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Abstract

Tackling the Computational Complexity of Understanding Coalition Formation in Multi-agent Sys-
tems, Andrew Dowell

In its simplest metaphor, agent based computation is that undertaken via the interactions of autonomous
computational entities (from [39]). Often, these interactions are cooperative and, in this context, a coalition
describes any group of agents who may cooperate together. In any multi-agent system, to understand which
coalitions will be formed by the agents, the system can be represented as a cooperative game and solution
concepts from game theory can be employed. In particular, a coalition is core stable if no agent that belongs
to this coalition can gain from forming another coalition instead. On the other hand, an optimal coalition
structure consists of an exhaustive and disjoint collection of coalitions of agents that maximizes the welfare
of the system. Given any coalition formation protocol, it is assumed that self-interested agents will always
form core stable coalitions whereas fully cooperative agents will always partition themselves into an optimal
coalition structure.

In a cooperative game representation, when the value obtained from forming every coalition is explicitly
stated, existing research has shown that no algorithm is guaranteed to solve decision problems concerning
the core and optimal coalition structure concepts with time complexity that is polynomial in the number
of agents. Given this background, the research presented in this thesis aims to tackle this complexity by
presenting:

(a) Algorithms that can compute these problems as efficiently as possible; and,

(b) Representations of cooperative games that can permit efficient computation of these problems.

With regard to point (a), the computational difficulties with generating an optimal coalition structure arise,
in part, from the fact that the number of coalition structures grows exponentially in the number of agents. To
this end, in this thesis, two optimal coalition structure generation algorithms are presented - each with the
aim of efficiently generating an optimal coalition structure through analyzing only a fraction of all possible
coalition structures. These algorithms develop upon the contributions of previous algorithms by considering
both externalities from coalition formation and coalition value calculation processes.

In addition, with regard to point (b), existing research has shown that the complexity of computing if a
given coalition belongs to the core of a game is polynomial in the size of the game itself. However, be-
cause the number of coalitions grows exponentially in the number of agents, the general representation will
have size that is exponential in the number of agents. Thus, from a computational perspective, this is not
positive. Given this insight, this thesis also contributes to the state-of-the-art understanding of multi-agent
systems through developing a concise representation of coalition formation between self-interested agents.
For certain, natural instances of this representation, a system user is able to solve problems concerning core
stability with time complexity that is polynomial in the number of agents.
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Glossary of Terms

Ag A set of agents.
ai An agent in Ag.
n The number of agents.
C A coalition of agents.
π A coalition structure.
Π The set of all coalition structures.
E The space of all embedded coalitions.
P A partition function game.
P (C;π) the value of coalition C embedded in structure π.
Nt A characteristic function game with transferable utility.
Nnt A characteristic function game with non-transferable utility.
v(C) The value of coalition C.
x An imputation.
xi Agent ai’s allocation of x.
θi Agent ai’s Shapley value allocation.
π∗ An optimal coalition structure.
GW A weighted graph game.
w(i, j) The weighted value of the edge connecting agents ai and aj in GW .
WCG Weighted coalitional game.
S A synergy game.
MCN A marginal contribution nets representation.
H A hedonic coalitional game.
�i The preference ordering of agent ai inH.
Ci(π) The coalition in π to which agent ai is a member.
H′ A hedonic nets representation.
Γ A qualtiative coalitional game representation.
G The set of goals in Γ.
m The number of goals in G.
Gi The goals in G agent ai wishes to accomplish.
Ψ A formula of proposition logic that represents vq.
Γsucc A representation of Γ that uses Ψ instead of vq.
Bn The Bell number of n.
G The set of all integer partitions of n.
g An integer partition of n in G.
UBg The upper bound on the values of all coalition structures in g.
LBg The lower bound on the values of all coalition structures in g.
AVg The average bound on the values of all coalition structures in g.
UBG The upper bound on the values of all coalition structures in G.
LBG The lower bound on the values of all coalition structures in G.
AVG The average bound on the values of all coalition structures in G.
maxS The maximum value of all coalitions of size S.
minS The minimum value of all coalitions of size S.
avS The average value of all coalitions of size S.
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g∗ The most promising subspace in G.
Mij A temporary array that can be used to cycle through all possible coalitions

of size ij ∈ R.
Ls The list containing all coalitions of size s.
|Ls| The number of coalitions in Ls.
Ls,i Agent ai’s allocation of the coalitions in Ls in ‘basic’ allocation method.
Indexs,i The last coalition in the ai’s allocation in ‘basic’ allocation method.
L1/2
s,i Agent ai’s allocation of the coalitions in Ls in refined allocation method.

Index1/2
s,i The last coalition in the ai’s allocation in refined allocation method.

L′s The ‘left over’ coalitions after allocation.
L′s,i Agent ai’s allocation of the ‘left over’ coalitions.
α Index of agent who is assigned the first left over coalition in Ls .
A′ The set of agents the left over coalitions in Ls .
z Set of all coalitions.
zp Set of all promising coalitions.
znp Set of all non-promising coalitions.
d̃s The domination value of all coalitions in Ls.
FR1-FR3 The filter rules.
−→
Z s(j) All coalitions in Ls in which aj is the first agent.
P+
sup Partition function games with super-additivity and positive externalities.
P−sup Partition function games with super-additivity and negative externalities.
P+
sub Partition function games with sub-additivity and positive externalities.
P−sub Partition function games with sub-additivity and negative externalities.
vmax(C) The maximum value of coalition C.
vmin(C) The minimum value of coalition C.
a The synergy from super-additivity.
b The loss from negative externalities.
ΓH Hedonic qualitative coalitional games.
P1 - P2 Preference assumptions in ΓH.
T = (C,G′) A team in ΓH.
πT A team structure in ΓH.
ΠT The set of all team structures in ΓH.
Tj(πT ) The team in πT to which agent aj is a member.
Ti Agent ai’s preference over the teams they can form.
P seq The sequential coalition formation protocol.
ht The history of P seq at stage t.
R The rule of order defining the turns of the agent in P seq.
δ A time period during which agents can propose or react to proposals in

P seq.
Ag− A set of agents who have already formed teams.
πT,Ag− A team structure formed by the agents inAg−.
T̂ = (Ĉ, G′) An on-going proposal.
AgA A set of agents who have accepted an on going proposal.
Lreject A list of rejected teams.
λ A strategy profile containing strategies played by agents.
λi the strategy played by agent ai in λ.
λ∗ A sub-game perfect Nash equilibrium strategy profile.
π(λ) The team structure formed by the agents playing λ.
Ti(π(λ)) the team to which agent ai is a member in the structure formed from the

agents playing λ.
Ggame The game tree representation of P seq.
T The set of all non-null teams that can be formed by the agents.
πO The structure formed from the agents participating in P seq.
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ΓHU
Hedonic coalitional games with universal preferences.

S(C) The space of all coalitions in ΓH and in ΓHU
.

Si(C) The space of all coalitions of size i in ΓH and in ΓHU
.

Ci,j The jth coalition in Si(C).
S∗ Sub-game perfect Nash equilibrium strategy for P seq in ΓHU

.
π∗T An optimal team structure.
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Chapter 1

Introduction

Advances in the theory of computing have resulted in the development of multi-agent system technologies
[39]. Conceptually, an agent is interpreted as a computational entity that satisfies the following criteria (from
[83]):

I1 Autonomy, i.e., agents are capable of independent action and do not require human involvement with
respect to making decisions;

I2 Reactivity, i.e., agents are able to perceive their environment and respond, in a timely fashion, to changes
that may occur;

I3 Pro-activity, i.e., agents are able to exhibit goal directed behaviour by taking the initiative in order to
accomplish their goals; and,

I4 Social ability, i.e., agents are capable of interacting with others.

All of I1-I4 provide a notion of intelligence and, against this criteria, an agent is formally defined as follows.

Definition 1.1 (adapted from [83]) An agent is a computer system that is situated in some environment and,
in this environment, is capable of all of I1-I4 in order to meet its design objectives.

Given Definition 1.1, a multi-agent system consists of a number of agents who are situated in a common
environment and who carry out their individual activities within that environment. For the purposes of this
thesis, a coalition simply refers to a group of agents who may cooperate together and, in a number of multi-
agent systems, it has been illustrated that an agent’s performance improves through cooperating with others
as opposed to working alone [34]. For example:

• In distributed sensor networks, autonomous sensors form coalitions in order to monitor targets of
interest [14];

• In e-commerce systems, buyer agents form coalitions to purchase a product in bulk and take advantage
of price discounts [46];

• In systems where intelligent agents negotiate over meeting scheduling options on behalf of people for
whom they work, agents form coalitions when they agree upon a schedule [69]; and,

• In information gathering systems, such as the RETSINA (REusable Task-based System of Intelligent
Networked Agents) system considered in [73]. Here, due to the complexity of gathering information,
as well as the specialist knowledge of the agents, the agents in this system form coalitions in order to
efficiently gather information.

In the context of coalition formation, two broad classes of agent have been identified (from [77]):

1



• Those that are fully cooperative; and,

• Those that are self-interested.

These two agent types are characterized by how the agents work together. Typically, fully cooperative
agents will share common goals and cooperate without any regard to individual payoff or utility. For exam-
ple, agents concerned with cooperative distributed problem solving (that is, how loosely coupled networks
of problem solvers work together to solve problems) can be interpreted as fully cooperative if they all have
the same goal of solving the same problem [81]. In these systems, if the agents have different expertise
or the problem is inherently complex to solve then these agents can form coalitions in order to solve the
problem.

In contrast to fully cooperative agents, self-interested agents do not share common goals and are concerned
with maximizing their own individual utility. For example, consider coalition formation between agents
representing different transport centres that deliver packages [67]. Here, self-interested agents can form
coalitions in order to reduce expenses. However, because the agents represent different companies, they will
only form coalitions that are best for the company and not the system. Additionally, consider an electronic
market populated with automated agents which represent different enterprises who buy and sell [34]. Here,
buyers and sellers can form coalitions in order to establish strong business connections. However, buyers
and sellers are only going to form coalitions if it is beneficial to themselves (i.e., if sellers can improve profit
while buyers get a good deal on what they purchase) .

To understand which coalitions will be formed by the agents, cooperative game theory can be used. In this
discipline, the system can be represented as a cooperative game that can consist of:

(i) The agents;

(ii) The coalitions that can be formed; and,

(iii) The value obtained from forming each of these coalitions.

In cooperative games, it is generally assumed that:

CG1 The value obtained from forming coalitions is measured numerically;

CG2 The value is attributed to the coalition as a whole, i.e., it is not allocated to the individuals who belong
to it; and,

CG3 The value is not affected by co-existing coalitions, i.e., there are no externalities from coalition for-
mation.

It should be noted that, with regard to CG3, the term externality is used to describe the effect that the for-
mation of a particular coalition may have on the value of other co-existing coalitions. Assumption CG3
simply states that co-existing coalitions do not affect one another, meaning every formed coalition has the
same value at any moment in time.

There are both advantages and limitations to using game theory. On the plus side, it is sufficiently flexible
to represent many different multi-agent system domains (as will be evidenced by the various representations
of cooperative games in Chapter 2) and it can enable mathematical proof. However, on the negative side,
cooperative game theory makes a number of assumptions that are not always true in the real world. For
example, it is often assumed that, at any moment in time, agents can belong to no more than one coalition
and that agents have perfect information regarding the system. The former point is not always true in a
number of real world multi-agent systems, such as in the distributed network sensor systems considered in
[14] where the agents can belong to more than one coalition. Whereas one line of research has focused on
addressing its real world limitations (see [78]), this thesis addresses the computational limitations of game
theory.
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1.1 Computational Limitations of Cooperative Game Theory
In cooperative games where all of CG1-CG3 hold, three key issues have been researched in the multi-agent
systems literature thus far (from [66]):

Key Issue 1 Coalition structure generation, i.e., how the agents decide who to form coalitions with;

Key Issue 2 Solving the optimization problem of each coalition, i.e., how the agents find the best way to
maximize the utility the coalition receives; and,

Key Issue 3 Allocating the utility obtained from forming each coalition, i.e., how the agents in the coalition
share the utility among themselves.

Since the research in this thesis investigates coalition formation between both self-interested and fully co-
operative agents, this thesis focuses on both Key Issue 1 and Key Issue 3. This is because self-interested
agents make their decisions regarding coalition formation based on the allocation of the gain they receive.
In particular, the research presented in this thesis investigates the computational complexity of solving nat-
ural problems concerning coalition formation between self-interested and fully cooperative agents, i.e., this
research focuses on the following question:

How hard is it to compute which coalitions will be formed?

Firstly, consider fully cooperative agents. If a cooperative game satisfies all of CG1-CG3 (that is, the co-
operative game assumptions specified on the previous page) then, for any exhaustive and disjoint collection
of coalitions of agents (referred to as a coalition structure from now on), the utilitarian metric is a natural
measure from which to assess the welfare of the system should these coalitions be formed by the agents. In
other words, the utility attributed to the coalition structure is equal to the combined values of all the coali-
tions that belong to that structure. In this context, the coalition structure with maximal utility is the one that
represents the collection of coalitions that, if formed by the agents, maximizes the welfare of the system.
This coalition structure is referred to as an optimal coalition structure and, in any multi-agent system repre-
sented as a cooperative game that satisfies all of CG1-CG3, (given sufficient time, processing capabilities
and knowledge) fully cooperative agents will always partition themselves into optimal coalition structures,
irrespective of whether the coalitions in these structures are necessarily the best ones for themselves.Thus, to
determine which coalitions will be formed by fully cooperative agents, an optimal coalition structure must
be generated. In any cooperative game representation that satisfies all of CG1-CG3, in order to guarantee
that a given coalition structure is optimal, the utilitarian value of every coalition structure may have to be
computed. From a computational perspective, this is problematic because the number of possible coalition
structures that can be formed grows exponentially with the number of agents.

However, if the value obtained from forming every coalition is known then, as there are no externalities
from coalition formation (as given by assumption CG3), it may be possible to identify a priori whether
certain structures cannot be optimal. In this way, the computational difficulty of optimal coalition structure
generation can be circumvented because the values of those structures that definitely cannot be optimal need
not be computed. Consequently, in the multi-agent system literature, for cooperative games where all of
CG1-CG3 hold, one line of research has focused on developing algorithms that can efficiently generate an
optimal coalition structure [84, 66, 55].

In contrast to the above, if the agents are self-interested then they will choose to form the coalitions that
are best for themselves as individuals. If the cooperative game satisfies all of CG1-CG3 then the coalitions
formed by a self-interested agent are influenced by the allocation of the utility they receive. Intuitively,
a self-interested agent is not going to form a coalition if it can be guaranteed a bigger utility share by
forming another coalition instead. Coalitions in which none of the agents have incentive to defect from and
form other coalitions instead are referred to as stable. Clearly, self-interested agents will only form stable
coalitions, meaning the coalitions that they form is dependent upon the allocation of the gain they receive.
As the next subsection will show, the complexity involved in determining which coalitions are formed by
self-interested agents is related to the size of the cooperative game representation.
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1.1.1 Representing Cooperative Games
It cannot be guaranteed that self-interested agents will partition themselves into coalition structures that
maximize the welfare of the system. Instead, problems concerning stability can be answered to determine
which coalitions will be formed by self-interested agents.

Existing research has shown that the difficulty in computing these problems is related to the size of the
cooperative game representation [17, 13, 29, 20]. In the multi-agent systems literature, a number of repre-
sentations of cooperative games that satisfy all of CG1-CG3 have been proposed. To assess the quality of
any representation, the following four criteria can be used (from [29]):

Expressivity: the breadth of the class of coalitional games covered by the representation;

Conciseness: the space requirements of the representation;

Efficiency: the efficiency of the algorithms that can be developed for the representation; and,

Simplicity: the ease of use of the representation by users of the system.

Given a cooperative game representation, it would be desirable that this representation can model all possible
classes of coalitional game. Also, because the number of coalitions grows exponentially in the number of
agents, it would be desirable that the representation is concise as possible and permits efficient computation
of problems concerning coalition formation. In addition, it would also be desirable that the representation
is such that a user of the system can easily study the game in order to solve these problems. To this end,
against the above criteria, it is generally accepted that the ideal representation should:

1. Be fully expressive;

2. Use as little space as possible;

3. Enable efficient computation of coalition formation related problems; and,

4. Be easy to use by users of the system.

A natural way to represent a cooperative game would involve explicitly stating the value obtained from
forming every coalition. These representations are fully expressive over the domains they represent. Also,
problems related to coalition stability can be answered through analyzing the values obtained from form-
ing every coalition. However, as there are 2n coalitions that could potentially be formed in a system of n
agents, these representations will have size that is exponential in the number of agents. This implies that,
with respect to computing coalition stability, any positive results are neither meaningful nor computationally
significant. Against both conciseness and efficiency, this is an undesirable feature of these representations.

A representation scheme is succinct if it has size polynomial in the number of agents. Clearly, succinct rep-
resentations are desirable from a conciseness perspective but they are not guaranteed to be fully expressive
as there can exist classes of cooperative games that cannot be captured within a succinct representation. Fur-
thermore, despite the conciseness of the representation, they also do not guarantee that coalition formation
related problems can be efficiently answered [1].

Against this reasoning, it is therefore desirable to develop compact representations of cooperative games that
strike a useful balance between both conciseness and efficiency. In other words, it is desirable to develop
fully expressive representations of cooperative games that are succinct for cases of interest yet still allow for
coalition formation related problems to be efficiently computed.
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1.1.2 Coalition Formation Protocols
Following previous discussion, fully cooperative agents will always form coalitions that maximize the wel-
fare of the system whereas self-interested agents will always form stable coalitions. With respect to the
latter case, as the work in later chapters will show, in a number of cooperative games, there is no guarantee
that coalitions which meet the requirements of various stability criteria will exist. . In these games, as there
does not exist a single coalition that is beneficial to all its members, if an agent desires to form a coalition
then they may have to negotiate its formation with other agents who belong to that coalition.

In the context of negotiation, a coalition formation protocol is a set of rules that define how agents can
interact whilst negotiating. For example, if the protocol is sequential then the agents take it in turn to interact
(such as those sequential protocols considered in [5, 24, 19]) whereas if the protocol is simultaneous then
the agents simultaneously announce the coalitions they want to form (such as those simultaneous protocols
considered in [45, 60]). In coalition formation protocols, a strategy defines the choice made by an agent
with respect to forming a coalition and whenever an agent plays a strategy, this is described as a stage of
the protocol. Following previous discussion, given any protocol, self-interested agents will always play
strategies that result in them forming stable coalitions. When there is no guarantee that stable coalitions
exist, the agents are faced with following problem:

Which coalitions should be formed?

In any protocol, a strategy profile consists of a tuple of strategies played by every agent. In protocols that
require a number of stages, the concept of a sub-game perfect equilibrium can be used to identify strategies
for the agents to play. Informally, a strategy profile is said to be Nash equilibrium if the deviation of
any agent from the strategy they play in the profile, given that all of the other agents do not change their
strategies, does not result in the agent being better off as a consequence. With this in mind, a strategy profile
is a sub-game perfect equilibrium if, at any stage of the negotiation process, no matter what the history is,
no agent is motivated to deviate and play another strategy other than what is defined in the strategy profile
(these definitions are taken from [19]). Against this insight, given any coalition formation protocol that may
require a number of stages, the following question naturally arises:

Does there exist a sub-game perfect equilibrium profile and,
if so, how hard is it to compute this profile?

1.2 Research Contributions
Firstly, consider optimal coalition structure generation. For any cooperative game that satisfies all of CG1-
CG3 (that is, the cooperative game assumptions specified earlier), existing optimal coalition structure gener-
ation algorithms have been developed that can efficiently generate an optimal coalition structure. A number
of these algorithms take, as input, the values obtained from forming every coalition (referred to as the coali-
tion value from now on). Since there are no externalities from forming coalitions in these games, these
algorithms attempt to identify a priori if groups of coalition structures cannot be optimal and, from this
information, analyze only those structures that could potentially be optimal.

All of these algorithms commence from the moment all coalition values have been computed. This is sur-
prising because, even for moderate numbers of agents, there are an exponential number of coalitions and
the process of computing all coalition values is not trivial. To this end, the first contribution of this thesis
is an optimal coalition structure generation algorithm that considers both coalition value calculation and
optimal coalition structure generation. This algorithm consists of a heavily refined version of the sequen-
tial application of the distributed coalition value calculation (DCVC) and Integer Partition (IP) optimal
coalition structure generation algorithms (as presented in both [56] and [59], respectively). Since the com-
putational processes in the DCVC algorithm are distributed among the agents, whereas in the IP algorithm
they are coordinated by a single entity, connecting the two algorithms is not trivial. Thus, pre-processing

5



techniques are developed which can be incorporated into this algorithm. These techniques are presented as
filter rules that can identify coalitions that cannot belong to an optimal coalition structure. In the coalition
value calculation stage, the values of these coalitions are removed from the algorithm and, in the optimal
coalition structure generation stage, the values of the coalition structures containing these coalitions are not
computed. These filter rules can reduce the number of coalition values an individual agent needs to transfer
to the entity who is to execute the optimal coalition structure generation phase, as well as the number of
coalition structure values that are computed during the coalition structure generation phase. In this way,
the filter rules can overcome the computational difficulties associated with optimal coalition structure gen-
eration. Furthermore, this algorithm, combined with the filter rules, provides a foundation from which a
distributed optimal coalition structure generation algorithm can be developed.

Now, cooperative games that satisfy all of CG1-CG3 are sufficient to represent coalition formation in many
real world multi-agent systems (particularly the distributed sensor network and e-commerce systems con-
sidered at the start of this chapter). This is because the coalitions either do not interact with each other
while pursuing their own goals or because such interactions are small enough to be neglected. However, in
a number of multi-agent systems, assumption CG3 (that is, the assumption that there are no externalities
from coalition formation) may not hold. For instance, as multi-agent system technologies advance, they
can be applied to solve increasingly complex cooperative distributed problems. As these problems become
increasingly complex, interdependencies between coalitions may also increase, meaning ad hoc coalition
formation may need to allow for externalities from coalition formation. Against this insight, this thesis con-
tributes to the state-of-the-art by investigating optimal coalition structure generation in cooperative games
where CG3 does not hold, i.e., cooperative games where there exist externalities from coalition formation.
In these representations, optimal coalition structure generation is particularly problematic since the value of
every coalition is dependent upon the structure to which it belongs. In this way, it is not possible to predict
the values of all coalition structures without having to actually compute them. Consequently, the value of
every coalition structure will have to be computed in order to guarantee an optimal coalition structure. Nev-
ertheless, in this thesis, for certain natural classes of these representations, an algorithm is developed that is
able to generate an optimal coalition structure without having to analyze all possible coalition structures that
can be formed. In particular, by analyzing only a fraction of all coalition structures, this algorithm is able
to bound the maximum and minimum values of all possible coalition structures that could be formed. After
doing this, the algorithm is then able to exploit this information and analyze all the remaining coalition
structures whilst avoid those coalition structures that cannot be optimal. This contribution is particularly
significant since it is the first optimal coalition structure algorithm to be developed for cooperative games
where CG3 does not hold.

As well as optimal coalition structure generation, this thesis also introduces a novel representation of coali-
tion formation between self-interested agents. In this representation, agents form coalitions based on both
the set of goals this coalition is able to accomplish and the agents who belong to the coalitions. This so-
called hedonic qualitative coalitional game (HQCG) representation combines facets from both the existing
hedonic and qualitative coalitional game representations (the latter two representations are presented in Sec-
tion 2.4.5 and Section 2.4.6, respectively).

In the HQCG representation, various concepts of stability are formalized. For many of these concepts, there
is no guarantee that coalitions which satisfy these stability criteria will exist. To this end, a sequential coali-
tion formation protocol is developed such that if all the agents participate in the protocol then a coalition
structure will be formed. With the exception of the negotiation protocol presented in [19], in contrast to most
of the negotiation protocols developed in the multi-agent systems paradigm, this protocol considers negoti-
ation among n agents (as opposed to bilateral negotiations) and assumes that the utility is non-transferable
(as opposed to transferable).1 Although stable coalitions are not guaranteed to exist in these representations,
an equilibrium strategy is guaranteed to exist for this protocol. However, even if the representation is con-
cise, there is no guarantee that this equilibrium strategy can be efficiently computed. Furthermore, insincere

1See [35] for more details.
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agents may be able to manipulate the protocol so that they have an advantage over other agents. Against
this insight, a natural class of hedonic qualitative coalitional games are studied in which a stable coalition
structure is guaranteed to exist. In this class of games, if the representation is concise then this core stable
structure can be efficiently generated.

1.2.1 Thesis Structure
The remainder of this thesis is divided into three parts. The first part is divided into two chapters which
provide a thorough background to the study of coalition formation in the multi-agent system paradigm.
Specifically:

In Chapter 2, an overview of some of the key concepts from cooperative game theory is provided. In
addition, an overview of the representations of cooperative games that have been developed in the
multi-agent system paradigm is also provided; and,

In Chapter 3, the state-of-the-art optimal coalition structure generation algorithms that have been devel-
oped in the multi-agent system paradigm are presented.

Given this background, the second part is divided into three chapters that each describe the research contri-
butions made by this thesis. To be precise:

In Chapter 4, optimal coalition structure generation is considered as a two stage process consisting of a
coalition value calculation stage and an optimal coalition structure generation stage;

In Chapter 5, optimal coalition structure generation is studied in natural classes of cooperative games
where there are externalities from coalition formation; and,

In Chapter 6, hedonic qualitative coalitional games are studied.

It is worth pointing out that the findings presented in Chapter 4 and Chapter 5 were first published in the
following refereed proceedings, respectively:

T. Michalak, A. Dowell, P. McBurney and M. Wooldridge [2009]: Pre-processing techniques
for anytime optimal coalition structure generation. In J.-J. Ch. Meyer and J. Broersen (eds.),
Knowledge Representation for Agents and Multi-Agent Systems (In Proceedings of KRAMAS
2008), LNAI 5605, Springer Berlin / Heidelberg, 2009. [44].

T. Michalak, A. Dowell, P. McBurney and M. Wooldridge [2008]: Optimal coalition struc-
ture generation in partition function games. In M. Ghallab and C.D. Spyropoulos (Editor):
Proceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008), Patras,
Greece: July 2008. [43].

In addition to the above, the third part of this thesis consists of one chapter which provides a conclusion to
the research that is presented in Chapters 4-6. In more detail:

In Chapter 7, the contributions and significance of the work presented in Chapters 4 - 6 are summarized
and possible avenues for further research are presented.

Finally, because computational complexity features heavily in this work, as a point of reference, key con-
cepts from complexity theory are presented in Appendix A.
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Chapter 2

Cooperative Games

Game theory is a branch of applied mathematics that aims to understand the best course of action for those
involved in strategic situations, i.e., situations where an individual’s success in making choices depends on
the choices of others [49, 4]. In this discipline, the strategic situation is represented as a game. These games
can be divided into two main types: cooperative and non-cooperative. In both non-cooperative and coop-
erative games, self-interested agents desire to maximize their individual gains. However, the fundamental
difference between the two is that, in cooperative games, agents can make binding agreements and form
coalitions whereas, in non-cooperative games, this is not possible. As this thesis is concerned with coalition
formation, in this chapter, an overview of cooperative game theory is presented. To be precise:

• In Sections 2.1 and 2.2, the partition function and characteristic function game representations of
cooperative games are presented;

• In Section 2.3, solution concepts are presented for characteristic function game representations. These
concepts can help identify coalitions that will be formed and, in this section, the core and optimal
coalition structure concepts are formally defined; and,

• In Section 2.4, an overview of existing representations of characteristic function games is presented.
In particular, the following representations are presented:

1. Weighted graph games;

2. Weighted coalitional games;

3. Synergy games;

4. Marginal contribution nets;

5. Hedonic Coalitional Games; and,

6. Qualitative Coalitional Games.

2.1 Partition Function Games
Cooperative games were first considered in [80]. Generally, the value obtained from forming a coalition can
depend upon the other coalitions that are formed simultaneously. Therefore, when given a set of agents Ag,
to determine if a given coalition C ⊆ Ag is a good one to join, all other co-existing coalitions C ′ ⊆ Ag \C
must be considered as well. To this end, consider the following definition.

Definition 2.1 A coalition structure (π) is a partition of the agents in Ag.

Any coalition C ⊆ Ag that belongs to a structure π is said to be embedded in π. If the utility attributed to
a coalition C ⊆ Ag is affected by co-existing coalitions then every coalition C may have different values
in each coalition structure to which it is embedded. Partition function game representations, first proposed
in [38], measure the value of forming every coalition C ⊆ Ag in every coalition structure to which the
coalition is embedded.
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Definition 2.2 Let:

• E denote the set of all embedded coalitions (C;π); and,

• Π denote the space of all coalition structures.

A partition function game with transferable utility P = 〈Ag, P 〉 consists of:

• A set of agents Ag = {a1, . . . , an}; and,

• A partition function P which takes, as input, an embedded coalition (C;π) ∈ E and outputs a real
number value reflecting the value obtained from forming coalition C given that the other coalitions
in π have also formed, i.e.,

P : E → R.

Intuitively, partition function games account for externalities from coalition formation where the formation
of coalitions may affect the utility attributed to co-existing coalitions. Externalities from coalition formation
can exist in many real world multi-agent systems. For example, consider fisheries on the oceans [52]. If the
agents represent different fishing companies and, upon forming a coalition, the agents in the coalition decide
to reduce fishing activities then this may have a positive impact on co-existing coalitions as these coalitions
may gain more when this additional competition is reduced. Similarly, consider coalition formation between
agents representing research and development firms [10]. In this system, the formation of a particular coali-
tion may have a negative impact on the value of co-existing coalitions. This is because the market positions
of some firms could be hindered by the increased competitiveness resulting from a collusion between other
firms. In this way, partition function games can model coalition formation in multi-agent systems where
agents represent either research and development or fishing firms.

2.2 Characteristic Function Games
In many natural systems, co-existing coalitions either do not interact with each other while pursuing their
own goals or the interactions are insignificant enough to be neglected. In such systems, the value obtained
from forming a coalition is independent of co-existing coalitions, i.e., there are no externalities from coali-
tion formation. Thus, for every coalition, the utility obtained from forming the coalition is the same in every
structure to which it is embedded.

The manner in which the utility is attributed to a coalition gives rise to two natural classes of characteristic
function game:

1. Characteristic function games with transferable utility; and,

2. Characteristic function games with non-transferable utility.

Consider Characteristic function games with transferable utility first.

