the tail of EW ′
r,s(Tn)2 is

bounded above by a quantity that allows us to exploit (at least partially) the

fact that the s2-compositions of n/r we are working with are balanced. As

usual, in the following statement, if m is a tuple of t non-negative integers

summing to some value N , then x is the tuple having

xi = mi −
N

t

for each i ∈ {1, . . . , t}. The tuple x quantifies the displacement of each

component of m from its arithmetic mean.

Lemma 5.21 Let n, s and r be positive integers such that n
s2r

is an integer,

and let R be a positive real number. Let Sk ⊂ ZZ
sk

, for k = 1, 2, be a set of

(resp. balanced) s-compositions (resp. s2-compositions) of n
s2−kr

. Then

∑

x∈S2:||x||2≥R

Tr,2(mı(1), . . . , mı(s2)) ≤

C

(

n/r
n
sr

, . . . , n
sr

)
s∑

h=1

(

s

h

)





∑

x∈S1:||x||2≥ R√
s

H ′
n(m)






h




∑

x∈S1:||x||2< R√
s

H ′
n(m)






s−h

,

for some positive constant C.

Proof. From equation (5.15), Tr,2 is equal to

(

n/r

mı(1), . . . , mı(s2)

)
∏

{ı:mı 6=0}

(

rdBs,2(ı) + r

n

)mı(r−1) (
rdBs,2(ı)

n

)mı−1

×

∑

T

∏

{ı:mı 6=0}

(
rmı
n

)degT (ı)−1
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We first look at the sum

∑

T

∏

{ı:mı 6=0}

(
rmı
n

)degT (ı)−1

. (5.69)

The terms within this sum are maximised when there are s non-zero mı,

each of which is equal to n
sr

, using this as an upper bound the sum is at most
(

1
s

)s−2
multiplied by the number of spanning trees of Bs,2. By Lemma 5.3,

κ(Bs,2) is equal to

s2s−4(s − 1)2(s−1) + s(s−1)2−2(s − 2)(s−1)2

and so equation (5.69) is at most

(
1

s

)s−2 (

s2s−4(s − 1)2(s−1) + s(s−1)2−2(s − 2)(s−1)2
)

= ss−2
(

(s − 1)2(s−1) + s(s−1)(s−3)(s − 2)(s−1)2
)

.

We can therefore bound Tr,2(mı(1), . . . , mı(s2)) above by

C

(

n/r

mı(1), . . . , mı(s2)

)
∏

{ı:mı 6=0}

(

rdBs,2(ı) + r

n

)mı(r−1) (
rdBs,2(ı)

n

)mı−1

, (5.70)

where

C = ss−2
(

(s − 1)2(s−1) + s(s−1)(s−3)(s − 2)(s−1)2
)

.

Equation (5.70) can then be bounded above by

C

(

n/r

mı(1), . . . , mı(s2)

)
∏
(

dBs,2(ı) + 1

n/r

)rmı
.
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Next, we notice that

(

n/r

mı(1), . . . , mı(s2)

)

=

(

n/r
n
sr

, . . . , n
sr

)
s−1∏

j=0

(

n/sr

mı(sj+1), . . . , mı(sj+s)

)

.

This suggests the following bound, obtained by splitting the factors of the

product defining Tr,2(mı(1), . . . , mı(s2)) according to different values of j in

the multinomial product above:

C
∑

x∈S2:||x||2≥R

Tr,2(mı(1), . . . , mı(s2)) ≤
(

n/r
n
sr

, . . . , n
sr

)

×

∑

mı(1),...,mı(s)

(
n/sr

mı(1), . . . , mı(s)

) s∏

i=1

(
rdBs,2 (ı(i)) + r

n

)rmı(i)
×

∑

mı(s+1),...,mı(2s)

(
n/sr

mı(s+1), . . . , mı(2s)

) s∏

i=1

(
rdBs,2 (ı(s + i)) + r

n

)rmı(s+i)

×

. . . ×

∑

mı(s2
−s+1),...,mı(s2)

(
n/sr

mı(s2−s+1), . . . , mı(s2)

) s∏

i=1

(
rdBs,2(ı(s

2 − s + i)) + r

n

)rmı(s2
−s+i)

(5.71)

Here each sum is over a number of s-compositions of n/sr and the distance

between the whole (mı(1), . . . , mı(s2)) and m ∈ ZZ
s2

is at least R. Of course,

by using (5.3) to rewrite dBs,2(ı(sj + i)), we can easily see that each sum in

(5.71) involves a term of the form H ′
n(m).