Definition 2.3 Characteristic function games with transferable utility Nt = 〈Ag, v〉 consist of:

• A set of agents Ag = {a1, . . . , an}; and,

• A function v : 2Ag → R that takes, as input, a coalition C ⊆ Ag and outputs a real number value
v(C) ∈ R.1

1Although it will not always be explicitly stated, in this work, it is always assumed that v(∅) = 0.
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Observe that the characteristic function game representation in Definition 2.3 satisfies all of CFG1-CFG3,
i.e., it satisfies all the criteria which were inherent to the cooperative games considered in the previous
chapter. Because the utility from forming coalitions is attributed to the coalition as a whole, it can be freely
distributed among all of the agents who belong to the coalition. Clearly, the characteristic function game
representation in Definition 2.3 is a restrictive version of the the partition function game representation
presented in Definition 2.2. Despite this restriction, a number of real world multi-agent system scenarios
can be represented as characteristic function games, including:

• Distributed sensor networks, where autonomous sensors may cooperate to monitor targets of interest
[14]; and,

• E-commerce, where buyers can form coalitions to purchase a product in bulk and take advantage of
price discounts [46].

Now, in some systems, the utility from forming a coalition may not be attributed to the coalition as a whole
but to the individual agents who belong to the coalition. When this is the case, characteristic function games
with non-transferable utility can be used to represent the system.

Definition 2.4 Characteristic function games with non-transferable utility Nnt = 〈Ag, v〉 consist of:

• A set of agents Ag = {a1, . . . , an}; and,

• A function v that takes, as input, a coalition C ⊆ Ag and outputs a set, v(C) ⊆ R|C|, that is
interpreted as the set of payoffs coalition C can achieve for its members.

Intuitively, in these games, the set of payoffs can represent the utilities attributed to the individual agents
depending upon the choices made or set of actions collectively undertaken by the agents in the coalition.
Note that, when the utility is non-transferable, the set of payoffs can be of a size that is exponential in
the number of agents. Thus, characteristic function games with transferable utility may be exponentially
more concise than characteristic function games with non-transferable utility. Additionally, in characteristic
function games with transferable utility, the manner in which the utility is allocated to the coalition as a
whole gives rise to a number of natural classes of this representation. Consequently, unless stated otherwise,
whenever the term ‘characteristic function game’ is used through out the rest of this document, it is in
reference to a characteristic function game with transferable utility.

2.2.1 Classes of Characteristic Function Games
Consider characteristic function games with non-transferable utility. Due to the diverse environments in
which multi-agent systems technology can be utilized, for those that can be represented as characteristic
function games, it may be possible to make the function less general by ensuring that it satisfies certain
criteria. For instance, consider super-additivity:

Definition 2.5 In any characteristic function game with transferable utility Nt, the function v is super-
additive if, for every pair of disjoint coalitions, the combined value of each disjoint coalition is not less than
the value of the union, i.e.,∀C,C ′ ⊆ Ag : C ∩ C ′ = ∅,

v(C ∪ C ′) ≥ v(C) + v(C ′).

Intuitively, for every coalition C ⊆ Ag, the super-additivity condition states that a coalition of agents cannot
collectively gain more if they partition themselves into two separate coalitions. An important class of super-
additive games are convex games.

Definition 2.6 In any characteristic function game with transferable utility Nt, the function v is convex if
∀C,C ′ ⊆ Ag,

v(C ∪ C ′) + v(C ∩ C ′) ≥ v(C) + v(C ′).
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Clearly, all convex games are super-additive but the converse is not true. Thus, in this context, convex games
are stronger than super-additive ones. Following [74], convex characteristic function games can represent a
typical scheduling application. For example, suppose J is a set of jobs and K is a set of machines such that
each job can only be scheduled on certain machines but not others. If there is a value to each scheduled job
then the cooperative game 〈J ∪K, v〉, where v is the maximal value of the jobs, is convex.

In contrast to super-additivity, in certain settings, it may be that coalitions of smaller size gain no less than
bigger ones. To this end, the notion of sub-additivity is considered.

Definition 2.7 In any characteristic function game with transferable utilityNt, the function v is sub-additive
if, for every pair of disjoint coalitions, the value of the union is not greater than the combined value, i.e.,
∀C,C ′ ⊆ Ag : C ∩ C ′ = ∅,

v(C ∪ C ′) ≤ v(C) + v(C ′).

If the characteristic function game is sub-additive and any two coalitions merge to form a new coalition then
this new coalition can gain no more than the combined values of any two coalitions whose merge created
this coalition. This constraint may be applicable in representations of systems where there is a cost incurred
from cooperation within large groups. Thus, as agents join coalitions, the cost incurred increases and, there-
fore, the utility obtained from cooperating may be reduced.

In contrast to the above, in a number of settings, it may not always be possible to measure the performance of
a coalition in terms of a real number utility value but rather whether the coalition is ‘good’ or ‘bad’ instead.
In such cases, the following constraint may be useful.

Definition 2.8 In any characteristic function game with transferable utility Nt, the function v is said to be
simple if v : 2Ag → {0, 1}, i.e., v outputs either ‘1’ or ‘0’.

For simple games, any coalition C ⊆ Ag such that v(C) = 1 can be interpreted as ‘winning’ whereas any
coalition C ⊆ Ag such that v(C) = 0 can be interpreted as ‘losing’. This constraint is particularly useful
in modeling voting situations with the intuition being that if all the agents in a winning coalition vote in the
same way then the motion they vote for will be passed whereas, if they all vote the same way in a losing
one, it will not be passed [76].

2.3 Solution Concepts
To understand which coalitions will be formed, solution concepts from game theory can be used. Generally,
it is assumed that the grand coalition (that is, the coalition C = Ag) will form, meaning the challenge is
to allocate the utility v(Ag) among the agents in Ag. It should be observed that this assumption is not re-
strictive since, even if agents deviate from the grand coalition and form smaller coalitions, solution concepts
are still applicable to the sub-games defined by whatever coalitions actually form. For instance, in a five
agent characteristic function game where Ag = {a1, . . . , a5}, if coalition C = {a1, a2, a3} forms then the
sub-game would involve all coalitions which exclusively consist of the agents {a1, a2, a3}. In this manner,
the intuition behind allocating v(Ag) among all of the agents in Ag can be directly applied to allocating
v(C) among all of the agents in any coalition C ⊆ Ag.

For every coalition C ⊆ Ag \ {ai}, a self-interested agent ai will join the grand coalition if they receive an
allocation of v(Ag) which is greater than any allocation they would receive from v(C ∪ {ai}). To this end,
various solution concepts have been formulated to determine if a given allocation of v(Ag) ensures that Ag
will be formed by rational agents. In this section, an overview of these concepts is provided.

Formally, a solution concept is defined as follows.

12



Definition 2.9 For any characteristic function gameNt, a solution concept is a set of payoff vectors (where
each vector is denoted by x∈Rn) that represent the allocation of the utility from forming the grand coalition.

Specifically, ∀i = 1, . . . , n, the ith element (xi) of vector x represents agent ai’s allocation of v(Ag).
Clearly, there exist infinitely many payoff vectors for any v(Ag). Consequently, an interesting question
arises:

What makes a given payoff vector x a suitable or fair one?

To convey a notion of suitability and fairness, many criteria have proposed for characteristic function games.
For instance, to provide a notion of fairness, the following criteria have been proposed:

Efficiency: The efficiency criterion states that the total allocation to each agent should be exactly equal to
the utility allocated to the coalition, i.e.,

n∑
i=1

xi = v(Ag);

Symmetry: Any two agents ai, aj ∈ Ag are said to be symmetric if, for every coalition C ⊆ Ag \ {ai, aj},
the marginal contribution of both ai and aj is identical, i.e., ∀C ⊆ Ag \ {ai, aj},

v(C ∪ {ai}) = v(C ∪ {aj}).

The symmetry criterion states that if ai and aj are symmetrical agents then they must receive exactly
the same payoff, i.e., xi = xj ; and,

Dummy: An agent ai is a dummy if their marginal contribution in every coalition that they belong to does
not add any value to it, i.e., ∀C ⊆ Ag,

v(C ∪ {ai})− v(C) = v({ai}).

The dummy criteria states that all dummy agents ai ∈ Ag must receive exactly what they can accom-
plish on their own, i.e., xi = v({ai}).

In addition, to create a notion of suitability, the following criteria have been proposed:

Individual Rationality: The individual rationality criterion states that each agent should gain more through
cooperating than if they acted alone, i.e., for every xi in the vector x,

xi > v({ai});

Uniqueness: The uniqueness criterion states that there should be exactly one ‘fair’ allocation; and,

Additivity: The additivity criterion states that for any two characteristic function games Nt = 〈Ag, v〉,
N ′t = 〈Ag, v′〉, the distributed gains in the combined gameNt ∪ N ′t should correspond to the gains
derived from Nt and the gains derived from N ′t. This means that were every agent ai ∈ Ag to
receive:

1. xi ∈ R in Nt ∪ N ′t ;
2. x′i ∈ R in Nt; and,

3. x′′i ∈ R in Nt;

then xi = x′i + x′′i .

Whereas various solution concepts have been formulated for cooperative game theory, in this chapter, only
those that imply stability or welfare maximization are considered.
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2.3.1 The Core
The concept of the core was developed independently in both [70] and [26]. Essentially, the core is the set
of payoff vectors x ∈ Rn that cannot be improved upon by any agent forming coalitions other than Ag.

Definition 2.10 For any characteristic function game Nt, the core is the set of imputations x such that ∀xi
in x:

•
∑n

i=1 xi = v(Ag); and,

• ∀C ⊆ Ag,
∑

i∈C xi > v(C).

In words, the core is the set of individually rational and efficient payoff vectors that cannot be improved
upon, i.e., no agent can improve upon their core allocation by forming a coalition other than Ag. Formally,
all payoff vectors which satisfy this criterion are referred to as imputations. Intuitively, every imputation x
in the core is said to block every vector x′ that does not belong to the core. Example 2.1 shows how the core
may be computed for a particular characteristic function game Nt.

Example 2.1 Consider a system with two agents a1, a2 and suppose that:

1. v({a1}) = v({a2}) = 1; and,

2. v({a1, a2}) = 3.

The vector x = 〈1.5, 1.5〉 is in the core since, were any of the agents to deviate from the grand coalition and
form any other coalition then they would receive less than 1.5. In fact, following this reasoning, all vectors
x = 〈x1, x2〉 such that:

x1 ∈ [1, 1.5], x2 = 3− x1; or,

x2 ∈ [1, 1.5], x1 = 3− x2,

are in the core.2

Clearly, the core conveys stability: no agent ai ∈ Ag has incentive to leave the grand coalition Ag since,
were they to do so, they would receive no more than they are allocated in each imputation in the core. In this
context, computing if there exists a set of imputations in the core or computing if a given payoff vector is in
the core of any characteristic function game can aid a system designer to understand whether self-interested
agents will form the grand coalition. However, it can be shown through example that:

1. The core may not be unique, i.e., there may exist more than one allocation which meets the require-
ments of Definition 2.10 (as in Example 2.1); and,

2. The core may be empty, i.e., there do not exist any allocations which meet the requirements of Defi-
nition 2.10 (see Example 2.2).

Example 2.2 Consider a system with two agents a1, a2 and suppose that v({a1}) = v({a2}) = 1 and
v({a1, a2}) = 1.1. All efficient allocations of the value 1.1 between the two agents will result in at least one
of them receiving less than ‘1’ meaning, all x ∈ Rn such that

∑n
i=1 xi = v(Ag) will not be individually

rational. Thus, the core is empty.

Whereas emptiness of the core is not desirable, there does exist a natural class of characteristic function
games in which the core is guaranteed to be non-empty.

2Note that x1 ∈ [1, 1.5] (x2 ∈ [1, 1.5]) means that x1 (x2) can take all values between, and including, 1 and 1.5
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Lemma 2.1 (Proven in [9]) If any characteristic function game Nt is convex then it has a non-empty core.

Note that the characteristic function game Nt in Example 2.1 is convex as,

v({a1} ∪ {a2}) + v(∅) = 3 > v({a1}) + v({a2}) = 2,

whereas the characteristic function game Nt in Example 2.2 is not convex since,

v({a1} ∪ {a2}) + v(∅) = 1.1 < v({a1}) + v({a2}) = 2.

For those class of characteristic function games that are not convex, one attempt to circumvent the problem
of core emptiness has involved reformulating the core concept itself. For example, the strong epsilon core
(ε-core) was formulated in [72]. For a chosen value ε ∈ R, if an agent chooses to leave the grand coalition
then it must incur a cost of value ε which, in turn, will affect the amount it is allocated in the coalition it
chooses to join. In this manner, although the core presented in Definition 2.10 may be empty, for large ε,
the ε-core will not be.

Example 2.3 Recall Example 2.2 where the core is empty. Now suppose ε = 2
3 , meaning should either a1

or a2 deviate from the grand coalition and act alone then each will only receive 1− 2
3 = 1

3 rather than 1. In
such a case, the 2

3 -core is non-empty as, for example, the payoff vector x = 〈0.6, 0.5〉 belongs to it.

2.3.2 The Shapley Value
Since there can exist infinitely many possible pay-off vectors, computing an appropriate pay-off is not triv-
ial. In this section, the Shapley value concept, which allocates v(Ag) among the agents in Ag, is analyzed.

The Shapley value determines the allocation of v(Ag) to a given agent ai ∈ Ag by assessing the marginal
contribution of every agent in every coalition they could join [71]. For every coalition C ⊆ Ag : ai ∈ C,
this is achieved by computing,

v(C)− v(C \ {ai}).

For each coalition, the marginal contribution value is then averaged over all the ways in which the coalition
could be formed by the agents who belong to it. There are,

(n− |C|)!(|C| − 1)!

n!

ways in which coalition C can be formed by the agents in Ag. The sum of these averaged out marginal
values of agent ai in every coalition C ⊆ Ag \ {ai} is then computed and this is the Shapley value for ai. It
is formally defined as follows.

Definition 2.11 For any super-additive characteristic function game Nt, the Shapley value allocated to
every agent ai ∈ Ag in coalition Ag (denoted θi) is defined as follows:

θi =
∑

∀C⊆Ag:ai∈C

(n− |C|)!(|C| − 1)!

n!
[v(C)− v(C \ {ai})].

Example 2.4 shows how this value is computed.

Example 2.4 Consider a three agent characteristic function game Nt where Ag = {a1, a2, a3} and v is as
follows:

• v({a1, a2, a3}) = 8;

• v({a1, a2}) = v({a1, a3}) = v({a2, a3}) = 5; and,
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• v({a1}) = v({a2}) = v({a3}) = 2.

Consider agent a1 first. In the coalition {a1}, since v(∅) = 0, the value is

(3− 1)!(1− 1)!

3!
× (2− 0) =

2!0!

6
× 2 =

2

3
.

Now, in the coalitions {a1, a2} and {a1, a3} the value is

(3− 2)!(2− 1)!

3!
× (5− 2) =

1

6
× 3 =

1

2
,

and, finally, in the grand coalition, the value is

(0)!(2)!

3!
× (8− 5) =

1

3
× 3 = 1.3

Thus,

θ1 =
2

3
+ (2× 1

2
) + 1 =

8

3
.

Since all coalitions of the same size have equal value, it follows that θ2 = θ3 = 8
3 as well.

Let x = 〈83 ,
8
3 ,

8
3〉 denote the Shapley value allocation of v({a1, a2, a3}). Since 8

3 + 8
3 + 8

3 = 8 = v(Ag) then
the allocation is efficient. Also, observe that 8

3 + 8
3 > 5 and 8

3 > 2 and so is individually rational as well.
Following Definition 2.10, x is an imputation and so belongs to the core.

In contrast to the core, the Shapley value is unique and always exists. However, what makes this concept
particularly important is the following result.

Theorem 2.1 (From [72]) There exists a unique value satisfying the efficiency, symmetry, dummy, and ad-
ditivity axioms: it is the Shapley value given in Definition 2.11.

Theorem 2.1 states that any payoff vector x which satisfies the efficiency, symmetry, dummy and additivity
criteria must be a Shapley value as this, and only this, satisfies all of these criteria. Furthermore, if the
characteristic function game is also convex then the Shapley value is guaranteed to be in the core of the
game [12]. Nevertheless, there are two major issues with both the core and Shapley value, namely:

1. Both are dependent upon the representation satisfying certain restrictive requirements, e.g., if the
game is not convex then the core may be non-empty, whereas the Shapley value only offers meaning-
ful results if the characteristic function is super-additive; and,

2. Both Definition 2.10 and Definition 2.11 were formulated for characteristic function games where
there are no externalities from coalition formation, meaning both generalizing and extending these
solutions to partition function games is not trivial [18, 16, 40, 47, 8, 28, 33].

Against this reasoning, in the next section, an optimal coalition structure concept is considered that can be
easily formulated for both partition function game and characteristic function game representations.
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2.3.3 Optimal Coalition Structures
Rather than trying to allocate the utility obtained from forming the grand coalition among the agents, the
optimal coalition structure problem is concerned with finding a partition that maximizes the welfare of the
system. In the literature thus far, an optimal coalition structure has been formally defined as follows.

Definition 2.12 (from [59]) Let Π denote the space of all coalition structures that could be formed by a set
of agents Ag. An optimal coalition structure is a coalition structure π∗ ∈ Π such that the combined value of
all the coalitions which make up this structure is no less than the combined values in every other structure.
Given any characteristic function game Nt, an optimal structure is one such that:

π∗ = argmaxπ∈Π

∑
C∈π

v(C).

Since a utilitarian metric is used to assess the performance of a coalition structure, the optimal structure
is the one that maximizes the welfare of the system as a whole. This means that although π∗ is the best
structure for the system as a whole, it may not be the best structure for certain individual agents. Therefore,
following previous discussion, although fully cooperative agents are guaranteed to partition themselves into
this structure, there is no guarantee that self-interested agents will. However, as is reasoned in [55], once π∗

is known, it may be possible to reward the entities to form π∗ or penalize them if they do not. Significantly
large rewards and penalties can ensure that all agents will be worse off if they partition themselves into a
structure π 6= π∗. In the spirit of the ε-core concept, rewards and penalties ensure stability of π∗, meaning
both fully cooperative and self-interested agents will have incentive to form a known optimal solution.
With respect to multi-agent system applications, it is worth noting that these reward and penalty constraints
do not contradict any autonomy assumptions as physically distributed agents are able to make their own
decisions with respect to forming coalitions (and therefore structures) but must adhere to the penalty or
reward constraints.4

Example 2.5 Recall Example 2.4. ForAg = {a1, a2, a3}, there are exactly five possible coalition structures
in Π:

πα = {{a1}, {a2}, {a3}} v({a1}) + v({a2}) + v({a3}) = 6;

πβ = {{a1, a2}, {a3}} v({a1, a2}) + v({a3}) = 7;

πγ = {{a1, a3}, {a2}} v({a1, a3}) + v({a2}) = 7;

πδ = {{a2, a3}, {a1}} v({a2, a3}) + v({a1}) = 7; and,

πε = {a1, a2, a3} v({a1, a2, a3}) = 8.

Since πε has maximal value, πε = π∗.

Example 2.5 shows that, for a general characteristic function v, the value of every possible coalition structure
must be computed in order to determine the optimal one. However, Theorem 2.2 shows that, for certain
natural classes of characteristic function games, the optimal structure can be immediately identified.

Theorem 2.2 For any characteristic function game Nt = 〈Ag, v〉, if v is super-additive then π∗ = Ag is
an optimal structure. On the other hand, if v is sub-additive then π∗ = {{a1}, . . . , {an}} is an optimal
structure.

4Although the reasoning presented in this section suggest that it is possible to use π∗ to identify coalitions that will
be formed by self interested agents, for the rest of this work, it will be exclusively employed to identify coalitions that
will be formed by fully cooperative agents.
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Proof: Assume super-additivity holds first. This means that ∀S, T ⊆ Ag, such that S ∩ T = ∅ and
S ∪ T = Ag,

v(Ag) ≥ v(S) + v(T ).

In turn, this also means that for all exhaustive and disjoint coalitions S′, T ′ ⊆ S, as well as all disjoint and
exhaustive coalitions S′′, T ′′ ⊆ T ,

v(S) + v(T ) ≥ v(S′) + v(T ′) + v(S′′) + v(T ′′).

Clearly, iteratively repeating this mathematics for all coalitions ofAg shows that no structure can have value
greater than v(Ag), meaning Ag is an optimal structure.

Now, assume sub-additivity instead. This means that ∀C ⊆ Ag and ∀S, T ⊆ C, such that S ∩ T = ∅ and
S ∪ T = C,

v(C) ≤ v(S) + v(T ).

In turn, this also means that for all exhaustive and disjoint coalitions S′, T ′ ⊆ S , as well as all exhaustive
and disjoint coalitions S′′, T ′′ ⊆ T ,

v(S) + v(T ) ≤ v(S′) + v(T ′) + v(S′′) + v(T ′′).

Clearly, iteratively repeating this mathematics for all coalitions ofAg shows that no structure can have value
greater than {{a1}, . . . , {an}}, meaning {{a1}, . . . , {an}} is an optimal structure.

It is worth noting that if the function is either strictly super-additive or strictly sub-additive then π∗ = Ag
and π∗ = {{a1}, . . . , {an}} are the only optimal structures, respectively. Clearly, if it is known a priori
that the characteristic function is either super- or sub-additive then π∗ can be immediately identified without
computing the values of any structures.

As well as the fairness criteria presented in this chapter, the computational complexity of these concepts also
provides a useful measure of their suitability. For instance, if decision problems concerning these solutions
are intractable then, under the assumption that NP 6= P, this means that, in practice, computationally limited
agents may not be able to use them. To this end, in the next section, the computational complexity of
problems relating to stability of coalitions is considered.

2.4 Representations of Cooperative Games
To understand coalition structure generation in cooperative game representations of systems containing self-
interested agents, the following core-related decision problems can be answered:

Core Non-emptiness Is the core of the game empty?

Core Membership Is a given payoff vector in the core of the game?

Observe that, to fully define any characteristic function game with non-transferable utility, for every coali-
tion C ⊆ Ag, the utility obtained from forming C must be given. When the values of all coalitions are
stated, decision problems concerning core non-emptiness and core membership have time complexity that is
polynomial in the size of the input. However, since 2n coalitions can be formed in any system that contains
n agents, the input to these decision problems can contain a number of values that are exponential in the
number of agents. Therefore, although these decision problems have polynomial time complexity, this com-
plexity is still exponential in the number of agents. Thus, to achieve meaningful and significant results, one
line of work has focused on developing compact representations of cooperative games that enable decision
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problems concerning membership and non-emptiness of the core to be computed with low time complexity
whilst still maintaining a balance between all of the expressivity, conciseness, efficiency and simplicity cri-
teria presented in Section 1.1.2.

Various representations of characteristic function games have been developed for modeling coalition forma-
tion in a number of multi-agent systems. This section provides an overview of a number of these representa-
tions. The quality of these representations is assessed against all of the expressivity, conciseness, efficiency
and simplicity criteria.

2.4.1 Weighted Graph Games
Within the field of computer science, the first study of succinct representations of characteristic function
games was presented in [17]. Here, the authors study a game in which the agents are represented as vertices
in a graph with weights on the edges. In these games, the value of a coalition is determined by the total
weight of the edges contained in the subgraph induced by that coalition.

Definition 2.13 A weighted graph game is defined by a undirected graph GW = (V,E), where V is a set of
vertices andE is a set of weighted edges between the vertices, i.e., for every (i, j) ∈ E, a weightw(i, j) ∈ R
is attributed to the edge. In this class of games:

• V = Ag; and,

• ∀C ⊆ Ag, v(C) =
∑

i,j∈C w(i, j).

In terms of conciseness, this graphical representation is guaranteed to be concise in the number of agents
since it can be defined by no more than n(n−1)

2 weights. Furthermore,the value of any coalition C ⊆ Ag
can be easily computed through summing the weights of the edges containing vertices that represent those
agents in C. However, in terms of expressivity, weighted graph games cannot capture all classes of char-
acteristic function games. For example, in some systems, the pairwise contribution of every pair of agents
may vary in different coalitions and, although the framework Nt may be able to represent these systems,
GW cannot.

With respect to efficiency, computing decision problems concerning both the Shapley value and the core
have been analyzed in this representation.

Lemma 2.2 The Shapley value of an agent ai in a weighted graph game GW is given by:

θi =
1

2

∑
j 6=i

w(i, j).

Example 2.6 Consider a three agent system, where

• Ag = V = {a1, a2, a3}; and,

• W = { w(1, 1), w(2, 2), w(3, 3), w(1, 2),w(1, 3),w(2, 3) }, in which

- w(1, 2) = 6;

- w(1, 3) = 1;

- w(2, 3) = 5; and,

- for i = 1, . . . , 3, w(i, i) = 0.

In the grand coalition Ag, the Shapley value allocation to each agent is given as follows:

• θ1 = 1
2 × (w(1, 2) + w(1, 3)) = 3.5;
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• θ2 = 1
2 × (w(1, 2) + w(2, 3)) = 5.5; and,

• θ2 = 1
2 × (w(1, 3) + w(2, 3)) = 3.0.

Following Lemma 2.2, the Shapley value can be computed in O(n2) operations which is polynomial in both
the number of weights and agents. However, with respect to the core solution, for a general weighted graph
representation GW , the following problems are NP-complete:

• Given x, is x not in the core of GW ?

• Is the Shapley value of GW not in the core of GW ? and,

• Is the core of GW empty?

Thus, given any GW , no algorithm can be guaranteed to compute core-related problems with time complex-
ity that is polynomial in the input size. However, there do exist certain instances of these problems that can
be computed with polynomial time complexity, e.g., when all the weights are non-negative.

In summary, weighted graph games are succinct, easy to use and enable efficient computation of the Shapley
value solution. However, on the negative side, they are not fully expressive representations of characteristic
function games and do not guarantee efficient computation of problems concerning the core.

2.4.2 Weighted Coalitional Games
Weighted coalitional games are a representation of simple characteristic function games and are formally
defined as follows.

Definition 2.14 A weighted game is a (n+ 2)-tuple WCG = 〈Ag,w1, . . . , wn, q〉 where:

• Ag = {a1, . . . , an} is a set of agents;

• wi ∈ R+ is a real number value called the ‘weight’ of agent ai ∈ Ag; and,

• q ∈ R+ is the quota of the game.

A coalition is ‘winning’ if the sum of the weights of the agents in the coalition is greater than or equal to the
value of q and is ‘losing’ otherwise. Clearly, these representations are guaranteed to be succinct because, in
order to fully define them, no more than n weights and one quota value q are required. Also, determining
if a coalition C ⊆ Ag is winning can be easily computed - simply sum up the weights of the agents in the
coalition and verify if they are greater than or equal to q.

Regarding expressivity, since the weighted coalitional games defined in Definition 2.14 are inherently mono-
tonic, they cannot represent every simple characteristic function game. Also, with respect to the efficiency
criterion, under the assumption that

∑
ai∈Ag wi = 1, an imputation is defined as follows.

Definition 2.15 In anyWCG, an imputation is a vector of non-negative rational numbers x = 〈x1, . . . , xn〉
such that,

n∑
j=1

xj = 1,

i.e., v(Ag) = 1 is allocated efficiently among all of the agents.

Given an imputation x, the excess e(x, C) of a coalition C ⊆ Ag under x is defined as,

e(x, C) =
∑
j∈C

xj −
∑
j∈C

wj .

Given these definitions, the core and Shapley value are formally defined as follows.
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Definition 2.16 (From [20]) The core of a weighted voting game is the set of imputations x such that, for
every C ⊂ Ag,

e(x, C) ≥ 0.

The Shapley value is defined as in Definition 2.11 where xi = θi, ∀ai ∈ Ag.

In words, x is in the core if each agent cannot gain more than they are allocated in x through forming a
coalition C ⊂ Ag.

Example 2.7 Consider a weighted coalitional game WCG where,

• Ag = {a1, a2}; and,

- w1 = 5;

- w2 = 4; and,

- q = 6.

Clearly, Ag is the only winning coalition. Now, consider imputation x= 〈0.5, 0.5〉. Observe that,

e(〈0.5, 0.5〉, {a1, a2}) = 1− 1 = 0,

e(〈0.5, 0.5〉, {a1}) = 1− 0 = 1,

and,

e(〈0.5, 0.5〉, {a2}) = 1− 0 = 1.

Therefore, x = 〈0.5, 0.5〉 is in the core of WCG.

Following Definition 2.11, this is also the Shapley value payoff vector to Ag as, for i = 1, 2,

θi =
(2− 1)!(1− 1)!

2!
= 0.5 = xi ∈ x.

The authors of [20] investigated a number of natural problems concerning both the core and Shapley value
in weighted coalitional games5, including:

1. Given a WCG, is the core non-empty?

2. Given a WCG and a value ε, is the ε-core non-empty? and,

3. Given a WCG, what is the Shapley value allocation to an individual agent ai?

With regards to the first problem, the authors proved that computing if the core of any WCG is non-empty
can be done in time polynomial of the input size. The following Lemma is fundamental to this result.

Lemma 2.3 (From [20]) The core of a weighted coalitional game is non-empty if and only if there is an
agent who is present in all winning coalitions, i.e., at least one agent is a veto agent.

5Specifically, [20] refer to weighted threshold games, however, essentially a weighted threshold game is a weighted
coalitional game.
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As is noted in [20]. it is easy to check if there is an agent that is present in all winning coalitions. Specifically,
for every ai ∈ Ag, compute if,∑

aj∈Ag\{ai}

wj < q.

Because weighted coalitional games are inherently monotonic, if this is true then ai belongs to every winning
coalition. Thus, for this succinct representation, determining non-emptiness of the core can be computed in
a number of steps that are polynomial in the input size.

In contrast to this positive result, the second problem was proven to be NP-hard meaning it cannot be guar-
anteed that an algorithm will compute this problem with time complexity that is polynomial in the size of
WCG. However, this problem can be solved in polynomial time if certain restrictions are imposed, e.g., if
the size of the weights are bounded so that they are, at most, polynomially large in n.

With respect to the third problem, following results in [54, 41], it is #P-hard to compute the Shapley value
of a given agent and NP-complete to determine whether this value is zero in any weighted voting game.
This means that computing the Shapley value solution to a weighted coalitional game is as hard as solving
an enumeration problem which is concerned with an NP-complete decision problem. Thus, it cannot be
guaranteed that an algorithm will compute this problem in a number of steps that are polynomial in the size
of WCG.

In conclusion, weighted coalitional games are succinct representations that are simple to use and can enable
efficient computation of certain core-related problems. However, they cannot fully represent every simple
characteristic function domain and do not guarantee efficient computation of the Shapley value.

2.4.3 Synergy games
A synergy game representation of characteristic function games was formally developed in [13]. Specifi-
cally, synergy games are defined as follows.

Definition 2.17 A synergy game is a representation S = 〈Ag, S〉 where

• Ag is the set of agents; and

• S is a set of values (C, v(C)), such that;

– C ⊆ Ag; and,

– v(C) is computed as follows:

v(C) = (max{C1,...,Ck}∈Π(C)

k∑
i=1

v(Ci)).