The argument is completed by noticing that

||x||2 = ||m−m||2 =

√
√
√
√

s−1∑

j=0

s∑

k=1

(

mı(sj+k) −
n

s2r

)2

.

158



If for each j ∈ {0, . . . , s − 1},

s∑

i=1

(

mı(sj+i) −
n

s2r

)2

<
R2

s

then clearly

||x||2 < R.

Thus a necessary condition for ||x||2 ≥ R is that

s∑

i=1

(

mı(sj+i) −
n

s2r

)2

≥ R2

s

for at least one j ∈ {0, . . . , s− 1}. This results in the following upper bound

on the tail of EW ′
r,s(Tn)2, obtained by counting the number of ways in which

h groups of elements mı(sj+1), . . . , mı(sj+s) can be at distance at least R/
√

s

from the “central” vector having mi = n
s2r

for all i:

C

(

n/r
n
sr

, . . . , n
sr

)
s∑

h=1

(

s

h

)





∑

||x||≥ R√
s

H ′
n(m)






h




∑

||x||< R
sqrts

H ′
n(m)






s−h

.

Proof of Theorem 5.16. By Lemma 5.21 we can bound the sum above

by

C

(

n/r
n
sr

, . . . , n
sr

)
s∑

h=1

(

s

h

)







∑

x:||x||2≥ ρ(n)√
s

H ′
n(m)







h





∑

x:||x||2<
ρ(n)√

s

H ′
n(m)







s−h

,

(5.72)
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and by Lemmas 5.18 and 5.20 and noticing that the inner sums both have

at most
(

n
sr

s−1

)

terms we can bound (5.72) above by

C

(

n/r
n
sr

, . . . , n
sr

)
s∑

h=1

(

s

h

)((
n
sr

s − 1

)

Hn(m′)

)h (( n
sr

s − 1

)

Hn(m)

)s−h

, (5.73)

for some m′ with

||x′||2 = ρ(n)/
√

s,

and m with

mi =
n

s2r

for all i. By Lemma 5.20, Hn(m) > Hn(m′) and so we have

(Hn(m))s−h(Hn(m′))h = (Hn(m))s−1Hn(m′)×
(

Hn(m′)

Hn(m)

)h−1

≤ (Hn(m))s−1Hn(m′).

Thus we can bound (5.73) above by

C

(

n/r
n
sr

, . . . , n
sr

)

2s

(
n
sr

s − 1

)s

(Hn(m))s−1 (Hn(m′)) . (5.74)

We can use Lemma 5.17 to give upper bounds on Hn(m′) and Hn(m) and

so bound equation (5.74) above by

C

(

n/r
n
sr , . . . ,

n
sr

)

2s

(
n
sr

s − 1

)s




(
sr

2πn

) s−1
2

(

(s − 1)2

s2− 1
r

)n
s s

5s
2

(s − 1)2s
e

r

(s−1)2 e
sr
12n





s−1

×




(
sr

2πn

) s−1
2

(

(s − 1)2

s2− 1
r

)n
s s

5s
2

(s − 1)2s
e

(
s2r2

(s−1)2n
− s2r

2n

)

||x′||2+ r

(s−1)2 e
sr
12n





= C

(

n/r
n
sr , . . . ,

n
sr

)

2s





(
n
sr

s − 1

)(
sr

2πn

) s−1
2

(

(s − 1)2

s2− 1
r

)n
s s

5s
2

(s − 1)2s





s

× e

(
s2r2

(s−1)2n
− s2r

2n

)

||x′||2+ sr

(s−1)2
− sn−s2r

(s−1)n+sr
+ s2r

12n
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= C2

(

n/r
n
sr , . . . ,

n
sr

)

n
s−1
2

(

(s − 1)2

s2− 1
r

)n
s





s

e

(
s2r2

(s−1)2n
− s2r

2n

)

||x′||2
, (5.75)

for some positive constant C2. Finally, we use Stirling’s approximations to

give an upper bound on the multinomial coefficient and thus bound (5.75)

above by

(
r

2πn

) s−1
2

s
n
r
+ s

2 e
r

12n C2n
s2−s

2

(

(s − 1)2

s2− 1
r

)n

e

(
s2r2

(s−1)2n
− s2r

2n

)

||x′||2
=

= C2n
(s−1)2

2 (cr,s)
2n e

(
s2r2

(s−1)2n
− s2r

2n

)

||x′||2
.(5.76)

Since ρ(n) is asymptotically larger than
√

n, equation (5.76) is o(a2
n) if and

only if

s2r2

(s − 1)2n
− s2r

2n
< 0

r

(s − 1)2
<

1

2

2r < (s − 1)2,

which is true for any positive s, r with r < s
2

log(s − 1).