Here, Π(C) is the set of all partitions of a coalition C ⊆ Ag.

Intuitively, the value of a coalition v(C) is only stated if it is strictly super-additive, i.e., if v(C) is greater
than the combined value of all partitions of C. This representation is fully expressive over characteristic
function domains but, in some games, this representation may require space that is exponential in the number
of agents. Therefore conciseness is guaranteed if and only if the synergies among coalitions are sparse (i.e.,
the number of coalitions whose value is greater than the combined values of its partitions is low). In such
cases, only a fraction of all coalition values (C, v(C)) will be specified as the values of the coalitions which
are not stated can be computed from the specified values. Given concise representations of synergy games,
the authors proved the following lemma.
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Lemma 2.4 Given S, it is NP-hard to compute the value of the grand coalition.

This lemma shows that it may be difficult for either a system designer or a user of the system to compute
coalition values. Thus, it could be argued that this representation is not easy to use.

With respect to solution concepts, the authors of [13] focus upon the core solution. If the convexity criterion
is satisfied, the authors prove that computing core membership can be done in O(nl2) time, where n is the
number of agents and l is the number of synergies, i.e., the number of (C, v(C)) ∈ S. Thus, in compact
instances, core related problems can be computed in a number of steps that are polynomial in the number of
agents. More generally, for any S, if the value of the grand coalition is given as input, non-emptiness of the
core can be determined in polynomial time. Clearly, this is a positive result against efficiency.

Consequently, it can be concluded that synergy games may be compact and can represent any characteristic
function game. Furthermore, when they are compact, they enable efficient computation of the core solution.
However, they may be difficult to use by users of the system since it cannot be guaranteed that the values of
certain coalitions can be efficiently computed.

2.4.4 Marginal Contribution Nets Games
Marginal contribution nets (MCN) representations were first presented in [29]. This representation consists
of rules that have the syntactic form:

pattern → value,

where value denotes a real number R attributed to coalitions depending upon if they satisfy the requirements
of pattern.

In the ‘basic’ representation, these patterns consist of conjunctions of literals that represent agents. A coali-
tion C meets the requirement of the given pattern if all of the agents who are represented by the literals
belong to C. The value C is then computed by summing the values of all rules that C meets the requirement
of.

Example 2.8 Consider a two agent system Ag = {a1, a2} where the rules are as follows:

a1 → 5

a2 → 4

a1 ∧ a2 → 3

Observe that there is only one rule that contains only {a1} and no others. This is a1 → 5. Thus, the value of
{a1} is 5. Similarly, there is only one rule which exclusively contains only {a2} (a2 → 4) and so the value
of {a2} is 4. On the other hand, all of the rules are supersets of {a1, a2}, meaning the value of {a1, a2} is
5 + 4 + 3 = 12.

By introducing negated literals, MCNs can represent any characteristic function game and are therefore fully
expressive representations. Nevertheless, to represent a coalitional game in characteristic form, in the worst
case, all 2n coalition values would have to be specified. Thus, conciseness is not guaranteed. However, con-
ciseness can be guaranteed in many naturally arising games, including, the recommendation game presented
in [29].

Generally, conciseness may be ensured by introducing negated literals into pattern. Here, the interpretation
is that the agents represented by non-negated literals contributed the value to all coalitions of which they are
subsets in the absence of those negated agents. This is useful for expressing concepts such as substitutability
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or default values and, in representations where these phenomena naturally occur, the introduction of negated
agent literals can result in an exponentially more conciseness representation.

Given a MCN representation. if there are no negated literals in the pattern of the rules then it is very easy to
compute the Shapley value, simply:

1. Identify all rules that contain agent ai;

2. For each rule divide the value of the rule by number of agents in the rule; and,

3. Sum up all obtained values. The sum will the Shapley value for agent ai.

Clearly, the Shapley value can be computed in a number of steps that are polynomial in the size of the input
which means that, in cases where the number of rules is compact, this can be done in a number of steps that
are polynomial in the number of agents.

Example 2.9 Recall Example 2.8. There are two rules that contain agent a1. The first one has only one
agent and so 5

1 = 5. The second one is a1 ∧ a2 → 3 and so 3
2 = 1.5. Therefore, the Shapley value of a1 is

6.5. Repeating this for a2 gives 4 + 1.5 = 5.5 as its Shapley value.

With regards to both membership and non-emptiness of the core, the authors in [29] prove that the problem
of computing if a pay-off vector is in the core is coNP-complete whereas the problem of computing if the
core is non-empty is coNP hard. Recall that, from the previous section, a payoff vector x is in the core if,
∀C ⊆ Ag and, ∀ai ∈ C,∑

xi∈x
xi ≥ v(C)⇒

∑
xi∈x

xi − v(C) ≥ 0.

If
∑

xi∈x xi − v(C) represents the excess of a coalition C ⊆ Ag then a naive approach to compute if x
belongs to the core involves checking that the excesses of all coalitions are non-negative. To circumvent this
difficulty, an algorithm is proposed which can compute core membership through computing the excesses
of only a number of coalitions.

Specifically, this algorithm represents the marginal contribution nets game as a tree. The nodes in this tree
represent coalitions which are connected by edges. The tree is represented in decomposition form (for more
details see [29]). This representation has the advantage that, for a given payoff vector x, it is possible for an
algorithm to infer that certain coalitions have non-negative excesses due to the excesses computed elsewhere
in the graph. In this way, the problem of computing if x belongs to the core can be computed without having
to compute the excess of every coalition C ⊆ Ag.

Despite this insight, core membership algorithms may still run in time that is exponential in the width
of the tree which, in turn, may have size that is exponential in the number of agents. Additionally, core
non-emptiness can be computed by solving the following linear programme via the ellipsoid method using
solutions to the core-membership problem as an oracle:6

minimizex∈Rn

n∑
i=1

xi

subject to
∑
ai∈C

xi ≥ v(C), ∀C ⊆ Ag.

In this way, core non-emptiness can be answered in time complexity that is polynomial in the running time
of core-membership algorithms which, in turn, can run in time that is polynomial in the width of the tree.
Clearly, this result is significant if and only if the tree has bounded width.

6An oracle is formally defined in Appendix A.
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‘Read Once’ Marginal Contribution Nets

The positive results presented in this section are dependent upon the conciseness of the MCN representation
which cannot always be guaranteed. To this end, building upon the work presented in [29], Elkind et
al. showed that the general Marginal contribution net representation leads to intractability with respect to
computing the Shapley value [21]. In more detail, they proved that, in the general Marginal contribution
nets representation, the problem of computing if the Shapley value of a given agent was exactly 0 is coNP-
complete. In turn, this result implies that approximating the Shapley value is a NP-hard problem which
undermines the positive results presented in [29]. Against this result, the authors proposes a ‘Read Once’
MCN representation in which pattern was expressed as a ‘read-once’ boolean formula.

Definition 2.18 (from [21]) A read-once Boolean formula is a binary rooted tree in which each internal
node is labeled with a Boolean connective, such as ‘∧’,‘∨’, e.t.c. and the leaves are labeled with literals
(i.e., variables or their negations) subject to the constraint that each variable appears in at most one leaf.

For a number of classes of games, the read-once representation was proven to exponentially more concise
than the one proposed in [29]. Consequently, computing the Shapley value in a ‘read once’ MC-nets rep-
resentation can be exponentially less complex than in the general MCN representation. Thus, without any
loss in expressivity, the read-once representation provides exponentially more compact instances than the
general MCN representation.

Of course, since the tree decomposition size is not related to the rules, this representation does not guarantee
improvements with respect to solving problems concerning non-emptiness and membership of the core.

2.4.5 Hedonic Coalitional Games
Hedonic coalitional games are a class of cooperative games that can represent systems where agents have
preferences over the coalitions they can join. Hedonic coalitional games were first formalized into the
following framework in both [3] and [7].

Definition 2.19 A hedonic game is a tupleH = 〈Ag, {�i}∀i∈Ag〉 where:

• Ag = {a1, . . . , an} are the set of agents; and,

• Every �i is a rational preference relation over coalitions C ⊆ Ag such that ai ∈ C.

For notation, �i will read “ai strictly prefers”, whereas �i will read “ai strictly prefers or is indifferent
between”. Note that to fully define H, the preference orderings of all the agents must be specified. Since
every agent can have preferences over every coalition they can join, this representation may be of a size that
is exponential in the number of agents. However, there can exist compact instances of this case when the
preference orderings may be succinct, e.g.:

Pref1 When the agents preferences are individually rational coalitional lists, i.e., for every ai ∈ Ag, instead
of listing a complete list of coalitions in �i, only those coalitions which are preferred to {ai} are
considered;

Pref2 When the agents have anonymous preferences, i.e., they have preference over the size of coalitions
rather than the individuals who belong to them;

Pref3 If the game is additively separable, i.e., if there exists a n × n matrix of real values v such that C1

�i C2 ⇐⇒
∑

aj∈C1
v[i, j] >

∑
aj∈C2

v[i, j], where v[i, j] is the jth value in row i and reflects the
value of agent aj to agent ai; and,
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Pref4 When the agents have B− andW−Preferences. In these preferences, for every agent ai ∈ Ag, �i
represents the preferences of ai over the other agents in the system. For any two coalitions C1 and
C2, in B−Preferences they will prefer C1 to C2 if and only if they prefer the best member of C1

(according to �i) to the best member of C2 (according to �i). In contrast, W−Preferences, they
will prefer C1 to C2 if and only if they prefer the worst member of C1 (according to �i) to the worst
member of C2 (according to �i).

All of these examples are taken from [22]. Since the utility obtained from forming coalitions is not measured
using a real number value, the notion of a core, as defined in Definition 2.10, is not applicable to these
domains. Instead, a notion of stability is conveyed in the following definition.

Definition 2.20 For any coalition structure π and for j = 1, . . . , n, let Cj(π) denote the coalition in π to
which agent aj belongs. Any coalition C ⊆ Ag blocks π if and only if ∀aj ∈ C,

C �j Cj(π).

In words, a coalition C blocks a coalition structure π if every agent in C prefers C to the coalition they
belong to in π. This conveys a notion of instability in π since these agents would happily deviate from the
coalitions they belong to in π and join another structure that contains C. Against this intuition, the concept
of a core solution inH is formally defined as follows.

Definition 2.21 (From [2] and [22]) Coalition structure π is core stable if there does not exist a coalition
C that blocks π.

As well as core stability, other notions of stability have been proposed forH.

Definition 2.22 (From [2] and [22]) Coalition structure π is individually rational if ∀ai ∈ Ag,

Ci(π) �i {ai}.

If a structure is individually rational then every agent does at least as well in that structure than they would
do alone. Trivially, core stability implies individual rationality.

Definition 2.23 (From [2] and [22]) Coalition structure π is Nash stable if, ∀ai ∈ Ag and ∀C ∈ π \
{Ci(π)},

Ci(π) �i C ∪ {ai}.

In words, a structure π is Nash stability if no agent would want to join any other coalition in π, assuming the
other coalitions in π did not change. As with core stability, Nash stability also implies individual rationality.

Definition 2.24 (From [2] and [22]) Coalition structure π is individually stable if there do not exist ai ∈ Ag
and C ∈ π such that,

C ∪ {ai} �i Ci(π), ∀ai ∈ Ag

and

C ∪ {ai} �j C,∀aj ∈ C.

Intuitively, individual stability implies that no agent ai could join another coalition in the structure that they
preferred to Ci(π) without making some member of the coalition they joined unhappy.
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Definition 2.25 (From [2] and [22]) Coalition structure π is contractually individually stable if there do
not exist ai ∈ Ag and C ∈ π such that,

C ∪ {ai} �i Ci(π), ∀ai ∈ Ag

and,

C ∪ {ai} �j C,∀aj ∈ C,

and,

Ci(π) \ {ai} �k Ci(π), ∀ak ∈ Ci(π) \ {ai}.

A structure is contractually individually stable if no agent can move to a coalition it prefers more in that
structure without rendering the agents in both the coalitions it joins and leaves worse off. Clearly, Nash
stability implies individual stability which, in turn, implies contractual individual stability.

Example 2.10 Consider a four agent system where Ag = {a1, a2, a3, a2} where the indivudally rational
preference orderings of the agents are as follows:

• For agent a1, {a1, a2} �1 {a1, a2, a3, a4} �1 {a1} . . .;

• For agent a2, {a1, a2} �2 {a2} . . .;

• For agent a3, {a1, a3} �3 {a3, a4} �3 {a2, a3} �3 {a3} . . .; and,

• For agent a4, {a2, a4} �4 {a1, a4} �4 {a3, a4} �4 {a4} . . .;

In this example, the structure π = {{a1, a2}, {a3, a4}} is core stable since coalitions {a2, a4}, {a1, a4},
{a1, a3}, {a1, a2, a3, a4}, {a1}, {a2}, {a3} and {a4} do not block π. Also, π is Nash stable since:

1. {a1, a2} �1 {a1, a3, a4} and {a1, a2} �1 {a1};

2. {a1, a2} �2 {a2, a3, a4} and {a1, a2} �2 {a2} ;

3. {a3, a4} �3 {a1, a2, a3} and {a3, a4} �3 {a3} ; and,

4. {a3, a4} �4 {a1, a2, a4} and {a3, a4} �4 {a4}.

Because Nash stability implies individual and contractual individual stability, π also satisfies these stability
requirements.

From an efficiency perspective, the quality of the representation can be assessed with respect to the com-
plexity of computing stability related problems. To this end, consider Proposition 2.1.

Proposition 2.1 (proven in [2]) Every hedonic game H has an individually and contractually individually
stable solution.

Proposition 2.1 was proven in [2]. Consequently, non-emptiness problems for individually and contractu-
ally individually stable solutions are redundant as they have a definite ‘yes’ answer. In contrast, no such
guarantees can be made for the other stability concepts.

If the preferences are represented as individually rational coalitional lists then problems concerning non-
emptiness of the core and Nash stable solutions are NP-hard, meaning no algorithm can guarantee to answer
this question with time complexity that is polynomial in the size of H [2]. On the other hand, computing
if a given coalition structure is either individually rational, Nash stable, individually stable or contractually
individually stable can be answered in polynomial time. This is because these problems are concerned with
individual deviations among the agents who belong to the coalitions in these structures and there can be no
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more than n2 such deviations.

Conversely, if the preferences are represented as individually rational coalitional lists then computing if
a coalition structure belongs to the core can be done with polynomial time complexity [2]. However, if
the preferences are additively seperable then the same problem is coNP-complete [75]. Of course, if the
preferences are represented as individually rational coalitional lists then this does not guarantee succinctness
in the representation and so the former insight is significant if and only if the representation is concise.

Hedonic Coalition Nets

In the spirit of marginal contribution nets representations, a succinct, rule-based representation for he-
donic games has been developed [22]. Formally, these games are represented by a framework H′ =
〈Ag,R1, . . . , Rn〉 where:

• Ag = {a1, . . . , an} is the set of agents; and,

• Ri is a set of rules for every agent ai ∈ Ag.

Intuitively, these rules define the preferences of the agents over the coalitions and are represented as formulas
of propositional logic using the conventional Boolean operators (“∧”, “∨”, “⇒”, “⇐⇒ ”, and “¬”), as well
as the truth constants “>” (for truth) and “⊥” (for falsity). The pattern of these rules contain variables that
represent every agent. In this representation, a rule for agent ai is a pair (ϕ,B), where:

• ϕ is a formula of propositional logic; and,

• B ∈ R.

From all these rules, the utility attributed to a coalition C ⊆ Ag (v(C)) is computed from summing the val-
ues of all rules (all B) where ϕ[C] = >, i.e., through summing the values of all rules ϕ which are satisfied
by a truth assignment where all of the variables that represent an agent in C have value ‘>’ and all variables
representing an agent in Ag \ C have value ‘⊥’.

In this context, for any two coalitions C,C ′ and, ∀ai ∈ C ∩ C ′,

C �i C ′ ⇐⇒ v(C) > v(C ′).

In terms of both expressivity and conciseness, the following was proven to hold for every hedonic nets
representation:

1. Hedonic nets are just as compact as all the representations whose preferences are represented as any
of Pref1-Pref4;

2. Hedonic nets are strictly more expressive than the representations whose preferences are annony-
mous, additively seperable or of form β-/W; and,

3. For some games, hedonic nets are exponentially more compact than hedonic representations whose
preferences are represented as individually rational coalitional lists.

In the general hedonic nets representation, computing if a structure belongs to the core of H′ is coNP-
complete, whereas computing if the core is non-empty is ΣP

2 -complete. However, imposing certain restric-
tions on the rules enables the development of algorithms which can guarantee answers to decision problems
concerning non-emptiness of the core with time complexity that is polynomial in the size of the represen-
tation (e.g., if the rules contain no more than a number of variables and connectives that are no more than
polynomial in the size of n).
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2.4.6 Qualitative Coalitional Games
While, in many domains, a real number value offers a feasible indication of the utility obtained from forming
coalitions, in others it does not. For example, in multi-agent system resource allocation domains, it may not
be possible to measure the exact utility of the agents, but only whether they are ‘satisfied’ or ‘unsatisfied’
[11]. In such cases, qualitative, and not quantitative, characteristic functions should be used and qualitative
coalitional games (QCG) are a particular example of representations that employ such functions [82].

Definition 2.26 (from [82]) A QCG is a (n+ 3)-tuple Γ = 〈G,Ag,G1, . . . , Gn, v〉, where:

• G = {g1, . . . , gm} is a set of possible goals;

• Ag = {a1, .., an} is a set of agents;

• Gi ⊆ G is a set of goals for each agent ai ∈ Ag; and,

• v : 2Ag → 22G is a function which takes, as input, a coalition and outputs a set of subsets of the goals
in G.

In Γ, the function v determines a set v(C) of choices of goals for a coalition C ⊆ Ag with the interpretation
being, for any G′ ⊆ G, if G′ ∈ v(C) then one of the choices available to C is to accomplish all the goals in
G′. In this representation:

• Every agent ai ∈ Ag is indifferent between the goals in his own set Gi, meaning they would be
satisfied if they accomplished any of these goals; and,

• There are no externalities from coalition formation, which in this particular setting, has the interpre-
tation that an agent is satisfied if and only if it belongs to a coalition that can accomplish any of its
goals.

To convey a notion of stability in QCGs, consider the following definition.

Definition 2.27 In any QCG Γ:

• A set of goals G′ satisfies agent ai if G′ ∩Gi 6= ∅ (where ∅ is the empty set);

• G′ satisfies coalition C if it satisfies every agent in C; and

• G′ is feasible for coalition C if G′ ∈ v(C).

Against Definition 2.27, In Γ, a coalition C ⊆ Ag is:

• successful if ∃G′ ⊆ G which is feasible for C and satisfies every agent in C; and,

• minimal if it is successful and all coalitions C ′ ⊂ C are not successful.

In words, a coalition C is successful if it can accomplish a set of goals G′ ⊆ G that contains any of the
goals in the individual sets of every agent in C. Intuitively, no self-interested agent will form a coalition
that is not successful because none of their individual goals will be accomplished. Thus, in QCGs, it can
be assumed that only successful coalitions will be formed. However, success alone does not ensure stability
of the coalition. From a game theoretical point of view, a set of goals which satisfies a minimal coalition
Cmin can be interpreted as being in the core of Cmin since all coalitions C ′ ⊂ Cmin are not successful and,
therefore, no agent has incentive to deviate from Cmin and form any coalition C ′ instead. In this context,
computing if a set of goals G′ is in the core of any coalition C ⊆ Ag is equivalent to computing if:

1. G′ ∈ v(C);

2. ∀ai ∈ C,G′ ∩Gi 6= ∅; and,
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3. C is minimal.

Thus, the problem of computing if the core of a coalition C ⊆ Ag is non-empty is equivalent to verifying if
it is both minimal and successful.

Example 2.11 Consider a QCG Γ where Ag = {a1, a2, a3} G = {g1, g2, g3} and ∀i = 1, . . . , 3, Gi =
{gi}. Also, suppose that:

v({a1, a2}) = {{g1, g2}};
v({a1, a2}) = {{g1, g2, g3}};
v({a2, a3}) = {{g2, g3}}; and,

v({a1, a2, a3}) = {{g1, g2, g3}}.

and v(C) = ∅ for all other coalitionsC ⊆ Ag. Observe that all of the coalitions {a1, a2}, {a1, a3}, {a2, a3}
and {a1, a2, a3} are successful since there is exactly one set of goals that these coalitions can accomplish
that contains any of the individual goals in the individual sets of the agents. Also, observe that the coalitions
{a1, a2}, {a1, a3}, {a2, a3} are minimal, whereas the coalition {a1, a2, a3} is not. Consequently, the core of
{a1, a2, a3} is empty, whereas the set of goals that the coalitions {a1, a2}, {a1, a3}, {a2, a3} can accomplish
is in the core of these coalitions.

As well as stability, dependency can also be used to understand coalition formation in QCGs. In QCGs,
dependencies are captured in the following concept.

Definition 2.28 In any Γ, agent aj is a veto agent for agent ai if it is the case that, for every set of goals
G′ ⊆ G such that G′ ∩ Gi 6= ∅, then aj belongs to every coalition which can accomplish any G′, i.e,
∀C ⊆ Ag, ∀G′ ⊆ G : G′ ∩Gi 6= ∅,

G′ ∈ v(C)⇒ aj ∈ C.

If aj is a veto agent for ai then this characterizes a dependency between ai and aj since the co-operation of
aj is essential for ai to accomplish any of ai’s goals. Therefore, ai must cooperate with aj if ai is to achieve
any of their goals.

Example 2.12 Consider a QCG Γ where Ag = {a1, a2, a3}, G = {g1, g2, g3} and ∀i = 1, . . . , 3, Gi =
{gi}. Also, suppose that,

v({a1}) = {{g1}}
v({a3}) = {{g3}}

v({a1, a3}) = {{g1, g2, g3}}
v({a2, a3}) = {{g2, g3}}

v({a1, a2, a3}) = {{g1, g2, g3}}

and v(C) = ∅ for all other coalitions C ⊆ Ag. Clearly, against Definition 2.28, in this QCG, agent a1 is a
veto agent for themselves, since they belong to every coalition which can accomplish g1. Also, a3 is a veto
agent for both themselves and agent a2 since they belong to every coalition that can accomplish both g2 and
g3. No other veto agent relations exist.

In the QCG representation Γ, as presented in Definition 2.26, every set of goals that can be accomplished by
every coalition must be explicitly specified. Since the number of sets of goals and coalitions are exponential
in the number of goals and agents, respectively, this means that Γ will not be concise. To this end, a compact
representation of QCGs was presented in [82].
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A Representation Based on Logic

Let Γsucc = 〈Ag,G,G1, . . . , Gn,Ψ〉 denote the compact representation developed in [82]. The agents inAg
and the goals inG are represented as propositional variables and the function Ψ is a formula of propositional
logic over these variables. This formula consists of the conventional Boolean operators (“∧”, “∨”, “⇒”,
“ ⇐⇒ ”, and “¬”), as well as the truth constants “>” (for truth) and “⊥” (for falsity). In this formula,
literals represent the individual agents and goals. Specifically, Ψ takes, as input, both a coalition C ⊆ Ag
and a goal set G′ ⊆ G. Intuitively, when C and G′ are input this means that the literals that represent these
individual goals and agents have assignment ‘>’, whereas the literals representing the agents in Ag \C and
goals in G \G′ have assignment ‘⊥’. Given this representation,

Ψ[C,G′] = > ⇐⇒ G′ ∈ v(C),

i.e., Ψ[C,G′] evaluates to‘>’ if and only if the agents in C can co-operate to achieve all of the goals in G′.
Thus, Γsucc = 〈Ag,G,G1, . . . , Gn,Ψ〉.

Γsucc is no less expressive than Γ as any function v can be expressed as a formula of propositional logic.
Additionally, although not always guaranteed, propositional logic formulae are capable of describing con-
cise presentations of propositional functions when such are possible. In this context, Γsucc may be concise
in both the number of agents and goals and all complexity results for this representation are given under the
assumption that Γsucc is concise. Furthermore, given C ⊆ Ag, G′ ⊆ G and Ψ, determining if Ψ[C,G′] = >
can be done in |Ψ| steps, where |Ψ| is the number of literals in Ψ. In this context, the processes involved
in computing if a given coalition can exhaustively accomplish a given set of goals can be answered with
polynomial time complexity.

Now, in QCGs, the utility (i.e., ‘satisfaction’) obtained by individual agents in the grand coalition, as well
as in any other coalition, are already given two important core-related questions in this representation are:

(Q1) Is the core of coalition C non-empty? and,

(Q2) Is a set of goals G′ ⊆ G in the core of a coalition C ⊆ Ag?

Following previous discussion, (Q1) is equivalent to computing if C is both minimal and successful.

Lemma 2.5 Given Γsucc and a coalition C ⊆ Ag, computing if C is minimal and successful is DP -
complete.7

Lemma 2.5 shows that decision problems concerning (Q1) are intractable. For a given coalition C, this
implies that no algorithm can be guaranteed to solve a decision problem concerning (Q1) in a number of
steps that are polynomial in the size of the representation. Conversely, (Q2) is equivalent to computing if G′

is both a feasible choice for and satisfies C. Since the latter can be with polynomial time complexity, this
intuition with respect to the complexity of (Q1) is also applicable to (Q2).

As well as stability, a natural question regarding dependency in QCGs can be expressed as follows.

(Q3) Is an agent ai a veto agent for aj?

Lemma 2.6 Given Γ and any two agents ai, aj ∈ Ag, the problem of computing if ai is a veto agent for aj
is coNP-complete.

Lemma 2.6 shows that decision problems concerning (Q3) are complement to an intractable problem. There-
fore, no algorithm can be guaranteed to solve these decision problems in a number of steps that are polyno-
mial in the size of the representation.

In conclusion, although Γsucc can enable conciseness, it cannot guarantee that decision problems concerning
coalition formation can be answered in time complexity that is polynomial in the size of the representation.

7See Appendix A for a formal definition of this complexity class.
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2.5 Summary
In this chapter, an overview of cooperative game theory was provided. In particular, both partition and
characteristic function games were formally defined. Essentially, the former representation accounts for
externalities from coalition formation, whereas the latter does not.

For characteristic function games, when the gain from forming the coalition is transferable among all of
the agents in the coalition, a number of solution concepts from game theory can be employed to determine
which coalitions should be formed by either self-interested or fully cooperative agents. Generally, the core
solution can be used to determine if the grand coalition is stable, whereas an optimal coalition structure
concept can be used to identify disjoint and exhaustive coalitions of agents that maximize the welfare of the
system.

With respect to understanding coalition formation, questions concerning non-emptiness and membership
of the core need to be answered. The time complexity of decision problems concerning these questions
is polynomial in the size of the representation. Therefore, one line of work has focused on developing
representations that are fully expressive but, for case of interest, are of size that is polynomial in the number
of agents. In this chapter, an overview of such representations was provided.
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Chapter 3

Optimal Coalition Structure Generation
Algorithms

Following discussions presented in Chapter 1, fully cooperative agents will always partition themselves
into coalitions that are best for the system as whole. Thus, when given a characteristic function game
representation of a system containing fully cooperative agents, the optimal coalition structure concept can
aid a system designer to understand which coalitions will be formed by the agents. To this end, when given
any characteristic function game, the following problem naturally arises,

For any characteristic function game, is a given coalition
structure π an optimal coalition structure?

In [66] it was proven that, even if all coalition values are given as input, computing if π is an optimal
coalition structure is NP-hard. Thus, in contrast to the core-related problems that were considered in the
previous chapter, even if all coalition values are known then no algorithm can be guaranteed to solve the
above problem with time complexity that is polynomial in the number of coalition values. Furthermore, this
result implies that, in the worst case, every coalition structure will have to be analyzed in order to solve this
problem.

Proposition 3.1 (Taken from [42]) In a system of n agents, there are,

Bn =

n−1∑
i=1

(
(n− 1)

i

)
Bi,

coalition structures, where B0 = B1 = 1.

More formally, Bn is the Bell number (named after Edward Temple Bell) for the system and can be itera-
tively computed, beginning with B0 = B1 = 1. As n linearly increases, Bn exponentially increases. For
example, if n = 14 then Bn = 190, 899, 322 whereas if n = 15 then Bn = 1, 382, 958, 545. Thus, even for
a moderate number of agents, billions of potential structures could be formed.

In characteristic function games, because there are no externalities from coalition formation, it is assumed
that every coalitionC ⊆ Ag has the same value v(C) in every structure in which it is embedded. This means
that, given the values of every coalition C ⊆ Ag, it may be possible to determine a priori if certain coalition
structures are not optimal. Against this insight, in the multi-agent systems paradigm, algorithms have been
developed that can output an optimal structure through computing only the values of those structures that
belong to a subset Π′ ⊂ Π. This chapter provides an overview of the state-of-the-art optimal coalition
structure generation algorithms. To be precise:

• In Section 3.1 ,an overview of the state-of-the-art optimal coalition structure generation algorithms
that consider ex-post information assumptions is provided; and,

• In Section 3.2, an overview of the state-of-the-art optimal coalition structure generation algorithms
that consider ex-ante information assumptions is provided
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Figure 3.1: A graphical representation of all coalition structures in a four agent system (here, the
number represents the index of the agent. For example, ‘1’ denotes agent a1)

3.1 Ex-post Optimal Coalition Structure Generation
Typically, ex-post optimal coalition structure generation is relevant when it is either impossible or infeasible
to obtain all coalition values. Arguably, in the multi-agent system paradigm, it is the work of [66] which
first fully discussed the issues associated with ex-post optimal coalition structure generation. Inherent to
this work is the representation of the space of all structures. Specifically, Π is represented as a graph with
n levels where, ∀i ∈ [1, . . . , n], Level i contains all structures of size i (that is, all structures which contain
exactly i coalitions). For i = 1, . . . , n − 1, edges in the graph connect structures in Level i to structures
in Level i + 1. Here, an edge represents the fact that the structure in Level i was formed by the merge of
two coalitions in the structure to which it is connected in Level i + 1. The graphical representation of a
multi-agent system with Ag = {a1, a2, a3, a4} is presented in Figure 3.1.

Given this representation, Sandholm et al. proposed a procedure for generating an optimal coalition structure
which is presented in Algorithm 3.1 [66]. This algorithm begins by first computing the value of the structure
in Level 1 and storing both the structure and its value in memory. Upon doing this, an exhaustive search of
Level 2 is undertaken and, after the value of every individual structure in this level has been computed, if a
structure is found with value strictly greater than the current optimal value then the system is updated, i.e.,
both this structure and its value are stored in memory as the new optimal. After analyzing these coalition
structures, Levels n, n− 1, . . . , 3 are then also sequentially searched in this manner. Upon analyzing all of
Π, the structure that is stored in memory is output as the optimal coalition structure.

Lemma 3.1 (From [66]) For L = n, n− 1, . . . , 3, after all of the coalition structure values in Level L have
been computed, let v(π∗L) denote the current optimal value and let v(π∗) denote the value of the structure
which maximizes the welfare of the entire system.

If h = bn−L2 c+2, where L denotes the level that has just been exhaustively searched by the algorithm then,

v(π∗)

v(π∗L)
≤ k,
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Input: Nt = 〈Ag, v〉

1. Firstly, the algorithm computes the value of the single structure in Level 1 and sets this to be the
optimal structure.

2. The algorithm then exhaustively searches Level 2 of the graph representation, computing the values
of all coalition structures in this level. Whilst doing this, if a coalition structure is encountered that
has value greater than the current optimal value then this structure, and its value, are stored in
memory as the current optimal.

3. The levels n, n − 1,. . .,3 are then sequentially searched as in 2. until the running time of the
algorithm has expired or the entire space has been analyzed. At his point, the current optimal value
is output.

Output: π∗.

Algorithm 3.1: The optimal coalition structure generation algorithm presented in [66]

where:

1. k = dnhe if n ≡ h− 1(mod h) and n ≡ L(mod 2); and,

2. k = bnhc, otherwise.

In numbers, suppose n = 10 and Level 8 has just been exhaustively searched (after Levels 1,2,10,9). In this
instance:

(i) h = b10−8
2 c+ 2 = 3; but,

(ii) 10 ≡ 1(mod 3).

Consequently, k = b10
3 c = 3 and so the real optimal value is no greater than three times the value of the

current optimal value. On the other hand, suppose that n = 11 and all of the structures in Level 3 have been
analyzed (after Levels 1,2,11,10,9,8,7,6,5,4). This time:

(i) h = b11−3
2 c+ 2 = 6;

(ii) 11 ≡ 5(mod 6) ≡ (6− 1)(mod 6); and,

(iii) 11 ≡ 1(mod 2) ≡ 3(mod 2).

Thus, k = d11
6 e = 2, meaning the optimal value is no greater than double the current optimal value.

Observe that after Levels 1 and 2 have been exhaustively analyzed, for every coalition C ⊆ Ag, v(C) has
been computed exactly once. As every coalition value must be computed in order to determine all structure
values then, clearly, this is the minimum number of structure values that must be computed in order to obtain
a bound from the optimal. Since there are 2n−1 coalition structures in Levels 1 and 2, the following lemma
holds.

Lemma 3.2 Given any characteristic function game 〈Ag, v〉, no less than 2n−1 coalition structures must
be analyzed to obtain a bound k.
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Clearly, this algorithm only guarantees to output an optimal structure if the value of every coalition structure
is computed and, following Proposition 3.1, this may not be feasible for large n. Furthermore, the bounds
obtained from this algorithm may not be large enough to justify the amount of computational effort under-
taken. For example, if n = 12 then, to obtain a bound of n

4 , Level 1, 2, 12, 11, 10, 9 of the tree must be
searched. It can be argued that, the number of structures analyzed in these levels is too large to justify this
relatively small bound.

Following on from this work, another ex-post optimal coalition structure generation algorithm was devel-
oped in [15]. After performing the same first two steps as Algorithm 3.1, this algorithm then exclusively
searches the remaining space focusing on computing the values of particular coalition structures. In more
detail, after analyzing all of the coalition structures in Levels 1 and 2, rather than sequentially analyze all
of the coalition structures in levels n to 3, this algorithm then computes the values of particular coalition
structures instead.

To describe how this is done, let SL(n, k, c) denote the set of all structures in a n agent system that contain
exactly k coalitions with at least one coalition of size greater than c. For example,

SL(4, 2, 2) = {{{a1}, {a2, a3, a4}}, {{a2}, {a1, a3, a4}}, {{a3}, {a1, a2, a4}},

and {{a4}, {a1, a2, a3}}}.

Against this notation, let SL(n, c) denote the set of all structures in levels 3 to n− 1 which contain at least
one coalition of size greater than c, i.e.,

SL(n, c) =
n−1⋃
k=3

SL(n, k, c).

After exhaustively searching Levels 1 and 2, the algorithm computes the values of all coalition structures in
SL(n, c), where c = n(q−1)

q and q is arbitrarily chosen. Every time a structure is found with value greater
than the current optimal value then both the structure and its value are stored in memory as the new optimal.
The structure that is in memory when the algorithm terminates is output as the optimal structure. In contrast
to the Algorithm 3.1, the following bounds were computed.

Lemma 3.3 (From [15]) After searching SL(n, n(q−1)
q ), let v(π∗q ) denote the currently optimal structure.

If v(π∗) is the optimal value of the entire system then,

v(π∗)

v(π∗q )
≤ 2q − 1.

In this way, desirable bounds can be determined by choosing an appropriate value of q.1

Observe that, as with Algorithm 3.1, this algorithm is anytime, i.e., the bound improves as the running time
of the algorithm increases. However, empirical evidence suggests this algorithm may be much faster than
the approach of Algorithm 3.1 with respect to generating an optimal structure. For example, when n = 1000
and q is chosen so that the bound is small, this algorithm was shown to be 10379 times faster than Algorithm
3.1 with respect to generating a coalition structure which has value within this bound.

The two algorithms considered thus far satisfy both positive and negative criteria. For example, both guar-
antee to output an optimal and both are anytime which means that, were they to stop midway (e.g., through
technical failure) then they could still output a solution which was within a particular bound of the optimal
value, i.e., the quality of solution produced monotonically increases with computation time. However, to
guarantee that an optimal coalition structure is output, both algorithms must compute the values of every
coalition structure. From a computational perspective, this is undesirable.

1Note that, to give similar bounds to [66], in [15], q runs from bn+1
4 c to 2.
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3.2 Ex-ante Optimal Coalition Structure Generation
In contrast to ex-post optimal coalition structure generation, ex-ante optimal coalition structure generation
assumes that coalition values are known. Since these coalitions values are not dependent upon co-existing
coalitions, many ex-ante algorithms exploit this feature to generate an optimal structure without having to
analyze all of them. To this end, in this section, an overview of the main ex-ante algorithms are provided.
Each algorithm is assessed against the following criteria:

Worst case complexity: The largest number of operations required to generate an optimal solution;

Memory requirements: The amount of data that must be stored in memory;

Robustness against technical failure: The ability of an algorithm to output a solution should it encounter
technical failure; and,

Algorithm running times: The time it takes an algorithm to output an optimal solution.

From a computational perspective, because the number of coalition structures grows exponentially in the
number of agents, it is desirable that any algorithm generates an optimal coalition structure using as little
memory as possible, with low complexity and in as quick as possible running time. Also, it is desirable that,
should the algorithm encounter technical failure, it is able to output a structure that is ‘nearly’ optimal (as
with the anytime algorithms considered in the previous section). These criteria were chosen as they have
been used in the literature thus far [84, 59, 55, 58, 57].

3.2.1 A Dynamic Programming Algorithm
Essentially, algorithms that employ dynamic programming techniques are used to solve problems which
satisfy both optimal substructure and overlapping subproblems properties.

Definition 3.1 (Taken from [55]) A problem is said to exhibit optimal substructure if it can be broken into
subproblems that can be recursively solved so that the solutions can be combined to answer the original
problem. Conversely, a problem is said to exhibit overlapping subproblems if these subproblems are not
independent.

Clearly, the problem of generating an optimal coalition structure exhibits both optimal substructure and
overlapping subproblems since it can be broken into the following subproblem which can be solved for
every coalition C ⊆ Ag.

DP subproblem.
For every coalition C ⊆ Ag, let SC denote the set of all pairs (C ′, C ′′) such that C ′ ∩ C ′′ = ∅
and C ′ ∪ C ′′ = C. For every (C ′, C ′′) ∈ SC , v(C) is compared with v(C ′) + v(C ′′). If it is
the case that, for every (C ′, C ′′) ∈ SC , v(C)> v(C ′) + v(C ′′) then output v(C). Else, if there
exists (C ′, C ′′) ∈ SC such that v(C) < v(C ′) + v(C ′′) then, for all such (C ′, C ′′), output (any
of) the pair(s) (C ′, C ′′) that have maximal combined value.

A so-called dynamic programming (DP) algorithm was developed in [84] that recursively solves this sub-
problem for every coalitionC ⊆ Ag and then combines the results to generate an optimal coalition structure.
In this algorithm;

(i) The space of all coalitions is organized so that all coalitions of the same size are grouped together,
and

(ii) For every coalition C ⊆ Ag, the algorithm employs two functions: f1(C) and f2(C) which output
and store the solution and value to the DP subproblem for every coalition C ⊆ Ag, respectively.
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Input: Nt = 〈Ag, v〉, ∀C ⊆ Ag, v(C).

1. Firstly, for i = 1, . . . , n, set f1({ai}) = {ai} and f2({ai}) = v({ai}).

2. Beginning with all coalitions of size 2, i.e., allC ⊆ Ag such that |C| = 2 solve the DP subproblem.

3. Sequentially repeat 2. for all coalitions of size 3, . . . , n

4. Set π∗ = {Ag}

5. For every coalition C ∈ π∗, If f1(C) = C then output π∗. Else if f1(C) 6= C, then:
(a) Set π∗ := π∗ \ {C} ∪ {f1(C)}; and,
(b) Repeat 4 for new π∗.

Output: π∗.

Algorithm 3.2.1: A dynamic programming optimal coalition structure generation algorithm

The DP algorithm is presented in Algorithm 3.2.1.

Example 3.1 Consider a three agent system Ag = {a1, a2, a3} where;

• v({ai}) = 2, for i = 1, 2, 3;

• v({a1, a2}) = v({a1, a3}) = v({a2, a3}) = 3; and,

• v({a1, a2, a3}) = 6.

The DP algorithm for this setting is as follows.

Step 1: In the first step of the DP algorithm, for i = 1, . . . , 3, f1({ai}) is set as {ai} and f2({ai}) is set as
v({ai}) = 2.

Step 2: In this step;

– v({a1, a2}) is compared to v({a1}) and v({a2}),

– v({a1, a3}) is compared to v({a1}) and v({a3}) and,

– v({a2, a3}) is compared to v({a2}) and v({a3}).

Observe that,

1. v({a1, a2}) > v({a1}) + v({a2});

2. v({a1, a3}) > v({a1}) + v({a3}); and,

3. v({a2, a3}) > v({a2}) + v({a3}).

Consequently,

1. f1({a1, a2}) = {{a1}, {a2}} and f2({a1, a2}) = 4;

2. f1({a1, a3}) = {{a1}, {a3}} and f2({a1, a3}) = 4; and,

3. f1({a2, a3}) = {{a2}, {a3}} and f2({a2, a3}) = 4.
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Step 3: Now, for the grand coalition, observe that,

SAg = {{a1, a2}{a3}, {a1, a3}{a2}, {a2, a3}{a1}},

and since,

v({a1, a2, a3}) > v({a1, a2}) + v({a3}) = v({a1, a3}) + v({a2}) = v({a2, a3}) + v({a1}),

f1(Ag) = Ag and f2(Ag) = 6.

Step 4: Set π∗ to be Ag.

Step 5: Since f1(Ag) = Ag then π∗ = {Ag} is output.

The worst case complexity of the DP algorithm is presented in Lemma 3.4.

Lemma 3.4 (Proven in [84]) The DP algorithm runs in O(3n) time.

with regards to worst case complexity, Lemma 3.4 shows that, because 3n < nn for n > 3, the DP algo-
rithm generates an optimal coalition structure with much lower time complexity than the ex-post algorithms.
However, the memory requirements for this algorithm are exponentially large since, for every non-empty
coalition C ⊆ Ag, all of v(C), f1(C) and f2(C) must be stored in memory. Also, this algorithm is not any-
time, meaning should the algorithm have to stop midway, e.g., if there is a system failure, then the algorithm
cannot output a currently optimal structure. Thus, it is not robust against technical failure.

3.2.2 An Improved Dynamic Programming Algorithm
To reduce the significant memory requirements of the DP algorithm, as well as its worst case complexity,
an Improved Dynamic Programming (IDP) algorithm was developed in [58]. To explain how the IDP algo-
rithm works, recall the graphical representation of the space of all coalition structures presented in Figure
3.1. In this graph, for i = n, n− 1, . . . , 2, every node in Level i represents every coalition structure of size
i. Furthermore, edges connecting a coalition structure π of size i to every coalition structure π′ of size i− 1
represents the formation of π′ via the partitioning of a coalition in π into exactly two coalitions.

Given this graph, for every coalition C ⊆ Ag, the DP algorithm computes the DP subproblem for every
coalition C by analyzing every possible edge that represents a partitioning C into each (C ′, C ′′) ∈ SC .
Then, starting from the node representing the grand coalition, the algorithm traverses a series of connected
nodes (referred to as a path from now onward) until an the node representing the optimal coalition structure
is reached.

To be precise, for every coalitionC ⊆ Ag, every partition ofC that has size two is analyzed and the partition
with maximal value (denoted (C ′, C ′′)) is compared with v(C) using f2(C). Now, if,

v(C) > v(C ′) + v(C ′′),

then (C ′, C ′′) is stored in f1(C). This indicates that, whenever a node is reached that represents a structure
π, such that (C;π) ∈ E , then the best path (out of all the ones that represent a partitioning of C) is the one
that leads to π \ {C} ∪ {C ′, C ′′}. On the other hand, if,

v(C) ≤ v(C ′) + v(C ′′),

then C is stored in f1(C). This indicates that, whenever a node is reached that represents a structure π, such
that (C;π) ∈ E , then it is not beneficial to make any movement that involves partitioning C. Intuitively,
due to the manner in which f2(C) is calculated (it takes into account f2(C ′) for all C ′ ⊂ C) the choice in
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analyzing a particular path is done by taking into account the subsequent paths that will follow this one.

Observe that, for a number of nodes, there may exist more than one path leading from the node representing
the grand coalition to the node representing an optimal coalition structure. Given this observation, the au-
thors in [58] prove that if there is a path from the grand coalition to an optimal node then the DP algorithm
will find it. Thus, to reduce the number of partitioning evaluations, an algorithm was proposed that computes
the DP subproblem through analyzing only a subset of all possible partitions. Specifically, this is achieved
by removing appropriate edges from the graph whilst still ensuring that there exists a path from the node in
Level n to every other node in Levels n− 1, . . . , 1.

In more detail, letEi
′,i′′ denotes the set of all the edges that involve partitioning a coalition of size i′+i′′ into

exactly two coalitions of size i′ and i′′, respectively (where i′ ≤ i). The dynamic programming algorithm
will analyze all of the edges in the integer partition graph (denoted E). Against this notation, let E∗ ⊆ E
denote a subset of these edges that is defined as follows:

E∗ =
⋃

i′,i′′:i′′≤n−(i′′+i′)

Ei
′,i′′ ∪

⋃
i′,i′′:i′+i′′=n

Ei
′,i′′ .

It was proven that the the edges in E∗ are sufficient to ensure that every node in the graphical representation
of Π must have a path leading to it from the node representing the grand coalition. Based on this, IDP only
analyzes the edges in E∗ and, in so doing, performs considerably fewer operations than DP.

The DP algorithm will require analyzing the following number of partitions (from [58]):

t =

n∑
i=1

(

(
n

i

)
×

∑
i′′ ∈ {d i

2
e, . . . , i− 1}

Nn−i′′,i′′),

whereas, IDP algorithm will analyze the following number of partitions (from [58]):

d =
n∑
i=1

(

(
n

i

)
×

∑
i′′ ∈ {d i

2
e, . . . , i− 1}, i′′ > n− i

Nn−i′′,i′′),

where,

Nn−i′′,i′′ =


∑i−1

i′′=d i
2
e

(ni)
2 if n− i′′ = i′′

∑i−1
i′′=d i

2
e
(
n
i

)
otherwise.

Note that t < d and so the IDP algorithm analyzes less partitions than the DP algorithm. For instance,
for n = 25, it was proven that the IDP algorithm requires analyzing only 38.7% of the partitions that are
analyzed by the DP algorithm.

Additionally, by not storing in memory all partitions of the coalitions but, instead, re-analyzing them as the
paths are traversed, the memory requirements can be reduced. As there are no more than n nodes in any
path, the computation involved in this re-analysis is negligible relative to the number of coalitions. By not
using f1(C) for every coalition C ⊆ Ag, it is shown that the IDP algorithm requires between 33.3% and
66.6% of the memory that is required for the DP algorithm. In this context, the IDP algorithm improves on
the DP algorithm against both the worst case complexity and running time criteria.
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3.2.3 An Integer Partition (IP) Optimal Coalition Structure Generation Al-
gorithm

In contrast to the algorithms that employ dynamic programming techniques, the Integer Programming (IP)
algorithm of Rahwan et al. employs pre-processing techniques whilst retaining anytime properties [59].
Fundamental to this algorithm are the manner in which the space of all coalition structures are represented
and searched to find an optimal coalition structure.

Representing the space of all coalition structures

The authors of [59] present a novel representation of the space of all coalition structures based on the size of
the coalitions which belong to them. Specifically, this representation is based on the integer partitions of the
number of agents n. For example, the integer partitions of n = 5 are: {5}, {1, 4}, {2, 3}, {1, 1, 3}, {1, 2, 2},
{1, 1, 1, 2} and {1, 1, 1, 1, 1}. Here, each integer k in every partition can be interpreted as a coalition of size
k. For example, {1, 4} represents the space of all coalition structures that consist of exactly one coalition of
size 1 and exactly one coalition of size 4. If G denotes the space of integer partitions of n then the space of
all coalition structures is partitioned into subspaces using the mapping F : Π→ G.

Computing maximal and minimal bounds on all coalition structure values

From the input of all coalition values, it is possible to compute the maximal and minimal values of all the
structures in every subspace g ∈ G. This is achieved by computing basic statistical information on all
coalitions of the same size. Specifically, for i = 1, . . . , n, the maximum, minimum and average values of
all coalitions of size i are computed. Let these be denoted as maxi,mini and avi hereafter. From this data,
for each subspace g ∈ G:

• The maximal coalition structure value, referred to as the upper bound of g, (denoted UBg) is set as∑
∀i∈gmaxi;

• The minimal coalition structure value, referred to as the lower bound of g, (denoted LBg) is set as∑
∀i∈gmini; and,

• The average coalition structure value, referred to as the average bound of g, (denoted Avg).

The maximal and minimal coalition structure values in each subspace g ∈ G can be easily computed from
all the coalition values. However, less easily, the average values in each subspace g ∈ G is computed as in
Lemma 3.5.

Lemma 3.5 (Proven in [59]) The average value of any subspace g ∈ G (Avg) can be computed using the
formula:

Avg =
∑
∀i∈g

avi.

For example, if n = 5 then, for g = {1, 1, 3}:

• UBg = max1 +max1 +max3;

• AVg = av1 + av1 + av3; and,

• LBg = min1 +min1 +min3.

It is clear from this example that these bounds may not be tight and are therefore not exact values. However,
although the lower and upper bounds are not exactly equal to LBg and UBg, respectively, it is certain that
the maximal structure value in g is no more than g ∈ G and the minimal value in g is no less than LBg. In
this context, such bounds are therefore appropriate.
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Determining the best subspaces of structures to search

Now, ∀g ∈ G, given UBg, LBg and AVg, the IP algorithm computes both the upper and lower values for G
(denoted UBG and LBG, respectively) as follows:

• UBG = arg maxg∈G UBg; and,

• LBG = arg maxg∈G AVg.2

Once these bounds have been computed, the first pre-processing technique employed by the algorithm is to
prune away all subspaces of structures g ∈ G such that:

UBg < LBG.

Obviously, if UBg < LBG then the value of every structure in g cannot be optimal and so every coalition
structure in g is not analyzed. After pruning all g fromG, the values of all coalition structures in the subspace
g∗, where UBG = UBg∗ , are then computed.

Computing coalition structure values in a given subspace

While computing the values of the coalition structures that belong to a particular subspace, methods are
undertaken to ensure that the values of only valid (i.e., not overlapping) coalition structures are computed.
Similarly, methods are used to avoid redundant computations, such as computing the value of same structure
multiple times (e.g., computing v(πα = {{a1, a2}{a3, a4}}) and v(πβ = {{a3, a4}{a1, a2}})).

Specifically, suppose that g∗ = {gi1 , . . . , gik} is the subspace in G such that UBg∗ = UBG and, for
j = 1, . . . , k, let:

• Aj be the set of all coalitions of agents of size j, all ordered non-decreasingly with respect to the
indices of the agents who belong to them; and,

• Mij : |Mij | = gij be a temporary array that can be used to cycle through all possible coalitions which
could belong to gij .

At the start of the subspace search, Mi1 is assigned to a coalition of size gi1 inAi1 . Given this coalition, Mi2

then cycles through all coalitions of size gi2 in Ai2 until a coalition that does not overlap with the coalition
in Mi1 is found. After that, Mi3 is then used to cycle through all coalitions of size gi3 in in Ai3 until a
coalition that does not overlap with both of those in Mi1 and Mi2 is found. This is repeated until all of Mi1

to Mik are assigned disjoint coalitions. At this point, the value of this coalition structure is then calculated
and compared with the maximum value found so far. After that, the coalitions in Mi1 , . . ., Mik are updated
so as to compute the value of a different structure in g∗.

Additionally, whilst computing the structure values in g∗, pre-processing is also applied in order to reduce
the number of coalition structure values which are computed.

Lemma 3.6 Suppose g∗ = {gi1 , . . . , gik} and, suppose that, for j ∈ [1, . . . , k), Mi1 to Mij have been
assigned coalitions Ci1 . . . Cij , respectively. If,

v(Ci1) + . . .+ v(Cij ) + UBgij+1
+ . . .+ UBgik

< LBG,

then all structures π ∈ g∗ such that Ci1 . . . Cij ⊆ π cannot be optimal.

2It is worth noting that some algorithms which compute coalition values also compute the values of a number of
structure as well. Thus, in some cases, LBG = arg maxg∈G,π∈Π (Avg, v(π∗n)), where v(π∗n) is the biggest coalition
structure value computed during the coalition value calculation stage.
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This branch and bound rule employs pre-processing to identify groups of disjoint coalitions which cannot
belong to an optimal structure in g∗. By avoiding them, this pre-processing ensures that the values of struc-
tures which cannot be optimal are not computed.

Whilst analyzing the coalition structures in g∗, if a structure π∗ ∈ g∗ is found such that v(π∗) = UBG
then this is output as the optimal coalition structure. However, as UBG is not a tight bound, this coalition
structure may not exist. Consequently, if no such structure is found, if v(π∗n) denotes the optimal value after
computing all the coalition values in g∗ then the system is updated as follows:

• LBg is updated so that LBG = arg maxg∈G,π∈Π (Avg, v(π∗n));

• All g ∈ G such that UBg < LBG are pruned away; and,

• UBG is updated so that it is the maximal of v(π∗n) or the maximal UBg′ ∀g′ ∈ G \ {g∗}.

The coalition structures in the next most promising subspace are then analyzed in the same way and, after
doing this, the system is subsequently updated. This continues until either a structure is found with value
equal to the system upper bound or all of the space has been searched.

Example 3.2 Consider a four agent multi-agent system Ag = {a1, a2, a3, a4} with coalition values;

L1 L2 L3 L4

v({a4}) = 2 v({a3, a4})=
5

v({a2, a3, a4})=
7

v({a1, a2, a3, a4}) =
8

v({a3}) = 2 v({a2, a4})=
2

v({a1, a3, a4})=
7

−

v({a2}) = 3 v({a1, a4})=
3

v({a1, a2, a4})=
7

−

v({a1}) = 1 v({a2, a3})=
5

v({a1, a2, a3})=
7

−

− v({a1, a3})=
5

− −

− v({a1, a2})=
4

− −

From these values, observe that:

i maxi mini avi
1 3 1 2
2 5 2 4
3 7 7 7
4 8 8 8

Now, let G = {g1, g2, g3, g4, g5}, where g1 = {4}, g2 = {2, 2}, g3 = {1, 3}, g4 = {1, 1, 2} and g5 =
{1, 1, 1, 1}.

gi UBgi LBgi AVgi
g1 8 8 8
g2 10 4 8
g3 10 8 7
g4 14 8 11
g5 12 4 8
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From this data, UBG = 14 and LBG = 11. Since UBg1 , UBg2 , UBg3 < LBG, the values of all of the
structures in these subspaces are not computed. Specifically, g1, g2 and g3 are pruned from G.

The subspace with the highest upper bound, g4, is searched first and all coalition structure values in this sub-
space are computed. Observe that the structure in this subspace with the highest value is {{a2}, {a4}, {a1, a3}}.
Thus, π∗n = {{a2}, {a4}, {a1, a3}} and v(π∗n) = 10 are stored in memory. Since v(π∗n) < UBG and
v(π∗n) < LBG, both UBG and LBG are kept at their current values.

As v(π∗n) 6= UBG, g5, the subspace with the next biggest upper bound value, is then searched and all
coalition structure values in this subspace are computed. There is exactly one structure in this subspace,
{{a1}, {a2}, {a3}, {a4}}, and it has value 8. Since v({{a1}, {a2, }{a3}, {a4}}) < v(π∗n) and since all of
G has been searched, π∗n is output and the algorithm terminates.

Note that, the IP algorithm may have to analyze every coalition structure in order to output an optimal,
meaning its worst case complexity is O(nn). However, as only coalition values are stored in memory, this
memory cost is less than that of the DP algorithm. Furthermore, as this algorithm is anytime, it may be able
to output a nearly optimal structure if technical failure is encountered. Also, experiments have shown that
this algorithm has relatively fast running times. In this context, the IP algorithm is positive against all of
memory, running time and robustness against technical failure criteria.

3.2.4 A Hybrid Algorithm
Given the IP and IDP algorithms, a hybrid algorithm combining facets from both of these algorithms was
developed in [57]. The hybrid algorithm represents the space of all coalition structures as a integer partition
graph which is similar to the IP algorithm’s representation of Π, except that some g ∈ G are connected
by edges. To be precise, an edge exists between two subspaces g, g′ ∈ G if there exists i1, i2 ∈ g and
i1 + i2 ∈ g′ such that g \ {i1, i2} = g′ \ {i1 + i2}. Figure 3.2.4 displays an integer partition graph for a
system of six agents with Ag = {a1, . . . , a6}.

Firstly, the hybrid algorithm employs the IDP algorithm to analyze the partitioning of coalitions of size
{1, 2, . . . ,m − 1,m}, where m < n is arbitrarily chosen. For coalitions C ⊆ Ag of size greater than
m, their value is simply set as f2(C). Observe that, for a particular m value, it may be that the IDP al-
gorithm does not analyze the coalition structures in a number of subspaces in the integer partition graph.
For example, consider the system represented by integer graph in Figure 3.2.4. If m = 2 then, because the
subspaces {2, 2, 2} and {1, 2, 3} are formed through partition coalitions of size greater than 2, the structures
in these subspaces would not be analyzed by the IDP algorithm. Thus, were the optimal coalition structure
in either of these subspaces, the IDP algorithm would not generate it. To this end, once the IDP algorithm
has searched the other subspaces, the remaining subspaces are then searched as in the IP algorithm and an
optimal coalition structure is generated.

Empirical results show that this approach is much faster than both of the individual algorithms. For example,
given 25 agents, for m ∈ [2, . . . , 16], the hybrid algorithm requires no more 28% of the time required by
the IP algorithm, whereas it requires no more than 0.3% of the time required by the IDP algorithm. In this
context, with respect to the running time criterion, this hybrid algorithm improves on both the IDP and IP
algorithms.

3.3 Summary
In this chapter, the state-of-the-art developments with respect to optimal coalition structure generation algo-
rithms was presented. Generally, these algorithms can be divided into two types: those that consider ex ante
information assumptions and those that consider ex post information assumptions.
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Figure 3.2.4: An integer partition graph for a six agent setting

In the former case, since it is assumed that no coalition values are stored in memory, the challenge is to
develop anytime algorithms that can guarantee that the quality of solution monotonically increases with the
running time of the algorithm. In contrast, in the latter case, since coalition values are stored in memory,
the challenge is to develop algorithms that strike a useful balance between all of the worst case complexity,
memory, running time and robustness against technical failure criteria.

Now, following on from the previous three chapters, each of which has described the existing research into
coalition formation in multi-agent systems, in the subsequent three chapters the original state-of-the art
contributions of this thesis are presented. In particular, in:

• Chapter 4, an optimal coalition structure generation algorithm which considers both coalition value
calculation and optimal coalition structure generation processes is developed;

• Chapter 5, an optimal coalition structure generation algorithm which can efficiently generate an opti-
mal coalition structure in partition function games is developed (the first algorithm to do this); and.

• Chapter 6, a novel cooperative representation that models coalition formation between self-interested
agents is presented. It is shown that for certain, natural instances of this representation, problems
concerning stability can be answered with polynomial time complexity.
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Chapter 4

Towards a Distributed Optimal Coalition
Structure Generation Algorithm

As can be seen from the algorithms presented in Section 3.2, ex ante optimal coalition structure generation
algorithms take, as input, all coalition values and, from this input, generate an optimal coalition structure.
All of these algorithms assume that all coalition values have been computed and do not consider the com-
putational process that are involved in computing all of them. This is surprising because, even for moderate
numbers of agents, there are an exponential number of coalitions and the process of computing all coalition
values is not trivial.

The state-of-the-art coalition value calculation algorithm is the so-called distributed coalition value calcu-
lation (DCVC) algorithm [56]. In this algorithm, the process of computing all coalition values is equally
distributed among all of the agents in the system. To achieve this, the space of all coalitions is divided into
|Ag| = n lists L1, . . . ,Ln where list Ls contains all coalitions of size s. In particular, this algorithm satisfies
the following criteria that are desirable for any distributed algorithm:

• Low communication complexity;

• No redundant computations;

• An equally balanced computational load among the agents; and,

• Minimal resource usage.

Since the amount of data transmitted among the agents, the number of calculations performed by the agents
and the amount of resource used by the agents can affect the running time of the DCVC algorithm, minimiz-
ing both of these can improve the efficiency in which all coalition values are computed. Furthermore, as all
agents are assumed to have equal computational abilities, the third criterion ensures that the computational
load is balanced in a way that also improves the efficiency in which all coalition values are computed. Thus,
these four criteria ensure that the running time of the DCVC algorithm is as quick as possible.