5.3.3 Upper Bounds on χ(Rr(Tn))

We can now complete the proof of Theorem 5.2. The Cauchy-Schwarz in-

equality gives us that the probability of Rr(Tn) having at least one proper

balanced colouring can be bounded below by the ratio

(

EW ′
r,s(Tn)

)2

EW ′
r,s(Tn)2

.
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From Theorem 5.11 and Lemma 5.10 this is asymptotically equal to:

(

s
s
2

(

se
r−1
s−1

s−1

)s (
r
2π

) s−1
2 an

)2

ss2+s+1e
s2(r−1)

(s−1)2 (s−2)(s−1)2

(s−1)2s2−2s+2
(

1− 2r

(s−1)2
+ r

(s−1)4

) (s−1)2

2

(
r
2π

)s−1
(an)2

which simplifies to

e
s(s−2)(r−1)

(s−1)2 (r − 2r(s − 1)2 + (s − 1)4)
(s−1)2

2

s(s−1)2(s − 2)(s−1)2
.

Table 5.4 gives numerical values for this lower bound for early values of

s and r.

r \s 5 6 7 8 9 10 11 12 13 14 15 16 17
3 0.495 —– —– —– —– —– —– —– —– —– —– —– —–
4 —– 0.448 0.594 —– —– —– —– —– —– —– —– —– —–
5 —– —– 0.424 0.549 0.641 —– —– —– —– —– —– —– —–
6 —– —– 0.273 0.419 0.518 0.603 0.669 —– —– —– —– —– —–
7 —– —– —– 0.285 0.400 0.496 0.574 0.636 0.687 —– —– —– —–
8 —– —– —– —– 0.294 0.394 0.479 0.551 0.610 0.659 0.700 —– —–
9 —– —– —– —– 0.205 0.301 0.390 0.466 0.532 0.588 0.635 0.676 0.710

Table 5.4: Numerical values for
(EW ′

r,s(Tn))
2

EW ′
r,s(Tn)2

giving a lower bound on the

probability that there exists at least one proper balanced s-colouring for
5 ≤ s ≤ 17, 3 ≤ r ≤ 9.

5.4 Comparisons with Other Models of Ran-

dom Graphs

In this chapter we have given bounds on the proportion of trees reducing to

graphs that can be properly s-coloured by calculating the first two moments

of the number of proper s-colourings of a random tree with empires formed
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Figure 5.5: Lower bounds on the probability that there exists at least one
proper balanced s-colouring for 6 ≤ s ≤ 17, 4 ≤ r ≤ 9

by exactly r empires each. We conclude this chapter by quickly comparing

our treatment with similar results in the literature.

Because of the similarities highlighted in Section 3.5 between Rr(Tn) and

G(n
r
, n−1), and Gn

r
,2r it is natural to compare the results on χ(Rr(Tn)) in this

thesis with those proved for other types of random graphs. The state of the

art there is represented by the work of Achlioptas and Moore (on random

regular graphs of small degree) [4] and, later, Achlioptas and Naor [5] for

Erdős-Rényi random graphs of small average degree. In this chapter it was

shown that Rr(Tn) is a.a.s. not sr-colourable, where sr is the largest integer

such that 


sr − 1

s
1− 1

r
r



 < 1,

but for any (fixed) s, r such that

r <
s

2
log(s − 1),

there is at least a positive constant probability of s-colourability. Roughly
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speaking this result implies that, for sufficiently large (but fixed) values of r,

with high probability, χ(Rr(Tn)) is larger than about r/ log r but, with pos-

itive probability, smaller than about twice such quantity. A result obtained

by Frieze and Luczak [32] shows that, for r large enough, the chromatic

number of a random regular graph of degree 2r is a.a.s. r
log 2r

(and similar re-

sults [52] exist about χ(G(n, p)). This implies that the likely range of values

for χ(Gn
r

,2r) lays is an interval of size o(r/ log r). Furthermore, using rather

non-trivial analytical techniques, Achlioptas et al. [4,5] proved that for both

Erdős-Rényi random graphs with constant average degree, and for random

regular graphs of constant degree, this concentration interval is actually re-

stricted to a very small range of up to three different values.