Now, recall from Section 3.2.2 that, for s = 1, . . . , n, one of the first steps of the IP optimal coalition
structure generation algorithm is to compute the maximum, minimum and average values of all coalitions
in Ls. In this context, the output from the DCVC algorithm is an ideal input to the IP algorithm. However,
since the computational processes in the DCVC algorithm are distributed among all of the agents in the
system whereas in the IP algorithm they are coordinated by a single entity, connecting the two algorithms
is not trivial. For instance, once all values have been computed, every individual agent must transfer all the
coalition values they have computed to a single entity. Consequently, as each agent computes approximately
b2n−1

n c coalition values in the DCVC stage, transmitting all these values may result in high communication
complexity which, following the above discussions, is undesirable.
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In this chapter, an optimal coalition structure generation algorithm is developed which consists of a two
stage process. In the first stage, coalition values are calculated and, in the second stage, an optimal coalition
structure is generated. This algorithm is based on the sequential application of the DCVC and IP algorithms
and, for this algorithm, pre-processing techniques are developed that can be incorporated into both the coali-
tion value calculation and optimal coalition structure generation stages. These techniques are represented
as filter rules that identify all coalitions that cannot belong to an optimal structure. Upon doing this, an
appropriate action is then performed. Typically, this involves filtering coalition values from the input or
avoiding all structures in which these coalitions are embedded.

These filter rules are important for two reasons. Firstly, they can reduce the number of coalition values an
individual agent needs to transfer after completing their computations and, secondly, they can reduce the
number of coalition structures that need be analyzed by the IP algorithm. Secondly, following previous
discussions, these filter rules may be useful foundations from which a distributed optimal coalition structure
generation algorithm can be developed for a system of fully cooperative agents.

The rest of this chapter goes as follows:

• In Section 4.1, the distributed coalition value calculation algorithm is formally presented;

• In Section 4.3, the filter rules, as well as the intuition and theory behind them, are formally presented;

• In Section 4.4, an optimal coalition structure generation algorithm is presented which describes the
sequential application of the DCVC and IP algorithms, particularly focusing on how the filter rules
are incorporated into both these algorithms; and,

• In Section 4.5, the effectiveness of the filter rules is empirically tested for normally and uniformly
distributed coalition values. Empirical results show that the filter rules can greatly reduce the com-
munication load between the DCVC and IP stages for both of these distributions. Furthermore, these
results indicate that the filter rules can also greatly reduce the overall running time of sequential appli-
cation of the DCVC and IP algorithms, especially for normally distributed values, where filter rules
can offer an exponential improvement in running time.

4.1 The Distributed Coalition Value Calculation Algorithm
The distributed coalition value calculation algorithm (developed by the authors of [56]) efficiently computes
all coalition values by distributing the computational processes among all of the agents. Fundamental to
this algorithm are the way in which the space of all coalitions is represented and the way in which all
computational processes are distributed among the agents.

4.1.1 Representing the Space of all Coalitions
As mentioned in the introduction, the space of all coalitions is divided into n lists L1, . . . ,Ln where list Ls
contains all coalitions of size s. Within each coalition, the agents are ordered non-decreasingly with respect
to the value of their indices whereas the coalitions are ordered in each Ls so that:

• The first coalition in the list is: {an−s+1, . . . , an−1, an};

• The last coalition in the list is: {a1, . . . , as−1, as}; and,

• The coalition occupying the (j − 1)th place in list Ls can be generated from the coalition occupying
the jth place.
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L1 L2 L3 L4 L5 L6

{a6} {a5, a6} {a4, a5, a6} {a3, a4, a5, a6} {a2, a3, a4, a5, a6} {a1, a2, a3, a4, a5, a6}
{a5} {a4, a6} {a3, a5, a6} {a2, a4, a5, a6} {a1, a3, a4, a5, a6}
{a4} {a4, a5} {a3, a4, a6} {a2, a3, a5, a6} {a1, a2, a4, a5, a6}
{a3} {a3, a6} {a3, a4, a5} {a2, a3, a4, a6} {a1, a2, a3, a5, a6}
{a2} {a3, a5} {a2, a5, a6} {a2, a3, a4, a5} {a1, a2, a3, a4, a5}
{a1} {a3, a4} {a2, a4, a6} {a1, a4, a5, a6} {a2, a3, a4, a5, a6}

{a2, a6} {a2, a4, a5} {a1, a3, a5, a6}
{a2, a5} {a2, a3, a6} {a1, a3, a4, a6}
{a2, a4} {a2, a3, a5} {a1, a3, a4, a5}
{a2, a3} {a2, a3, a4} {a1, a2, a5, a6}
{a1, a6} {a1, a5, a6} {a1, a2, a4, a6}
{a1, a5} {a1, a4, a6} {a1, a2, a4, a5}
{a1, a4} {a1, a4, a5} {a1, a2, a3, a6}
{a1, a3} {a1, a3, a6} {a1, a2, a3, a5}
{a1, a2} {a1, a3, a5} {a1, a2, a3, a4}

{a1, a3, a4}
{a1, a2, a6}
{a1, a2, a5}
{a1, a2, a4}
{a1, a2, a3}

Figure 4.1.1: Space of coalitions for a system of six agents Ag = {a1, . . . , a6}

In more detail, suppose coalition Cj = {al1 , . . . , als} occupies the jth place in Ls. The agents can generate
the coalition which occupies the (j − 1)th place in Ls (Cj−1) by checking the indices of the agents in Cj .
Specifically, for x = s, s − 1, . . . , 2, 1, the indices of the agents in Cj are sequentially analyzed until an
index value lx is found that is less than the index value of the xth agent in the first coalition (C1) in Ls.
When this index value lx is found then Cj−1 is generated from Cj as follows:

1 For k ∈ [1, x), the index value of the kth agent in Cj−1 is set to equal the index value of the kth agent
in Cj ;

2 For k = x, the index value of the of the kth agent in Cj−1 is set to lx + 1, i.e., it is set to the index
value of the kth agent in Cj plus 1; and,

3 For k ∈ (x, s], the index value of the of the kth agent in Cj−1 is set to equal the value of the index
value of the k − 1th agent in Cj−1 plus 1.

For example, consider L3 in a system of six agents Ag = {a1, . . . , a6}. In this list, the first coalition is
C1 = {a4, a5, a6}, whereas the last coalition is C|L3|=20 = {a1, a2, a3}. Coalition C19 can be generated
from C20 as follows.

Observe that the index value of the index of the third agent in C20 is less than the index value of the third
agent in C1. Consequently, the index value of the first two agents in C19 are set to equal the index value of
the first two agents in C20. Also, the index value of the third agent in C19 is set to equal the index value
of the third agent in C20 plus one. Therefore, C19 = {a1, a2, a4}. In this way, given only the first and last
coalitions, each agent can incrementally construct every Ls. Figure 4.1.1 displays the space of all coalitions
for a system of six agents Ag = {a1, . . . , a6}.

Ordering the coalitions in this manner means that a coalition can be determined from the place it occupies in
Ls. Thus, each agent need only maintain coalition values and not both the coalition and its value in memory.
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4.1.2 Computing The Coalition Values (basic approach)
Given the space of all coalitions, observe that in L1 there are exactly n coalitions. This means that there is
exactly one coalition value for each agent to compute. Therefore, in the first step of this algorithm, every
agent ai ∈ Ag computes the value of the ith coalition Ci ∈ L1.

In the subsequent steps of this algorithm, every agent ai ∈ Ag sequentially computes the values of the
coalitions in their share of the coalitions in the lists L2, . . . ,Ln−1 (denoted Ls,i). To achieve this, for
s = 2, . . . , n− 1, every agent ai begins by first computing,

|Ls,i| = b
|Ls|
n
c.

Upon doing this, they then compute the location of the last coalition which belongs to Ls,i. This is done by
computing indexs,i, where,

indexs,i = i× |Ls,i|.

Using the procedure described in the previous section, every agent ai then sequentially generates the coali-
tion located at indexs,i in list Ls, as well as the |Ls,i| − 1 coalitions ordered above this coalition. After
generating each coalition, its value is then computed. In more detail, ai starts by setting M to be the last
coalition in Ls,i (i.e., to the coalition located at indexs,i) and calculates its value. After that, ai then sets
M to the coalition before it (i.e., to the coalition located at indexs,i − 1) and calculates its value. This is
repeated until the value of every coalition in Ls,i has been calculated.

Of course, it may be that the number of coalitions in Ls is not exactly divisible by n. Thus, there may be a
number of additional value in Ls that have to be computed. To calculate these values, every agent computes
the number of left over values as follows,

|L′s| = |Ls| − (n× |Ls,i|).

Thus far, every agent has calculated the same number of values in Ls. Therefore, to equally balance the
computational processes among the agents, each of these left over values should be calculated by a different
agent. To achieve this, a sequence of |L′s| agents A′ calculate the coalition values in L′s and the set A′

is updated after the values in every L′s have been computed. Specifically, this updating is performed by
maintaining a value α, initially set to 1, such that, for any list Ls, if |L′s| > 0 then A′ would contain |L′s|
agents beginning with agent aα. In more detail, α is updated, such that, if,

α+ |L′s| < n,

then,

α = α+ |L′s|.

Otherwise, if α+ |L′s| ≥ n then,

α = α+ |L′s| − n.

Given this update, A′ is constructed, such that, if,

α+ |L′s| − 1 < n

then,

A′ = {aα, aα+1, . . . , aα+|L′s|−1}.
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• Set α := 1;

• Sequentially, for s = 1, . . . , n− 1:

– Compute |Ls,i|;
– Compute indexs,i;

– Generate the remaining coalitions in Ls,i and compute their values;

– Compute |L′s|;
– If |L′s| > 0 then generate A′ and if ai ∈ A′ then generate and compute the value of the

coalition allocated to them in L′s; and,

– Update α.

• Upon executing the above, for s = n, agent indexed aα computes v(Ag).

Algorithm 4.1.2: Actions for every ai ∈ Ag in the ‘basic’ DCVC algorithm

Otherwise, if α+ |L′s| − 1 ≥ n then,

A′ = {aα, aα+1, . . . , an, a1, . . . , aα+|L′s|−n}.

For notation, if ai is allocated a coalition in L′s then their share of this distribution is denoted by L′s,i from
now onward.

Finally, when the coalition values in lists L1, . . . ,Ln−1 have been computed, the agent indexed by α com-
putes the value of the grand coalition. In this way, efforts are undertaken to ensure that the computational
processes are equally distributed among the agents.

4.1.3 Refinements to The Basic Approach
It should be noted that the refinements presented in this section were developed by the authors of [56] and
are not an original contribution of this thesis. Observe that the distribution process specified in Section 4.1.2
does not take into consideration the time required for every agent to set M from one coalition to another.
Specifically, after an agent calculates the value of a coalition, it needs to setM to the coalition ordered above
it. Given coalition Cj in Ls, generating Cj−1 from Cj will require no more than:

a. s agent index comparisons with the agents in Cj ; and,

b. s additions to the index values in Cj .

Consequently, in total, no more than 2s operations are involved in updating M . Now (ignoring the left over
coalitions), in this distribution, for every list Ls, the agents with low index values compute the values of
those coalitions that are located high up Ls. Due to the ordering of the coalitions in each list, as well as
the agents in each coalition, this means that these agents may execute more operations updating M than
the agents with higher index values. Furthermore, this difference grows as the number of agents grows and,
although every agent computes the same number of values, it may be that they all finish at different times.

To circumvent this problem and ensure that the agents complete their calculations at approximately the same
time, the authors in [56] refine the distribution of coalitions so that, for s = 1, . . . , n, each agent ai ∈ Ag is
allocated exactly two sub lists: L1

s,i and L2
s,i, where each sublist is located at different positions within Ls.

These sublists are generated as in the basic approach. First, the size of each sublist is computed as follows:
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• |L1
s,i| = b|Ls,i| × 0.4c; and,

• |L2
s,i| = d|Ls,i| × 0.6e.

It should be noted that the fractions 0.4 and 0.6 were found to be the best ratios via experiments undertaken
by the authors in [56]. Upon computing the sizes of the two sublists, the index of the last coalition in each
sublist is computed as follows:

• index1
s,i = i× |L1

s,i|; and,

• index2
s,i = |Ls| − |L′s| − ((i− 1)× |L2

s,i|).

The remaining ‘left over’ coalitions in these lists are then allocated to the agents as in the ‘basic’ algorithm.
Figure 4.1.3 displays this refined allocation for a system of six agents.

Now, the following assumptions are inherent to the algorithm presented thus far:

(i) All agents have equal computational abilities; and,

(ii) The system does not dynamically change.

When these assumptions do not hold, the basic approach was refined in [56] so that all coalition values can
be computed when these assumptions are not valid. However, in this chapter, it is assumed that all agents
have equal computational abilities and that the system does not dynamically change and so, for this reason,
these refinements are not considered.

Once all coalition values have been calculated, they can be used to generate an optimal coalition structure.
To this end, in the next section, filter rules are presented which can be incorporated into both the coalition
value calculation and optimal coalition structure generation stages to identify coalitions that cannot belong
to an optimal coalition structure. Removing these coalitions can potentially reduce the number of coalition
structures that can be analyzed by the IP algorithm.

4.2 The Integer Partition (IP) Algorithm
To refresh the mind of the reader, the main points of the IP algorithm are presented. Recall from Section
3.2.3 in Chapter 3 that the space of all coalition structures is represented by G which denoted the set of
all integer partitions of n (the number of agents). For example, the integer partitions of n = 5 are: {5},
{1, 4}, {2, 3}, {1, 1, 3}, {1, 2, 2}, {1, 1, 1, 2} and {1, 1, 1, 1, 1}. Here, each integer k in every partition can
be interpreted as a coalition of size k. For example, {1, 4} represents the space of all coalition structures
that consist of exactly one coalition of size 1 and exactly one coalition of size 4. If G denotes the space
of integer partitions of n then the space of all coalition structures is partitioned into subspaces using the
mapping F : Π→ G.

From the input of all coalition values, it is possible to compute the maximal and minimal values of all the
structures in every subspace g ∈ G. This is achieved by computing basic statistical information on all
coalitions of the same size. Specifically, for i = 1, . . . , n, the maximum, minimum and average values of
all coalitions of size i are computed. Let these be denoted as maxi,mini and avi hereafter. From this data,
for each subspace g ∈ G:

• The maximal coalition structure value, referred to as the upper bound of g, (denoted UBg) is set as∑
∀i∈gmaxi;

• The minimal coalition structure value, referred to as the lower bound of g, (denoted LBg) is set as∑
∀i∈gmini; and,
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Figure 4.1.3: Refined DCVC allocation
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• The average coalition structure value, referred to as the average bound of g, (denoted Avg).

From these values, the maximal,minimal and average coalition structure values in each subspace g ∈ G can
be computed through summing the maximal, minimal and average coalition values in g.

(
Now, ∀g ∈ G, given UBg, LBg and AVg, the IP algorithm computes both the upper and lower values for G
(denoted UBG and LBG, respectively) as follows:

• UBG = arg maxg∈G UBg; and,

• LBG = arg maxg∈G AVg.

Once these bounds have been computed, the first pre-processing technique employed by the algorithm is to
prune away all subspaces of structures g ∈ G such that,

UBg < LBG.

Obviously, if UBg < LBG then the value of every structure in g cannot be optimal and so every coalition
structure in g is not analyzed. After pruning all g from G, the values of all coalition structures in the sub-
space g∗, where UBG = UBg∗ , are then computed.

While computing the values of the coalition structures that belong to a particular subspace, methods are
undertaken to ensure that the values of only valid (i.e., not overlapping) coalition structures are computed.
Similarly, methods are used to avoid redundant computations, such as computing the value of same structure
multiple times (e.g., computing v(πα = {{a1, a2}{a3, a4}}) and v(πβ = {{a3, a4}{a1, a2}})).

Specifically, suppose that g∗ = {gi1 , . . . , gik} is the subspace in G such that UBg∗ = UBG and, for
j = 1, . . . , k, let:

• Aj be the set of all coalitions of agents of size j, all ordered non-decreasingly with respect to the
indices of the agents who belong to them; and,

• Mij : |Mij | = gij be a temporary array that can be used to cycle through all possible coalitions which
could belong to gij .

At the start of the subspace search, Mi1 is assigned to a coalition of size gi1 inAi1 . Given this coalition, Mi2

then cycles through all coalitions of size gi2 in Ai2 until a coalition that does not overlap with the coalition
in Mi1 is found. After that, Mi3 is then used to cycle through all coalitions of size gi3 in in Ai3 until a
coalition that does not overlap with both of those in Mi1 and Mi2 is found. This is repeated until all of Mi1

to Mik are assigned disjoint coalitions. At this point, the value of this coalition structure is then calculated
and compared with the maximum value found so far. After that, the coalitions in Mi1 , . . ., Mik are updated
so as to compute the value of a different structure in g∗.

Additionally, whilst computing the structure values in g∗, pre-processing is also applied in order to reduce
the number of coalition structure values which are computed.

Lemma 4.1 Suppose g∗ = {gi1 , . . . , gik} and, suppose that, for j ∈ [1, . . . , k), Mi1 to Mij have been
assigned coalitions Ci1 . . . Cij , respectively. If,

v(Ci1) + . . .+ v(Cij ) + UBgij+1
+ . . .+ UBgik

< LBG,

then all structures π ∈ g∗ such that Ci1 . . . Cij ⊆ π cannot be optimal.
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This branch and bound rule employs pre-processing to identify groups of disjoint coalitions which cannot
belong to an optimal structure in g∗. By avoiding them, this pre-processing ensures that the values of struc-
tures which cannot be optimal are not computed.

Whilst analyzing the coalition structures in g∗, if a structure π∗ ∈ g∗ is found such that v(π∗) = UBG
then this is output as the optimal coalition structure. However, as UBG is not a tight bound, this coalition
structure may not exist. Consequently, if no such structure is found, if v(π∗n) denotes the optimal value after
computing all the coalition values in g∗ then the system is updated as follows:

• LBg is updated so that LBG = arg maxg∈G,π∈Π (Avg, v(π∗n));

• All g ∈ G such that UBg < LBG are pruned away; and,

• UBG is updated so that it is the maximal of v(π∗n) or the maximal UBg′ ∀g′ ∈ G \ {g∗}.

The coalition structures in the next most promising subspace are then analyzed in the same way and, after
doing this, the system is subsequently updated. This continues until either a structure is found with value
equal to the system upper bound or all of the space has been searched.

4.3 Filter Rules
Following on from the existing DCVC and IP algorithms, in the remaining sections of this chapter, a novel
optimal coalition structure generation algorithm, which considers both coalition value calculation and opti-
mal coalition structure generation processes. Inherent to this algorithm are filter rules which identify coali-
tions that cannot belong to an optimal coalition structure and, in this section, these filter rules are presented.

For notation, the space of all coalitions will be denoted by z. Those coalitions that meet the requirements of
the filter rules and, therefore, definitely do not belong to an optimal structure will be denoted by znp ⊆ z.
On the other hand, those coalitions which do not meet the requirements of any of the filter rules and, there-
fore, may belong to an optimal structure will be denoted by zp ⊆ z. Obviously, zp ∩ znp = ∅. Initially,
before the filter rules are applied, it is assumed that all coalitions may belong to an optimal structure, i.e.,
zp = z.

Firstly, consider the following theorem.

Theorem 4.1 Consider any coalition C ⊆ Ag where the agents in C can be partitioned into k coalitions
C1, . . . , Ck. If,

v(C1) + . . .+ v(Ck) > v(C)

then,

∀π : (C;π) ∈ E , π is not optimal.

Proof: Consider any coalition C ⊆ Ag. If the agents in C can be partitioned into k coalitions C1, . . . , Ck
such that v(C1) + . . . + v(Ck) > v(C) then, clearly, for every structure π ∈ Π such that C ∈ π, the
corresponding structure π′ = π \ {C} ∪ {C1 ∪ . . . ∪ Ck} has value greater than the value of π. Therefore,
all π ∈ Π such that (C;π) ∈ E cannot be optimal.

Recall from Section 3.2.1 that the dynamic programming algorithm determines if a given coalition C ⊆ Ag
can belong to an optimal structure by comparing the value of C with the combined value of all partitions
C1, . . . , Ck such that k = 2. However, in the DCVC algorithm, since every agent only knows a fraction of
all coalition values, to do this for every coalition, it may be that every agent has to transfer all values they
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have computed to the other agents in the system and, against D1, this may not minimize the communication
complexity. To this end, a more natural approach is to compare v(C) with the value:∑

ai ∈ C
v({ai}).

This would only require each agent to transfer the single value they computed in L1 and, consequently, the
following filter rule is introduced.

Definition 4.1 (FR1) If the value of a coalition C is smaller than the combined value of single agents who
belong to C then this coalition is said to be unpromising, i.e.,

if, ∑
ai ∈ C

v({ai}) > v(C),

then,

zp = zp \ {C} and znp = znp ∪ {C}.

Theorem 4.1 can be extended so that it can be applied to collections of coalitions which have been grouped
together with respect to some criteria. Due to the way in which the space of all coalitions are represented, a
natural criterion is coalition size.

Theorem 4.2 Consider any coalition C ∈ Ls, as well as any integer partition p = si1 , . . . , sik of the value
s. If the sum of the smallest coalition values in Lsi1 , . . . ,Lsik (denoted ds(p)) is strictly greater than v(C)
then C cannot belong to an optimal coalition structure. More formally, if,

ds(p) :=
k∑
j=1

arg minC′∈Lsij
v(C ′) > v(C),

then,

all π ∈ Π : (C;π) ∈ E cannot be optimal.

Proof: Consider any coalition structure π which contains coalition C. If the sum of the smallest values
in Lsi1 , . . . ,Lsik is greater than v(C) then, clearly, for all disjoint coalitions Csil , . . . , Csik in Lil , . . . ,Lik
such that ∪kj=1Csij = C, it must be that,

v(Csi1 ) + . . .+ v(Csik ) > v(C).

Therefore, against Theorem 4.1, all π such that (C;π) ∈ E cannot optimal.

Let P (s) denote the set containing the value ds(p) for all partitions p of the value s. Following Theorem 4.2,
it is possible to compare every coalition C of size s with every ds(p) value and immediately disregard those
for which v(C) < ds(p). However, with regard to reducing the number of redundant computation, this is
not desirable. Instead, there is no need to apply Theorem 4.2 to all partitions in P (s) but only to ds(p)max
which is maximal in P (s).

Obviously, if,

v(C) > ds(p)max

then,

v(C) > ds(p
′),∀ds(p′) ∈ P (s) \ {ds(p)max}.
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On the other hand, if,

∃ds(p′) ∈ P (s) \ {ds(p)max} such that v(C) < ds(p
′),

then,

v(C) < ds(p)max.

In this context, comparing v(C) with the single ds(p′)max value can determine whether C belongs to an
optimal structure whilst also minimizing the computational resource that is used. This maximal value will
be referred to as the domination value of all coalitions of size s and is formally defined as follows.

Definition 4.2 For any set containing coalitions of size s and, for every integer partition p of the value s,
the domination value d̃s is value of the partition with the biggest ds(p) value in P (s), i.e.,

d̃s = arg maxds(p)∈P (s)ds(p).

Definition 4.3 (FR2) If the value of any coalition C in list Ls is smaller than d̃s then this coalition is said
to be unpromising, i.e.,

if,

d̃s > v(C)

then,

zp = zp \ {C} and znp = znp ∪ {C}.

Recall that, with respect to filtering, the IP algorithm already employs a branch and bound filter rule when
computing the values of coalition structures in a particular subspace in G. Specifically, to decide whether
any partial structure {Cm1 , ..., Cml

} can all belong to an optimal structure in a promising subspace g∗, a
branch and bound (B & B) filter rule is employed which is based on the following proposition.

Proposition 4.1 Given a subspace g∗ = {s1, . . . , sk}, as well as the coalitionsCm1 ∈ Ls1 , . . . , Cml
∈ Lsl ,

where l < k, if,
l∑

j=1

v(Cmj ) +
k∑

j=l+1

arg maxC∈Lsj v(C) ≤ v(π∗N )

then,

all π ∈ g∗ such that {Cm1 , ..., Cml
} ⊆ π cannot be optimal.

Intuitively, for any {Cm1 , ..., Cml
} , if the combined value of these coalitions (

∑l
i=1 v(Cmi)) plus the value

of the sum of the maximum coalition values in the remaining sets Lsl+1
, . . . ,Lsk is less than the current

optimal value v(π∗N ) then no structures to which contain all of Cm1 , ..., Cml
can be optimal. Thus, this

filter rule highlights all such coalitions and does not analyze any structure which contains all of them in
the optimal coalition structure generation process. A restricted version of this filter rule, which can be
incorporated into the DCVC stage of this algorithm, is presented in Definition 4.4.

Definition 4.4 [FR3] For a given subspace g = {s1, . . . , sk} and for j ∈ [1, . . . , k], a coalition C ∈ Lsj
is unpromising if the value of this coalition plus the maximum values of the coalitions in the remaining lists
is less than the value of the current optimal, i.e.,
if ∃C ∈ Lsj , such that,

v(C) +

j−1∑
q=1

arg maxC′∈Lqv(C ′) +

k∑
q=j+1

arg maxC′′∈Lqv(C ′′) ≤ v(π∗N ),

then,

zp = zp \ {C} and znp = znp ∪ {C}.
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Intuitively, all coalition values which satisfy FR1, FR2 and FR3 do not have to be transferred from the
DCVC to the IP stage. To this end, in the next section, a novel optimal coalition structure algorithm, which
considers both coalition value calculation and optimal coalition structure generation processes, is presented.
This consists of the sequential application of the DCVC and IP algorithms, combined with the filter rules.

4.4 An Optimal Coalition Structure Generation Algorithm
In this section, the application of the filter rules in a sequential execution of the DCVC and IP algorithms is
considered. As is consistent with the optimal coalition structure generation algorithms presented in Chapter
3, it is assumed that the system is closed and that the number of agents and coalition values do not dynam-
ically change. Furthermore, it is also assumed that every agent has equal computational abilities and so,
with respect to the DCVC algorithm, it is assumed that the values are calculated as in the ‘basic’ approach
but that the coalitions are allocated as in Figure 4.1.3, i.e., (excluding ‘left over’ coalitions) each agent ai
receives up to two subsets of values to calculate within each list.

4.4.1 Assumptions About Data Transmission Among Agents
In this procedure, before optimal coalition structure generation, agents will have to transmit data among
themselves. For the purposes of this procedure, it is assumed that the agents transmit the data by recording
it in a common data structure, to which every agent has unrestricted access. To this end, when referring to
the agents transmitting data among themselves, it is in the context of agents recording data in the common
structure. Consequently, with respect to transferring data, the following assumptions hold for this algorithm:

• It is faster to transmit coalition values than to calculate them;

• Every agent is able to transmit data simultaneously to all the other agents in the system; and,

• Every agent is able to receive and transmit data at the same time.

A number of transmission protocols are robust against various real world factors that can affect the transfer
of data, such as data corruption or data loss. However, since the focus of this work is concerned with how
the filter rules can offer computational improvements with respect to optimal coalition structure generation,
the processes in which the agents transfer data are not considered in this thesis and are left for future work.

4.4.2 Application of Filter Rules in DCVC Stage
The agents begin this algorithm as they begin the DCVC algorithm, i.e., every agent ai calculates the value
of the ith coalition in list L1. However, this time, upon calculating this value, every agent then transmits it
to all of the other agents in the system. By doing so, every agent is then able to:

A. Execute FR1 immediately after computing the value of every coalition allocated to them in L2, . . . ,Ln;
and,

B. Immediately after executing FR1, for every coalition C /∈ znp allocated to them, compute the value of
all structures {C,∪aj /∈C{aj}}.

The agents then proceed to compute the remaining coalition values in L2, . . . ,Ln as they would in the
DCVC algorithm, executing A and B after every value has been computed. In this context, B ensures that
part of the optimal coalition structure generation process is distributed among the agents. The integer par-
tition graph in Figure 4.4.2 displays the space of all coalition structures whose values are computed in the
coalition value calculation stage for a system of six agents.

As well as executing A and B, after computing the coalition values in each of the two subsets of coali-
tions assigned to them in each sublist, the agents record the maximum, minimum and average values of all
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Figure 4.4.2: An integer partition graph representing the space of all structures whose values are
computed before optimal coalition structure generation in the algorithm presented in this chapter

coalition values that they computed for every sublist. To be precise, the maximum and minimum values in
each sublist are computed by storing the first coalition value they computed in each list as the maximum
and minimum value. Then, for every other value computed in each sublist, if a value is computed which
is greater than or less than the maximum or minimum, respectively, these values are updated. In addition,
once all values have been computed, the average is found by summing these values and dividing them by
the number in each list.

As well as computing this statistical data, the agents also store in memory the biggest structure value they
compute. This is achieved by first setting the value of the coalition structure consisting exclusively of coali-
tions of size one as optimal. Then, the first structure value computed by each agent which is greater than this
value is stored as the current optimal value for this agent. In this way, every time a coalition structure value
is computed which has value greater than the current optimal, this is set as the new optimal value computed
by the agent.

By computing this additional data, this means that, upon completing their calculations (at approximately the
same time), every agent ai ∈ Ag can transmit the following data among themselves:

1. The maximum, minimum and average values in both L1
s,i and L2

s,i;

2. Any coalition values they computed in L′s,i; and,

3. The maximum structure value they have computed (v(π∗n(ai))).

After this information has been exchanged, every agent will be able to compute:

1. The maximum, minimum and average values in L2, . . . ,Ln;
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2. The domination value of every list L2, . . . ,Ln; and,

3. The current optimal of the system.

Clearly, both the maximum and minimum values in every L2, . . . ,Ln, as well as both the domination and
currently optimal structure value can be easily computed from the transmitted data. However, from this
transmitted data, calculating the average value in every L2, . . . ,Ln is less trivial. To do this, the agents
calculate the sum of all the values in every Ls. For a given Ls, this is achieved by first computing the
combined utility of all the coalitions in Ls. This is done by first computing:∑

C ∈ Ls
v(C) = X + Y,

where,

X =
n∑
i=1

((arg averageC∈L1s,iv(C)× |L1
s,i|) + (arg averageC∈L2s,iv(C)× |L2

s,i|)),

and,

Y =
∑

C∈L′s,i

v(C).

From this, the average value in a given Ls is computed as follows,

arg averageC∈Lsv(C) =
X + Y

|Ls|
.

Note that, by transmitting these values, no agent will transmit more than 4n+ 1 values. Since every agent is
assigned approximately b2n−1

n c coalition values to compute, this is clearly much more desirable than trans-
mitting all values.

Now, observe that, after this transfer, every agent can determine which subspaces in G are promising. In
particular, they can compute the upper and lower bounds of each subspace as follows:

• The upper bound of g, (denoted UBg) is set as
∑
∀i∈gmaxi;

• The lower bound of g, (denoted LBg) is set as
∑
∀i∈gmini; and,

• The average bound of g, (denoted Avg).

From this data, the following system bounds can then be computed:

• UBG = arg maxg∈G UBg; and,

• LBG = arg maxg∈G,π∈Π (Avg, v(π∗n)).

Once these bounds have been computed, the first pre-processing technique employed by the algorithm is to
prune away all subspaces of structures g ∈ G such that:

UBg < LBG.

Of course, after doing this, it may be that UBG = LBG, at which point an optimal coalition structure has
already been computed by the agents during the coalition value calculation stages. At this stage, the algo-
rithm can terminate and output π∗n as the optimal coalition structure.
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Otherwise, suppose g∗ = {si1 , . . . , sim} is the most promising subspace. By transferring g∗, UBG, LBG,
AvG, as well as the non-filtered coalition values they have computed in lists Lsi1 , . . . ,Lsim to the entity
who is executing the IP algorithm, this entity can then compute the values all the structures in g∗ that consist
of all non-filtered coalitions and transmits this value to the agents. If an optimal is found, i.e., a structure π
is generated with value equal to UBG then this procedure terminates.

Otherwise, if an optimal is not found then the entity transmits the updated optimal value to the agents who
then update the system bounds. The agents can then repeat the above transmissions for the next most promis-
ing subspace (only transmitting those non-filtered coalition values that were not previously transmitted) and
continue this procedure until all of G has been searched or an optimal coalition structure is found.

In this way, by removing this procedure from the optimal coalition structure generation stage to the coali-
tion value calculation stage, certain lists of coalition values may not be transferred. For instance, if none
of the promising subspaces in G contain any of the coalitions in list Ls then this list of values will not be
transferred. Therefore, this could further minimize the amount of data that is transferred. Also, agents only
execute filter rules over the coalition values in these lists, meaning this could also reduce the computational
resource used by the agents.

Of course, with knowledge of the current optimal structure value, as well as the maximum, minimum,
average and domination values in each of L1, . . . ,Ln, before the lists of non-filtered coalition values are
transfered to the entity who is to execute the IP algorithm, the agents can reduce the transfer load further by
employing further filter rules. Specifically, before this transfer, agents can apply FR2 and FR3 to segments
L1/2
s where Ls ∈ g∗. Formally, these filter rules are defined as follows:

FR2a For all coalitions C ∈ L1/2
s,i if,

d̃s > arg max
C∈L1/2s,i

v(C)

then,

∀C ∈ L1/2
s,i ,zp = zp \ {C} and znp = znp ∪ {C}.

FR3a Given g = {s1, . . . , sk}, for j = 1, . . . , k, if,

arg max
C∈L1/2sj ,i

v(C) +

j−1∑
q=1

arg maxC∈Lsq v(C) +
k∑

q=j+1

arg maxC∈Lsq v(C) < v(π∗N )

then,

∀C ∈ L1/2
sj ,i
,zp = zp \ {C} and znp = znp ∪ {C}.
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Sequential execution of the DCVC and IP Algorithms (without filter rule FR3c).

Input: 〈Ag, v〉

Step 1: After the agents have computed the value of the coalition assigned to them in L1,
they then exchange this value among themselves. Whilst calculating the value of any
coalition C ∈ L2, . . . ,Ln, every agent ai ∈ Ag will:

(1.1) Apply FR1;
(1.2) Compute the value of all structures containing coalitionC, as well as, the singleton

coalitions consisting of the agents who do not belong to C, recording the biggest
structure value they compute (denoted v(π∗n(ai))); and,

(1.3) For s = 2, . . . , n, compute and store the maximum, minimum and average coali-
tion values in their segments L1/2

s,i ;

After calculating the values in all of their segments, agents exchange the information
in 1.2 and 1.3 among themselves.

Step 2: The agents then determine the most promising subspace g∗ and compute the domina-
tion value d̃s for every list Ls : s ∈ g∗ that needs to be transmitted;

Step 3: Each agent executes both FR2a and FR3a over segments Ls, where s ∈ g∗. If a seg-
ment is not filtered out then FR2b and FR3b are applied again to individual coalitions
within this segment that have not been filtered out by FR1.

Step 4: Agents transmit the promising values they have computed in the most promising sub-
space, as well as, the upper lower and average bounds of the system, to the entity who
is to execute the IP algorithm. The agent executing the IP algorithm then computes the
values of all coalition structures in this subspace, executing the B&B filter rule. The
entity then transmits the optimal coalition structure and its value to the other agents.
These agents then update the system bounds and compute the next most promising
subspace and then repeat Step 3 for those lists that have yet to be transmitted.

Output: π∗

Algorithm 4.4.2: Sequential execution of the DCVC and IP algorithms with filter rules

If a sublist is not filtered out then FR2 and FR3 can be applied to individual coalitions within this segment
that have not been filtered out by FR1. Formally, these filter rules are as follows:

FR2b If ∃C ∈ L1/2
s,i such that

d̃s > v(C)

then,

zp = zp \ {C} and znp = znp ∪ {C}.

FR3b Given g = {s1, . . . , sk}, for j = 1, . . . , k, if ∃C ∈ L1/2
sj such that,

v(C) +

j−1∑
q=1

arg maxC∈Lsq v(C) +

k∑
q=j+1

arg maxC∈Lsq v(C) < v(π∗N )

then,

zp = zp \ {C} and znp = znp ∪ {C}.
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Although it is not explicitly stated, if L′s,i 6= ∅ then every agent ai ∈ Ag will also execute both FR2a
and FR3a over the coalitions allocated to them in L′s,i. In this context, by executing the filter rules over
the coalition values in the lists that belong to the promising subspaces only, not only is it possible that the
transfer load between the DCVC and IP stages is greatly reduced but the computational resource is also
minimized. This sequential protocol is formally presented in Algorithm 4.4.2.

4.4.3 Transmitting Values From DCVC To The IP Stage
As all information computed by the agents thus far has been stored in a common data structure, this data
is transferred to the entity who is executing the IP algorithm by enabling them unrestricted access to all
the information in this data structure. Thus, agents transmit system bounds and promising subspaces to the
entity who is executing the IP algorithm by recording them in this data structure. Also, agents transmit non-
filtered values to the entity by executing filter rules FR2a-b and FR3a-b on the values they have computed,
removing those which meet the requirements of the filter rules from the data structure. Similarly, the entity
executing the IP algorithm transmits the optimal coalition structure in the subspace by recording it in the
common data structure.

Recall, the ordering of the coalitions in each of L1, . . . ,Ln ensures that only values and not both coalitions
and values need be stored in memory. Thus, if it is desirable to maintain this feature then transmitting the
promising and not promising coalition values from the DCVC stage to the IP stage is not trivial since the
order of the coalitions, as presented in the DCVC algorithm, must be maintained.

As this chapter is primarily concerned with the computational improvements the filter rules can offer, and
provides only a foundation from which a distributed optimal coalition structure algorithm can be developed,
this is left as future work. However, as an initial solution, the ordering could be maintained by transmitting
a characteristic bit vector with the coalition values. This vector can indicate the position of each promising
coalition value and maintain the list structure. In such a vector ‘1’ indicates that the value is of a promising
coalition, whereas ‘0’ indicates a not promising one. In this way, both the ordering of the coalition values
and the gains from filtering are maintained (with respect to searching through Π) even though the transfer
load (i.e., the number of values stored in the common data structure) is not reduced.

Of course, if this feature is not desirable then each agent can transmit both every promising coalition and its
value to the entity that will execute the IP algorithm. In this way, although two items of data are transmitted
for each promising coalition, unpromising values are not transmitted.

4.4.4 Application of Filter Rules in IP Stage and improved Search
Recall that, given both a subspace and the non-filtered values of the coalitions that can belong to the struc-
tures in this subspace, the IP algorithm cycles through all coalition structures that contain these coalitions,
computing the coalition structure values in the process. Whilst doing this, efforts are undertaken to ensure
that overlapping coalition structures are avoided (that is, coalition structures which do not contain disjoint
coalitions) and that the value of the same structure is not computed multiple times. Additionally, this algo-
rithm also employs the B & B filter rule to identify a priori if certain coalition structures in the subspace
cannot be optimal. The values of these structures then need not be computed.

In many systems, the filtering from the branch and bound filter rule may be sufficient for the IP stage. How-
ever, for those systems where it is not, by ensuring that the agents store additional data about the values they
have been computed in the DCVC stage, this filter rule can be extended so that further structures are avoided.
Of course, when deciding if to incorporate this rule, the potential gains should be weighed up against the
extra computational resource that is used.
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To this end, let −→Z s(j) denote a segment of list Ls such that aj is the first agent in every coalition in
−→
Z s(j) ⊆ Ls.1 For example, referring to Figure 4.1.1,

−→
Z 3(2) = {{a2, a5, a6}, {a2, a4, a6}, {a2, a4, a5}, {a2, a3, a6}, {a2, a3, a5}, {a2, a3, a4}}.

Now, assume that, while calculating the coalition values assigned to them, every agent ai ∈ Ag also records
the maximum coalition value in −→Z s(j) for every aj ∈ Ag. Additionally, as well as the values of the
promising coalitions they have computed, suppose every agent also transmits the maximum value in every
set −→Z s(j) to the IP stage. With this additional information, in the spirit of the branch and bound filter rule,
the following filter rule can also be employed.

Definition 4.5 (FR3c) Given g∗ = {sm1 , . . . , smk
}, as well as the partial structure {Cm1 , ..., Cml

}, where:

• l < k; and,

• For i = 1, . . . , l, Cmi ∈ smi .

For any aj ∈ Ag \ {
⋃l
q=1Cmq}, if,

l∑
i=1

v(Cmi) + max
−→
Z l+1(j) +

k∑
i=l+2

Lmi < v(CS∗N ),

then,

∀π ∈ g∗ : {Cm1 , ..., Cml
} ⊂ π, v(π) is not computed.

In many systems where, for example, it is time consuming to both compute and transmit values, it may not
be worthwhile to employ this filter rule as the potential gains may be reduced. In contrast, when there is no
such time consideration, the potential gains may be so great that it is worthwhile executing these additional
computations. To this end, the decision to incorporate this filter rule into the IP stage is left to the discretion
of the system designer.

Now, in the IP algorithm, in each subspace, coalition structures are constructed via branch and bound be-
tween coalitions of ascending size. For instance, in a system of six agents, given g = {1, 2, 3}, coalition
structures are generated through employing a branch and bound rule between the coalitions in L1 and the
coalitions in L2, leaving a coalition of size three from the remaining agents. Clearly, from a computational
perspective, it is advantageous if the branch and bound filter rule stops constructing a structure as early
as possible because less work is done. Therefore, rather than construct structures in the manner described
above, in this algorithm, the branch and bound rule constructs coalition structures from the subspaces which
are ordered non-decreasingly with respect to the number of promising coalitions they contain. This can im-
prove the effectiveness of the branch and bound filter rule (and, therefore, the efficiency in which an optimal
coalition structure is generated) because it can prune away the biggest part of the subspace at a very early
stage.2 To this end, it is assumed that every subspace is analyzed as in the IP algorithm only the structures
are constructed from the list that are ordered non-decreasingly with respect to the number of promising
coalitions they contain. The entity who executes the IP algorithm can easily deduce this number from the
values that are transmitted to them.

1Recall that, due to the ordering of coalitions, all coalitions beginning which each agent will naturally be grouped
together.

2In an extension to this work, Tomasz Michalak et al. prove that this method of search is guaranteed to be more
effective than the existing method. However, as this paper has yet to be published, no citation can be given at the
current time.
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Figure 4.4.4: The sequential application of the DCVC and IP algorithms with filter rules
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4.5 Assessing The Effectiveness of The Filter Rules
In this section, the effectiveness of the filter rules are assessed with respect to the percentage of coalition
values they filter out. This is achieved by comparing the sequential execution of DCVC and IP algorithms
both with and without filter rules. To do this, all real world factors which could affect the transmission of
data or the ability of the agent to compute values (such as technical failure, data corruption, data loss in
transmission e.t.c) are ignored. To this end, it is assumed that:

1. The calculation of both coalition and coalition structure values takes no time;

2. The agents are fully cooperative and have equal computational abilities; and,

3. Any data transfers are instantaneous.

Note that, against these assumptions, it is advantageous to employ FR3c. The effectiveness of the filter rules
are assessed with respect to the percentage of z which does not have to be transmitted from the DCVC to
the IP stages as a consequence of executing them. This can reduce the number of coalition structures that
are analyzed by the IP algorithm, as well as the number of coalition values that are transmitted to the entity
who is to execute the IP algorithm. Clearly, from a computational perspective, this is desirable. Addition-
ally, these filter rules have the power to reduce the communication complexity, transmission load and the
computational load of the agents, meaning these filter rules can provide a useful foundation from which a
distributed optimal coalition structure generation algorithm can be developed.

For a system of n = 11, . . . , 20 agents, the sequential application of DCVC and IP algorithms, with and
without filter rules, was executed 25 times where the coalition values were distributed as follows,

Normal: v(C) = max(0, |C| × p), where p ∈ N(µ = 1,σ = 0.1); and,

Uniform: v(C) = max(0, |C| × p), where p ∈ U(a, b) and a = 0,b = 1.

These distributions were chosen since they were also used in both [66] and [59]. The sub- and super-additive
cases were omitted as, following Theorem 2.2, their solution is trivial. The algorithms were implemented
in MATLAB and the results were reported within a a 95% confidence interval. The results are presented in
Table 4.5a and Table 4.5b. In these tables:

• Column 1 shows the number of agents (n);

• Column 2 shows the number of coalition values that need be computed before the DCVC stage
commences (|z|);

• Column 3 shows the percentage of z that needs to be transmitted from the coalition value calculation
stage to the optimal coalition structure generation stage when there are no filter rules;

• Column 4 shows the percentage of z transmitted from the coalition value calculation stage to the
optimal coalition structure generation stage when filter rules are applied;

• Columns 5 - 9 the percentage of coalitions filtered by FR1, FR2a, FR2b, FR3a and FR3b, respec-
tively (expressed as a percentage of the number which are filtered); and,

• The last column shows compares the running times of the sequential execution of DCVC and IP
algorithms with and without filter rules.

Specifically, the figure in the last column is computed in the following manner,

R :=
Running time of IP algorithm with unfiltered input and without FR3c

Running time of IP algorithm with filtered input and FR3c
.
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R

11 2,047 91.00± 4.5 8.68± 1.69 53.12 0 0.01 21.61 25.26 2.75± 0.81
12 4,095 91.00± 2.4 8.43± 1.51 55.71 0 0.01 18.13 26.15 4.17± 1.55
13 8,191 90.00± 5.5 5.29± 1.37 54.91 0 0 16.69 28.40 6.61± 2.03
14 16,383 91.00± 5.3 6.05± 1.61 54.99 0 0 16.70 28.31 16.51± 5.00
15 32,767 93.00± 8.4 5.04± 1.21 53.11 0 0 14.70 32.19 17.88± 6.04
16 65,535 91.00± 5.1 4.48± 1.14 49.79 0 0 14.04 36.17 23.21± 7.40
17 131,071 92.00± 4.5 4.29± 1.01 53.00 0 0 11.19 35.81 112.20± 44.00
18 262,143 93.00± 6.3 3.69± 0.89 52.47 0 0 9.01 38.52 169.00± 54.00
19 534,287 94.00± 6.1 3.12± 0.81 51.48 0 0 7.80 40.72 197± 67.00
20 1,048,575 91.00± 5.3 2.49± 0.67 50.03 0 0 5.99 43.98 380.00± 8.00

Table 4.5a: Assessment of filter rules for a normal distribution of coalition values

Clearly, if R > 1 then this means that the running time of the algorithm without filter rules is greater than
the running time of the algorithm with filter rules. Thus, if R > 1 then this means that the filter rules can
improve the speed in which an optimal coalition structure is generated and, in this way, offer computational
improvement.

From the obtained data, the following observation and trends are common to both the uniformly and nor-
mally distributed coalition values:

Observation 1 Filter rule FR1 is the most effective with respect to filtering coalition values;

Observation 2 Filter rules FR2a and FR2b are generally ineffective with respect to filtering coalition val-
ues;

Trend 1 As n increases, the number of coalition values filtered by FR3a decreases; and,

Trend 2 As n increases, the number of coalition values filtered by FR3b increases.

Consider Observation 1 and Observation 2 first. Intuitively, FR1 is effective if the values of all coalitions
of size one are large relative to the values of all coalitions of size greater than one. On the other hand, the
effectiveness of both FR2a and FR2b are dependent upon the size of the domination value relative to the
coalition values. In this context, if the values of all coalitions of size one are large relative to the values of all
coalitions of size greater than one and the values of all coalitions of size greater than one are within a small
range of one another then this may explain these observations. Thus, if the converse was true then perhaps
FR1 would not perform as well and both FR2a and FR2b would be more effective at filtering coalition
values.
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R

11 2,047 51.31± 16.51 3.32± 1.79 49.24 0.07 1.17 35.21 14.31 1.12± 0.14
12 4,095 39.99± 18.01 2.78± 1.41 51.30 0.06 1.00 28.01 19.63 1.22± 0.09
13 8,191 49.68± 17.52 2.71± 1.02 49.43 0.12 0.68 27.83 21.94 1.34± 0.18
14 16,383 41.13± 17.52 2.42± 0.68 50.32 0.04 0.32 23.15 26.17 1.14± 0.12
15 32,767 48.52± 21.00 2.35± 0.48 51.12 0.00 0.11 18.51 30.26 1.23± 0.16
16 65,535 52.98± 19.40 1.26± 0.33 50.51 0.00 0.04 16.54 32.91 1.14± 0.09
17 131,071 50.41± 18.97 1.15± 0.29 51.81 0.00 0.02 11.19 36.98 1.01± 0.03
18 262,143 46.41± 19.70 1.13± 0.28 50.18 0.00 0.00 10.91 38.91 1.03± 0.02
19 534,287 41.71± 18.42 1.05± 0.13 50.02 0.00 0.00 8.01 41.97 1.04± 0.04
20 1,048,575 32.80± 19.70 1.04± 0.10 50.25 0.00 0.00 7.46 42.29 1.19± 0.11

Table 4.5b: Assessment of filter rules for a uniform distribution of coalition values

Now, consider both Trend 1 and Trend 2. Interestingly, as the value of n increases, the number of coali-
tion values filtered by FR3a decreases whereas the number of coalition values filtered by FR3b increases.
With regards to FR3a, the higher the value of n, the bigger |Ls| becomes for s ∈ [2, . . . , n − 1], meaning
there is greater probability that the randomly drawn extremal values in these segments are similar to each
other. As this filter rule is based on maximum value in each segment, this may explain this particular trend
in the results obtained. In contrast, as FR3b focuses on individual coalition values, for s ∈ [2, . . . , n − 1],
since |Ls| increases as n increases, there is a greater chance that this rule may become increasingly effective.

Now, comparing the results obtained for uniformly and normally distributed coalition values, the following
observations and trends can be noticed:

Observation 3 With uniformly distributed coalition values, exponentially less values are input to the opti-
mal coalition structure generation stage in the absence of filter rules than with normally distributed
coalition values;

Observation 4 Filter rules reduce a greater percentage of the input to the optimal coalition structure gener-
ation stage in the normal case than in the uniform case; and,

Trend 3 As n increases, the filter rules offer exponentially greater improvements in the running time of
the procedure for normally distributed coalition values compared to only linear improvements for
uniformly distributed values.

One interpretation of Observation 3 is that, for uniform values, an optimal coalition structure is found
during the coalition value calculation stage or during the search of only a few promising subspaces. Alter-
natively, it maybe that the promising subspaces all contain a common set of lists meaning only these lists
need be transmitted exactly once to the entity who is executing the IP algorithm.
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Given this explanation, if exponentially more coalition values are input to the coalition structure generation
stage in the normal case than in the uniform case then this means that, in the former case, there are exponen-
tially more coalition values over which the filter rules are applied. This, in turn, means that, in the normal
case, there are exponentially more coalitions to filter out than in the uniform case. Thus, this reasoning
could explain Observation 4.

Finally, Trend 3 can be explained as a consequence of Observation 4.

In conclusion, given the predefined assumptions, these results suggest that, for uniformly and normally
distributed values, the combination of the filtered input and the application of FR3c results in a much faster
performance of this algorithm. This can be attributed to both the filter rules and the order in which the
subspaces are searched. With regards to the latter case, the new search method ensures that more coalitions
are filtered during the IP stage and, consequently, the number of coalition structure values that have to be
computed is already significantly less. The results also suggest that, if the coalition values are known to be
either uniformly or normally distributed then it may only be necessary to employ filter rules FR1 and FR3b
in the DCVC stage as these are the most effective.

4.6 Summary
In this chapter, pre-processing techniques, represented as filter rules that can be incorporated into the se-
quential application of the DCVC and IP algorithms, were presented. These rules identified coalitions that
could not belong to an optimal coalition structure and, when these coalitions were found, appropriate action
was taken. These actions involve filtering coalition values from the input or avoiding all structures contain-
ing these coalitions in Π.

From a computational perspective, these filter rules can reduce the number of coalition structure values that
need be computed by the IP algorithm. Also, they can reduce the number of coalition values an individual
agent needs to transfer after completing their computations. In this context, these filter rules may be useful
foundations from which a distributed optimal coalition structure generation algorithm can be developed for
a system of fully cooperative agents. To this end, a sequential process was developed in which both the
algorithms and filter rules were employed.

To reduce the transfer load, as well as the number of values over which a number of the filter rules are
computed, the processes of identifying promising subspaces was switched from the IP stage and put in
the DCVC stage instead. Additionally, the way in which the values of the structures in each subspace
were computed was refined so as to increase the effectiveness of filtering. The effectiveness of these filter
rules was tested for normally and uniformly distributed coalition values. Empirical results showed that
the filter rules can greatly reduce the transmission load between the stages for both of these distributions.
Furthermore, these results also showed that the filter rules can greatly reduce the overall running time of
sequential application of both algorithms, especially in the normal case, where filter rules can offer an
exponential improvement. In conclusion, empirical results seem to suggest that the filter rules can provide
an important foundation from which to build a distributed optimal coalition structure generation algorithm
for a system of fully cooperative agents.
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Graph 4.5: The relative running times of the algorithms for uniform and normally distributed
coalition values. The x axis represents the number of agents in the system (n), whereas the y axis

represents R for the corresponding n value
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Chapter 5

Optimal Coalition Structure Generation in
Partition Function Games

In characteristic function games, when all coalition values are given as input, the integer partition (IP) algo-
rithm (presented in Section 3.2.3) can efficiently generate an optimal coalition structure through determining
a priori if certain groups of coalition structures cannot be optimal. This is achieved, in part, by bounding
the values of all coalition structures. Then, only the values of the ‘promising structures’ in Π are computed
and those which cannot be optimal are avoided.

For many multi-agent systems, characteristic function game representations are sufficient to model coalition
formation as the coalitions either do not interact with each other while pursuing their own goals or because
such interactions are insignificant enough to be neglected. However, in a number of multi-agent system en-
vironments, there may exist non-negligible externalities from coalition formation where the utility obtained
from forming coalitions may be affected by the formation of other distinct coalitions. In particular, fol-
lowing previous discussions, real world examples include coalition formation between agents representing
different companies.

When there exist externalities from coalition formation, the value of a coalition C ⊆ Ag can be dependent
upon the structure in which it is embedded. Thus, partition function games P = 〈Ag, P 〉 are more appro-
priate than characteristic function games in order to model coalition formation when there are externalties
from coalition formation. Recall that, in this representation, if E represents the space of all embedded coali-
tions then, for any (C;π) ∈ E , function P (c;π) represents the value obtained from forming coalition C in
structure π. However, to directly execute the IP algorithm in partition function games, the partition function
values of all embedded coalitions (C;π) ∈ E must be given. Since |E| ≥ Bn,1 ∀n ∈ N, this is infeasible,
even for relatively small values of n. Therefore, in practice, it is not possible to input all P (C;π) values
when dealing with optimal coalition structure generation in partition function games. This, in turn, means
that in partition function games, when given only the partition function, it is not possible to pre-determine
the value of a coalition C which is embedded in a structure π without actually computing P (C;π). Con-
sequently, P (C;π) must be computed for all (C;π) ∈ E to guarantee that an optimal coalition structure is
generated. This clearly presents a major computational challenge.

In this chapter, for partition function games where certain features regarding the nature of the externality
or the nature of the partition function are known then an algorithm is developed which can exploit this
additional information so that only a fraction of both Π and E need be analyzed to guarantee an optimal
structure. Specifically:

• In Section 5.1, the notions of positive and negative externalities, as well as the notions of super-
additivity and sub-additivity in partition function games are formally defined. Based on these notions,

1Recall that Bn is the Bell number for n and represents the number of coalition structures that can be formed from
n agents.
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four natural classes of partition function games are then presented;

• In Section 5.2, for these classes of games, it is proven that, by computing the values of a number of
embedded coalitions, the values of all coalitions can be bounded;

• In Section 5.3, an algorithm is developed which, for these classes of games, can generate an optimal
coalition structure through computing the values of only a fraction of Π; and,

• In Section 5.4, the effectiveness of this algorithm is evaluated. As this is the first algorithm that
considers coalition structure generation in partition function games, this algorithm is assessed with
respect to the number of coalition structure values that are computed by algorithm. It is shown that,
for a system of 10 agents, this algorithm can, in some cases, generate an optimal coalition structure
by analyzing only 4% of Π.

5.1 Natural Classes of Partition Function Games
The optimal coalition structure concept formulated in Definition 2.12 can be easily extended to partition
function games as follows.

Definition 5.1 Given any P = 〈Ag, P 〉, an optimal structure is a structure π∗ ∈ Π such that:

π∗ = arg maxπ∈Π

∑
C∈π

P (C;π).

Intuitively, if nothing is known about the function P or the nature of the externalities then the value of coali-
tionC in every structure to which it is embedded cannot be known a priori. Therefore, for every (C;π) ∈ E ,
P (C;π) must be computed exactly once in order to generate π∗ and no algorithm can do this through ana-
lyzing fewer embedded coalitions. This, in turn, implies that all of Π must be analysed in order to generate
an optimal coalition structure.

However, if the nature of the partition function and the externalities are known then it is possible to circum-
vent the above reasoning and bound the values of the coalitions and, therefore, the values of the structures
in which they are embedded. In particular, based upon both the nature of the partition function and the
externalities, it is possible to identify natural classes of partition function games.

Definition 5.2 Given a PFG representation P = 〈Ag, P 〉, P is said to exhibit strict positive externalities if
for:

• All disjoint coalitions C, S, T ⊆ Ag;

• All partitions π′ of the agents in Ag \ S ∪ T ∪ C; and,

• All structures

- π = {C, S, T, π′};
- πα = {C, S ∪ T, π′};
- πβ = {S,C ∪ T, π′}; and,

- πγ = {T,C ∪ S, π′};

then,

1. P (C;πα) > P (C;π);

2. P (S;πβ) > P (S;π); and,
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3. P (T ;πγ) > P (T ;π).

In contrast, if the ‘>’ sign is interchanged with the ‘<’ sign then P is said to exhibit strict negative exter-
nalities.

Against this definition, if either the ‘>’ or ‘<’ signs are interchanged with the ‘≥’ or ‘≤’ signs then P is
said to exhibit weak positive and weak negative externalities, respectively.

In words, P is said to exhibit strict positive externalities from coalition formation if the creation of every
coalition increases the value of all co-existing coalitions. On the other hand, if the creation of every coalition
decreases the value of all the other coalitions in the structure then P is said to exhibit strict negative exter-
nalities from coalition formation. It is apparent from this definition that the characteristic function game
representation is a special case of the partition function game representation where all externalities from
coalition formation have value zero.

In addition to the notions of negative and positive externalities, the notion of sub- and super- additivity can
also be formulated for partition function games as follows (taken from [27]).

Definition 5.3 Given a partition function game representation P = 〈Ag, P 〉, P is super-additive if for:

• All C, S ⊆ Ag such that C and S are disjoint;

• All partitions π′ of the agents in Ag \ C ∪ S; and,

• All structures π = {C, S, π′}, π1 = {C ∪ S, π′};

then,

P (C ∪ S;π1) ≥ P (C;π) + P (S;π).

Conversely, P is sub-additive if the converse is true, i.e.,

P (C ∪ S;π1) ≤ P (C;π) + P (S;π).

Since the notions of externalities and additivity are independent of one another, this gives rise to four natural
classes of partition function game:

1. Super-additive games with positive externalities (P+
sup);

2. Super-additive games with negative externalities (P−sup);

3. Sub-additive games with positive externalities (P+
sub); and,

4. Sub-additive games with negative externalities (P−sub).

Example 5.1 [Taken from [27]]. Consider P = 〈Ag, P 〉 where Ag = {a1, a2, a3} and Π exclusively
consists of the following structures:

πα = {{a1}, {a2}, {a3}};
πβ = {{a1, a2}, {a3}};
πγ = {{a1, a3}, {a2}};
πδ = {{a2, a3}, {a1}}; and,
πε = {{a1, a2, a3}}.
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Figure 5.1: The four natural classes of partition function games studied in this chapter
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For this game, E consists of the following embedded coalitions and partition function values:

P ({a1};πα) = P ({a2};πα) = P ({a3};πα) = 4;

P ({a1, a2};πβ) = P ({a1, a3};πγ) = P ({a2, a3};πδ) = 9;

P ({a1};πδ) = P ({a2};πγ) = P ({a3};πβ) = 1; and,

P (Ag;πε) = 11.

In this example:

• The structures πβ, πγ and πδ are formed from two agents in structure πα merging to form a coalition
of size two; and,

• The structure πε is formed from a merger of the two coalitions which make up the structures πβ, πγ
and πδ.

Observe that in structures πβ, πγ and πδ, the formation of the coalitions of size two induce a negative ex-
ternality of 1 − 4 = −3 upon the agent who does not cooperate with them. Also, observe that the value of
the formed coalition in any structure is greater than the combined values of the coalitions from which it was
formed. For instance, the value of the coalitions of size 2 in πβ, πγ and πδ are greater than the combined
value of the two agents who make them up and the grand coalition formed in πε is greater than the value of
the structures πβ, πγ and πδ. In this way, the partition function in this example induces negative externalities
and is super-additive.

Intuitively, both sub-additivity and positive externalities are displayed if P is changed so that:

P ({a1};πα) = P ({a2};πα) = P ({a3};πα) = 3;

P ({a1, a2};πβ) = P ({a1, a3};πγ) = P ({a2, a3};πδ) = 2;

P ({a1};πδ) = P ({a2};πγ) = P ({a3};πβ) = 8; and,

P (Ag;πε) = 4.

Recall Theorem 2.2. This theorem states that if the characteristic function is super- or sub- additive then
π∗ = {Ag} or π∗ = {{a1}, . . . , {an}}, respectively. Clearly, this theorem also holds for the partition
function in both P+

sup and P−sub. However, it can be shown through example that, for classes P−sup and P+
sub,

Theorem 2.2 may not hold.

Example 5.2 Recall Example 5.1. Consider first the situation where functionP exhibits both super-additivity
and negative externalities. Observe that, despite the super-additivity constraint, πε = {{a1, a2, a3}} is not
an optimal structure. Instead, the structure πα = {{a1}, {a2}, {a3}} is optimal.