Thus, although our results support the claim that 2r is indeed a rather

weak estimate for the typical value of χ(Rr(Tn)), they are much weaker than

analogue statements obtained for other related random graph models. Given

that the techniques used in this thesis are relatively simple, the question of

whether our results can be tightened up to qualitatively mirror the results

mentioned above, is the major open problem of our work.
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Chapter 6

Conclusions

In this thesis we examined the empire-colourability of trees. For arbitrary

trees we showed that if the vertex set is partitioned into empires of size exactly

r ≥ 1, then 2r colours are always sufficient to give a proper colouring, and

furthermore there exist trees that require this many colours.

In Chapter 3 we gave a precise definition of the problem being studied

and defined the concept of the r-reduced graph of a given graph. We then

studied a number of properties of the r-reduced graphs of trees such as vertex

degrees, connectivity, and the presence of certain small subgraphs.

In Chapter 4 we studied three algorithms for graph colouring. It was

shown that for all positive r there exists an algorithm that can properly colour

any tree with empires consisting of r vertices, using at most 2r colours. The

actual results of the algorithms were in fact much better than this, suggesting

that this upper bound is quite pessimistic.

In Chapter 5 we gave a precise characterisation of the first two moments

of a random variable counting the number of s-empire colourings of a random

tree with vertex set partitioned into empires of size r. From this we were

able to give upper and lower bounds on the probability that a random tree
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has at least one r-empire s-colouring. We found that for any r ≥ 2, there

exists a number

sr =

⌈

r

log r

⌉(

1 + O

(

1

log log r

))

,

such that any random tree on empires of size r a.a.s. admits no proper s-

colouring for any s ≤ sr. Finally, for any s and r such that

r <
s

2
log(s − 1),

we were able to show that there is at least a constant positive probability

that a random tree has at least one r-empire s-colouring.

A number of questions are left open by this report. From the average-

case analysis point of view the main open issue is the colourability of random

trees given fixed values of s and r such that s > sr and r > s
2

log(s − 1). In

this range we can neither confirm that a random tree a.a.s. has no proper

s-colouring, nor give any positive lower bound on the probability of such

a colouring. Furthermore, while we have found exact expressions for all

moments of Wr,s(Tn) and W ′
r,s(Tn), we have only found asymptotically tight

expressions for the first moment of each and the second moment of W ′
r,s(Tn).

A full asymptotic characterization of all moments of these random variables

should be possible and could be the subject of further investigation. Finally,

could the methods used in this thesis be applied to the r-empire colourability

of G(n, p), when p is such that G(n, p) is a.a.s. planar? For sufficiently small

p the graph is likely to be quite simple, consisting of a number of trees and

unicyclic graphs and so many of the methods used in the analysis of trees

may also apply here.

Even more problems remain unsolved from the worst-case analysis point

of view. First of all we may ask if it is NP-hard to find the 2-empire chromatic

166



number of a tree? We know that any tree a.a.s. has 2-empire chromatic

number of either 3 or 4, but so far there are no bounds on the probability

of a given tree admitting a proper 2-empire 3-colouring. Next, could we find

some structural characterisation of the class of r-reduced graphs of trees?

The results in Chapter 3 suggest that all such graphs share a number of

properties such as having average degree 2r− 2r
n

, minimum degree r and being

connected, but it is not enough to say that any graph with these properties

is always the r-reduced graph of some tree. Finding such a characterisation

would mean that the problem of r-empire colouring of trees would be reduced

to that of graph colouring on a certain family of graphs.

Of course, it may be interesting to study other variations of the empire

colouring problem. For instance, one could set a lower bound on the distance

in Tn between two vertices from the same empire. This would remove the

issue of loops in the reduced graph and may also reduce the number of short

cycles. It is possible that such a restriction would reduce the number of

colours required.
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[44] P. Hell, J. Nešetřil. On the complexity of H-coloring, Journal of Com-

binatorial Theory, Series B , vol. 48, iss. 1, pp. 92–110, 1990.

[45] W. Hoeffding. Asymptotically optimal tests for multinomial distribu-

tions, Annals of Mathematical Statistics, vol. 36, pp. 369–401, 1965.

[46] J.P. Hutchinson. Coloring ordinary maps, maps of empires, and maps

of the moon, Mathematics Magazine, vol. 66, pp. 211–226, 1993.

172



[47] B. Jackson, G. Ringel. Solution of Heawood’s empire problem in the

plane, Journal für die Reine und Angewandte Mathematik, vol. 347, pp.

146–153, 1984.

[48] S. Janson, T.  Luczak, A. Ruciński. Random Graphs, John Wiley &
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[60] H. Prüfer. Neuer beweis eines satzes über permutationen, Archiv der

Mathematik und Physik, vol. 27, pp. 742–744, 1918.
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