Now, consider the situation where function P exhibits both sub-additivity and positive externalities. Ob-
serve that, despite the sub-additivity constraint, πα = {{a1}, {a2}, {a3}} is not optimal but, instead, the
structures πβ = {{a1, a2}, {a3}} , πγ = {{a1, a3}, {a2}} and πδ = {{a2, a3}, {a1}} are optimal.

Example 5.2 shows that if the function P is subject to both super-additivity and negative externalities then it
may be that π∗ 6= {Ag}, whereas if P is subject to both sub-additivity and positive externalities then it may
be that π∗ 6= {{a1}, . . . , {an}}. This implies that, in the worst case, the values of all coalition structures
π ∈ Π must be computed to generate an optimal coalition structure in either P+

sub and P−sup. However, in
the next section, it is proven that, for both of these games, the values of all coalitions (and, therefore, the
structures in which they are embedded) can be bounded by first computing the values of the coalitions which
are embedded in structures that belong to only a fraction of Π. In this context, the values of the remaining
coalition structures can be computed in the spirit of the IP algorithm, avoiding those that cannot be optimal.
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5.2 Bounding Coalition Structure Values
Before describing how the values of the coalitions are bounded, first consider an integer partition graph
representation of the space of all coalition structures. In contrast to the representation presented in Figure
3.2.4, for i = 1, . . . , n−1, the edges are directed from coalition structures of size i to coalition structures of
size i+1. In this representation, each node represents a subspace of all coalition structures denoted that con-
tain coalitions of size represented by the integer values (that is, following IP algorithm notation, each node
represents each g ∈ G ). For example, {4, 2} denotes the subspace of all coalition structures that consist
of exactly one coalition of size 2 and one coalition of size 4. This time, as opposed to the integer partition
graph representation used for the hybrid algorithm (presented in Section 3.2.4), for i = 1, . . . , n − 1, an
edge between structures of size i and i + 1 represents the formation of the structure of size i from a merge
between two coalitions in the structure of size i+ 1.

Recall that, in partition function games, P (C;π) represents the utility obtained from forming a coalition
C ⊆ Ag given that the coalitions in π \ {C} have formed. To this end, this section commences with the
following insight.

Theorem 5.1 Consider a PFG P = 〈Ag, P 〉 where |Ag| = n. For every coalition C ⊆ Ag, consider the
following structures:

• πα = {C, {a1}, . . . , {an−|C|}} where {a1, . . . , an−|C|} = Ag \ C; and,

• πβ = {C,C ′} where C ′ = Ag \ C.

If P = P−sup then, for every πγ ∈ Π \ {πα, πβ} such that (C;πγ) ∈ E , the following is true:

1. P (C;πβ) ≤ P (C;πα);

2. P (C;πβ) ≤ P (C;πγ); and,

3. P (C;πα) ≥ P (C;πγ).

Proof: Inherent to this proof is the following insight.

In any integer partition graph, for every coalition C ⊆ Ag, there exist paths from πα to πβ
such that every structure πγ , where (C;πγ) ∈ E , is represented by exactly one node in every
one of these paths.

Assume P = P−sup and consider the value of any coalition C in πα (i.e., P(C;πα)). Observe that no other
coalitions have been formed in the structure πα. Therefore, there are no negative externalities induced on
the coalition C ∈ πα. However, as every path from πα to πβ is traversed, coalitions are formed that induce
consecutive negative externalities upon coalition C. Consequently:

• The value of coalition C ∈ πα can be no less than the value of coalition C in both πβ and πγ ; and,

• The value of coalition C in every πγ can be no less than the value of coalition C in πβ .

Clearly, against this reasoning, all of 1-3 hold.

The intuition behind Theorem 5.1 can be extended to the P+
sub class of games.

Theorem 5.2 For any P+
sub then, for every πγ ∈ Π such that C ∈ πγ , the following is true:

1. P (C;πβ) ≥ P (C;πα);

2. P (C;πβ) ≥ P (C;πγ); and,
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Figure 5.2: An extract from the representation of Π for six agents. Here, numbers represent the
indices of the agents in the coalitions

3. P (C;πα) ≤ P (C;πγ).

Proof: Assume P = P+
sub . This time, as every path from πα to πβ is traversed, coalitions are formed that

induce consecutive positive externalities upon every coalition. Consequently, for every coalition C ⊆ Ag:

• The value of coalition C ∈ πα can be no greater than the value of coalition C in both πβ and πγ ; and,

• The value of coalition C in every πγ can be no greater than the value of coalition C in πβ .

Therefore, 1-3 hold.

To provide further intuition regarding both Theorem 5.1 and Theorem 5.2, consider Figure 5.2. Observe
that the coalition {a1, a2, a3} belongs to every structure in this figure. Theorem 5.1 says that, under P−sup
assumptions, for i = b, . . . , e, P ({a1, a2, a3};πa) ≥ P ({a1, a2, a3};πi). Initially, it may seem possible
that, P ({a1, a2, a3};πa) < P ({a1, a2, a3};πd) because πd emerged after agent a3 joined coalition {a1, a2}
in πb and, due to super-additivity, P({a1, a2, a3};πd) may be greater than P({a1, a2, a3};πa). However,
this super-additivity is offset by the negative externalities induced by the formation of the coalition {a5, a6},
meaning the value of {a1, a2, a3} in πd can be no greater than the value of {a1, a2, a3} in πa. Similar rea-
soning can be used to provide intuition with respect to the claims made forP+

sub assumptions in Theorem 5.1.

The significance of both Theorem 5.1 and Theorem 5.2 is as follows. Given P−sup, for every coalition
C ⊆ Ag, P (C;πβ) represents the smallest value of C whereas P (C;πα) represents the biggest value of
C in the system. In contrast, given P+

sub, for every coalition C ⊆ Ag, P (C;πβ) represents the biggest
value of C, whereas, P (C;πα) represents the smallest value of C in the system. In this way, by computing
these values, the maximum and minimum values of all coalition can be computed and, in the spirit of the
IP algorithm, (non-tight) upper and lower bounds on the values of the remaining coalition structures can be
determined. Figure 5.3 displays the subspaces of coalition structures that should be analyzed in order to
bound the coalition values in a six agent setting.

Against both Theorem 5.1 and Theorem 5.2, in the next section, an algorithm is developed for both P+
sub

and P−sup in which, upon bounding the values of all coalitions, bounds the values of the remaining structures
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whose values have not been computed thus far. In this way, the structures that cannot be optimal in the
remaining space will be avoided and so, for these classes of partition function games, an optimal coalition
structure may be generated without having to analyze all of Π.

5.3 An Optimal Coalition Structure Generation Algorithm
An algorithm to generate an optimal coalition structure in either P+

sub or P−sup is presented in Algorithm
5.3.2. In this algorithm, the space of all coalition structures is represented as an integer partition graph, as
described in the previous section. Recall that in this graph, in terms of the IP algorithm notation, each node
represents a subsapce g ∈ G. Also, for any two g = {si1 , . . . , sim}, g′ = {si1 , . . . , sim−1} ∈ G, an edge
connects g to g′ if and only if ∃sik , sil ∈ g and ∃sij ∈ g′ such that:

1. g \ {sik , sil} = g′ \ {sij}; and,

2. sik + sil = sij .

Given this representation, the following processes are fundamental to the algorithm:

1. The manner in which the coalition values are bounded; and,

2. The way in which the remaining space of coalition structures are searched.

5.3.1 Bounding Coalition Values
In Step 1 of this algorithm, the maximum and the minimum values of each coalition C are computed. Fol-
lowing Theorem 5.1, for both P−sup and P+

sub and for all coalitions C ⊆ Ag, this is achieved by computing
P (C;πα) and P (C;πβ) in E . As well as this, the value of all πα, πβ ∈ Π, where πα, πβ are as described in
Theorem 5.1 and Theorem 5.2, are also computed.

Both the maximum and minimum values of every coalition are then stored in memory. For notation, let
vmax(C) and vmin(C) denote the maximum and minimum values of every coalition C ⊆ Ag, respectively.
Specifically, in the spirit of the distributed coalition value calculation algorithm presented in [56], these
values are stored so that all coalitions of the same size are grouped together and ordered with respect to
the indices of the agents who make them up. In this context, for every coalition C ⊆ Ag, only vmax(C)
and vmin(C) need be stored in memory and not the coalitions as well. This is because the coalitions can
be determined from the place these values occupy in the group. Also, this input representation is an ideal
representation from which maximum, minimum and average coalition values can be computed.

Additionally, whilst computing these embedded coalition values, the values of the structures in which these
coalitions are embedded can also be computed, storing both the structure with biggest value (π∗n) and its
value v(π∗n) in memory.

For a system of six agents, Figure 5.3 displays the integer partition graph representation of a system of six
agents, as well as, the subspaces that are searched in order to bound the coalition values.

5.3.2 Computing the Remaining Coalition Structure Values
For s = 1, . . . , n, let vmaxs(C) and vmins(C) denote the maximum and minimum values of all coalitions of
size s, respectively. When all maximum and minimum coalition values have been computed, all subspaces
containing the structures that were analyzed to compute these values are pruned and the upper and lower
bounds for the remaining configurations are computed.
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Figure 5.3: Configurations searched to bound coalition values in a six agent setting
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For every configuration g = {si1 , . . . , sim}, the upper bound (UBg) and lower bound (LBg) of g are
computed as follows:

UBg =
m∑
j=1

vmaxsj (C),

and,

LBg =

m∑
j=1

vminsj (C).

Once these bounds have been computed for the remaining configurations, the upper bound (UBG) and lower
bound (LBG) for the entire system G is computed as follows:

UBG = arg maxg∈GUBg,

and,

LBG = arg maxg∈G,π∈Π{
∑
C∈π∗n

P (C;π∗n), Avg},

where, for each g = {si1 , . . . , sim} ∈ G,

Avg =

m∑
j=1

arg avC∈sij v
minsij (C),

and arg avC∈sij v
minsij (C) denotes the mean average of all the minimal values of all coalitions of size sij .

Upon doing this, the remaining configurations whose upper bound is less than the lower bound for the entire
system are pruned. The most promising configuration g∗, i.e., the configuration with highest upper bound,
is then searched as in the IP algorithm presented in Section 3.2.3.

As with the IP algorithm, once the values of all coalition structures in this subspace have been computed,
if a structure is found with value equal to UBG then this is output as optimal. Otherwise, if the value of
the optimal structure in g∗ is less than UBG then the upper and lower bounds of the system are updated as
follows:

UBG = arg maxg∈G,π∈Π{
∑

C∈π∗n∈g∗
P (C;π∗n), UBg′},

and,

LBG = arg maxg∈G,π∈Π{
∑

C∈π∗n∈g∗
P (C;π∗n), Avg},

where:

1.
∑

C∈π∗n∈g∗ P (C;π∗n) is the biggest structure value in g∗; and,

2. UBg′ is the upper bound of the next most promising subspace g′ ∈ G \ {g∗}.
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All configurations whose upper bound is less than the new lower bound are pruned and the next promising
configuration is searched. This is repeated until all configurations have been searched or an optimal is found.

Suppose that g∗ = {si1 , . . . , sim} is the configuration with the highest upper bound that has yet to be
searched. Recall that, in characteristic function games, the IP algorithm employs a branch and bound rule
which avoids evaluating coalition structure in g∗ that cannot have value greater than LBG. Against this
background, instead of exact coalition values, the maximum values, as computed in Step 1, can be used and
incorporated into this rule for both P−sup and P+

sub settings. In more detail, for k = 1, . . . ,m − 1, given
C1 ∈ Lsi1 ,C2 ∈ Lsi2 , . . ., Ck ∈ Lsjk , if,

k∑
j=1

vmax(Cj) + UBsij+1
+ . . .+ UBsim < LBG,

then any structure in g∗ which contains all ofC ′,C ′′, . . .,C ′k cannot be optimal. The values of these coalition
structures are, therefore, not computed. Of course, with only maximum values, such a branch and bound
rule is likely to be less effective than in the characteristic function game settings where exact coalition values
are used.

Optimal Coalition Structure Generation Algorithm For Partition Function
Games.

Input: P = 〈Ag,P〉

Step 1. Compute the value of the grand coalition. For every coalition C of size
s ∈ [1, . . . , n], compute its value in the structures where;

(i) All the other agents not in C form coalition C ′ = Ag \ C; and,
(ii) Every other agent not in C acts alone.

These values, as well as the structure with highest value (π∗n) plus its value
(v(π∗n)) , are stored in memory.

Step 2. Prune those configurations which were searched in Step 1.

Step 3. Compute the upper and lower bounds of every remaining configuration G,
as well as the upper and lower bounds of the all the remaining configurations
using the maximum and minimum coalition values from Step 1 plus the current
optimal value.

Step 4. Prune away those subspaces which cannot deliver a coalition structure
greater than LBG, i.e., UBg < LBG;

Step 5. Search the configuration with highest upper bound using a refined version
of the branch and bound rule employed by the IP algorithm.

Step 6. Once the search of the configuration in Step 5 is completed, check whether
the value of the optimal structure in the most promising configuration is equal
to UBG. If this is the case then output the structure as optimal. If this not the
case but the value of this structure is greater than v(π∗n) then;

1. Update v(π∗n) to be the value of this structure and set this coalition struc-
ture to be the new optimal of the system;

2. Update the upper and lower bounds of the system; and,
3. Go to Step 4.

Output: π∗n.

Algorithm 5.3.2: Refined IP Algorithm for Partition Function Games
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5.4 Assessment of Algorithm
Following the work presented in the previous section, inherent to the effectiveness of the algorithm presented
in this chapter is the manner in which the coalition values are bounded and the way in which the remaining
coalition structure values are computed. Against this reasoning, as no existing optimal coalition structure
generation algorithms have been developed for partition function games, the algorithm is assessed through
answering the following questions:

Q1 How many coalition structure values must be analyzed in order to bound the coalition values? and,

Q2 Once all coalition values have been bounded, how many coalition structure values must be computed to
generate an optimal coalition structure?

These two questions are addressed in the following two sub-sections.

5.4.1 Complexity of Bounding Coalition Values
Consider Q1 first. This question is answered in the following theorem.

Theorem 5.3 In either P+
sup or P−sub, exactly,

2n + 2n−1 − 2n− 1,

structures will be analyzed in Π in order to compute the maximum and minimum values of all coalitions
C ⊆ Ag.

Proof: To prove this theorem, consider the following subsets of Π,

• Π′ ⊂ Π which contains all structures of form {C, {a1}, . . . , {an−|C|}} where {a1, . . . , an−|C|} =
Ag \ C (excluding all structures where C = Ag); and,

• Π′′ ⊂ Π which contains all structures of form {C,C ′} where C ′ = Ag \ C and both C and C ′ have
size greater than two (including the structure where C = Ag and excluding the structures where
|C| = n− 1).

The values of all structures in Π′ ∪ Π′′ will be computed exactly once in order to determine the maximum
and minimum coalition values. Observe that, every coalition of size 2, . . . , n − 1 appears in exactly one
structure in Π′. Thus, in Π′, all C ⊂ Ag such that |C| ∈ [2, . . . , n− 1] belong to exactly

(2n − 1)− (n+ 1),

structures in Π′. Since there is also one structure in Π′ that exclusively contains coalitions of size one, it
follows that,

|Π′| = (2n − 1)− (n+ 1) + 1 = (2n − 1)− n.

Now, consider all coalition structures in Π′′. From [66], there are 2n−1 such structures. However, all
structures where |C| = n − 1 and |C ′| = 1 can be ignored since they also belong to Π′. Since there are(
n
n−1

)
= n such structures, it follows that,

|Π′′| = 2n−1 − n.

Therefore, in order to bound all coalition values,

((2n − 1)− n) + (2n−1 − n) = 2n + 2n−1 − 2n− 1,
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n |Π| Number of struc-
ture values com-
puted to bound
coalition values

Column 3 ex-
pressed as a
percentage of |Π|

5 52 37 71.15
6 203 83 40.89
7 877 177 20.18
8 4,140 367 8.86
9 21,147 749 3.54
10 115, 975 1,515 1.31
11 678.570 3,049 0.45
12 4,213,597 6,119 0.15
13 27,644,437 12,261 0.04
14 190,899,322 24,547 0.01
15 1,382,958,545 49,121 0.004
16 10,480,142,147 98,271 0.0009
17 82,864,869,804 196,573 0.0002

Table 5.4.1: Comparing the number of coalition structures analyzed in order to bound coalition
values relative to the number of all coalition structures

coalition structure values will be computed in Π′ ∪Π′′. This completes the proof.

Theorem 5.3 proves that in either P−sup or P+
sub settings, the maximum and minimum values of all coalitions

can be determined through computing the values of exactly,

2n + 2n−1 − 2n− 1,

coalition structures.

Table 5.4.1 compares the number of coalition structures analyzed in order to bound all coalition values
relative to the total number of coalition structures that can be formed. This table shows that as n linearly in-
creases, the percentage of Π that is analyzed in order to bound the coalition values exponentially decreases.
This means that, even for moderate values of n, once all coalition values have been bounded, there are still
exponentially many structure values that may have to be computed.

Table 5.4.1 also provides an indication of the best case performance of this algorithm as no fewer coalition
structure values can be computed in order to bound the coalition values. Since the process of bounding
the value of all coalitions is fundamental to the algorithm, in the best case, this algorithm will generate an
optimal coalition structure during this stage.

5.4.2 Number of Coalition Structure Values Computed
Against Theorem 5.3, exactly 2n + 2n−1 − 2n − 1 coalition structure values must be computed in order
to bound the values of all coalitions. After this, the number of coalition structure values computed in the
remainder of Π is dependent upon the percentage of Π that is pruned, as well as the effectiveness of the
branch and bound filter rule.

Intuitively, it may be that no configurations are pruned away and that every structure within each configura-
tion is analyzed. Consequently, in the worst case, all of Π will be searched in order to generate π∗. However,
as this is a worst case, it may be that, in the general case, only the values of those coalition structures in a
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fraction of Π are computed.

The algorithm is assessed in P−sup settings with 10 agents. Here, there are two factors which influence the
value of a coalition in a given structure, namely:

• the effect of the super-additivity; and

• the effect of the externality.

These simulations were implements on MATLAB and repeated 25 times for a number of values of a and b.
In these simulations, when a new coalition is formed, the ‘gain’ from super-additivity is accounted for by
adding a factor αa to its value. Conversely, the ‘loss’ from the externality on the other coalitions in the struc-
ture is accounted for by multiplying their values by factors b−β

b , where α, β ∈ [0, 1) are randomly-generated
uniform variables and a, b ≥ 1 are constants.

The results of the simulations are presented in Graph 5.4.2. The vertical axis in Graph 5.4.2 represents the
proportion of Π searched, whereas a and b are indicated on the x and z axes, respectively. As the values of
a and b increase, the ‘gain’ from super-additivity and the ‘loss’ from externalities decreases. The surface
shown in Graph 5.4.2 is the average proportion of space searched by the algorithm.

Observe that when the ‘gain’ from super-additivity is high and the ‘loss’ from the negative externality is
low, only a minimal proportion (under 4 %) of the space need be searched in order to compute the optimal
structure. In fact, in such cases, the grand coalition or a coalition structure containing only two or three
coalitions is usually optimal. Consequently, it would seem that the smaller the externality and the higher the
super-additivity, the more the P−sup setting becomes like a super-additive characteristic function game, thus
explaining why so little of the space is searched.

Similarly, when the converse is true, i.e., when the ‘gain’ from super-additivity is low and the ‘loss’ from
the negative externality is high, only a fraction of the search space was searched. This time, the P−sup setting
becomes more akin to the sub-additive characteristic function game setting, where the structure exclusively
consisting of coalitions of size one or a structure with a relatively small number of cooperating agents is
optimal. However, as is apparent from the gradient of the graph, a greater proportion of Π is searched when
a is low and b is high than when a is high and b is low. This is because, in the latter case, an optimal coali-
tion structure usually did not belong to the group of structures evaluated during the process of bounding the
coalition values. Thus, in the latter case, the representation did not become totally akin to a sub-additive
characteristic function game which implies that, for all values a and b, the ‘gain’ that super-additivity con-
tributes to the coalition value is significantly greater than the ‘loss’ the negative externality takes away from
the coalition value.

Now, in situations where the ‘loss’ from the externality and the ‘gain’ from the super-additivity are both
either high or low, it seems that pruning is ineffective since nearly all of the search space has to be searched
in order to guarantee an optimal outcome (more than 98% in many cases). This could be due to the inherent
characteristic of the P−sup setting, namely, the values of the structures in each subspace are dependent on the
value of the structures in the subspace from which it was formed. This implies that when the ‘gain’ from the
super-additivity and the loss from externalities are of a similar magnitude, the extreme values of coalition
structures in different subspaces are more likely to be akin, making pruning techniques less effective.

Finally, it is worth noting that, as Π is searched in the manner of the IP algorithm, the algorithm presented
in this chapter does not lose any of the anytime properties which are inherent to the IP algorithm. Thus,
this algorithm is robust against technical failure. Additionally, with regards to memory, for every coalition
C ⊆ Ag, exactly two values- vmax(C) and vmin(C)- as well as the optimal coalition structure and its value
must be stored in memory. Therefore, there will be 2n+1 + 1 values stored in memory plus exactly one
coalition structure. Relative to characteristic function game representations, this is more than double the
memory space.
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Graph 5.4.2: Simulation results for PF−sup setting
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5.5 Summary
In this chapter, optimal coalition structure generation was considered in partition function games. In par-
ticular, for a general partition function game, it was shown that when nothing is known about the nature of
the externalities or the partition function, it is not possible to determine a priori the value of a coalition in
every structure to which it is embedded meaning, to guarantee an optimal coalition structure, all of Π must
be searched.

Against this reasoning, an optimal coalition structure generation algorithm was developed which, for two
natural classes of partition function games, was able to bound all coalition values after searching only a
fraction of Π. When these values were known, the remaining structures in Π could be analyzed in the spirit
of the IP algorithm, avoiding all structures which could not be optimal. Specifically, this algorithm was de-
veloped for partition function games which displayed both super-additivity and negative externalities (P−sup)
as well as, partition function games which displayed both sub-additivity and positive externalities (P+

sub).
The minimum and maximum number of structures searched by this algorithm was computed.

It was argued that the performance of this algorithm was affected by the size of the externality, as well as
the size of the ‘gain’ or ‘loss’ from super- or sub-additivity. For P−sup, when the ‘gain’ from super-additivity
is low and the ‘loss’ from the negative externality is high or, for P+

sub, the ‘loss’ from sub-additivity is low
but the ‘gain’ from super-additivity high then only a fraction of Π was searched. It was reasoned that this
was because, in these instances, the partition function game representation is similar to either a sub-additive
or super-additive characteristic function game and an optimal coalition structure can be found. Simulations
seem to support this reasoning.
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Chapter 6

Coalition Structure Generation in Hedonic
Qualitative Coalitional Games

In this chapter, hedonic qualitative coalitional games (HQCG) - a novel class of cooperative games that
represent coalition formation between self-interested agents - are introduced. In the spirit of both hedonic
and qualitative coalitional games, these representations can be used to model coalition formation in domains
where self-interested agents, each with preferences over the other agents, can cooperate to accomplish any
of their individual goals.

HQCGs can capture coalition formation in a number of multi-agent systems. For example, as discussed in
the introduction, consider an electronic market populated with automated agents which represent different
enterprises who buy and sell [34]. Here, buyers and sellers have different goals they wish to accomplish, i.e.,
the goals of the seller may revolve around improving their profit whereas the goals of the buyer may revolve
on minimizing the amount of money they spend. Now, a number of electronic markets employ reputation
systems where buyer agents rate seller agents based on past experiences of cooperating with them (such as
Amazon or e-bay). In such systems, agents can form preferences over other agents based on this reputa-
tion, meaning agents can make decisions regarding coalition formation based on both their preferences and
whether there exists a mutually beneficial set of goals the coalition is able to accomplish. Thus, HQCGs can
capture coalition formation in these systems.

Also, consider coalition formation between self-interested agents operating in a multi-agent system that uses
the Regret structure (as presented in [64]). Typically, such a system contains buyer and seller agents who use
social networking analysis techniques to identify relations between agents. Using this feedback, agents can
then formulate preferences over other agents in the system. Following reasoning presented in the paragraph
above, in those systems where changes in reputation over time rarely occur, HQCGs can model coalition
formation in these systems.

Against previous reasoning, it cannot be guaranteed that the agents in a system represented by a HQCG will
cooperate so that the welfare of the system is maximized. However, it can be guaranteed that agents will
form coalitions that are stable. Thus, in this chapter, the core, Nash, individual and contractual individual
stability concepts presented in Section 2.4.5 are formalized for these representations.

Specifically, this chapter studies only those HQCGs which are naturally concise and in which assumptions
regarding the preferences of the agents hold. Against these assumptions, there is always guaranteed to exist
at least one contractual individual stable structure. However, this guarantee cannot be extended to either
Nash, individual or core stability (recall, this is in contrast to hedonic coalitional games which guarantee
at least one contractual individual and at least one individual stable structure). Nevertheless, in the games
studied in this chapter, it is shown that all core stable structures are also Nash, individual and contractual
individual stable (recall, this is not always true in hedonic coalitional games) and, even if the representation
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is concise, no algorithm can solve decision problems concerning non-emptiness of the core with time com-
plexity that is polynomial in the size of the representation.

Core stability is especially important in understanding coalition formation in HQCGs since if a structure
is core stable then the agents can do no better than partition themselves into this structure. Therefore, in
representations where there are no core stable structures it is not immediately apparent which coalitions will
be formed by the agents. To this end, a sequential coalition formation protocol is presented for which an
equilibrium strategy can be computed via backward induction. It is shown that, if the agents play according
to the equilibrium strategy then the formed structure is core stable if and only if there exists a core stable
structure in the HQCG. However, even if the HQCG representation is concise in both the number of goals
and agents, for large numbers of agents and goals, this strategy can be exponentially complex to compute.

Given this insight, motivated from real world examples, a natural class of HQCGs are studied. It is shown
that, in this class of games, if the aforementioned assumptions still hold then there always exists a core
(and also Nash, individual and contractual individual) stable structure and this structure is always formed if
the agents play the equilibrium strategy in the protocol. It is also shown that the equilibrium strategy can
be computed without executing backward induction and an algorithm is developed which can compute this
strategy with time complexity that is polynomial in the size of the representation.

Against this discussion, the rest of this chapter goes as follows:

• In Section 6.1, the hedonic qualitative coalitional game framework is formally defined and stability
concepts for this framework are formalized. Also, assumptions regarding the size of the representa-
tion are formally presented. These assumptions can enable conciseness and only concise representa-
tions are considered;

• In Section 6.2, the stability concepts are formally defined for the HQCG represntation. Even with the
preference and conciseness assumptions, it is shown that core and Nash stability cannot be guaranteed
and that computing non-emptiness of the core cannot be done with time complexity that is polynomial
in the size of the representation;

• In Section 6.3, the sequential protocol is formally presented. It is shown that every agent is motivated
to participate in the protocol since an equilibrium strategy is guaranteed to exist. However, computing
this strategy can require time complexity that is exponential in the number of agents and goals; and,

• In Section 6.4, motivated from real world examples, a natural class of hedonic qualitative coalitional
games are defined. For these class of games, it is shown that there always exists a Nash and core stable
structure. Furthermore, if the agents participate in the sequential protocol and play the equilibrium
strategy then the formed structure is always core and Nash stable. Also, this equilibrium strategy can
be computed with time complexity that is polynomial in the size of the representation.

Before the rest of the chapter is considered, to refresh the memory of the reader, the qualitiative coali-
tional game and hedonic coalitional game representations considered in this chapter (as formally defined in
Definition 2.26 and Definition 2.19, respectively) are defined once again:

Definition 6.1 A QCG is a (n+ 3)-tuple Γ = 〈G,Ag,G1, . . . , Gn, v〉, where:

• G = {g1, . . . , gm} is a set of possible goals;

• Ag = {a1, .., an} is a set of agents;

• Gi ⊆ G is a set of goals for each agent ai ∈ Ag; and,

• v : 2Ag → 22G is a function which takes, as input, a coalition and outputs a set of subsets of the goals
in G.
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Definition 6.2 A hedonic game is a tupleH = 〈Ag, {�i}∀i∈Ag〉 where:

• Ag = {a1, . . . , an} are the set of agents; and,

• Every �i is a rational preference relation over coalitions C ⊆ Ag such that ai ∈ C.

6.1 Hedonic Qualitative Coalitional Games (HQCGs)
Given both Defintion 6.1 and 6.2, hedonic qualitative coalitional game representations are defined as follows.

Definition 6.3 A hedonic qualitative coalitional game (HQCG) is a (2n+ 3)-tuple,

ΓH = 〈G,Ag,G1, . . . , Gn, v,�1, . . . ,�n〉

where:

• G = {g1, . . . , gm} is a set of possible goals;

• Ag = {a1, . . . , an} is a set of agents;

• For i = 1, . . . , n, Gi ⊆ G is a set of goals for each agent ai ∈ Ag;

• v : 2Ag → 22G is a function which takes, as input, a coalition and outputs a set containing sets of the
individual goals in G; and,

• For i = 1, . . . , n, �i is the preference ordering of agent ai ∈ Ag over all of the agents in Ag \ {ai}.

With respect to the preference orderings �1, . . . ,�n, given any two agents aj , ak ∈ Ag \ {ai}, if aj �i ak
then agent ai strictly prefers aj to ak whereas if aj ∼i ak then agent ai is indifferent between aj and ak. In
this way, these preference orderings define whom the agents strictly prefer or are indifferent between.

Intuitively, ΓH combines features from both the QCG framework Γ and the hedonic game representationH.
For every coalition C ⊆ Ag in ΓH, v(C) outputs a set containing sets of goals with the interpretation being
that each set of goals represents a choice available to that coalition. As with qualitative coalitional games,
the following assumptions are inherent to all ΓH:

1. Every agent ai ∈ Ag is indifferent between the goals in their own set Gi, meaning they would be
satisfied if they accomplished any of these goals; and,

2. The goals are not public, meaning any agent ai is satisfied if and only if they accomplish a non-empty
set of goals that contains any of the goals in Gi.

6.1.1 Preferences in Hedonic Qualitative Coalitional Games
In ΓH, agents can construct preferences over the coalitions they can form using both the preference orderings
�1, . . . ,�n in ΓH, as well as the set of choices available to every coalition. To formalize these preferences,
it is assumed that the agents cooperate in teams.

Definition 6.4 A team is a pair T = (C,G′) consisting of a coalition C ⊆ Ag and a set of goals G′ ⊆ G
such that G′ ∈ v(C).

As with qualitative coalitional games (see Section 2.4.6) :

• A team T = (C,G′) is successful if G′ contains any of the goals of every member of C; and

• A team T = (C,G′) is minimal and successful if T is successful and all C ′ ⊆ C do not belong to
successful teams.
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To describe how the preferences of the agents as given in�1, . . . ,�n imply preferences over the teams they
can form, let:

• T denote the set of all minimal and successful teams that can be formed;

• Ti ⊆ T denote the set of all minimal and successful teams that can be formed by an agent ai ∈ Ag;

• T .i T ′ denote that ai strictly prefers team T to team T ′;

• T Di T
′ denote that ai strictly prefers or is indifferent between T and T ′; and,

• T ∼i T ′ denote that ai is indifferent between T and T ′.

For any two teams (C,G′) and (C ′, G′′) where ai ∈ C ∩ C ′, the preferences of agent ai over these teams
can be formulated as follows. If,

∃ak ∈ C \ (C ∩ C ′) such that ∀am ∈ C ′ \ (C ∩ C ′), ak �i am,

then,

(C,G′) .i (C ′, G′′).

Following discussions presented in Section 2.4.5, the preferences of the agents in�i imply preferences over
the teams each agent can form in the spirit of B-preferences. Of course, if C = C ′ or the most preferred
agent of ai in C is also ai’s most preferred agent in C ′ then,

(C,G′) ∼i (C ′, G′′).

Now, with regards to the set of choices available available to the coalitions, in all of the HQCGs studied in
this chapter, it is also assumed that the agents will adhere to the following criteria when constructing their
preferences over the teams they can form:

P1 Every agent will prefer all successful teams to all unsuccessful teams; and,

P2 With respect to the size of the coalition within them, agents will prefer smaller teams to larger teams.

Recall, a successful team is one where all of the agents within it cooperate to accomplish a set of goals
that contain any of the goals from every team member’s individual set. Obviously, no rational agent will
form a team in which they are not satisfied as none of their individual goals will be accomplished. There-
fore, rational agents will not form unsuccessful teams and, against this reasoning, it is assumed that P1 holds.

The motivation for assumption P2 stems from the fact that, in many settings, smaller teams are typically
more reliable than larger ones from a technical perspective, e.g., there is lower probability of technical fail-
ure and the enforcement of cooperation is easier. For instance, in the context of political science, systems
containing agents representing countries in the European Monetary Union (EMU), as considered in Chapter
5 of [53], make this assumption. This assumption is particularly valid in HQCGs since, with smaller coali-
tions, there is less chance of an agent defecting to cooperate with an agent it prefers more.

Given P2, every ai ∈ Ag will prefer minimal and successful teams to successful but not minimal teams in
Ti. This means that successful but not minimal teams will not be formed since, for all such teams (C,G′),
there is a subset C ′ ⊂ C and a set of goals G′′ ∈ v(C ′) such that every agent ai ∈ C ′ prefers (C ′G′′) to
(C,G′). In this way, both P1 and P2 imply that Riker’s size principle is true, i.e., agents will only form
minimal and successful teams [61].1 In this way, if both P1 and P2 hold then the agents will only formulate

1Formally, this principle states that, in the context of political science, only minimal and winning coalitions will be
formed by the voting agents. However, it is argued in [48], that this principle is true in a number of games which are
not in the context of political science. For more details regarding this principle, see [61].
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have preference over the minimal and successful teams they can form.

In addition to these assumptions, in the HQCGs studied in this chapter, it is also assumed that, for all
ai ∈ Ag, v({ai}) = ∅. This is because, against P1 and P2, if an individual agent can successfully accom-
plish any of their goals then the agents will always form this coalition. Consequently, the coalition formation
problem is trivial for these agents. Therefore, this assumption implies that the agents can only accomplish
their goals if they cooperate with others.

Now, it may be that, during the coalition formation process, as all of the other agents form teams, an agent
ai ∈ Ag may not be able to join any of their minimal and successful teams in Ti. When this is the case, to
provide ai with a reasonable course of action, consider Definition 6.5.

Definition 6.5 For any agent ai ∈ Ag, the null team is the one where ai, as a team consisting of itself alone,
accomplishes an empty set of goals ({ai}, ∅).

Against Definition 6.5, it is understood that agents would prefer to form null teams than cooperate in teams
that do not satisfy them. This has interpretation that agents would rather do nothing than cooperate to
accomplish a set of goals that do not contain any of their own. It is clear from the above discussions that
if the above assumptions hold then, when given ΓH , the agents are able to construct preferences over the
minimal and successful teams they can form.

6.1.2 Conciseness Assumptions
Clearly, agents must construct their preferences over the the teams they can form through analyzing every
set of goals every coalition can accomplish. From a conciseness perspective, for every coalition C ⊆ Ag,
v(C) may contain a number of sets of goals that is exponential in the number of individual goals. This
means that, in a number of instances of ΓH, agents may have to construct their preferences by analyzing
a number of coalitions and sets of goals that are exponential in both the number of individual agents and
goals. Thus, for large numbers of agents and goals, it may be infeasible for computationally bounded agents
to explicitly define their preferences.

To this end, in this chapter, coalition structure generation is only considered in those frameworks which are
naturally concise in both the number of agents and goals. In particular, the HQCGs studied in this chapter
are those where the following assumptions hold:

HQCG1 The number of coalitions C such that v(C) 6= ∅ is polynomial in the number of agents; and,

HQCG2 For every coalition C ⊆ Ag, the number of sets of goals in every v(C) is bounded so that |v(C)|
is polynomial in the number of goals.

Clearly, both HQCG1 and HQCG2 ensure that ΓH will have size that is polynomial in both the number of
agents and goals. Consequently, although it is not always explicitly stated, when referring to the framework
ΓH, it is assumed that HQCG1 and HQCG2 hold and that both the number and size of all non-empty v(C)
are such that the agents can efficiently construct their preferences.

6.2 Stability Concepts
In the spirit of hedonic coalitional games, stability concepts for HQCGs are formulated in terms of partitions
of agents. To this end, in ΓH, agent partitions are formulated in terms of the team structure concept which
is defined as follows.
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Definition 6.6 A team structure π = {T1, . . . , Tk} = {(C1, G
′
1), . . . , (Ck, G

′
k)} is a collection of teams

such that the coalitions of agents within these teams form a partition of Ag.

To define solution concepts for ΓH, the stability concepts defined for hedonic representations are reformu-
lated so that they are applicable to teams. To achieve this, in addition to the previous notation, let:

• ΠT denote the set of all team structures that can be formed in ΓH;

• Tj(π) denote the team in π to which each agent aj ∈ Ag belongs, ∀aj ∈ Ag; and,

• aj ∈ T denote the fact that aj belongs to the coalition in team T .

Now, consider the following definition.

Definition 6.7 Any team T = (C,G′) ∈ T blocks π if and only if,

T .j Tj(π),∀aj ∈ T

Intuitively, if a team T blocks a structure π ∈ ΠT then π cannot be stable as all aj ∈ T will prefer to form
T as opposed to Tj(π). Conversely, if no T ∈ T blocks a structure π then this implies stability in π.

Definition 6.8 A team structure π is Core stable if there does not exist T ∈ T such that T blocks π.

In addition to core stability, team structures may be individually rational.

Definition 6.9 A team structure π is individually rational if ∀ai ∈ Ag, ∀G′ ∈ v({ai}),

Ti(π) Di ({ai}, G′).

Trivially, core stability implies individual rationality. As well as both core stability and individual rationality,
the Nash, individual and contractually individual stability concepts are defined as follows.

Definition 6.10 A team structure π is Nash stable if ∀ai ∈ Ag, ∀(C ′, G′) ∈ π \ {Ti(π)},

6 ∃G′′ ∈ v(C ′ ∪ {ai}) such that (C ′ ∪ {ai}, G′′) .i Ti(π).

In words, π is Nash stable if every agent ai ∈ Ag joins any of the coalitions in the other teams in π then
there is no set of goals this coalition can accomplish such that ai prefers the resulting team to Ti(π).

Definition 6.11 A team structure π is individually stable if ∀ai ∈ Ag, ∀(C ′, G′) ∈ π \ {Ti(π)},

6 ∃G′′ ∈ v(C ′ ∪ {ai}) such that (C ′ ∪ {ai}, G′′) .i Ti(π),

and,

(C ′ ∪ {ai}, G′′) .j (C ′, G′), ∀aj ∈ C.

In this context, π is individually stable if every agent ai ∈ Ag joins any of the coalitions in the other teams in
π then there is no set of goals this coalition can accomplish such that ai and every agent aj in this coalition
prefers the resulting team to Ti(π) and Tj(π), respectively.

Definition 6.12 For every ai ∈ Ag, let Ci denote the coalition in Ti(π). A team structure π is contractually
individually stable if ∀ai ∈ Ag, ∀(C ′, G′) ∈ π \ {Ti(π)},

6 ∃G′′ ∈ v(C ′ ∪ {ai}) such that (C ′ ∪ {ai}, G′′) .i Ti(π),

and,

(C ′ ∪ {ai}, G′′) .j (C,G′),∀aj ∈ C,
and,

6 ∃G′′′ ∈ v(Ci \ {ai}) such that (Ci \ {ai}, G′′′) .k Ti(π),∀ak ∈ Ci \ {ai}.

Intuitively, π is contractually individually stable if every agent ai ∈ Ag joins any of the coalitions in the
other teams in π then there is no set of goals this coalition, or the coalition in Ti(π) can accomplish so that
ai, every agent aj in this coalition and every ak ∈ Ti(π)\{ai} prefer the resulting teams to Ti(π) and Tj(π).

As with hedonic coalitional games, Nash stability implies individual stability and, in turn, individual stability
implies contractual individual stability.
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6.2.1 Membership and Non-emptiness of Stability Concepts
Trivially, since v({ai}) = ∅ ∀ai ∈ Ag, all π ∈ ΠT are individually rational. However, with regards to
the other solution concepts presented in Section 6.2, even with assumptions HQCG1, HQCG1, P1 and P2,
there is no guarantee that the set of core and Nash stable team structures will be non-empty. For instance,
consider the following example.

Example 6.1 Consider ΓH where:

• Ag = {a1, a2, a3};

• G = {g1, g2, g3};

• For i = 1, . . . , 3, Gi = {gi};

• �1: a2 � a3;

• �2: a3 � a1;

• �3: a1 � a2; and

• v(C) = {{g1, g2, g3}}, ∀C ⊆ Ag such that |C| = 2 and v(C ′) = ∅ for all other coalitions C ′.

Clearly, all teams containing a coalition of size two and a set of goals {g1, g2, g3} are minimal and suc-
cessful. Therefore, given this framework, against both P1 and P2, the agents will construct the following
preferences over the teams they can form:

1. T1 = ({a1, a2}, {g1, g2, g3}) .1 ({a1, a3}, {g1, g2, g3}) .1 ({a1}, ∅) ;

2. T2 = ({a2, a3}, {g1, g2, g3}) .2 ({a1, a2}, {g1, g2, g3}) .2 ({a2}, ∅) ; and,

3. T3 = ({a1, a3}, {g1, g2, g3}) .3 ({a2, a3}, {g1, g2, g3}) .3 ({a3}, ∅) .

Against P1 and P2, observe that:

ΠT =


{{({a1, a2}, {g1, g2, g3})}, {({a3}, ∅)}};
{{({a1, a3}, {g1, g2, g3})}, {({a2}, ∅)}};

{{({a2, a3}, {g1, g2, g3})}, {({a1}, ∅)}}; and,
{{({a1}, ∅)}, {({a2}, ∅)}, {({a3}, ∅)}.


Given ΠT , also observe that:

1. {{({a1, a2}, {g1, g2, g3})}, {({a3}, ∅)}} is blocked by the team ({a2, a3}, {g1, g2, g3});

2. {{({a1, a3}, {g1, g2, g3})}, {({a2}, ∅)}} is blocked by the team ({a1, a2}, {g1, g2, g3});

3. {{({a2, a3}, {g1, g2, g3})}, {({a1}, ∅)}} is blocked by the team ({a1, a3}, {g1, g2, g3}); and,

4. {{({a1}, ∅)}, {({a2}, ∅)}, {({a3}, ∅)}} is blocked by all non-null teams.

Thus, there are no core stable team structures in this example. As well as core stability, emptiness of the
Nash stable structure can be witnessed as follows:

1. {{({a1}, ∅)}, {({a2}, ∅)}, {({a3}, ∅)}} cannot be Nash stable since any agent transfer leads to a team
that every agent prefers to its null team;

2. {{({a1, a2}, {g1, g2, g3})}, {({a3}, ∅)}} cannot be Nash stable since a2 can transfer from ({a1, a2}, {g1, g2, g3})
to ({a3}, ∅) and ({a2, a3}, {g1, g2, g3}) .2 ({a1, a2}, {g1, g2, g3});
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3. {{({a1, a3}, {g1, g2, g3})}, {({a2}, ∅)}} cannot be Nash stable since a1 can transfer from ({a1, a3}, {g1, g2, g3})
to ({a2}, ∅) and ({a1, a2}, {g1, g2, g3}) .1 ({a1, a3}, {g1, g2, g3}); and,

4. {{({a2, a3}, {g1, g2, g3})}, {({a1}, ∅)}} cannot be Nash stable since a3 can transfer from ({a2, a3}, {g1, g2, g3})
to ({a1}, ∅) and ({a1, a3}, {g1, g2, g3}) .3 ({a2, a32}, {g1, g2, g3});

Finally, emptiness of the individual stability concept is evidenced by the fact that, in any structure, it is
possible for an agent to defect from the team it belongs to in this structure and form the team that blocks it
so that both of the agents in this new team are better off as a consequence.

In this way, Assumptions P1 and P2 do not guarantee core, Nash or individual stable structures in any ΓH.
However, these concepts are related by the following theorem.

Theorem 6.1 Given P1 and P2, if a structure π ∈ ΓH is core stable then it is Nash stable.

Proof: Assume π is core stable and consider the following agent transfers within π:

1. Agent transfers from one minimal and successful team to another minimal and successful team;

2. Agent transfers from one minimal and successful team to a null team;

3. Agent transfers from a null team to a minimal and successful team; and,

4. Agent transfers between null teams.

First, consider all transfers that are described in both 1 and 3. Against the aforementioned preference
assumptions of the agents, if an agent joins a coalition in a minimal and successful team then any team
containing this new coalition cannot be minimal. Thus, even if this team is successful, because Riker’s size
principle is true, it will not be formed and, consequently, no agent will gain by transferring to minimal and
successful teams in π.

Now, consider those transfers described in both 2 and 4. If an agent transfers to a null team from either a
minimal and successful or another null team in π then it is possible for this agent to prefer this newly formed
team to the team from which it transferred. However, if this is the case then this newly formed team must be
minimal and successful, meaning the agent in the null team must also prefer this newly formed team to the
null team they belong to in π. This, in turn, means that this new team blocks π which is impossible since π
is core stable. Therefore, if π is core stable then none of the agent transfers within π, as described in 1 - 4,
can benefit the agent who transfers. Thus, if a structure π is core stable then it is Nash stable.

Since Nash stability implies individual stability, all core stable structures are also individually stable and,
therefore, contractually individual stable as well. In this way, to understand coalition formation, core stabil-
ity is especially important since, if there exists a core stable team structure then none of the agents can do
better than form the teams in this structure. Consequently, the following decision problems can be answered:

Core membership
Input: ΓH, T1, . . . , Tn, π .
Question: Is π core stable?

Core non-emptiness
Input: ΓH, T1, . . . , Tn .
Question: Does there exist π ∈ ΠT such that π is core stable?

The Core membership problem can be computed as follows. For agent a1 ∈ Ag, for every team T in T1 that
a1 prefers to Ti(π), check if every other agent aj in T also prefers this team to Tj(π). By repeating this for
a2, . . . , an, this problem can be solved. This can be computed with time complexity that is polynomial in
the input size (which also has size that is polynomial in the number of agents and goals due to the previously
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mentioned assumptions).

Against this insight, the Core non-emptiness problem can be solved non-deterministically by guessing π and
checking, in polynomial time, if π is core stable.

Theorem 6.2 Core non-emptiness is NP-complete

Proof: For any team structure, computing if it is core stable can be done in polynomial time. Thus
membership to the class NP is trivial. To prove completeness, an instance of the following problem is
reduced to Core non-emptiness.

The stable roommates problem (from [36])
Input: Ag′ = {a1, . . . , am}. P1, . . . , Pm - where, for i = 1, . . . ,m, Pi is the preferences of
the agent ai over the other agents in Ag
Output: Does there exist a partition of the agents π′ such that π′ is a stable matching?

In the stable roommates problem, each agent constructs preferences over the other agents as represented in
their preference list. A matching is now a partition of the set of agents into disjoint partners. A matching is
unstable if there are two persons who prefer each other to their partners in the matching. Such persons are
said to block the matching. Otherwise, if no blocking pair exists then the matching is stable. An instance is
solvable if it admits a stable matching, otherwise it is unsolvable.

Generally, the stable roomates problem can be efficiently solved by the Gale-Shapley algorithm [30]. How-
ever, if there are indifferences between the agents, as well as unacceptable partners (i.e., certain match-
ings cannot occur) then this problem is NP-complete [62]. To this end, an NP-complete instance I ′ =
〈Ag′, P1, . . . , Pm〉 of stable roommates problem is reduced to an instance I ′′ = 〈ΓH, T1, . . . , Tn〉 of Core
non-emptiness as follows:

1. Ag = Ag′;

2. �i= Pi, ∀ai ∈ Ag;

3. Gi = {gi}, ∀ai ∈ Ag′; and

4. For all acceptable partners (ai, aj), v({ai, aj}) = {{gi, gj}} and v(C) = ∅ for all other coalitions
C ⊆ Ag.

Clearly, as only the teams containing the coalitions that represent acceptable pairs and the set of goals
each coalition can accomplish are successful, these teams are also minimal and successful. For every agent
ai ∈ Ag, Ti (which, against the conciseness assumptions, has size that is polynomial in the number of
agents and goals) can be easily constructed from ΓH. Also, since the concept of stability defined for the
stable roommates problem is equivalent to core stability for HQCGs, it follows that there is a core stable
partition in I ′′ if and only if there is a stable matching in I ′.

The above theorem shows that no algorithm is guaranteed to compute if there exists a core stable structure
with time complexity that is polynomial in the input. Nevertheless, in contrast to the core, it can be shown
that there always exists a contractual individual stable structure in ΓH.

Theorem 6.3 In any ΓH, there exists π ∈ ΠT such that π is contractual individual stable.

Proof: Consider any structure in π ∈ ΠT such that all other structures π′ ∈ ΠT \ {π} do not contain more
agents who belong to minimal and successful teams (trivially, such a team is guaranteed to exist). To prove
this structure is always contractually individually stable, consider the four agent transfers within π that were
identified in Theorem 6.1:
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1. Agent transfers from one minimal and successful team to another minimal and successful team;

2. Agent transfers from one minimal and successful team to a null team;

3. Agent transfers from a null team to a minimal and successful team; and,

4. Agent transfers between null teams.

First, consider the transfers that are described in both 1 and 2. Against P2, if any agent transfers from a
minimal and successful team in π then the resulting team is unsuccessful and so the agents in the minimal
and successful team from which ai transferred cannot gain from this transfer. Now, consider the transfers
described in both 3 and 4. Clearly, none of the agents in a minimal and successful team can gain from an
agent transferring to this team from a null team in π due to Riker’s principle. Also, none of the agents in
the null teams in π can gain from agents transferring to another null team as there cannot be a minimal and
successful team containing a coalition consisting of these two agents. This is because no structure other than
π can contain more agents who belong to minimal and successful teams. Therefore, in all of the HQCGs
considered in this chapter, there always exists a contractually individually stable.

Following Theorem 6.3, there will always exist a contractually individually stable structure in ΓH.

If there is no core stable structure then this is problematic for the agents as it is not immediately clear which
teams they should form. To this end, in the next section, the problem of core emptiness is circumvented by
developing a coalition formation protocol in which every agent is motivated to participate in even if there
is no guarantee of a non-empty core solution. For this protocol, in addition to the assumptions already
specified, it is also assumed that the agents have perfect recall, i.e., they are able to remember and observe
all actions that occur at every stage of the protocol.

6.3 A Sequential Coalition Formation Protocol
In this section, the sequential coalition formation protocol presented in [5] is refined for HQCG domains.

Before negotiations, there is a period during which the agents can construct their preferences over the teams
they can form. Computing if a set of goals G′ ∈ v(C) satisfies all of the agents in C can be easily verified
from ΓH: Simply check if G′ ∩Gi 6= ∅, ∀ai ∈ C. Also, by analyzing the sets of goals in every set v(C) in
increasing order of coalition size, i.e., from smallest to biggest, the preferences of the agents over the teams
they can form can be constructed.

In the negotiation phase of the protocol, when it is the turn of an agent to propose a team to be formed or
respond to a on-going proposal then this is described as a stage in the protocol. The actions taken by an
agent when it is their turn in the protocol are represented by a strategy which consist of either proposing a
team to be formed or accepting or rejecting an on-going proposal. In the negotiation phase, the agents take it
in turns to play strategies and the strategy played by an agent is dependent upon the history of the protocol.

Definition 6.13 At stage t (t > 0), the history of the protocol (ht) is the set of all proposals, rejections and
counter-proposal that occurred up to stage t.

Agent ai is called active at history ht if it is their turn in the protocol at stage t. During negotiations, the
following rules must be adhered to (these rules are from the protocol described in [5]):

SP1 The order in which the agents propose teams to be formed or respond to a given proposal is given by
a rule of orderR;
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SP2 Agents can propose a team to be formed or respond to a proposed team if and only if they are a member
of that team;

SP3 A proposed team is formed if and only if all the agents who belong to the team agree to forming it;

SP4 If an agent does not agree to forming a particular team then they must propose another team instead;
and,

SP5 When a team is formed, those agents that make up the team withdraw from the protocol.

In addition to these rules, the following rules are added for the protocol considered in this chapter:

Ra A rule is added so that if a team is rejected then it cannot be proposed again in the protocol;2 and,

Rb A time period (δ) is introduced during which the agents can either respond to the proposal or propose
themselves. Failure for an agent to propose or respond in this time period will result in this agent
being excluded from the procedure and, consequently, forced to withdraw (i.e., they are forced to
form their null team).

These rules ensure that, in the worst case, the structure consisting exclusively of the agent’s null teams will
form, meaning:

(i) The protocol always terminates;

(ii) A team structure is always formed; and,

(iii) Agents do not stall or refuse to propose.

In this context, the negotiation phase can be divided into z stages 1, . . . , z, where z is the stage after which
all agents have withdrawn and the protocol has terminated. Given these rules, at any point in the protocol,
history ht determines:

H1 A set Ag(−) of agents who have already formed teams;

H2 A (possibly partial) team structure πAg(−) formed by the agents in Ag(−);

H3 An ongoing proposal (if any) T̂ = (Ĉ, G′);

H4 A set of agents AgA who have already accepted the proposal (including the initiator);

H5 A list of rejected teams Lreject; and,

H6 An active agent ai ∈ Ag whose turn is at stage t, as determined byR.

The set of histories at which agent ai is active is denoted Hi and, for each ht ∈ Hi, a strategy is formally
defined as follows.

Definition 6.14 For every ai ∈ Ag, a strategy λi is a mapping from Hi to their set of actions. Specifically,
for all ai ∈ Ag such that ai /∈ AgA, if it is the turn of ai at stage t and:

1. Ĉ = G′ = ∅ (i.e., there is no on-going proposal) then

λi(h
t) = Propose(C,G′),

where:

(a) (C,G′) ∈ Ti;
2This is in the spirit of [53]
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(b) (C,G′) /∈ Lreject; and,

(c) ∀ak ∈ C, ak /∈ Ag(−).

2. Ĉ 6= ∅ and G′ 6= ∅ such that ai ∈ Ĉ then

λi(h
t) = Accept(Ĉ, G′),

or,

λi(h
t) = Reject and Propose(C ′, G′′),

where:

(a) (C ′, G′′) ∈ Ti;
(b) (C ′, G′′) /∈ Lreject; and,

(c) ∀ak ∈ C ′, ak /∈ Ag(−).

The protocol is formally presented in Figure 6.3. For notation, let Pseq denote the sequential coalition for-
mation protocol described in this section. Due to the autonomous and self-interested nature of the agents in
HQCGs, when given Pseq, the agents will compute the strategy that is best for themselves. As core stability
cannot be guaranteed, no strategies played by the agents will definitely result in core stable coalitions being
formed. Thus, it is not immediately apparent whether the agents will be motivated to participate in the pro-
tocol.

To this end, let λ = 〈λ1, . . . , λn〉 denote a profile of strategies played by the agents, where π(λ) is the
resulting structure that is formed. A natural question arises,

What makes the agents motivated to play the strategies in profile λ = 〈λ1, . . . , λn〉?

To answer this question, consider the following definition (taken from [19]).

Definition 6.15 A strategy profile λ∗ = 〈λ∗1, . . . , λ∗n〉 is a sub-game perfect equilibrium strategy if each
agent ai ∈ Ag does not have a different strategy λi yielding an outcome that it prefers to that generated
when it chooses λ∗i , given that the other agents follow their profile strategies, i.e., ∀ai ∈ Ag, ∀ht ∈ Hi, ∀λi,

Ti(π(λ∗)) Di Ti(π(λ∗ \ λ∗i ∪ λi).

In words, a profile is a sub-game perfect equilibrium if, at any step of the negotiation process, no matter
what the history is, no agent is motivated to deviate and use another strategy other than that defined in the
profile. In this context, self-interested agents will be motivated to play this strategy and, therefore, should
such a strategy exist, it can be reasoned that they will be motivated to participate in the protocol. Against
this reasoning, consider Corollary 6.1.

Corollary 6.1 (proven in [49]) Given R, the strategy profile computed using backward induction is a sub-
game perfect equilibrium strategy.

Intuitively, backward induction involves computing the a strategy profile through analyzing all strategies
that can be played in all histories leading to the formation of every possible structure in ΠT . The fact that a
rejected team cannot be proposed and the perfect information assumption ensures that backward induction
algorithms can always be used to compute the equilibrium strategy.
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Input: ΓH,R = 〈a1 → . . .→ an〉, δ.

Preference Construction Period.
Stage 0: All ai ∈ Ag construct Ti.

Negotiation Period.
Stage 1: a1 is active and plays λ1 = Propose(C,G′), where (C,G′) ∈ T1. At this point, the history is
updated as follows: (i) Ag(−) = ∅; (ii) πAg(−) = ∅; (iii) AgA ={a1}; (iv) Lreject = ∅; and, (v) T̂ = (C,G′).

Stage t>1: While Ag 6= Ag−, if agent aj ∈ Ag is active at stage t and there is no on-going proposal
then aj plays λj = Propose(C,G′), where: (a) (C,G′) ∈ Tj; (b) (C,G′) /∈ Lreject; and, (c) ∀ak ∈ C,
ak /∈ Ag(−). If (C,G′) 6= ({aj}, ∅) then the history is updated as follows: (i) Ag(−) = Ag(−); (ii) πAg(−)

= πAg(−); (iii) AgA = AgA ∪ {aj}; (iv) Lreject = Lreject; (v) T̂ = (C,G′); and (vi) t = t + 1 and j is
updated so that it is the turn of the next agent as given by R. Otherwise, if (C,G′) = ({aj}, ∅) then the
history is updated as follows: (i) Ag(−) = Ag(−) ∪ {aj}; (ii) πAg(−) = πAg(−) ∪ {({aj}, ∅)}; (iii) AgA = ∅;
(iv) Lreject = Lreject; (v) T̂ = (∅, ∅); and (vi) t = t + 1 and j is updated so that it is the turn of the next
agent as given byR.

On the other hand, if agent aj ∈ Ag is active at stage t and there is an on-going proposal T̂ = (Ĉ, G′)

(where aj ∈ Ĉ) and aj plays λj = Accept(T̂ ) then the history is updated as follows: (i) Ag(−) = Ag(−);
(ii) πAg(−) = πAg(−); (iii) AgA =AgA ∪ {aj}; (iv) Lreject = Lreject; (v) T̂ = T̂ ; and, (vi) t = t+ 1 and it is
the turn of the next agent as given by R. If AgA = Ĉ then, ∀ai ∈ Ĉ, the history is updated as follows:
(i) Ag(−) = Ag(−) ∪ {ai}; (ii) πAg(−) = πAg(−) ∪{T̂}; (iii) AgA =∅; (iv) Lreject = Lreject; (v) T̂ = (∅, ∅);
and, (vi) t = t+ 1 and j is updated so that it is the turn of the next agent as given byR.

Else, if T̂ = (Ĉ, G′) and aj plays λj = Reject and Propose(C ′, G′′) where: (a) (C,G′) ∈ Tj; (b)
(C,G′) /∈ Lreject; and, (c) ∀ak ∈ C, ak /∈ Ag(−) then the history is updated as follows: (i) Ag(−)

= Ag(−); (ii) πAg(−) = πAg(−); (iii) AgA =∅; (iv) Lreject = Lreject ∪ {T̂} ; (v) T̂ = (C ′, G′′); and, (vi)
t = t+ 1 and j is updated so that it is the turn of the next agent as given byR.

Output: πO = πAg(−) .

Figure 6.3: Pseq for a HQCG with n agents
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6.3.1 Backward Induction
To execute backward induction, the sequential protocol PSeq is represented in extensive form as a game tree
Ggame where:

• A vertex represents the agent whose turn it is in the protocol; and,

• An edge from a vertex represents a strategy played by the agent who is represented by that vertex.

To fully define this representation, consider the following terminology.

Definition 6.16 In a game tree Ggame,

• The root is the single vertex at the top of the tree;

• The children of a vertex consist of all the nodes that are connected, by a directed edge, from the node;

• The leaves are the set of vertices that have no children;

• The level represents the depth of the tree, starting from the root. For instance, the root occupies level
1 and, for a vertex at level i, its children occupy level i+ 1; and,

• A complete path is a path in Ggame which begins at the root and ends at a leaf.

Given Ggame, the root of this tree will consist of a node representing the first agent inR. The edges from this
node will represent the strategies this agent can play. The children of this node will represent the agent’s who
turn it is next in the protocol, depending upon the strategy played by the first agent. More generally, given a
vertex at level t in Ggame, the path from the root to this node will represent the history ht. Additionally, all
edges protruding from this node will represent the strategies the agent ai can play given ht. Clearly, at any
vertex in Ggame, the history can be found through evaluating all the actions that led to this agent’s (who is
represented by the vertex) turn. A complete path represents the history of the protocol from the turn of the
first agent up to the formation of the structure.

Example 6.2 Consider ΓH , where Ag = {a1, a2, a3}, G = {A,B,C},G1 = {A},G2 = {B}, G3 = {C}
and v(Ag) = {{A,B,C}} and v(C) = ∅ for all other coalitions. Thus, ∀ai ∈ Ag, ({a1, a2, a3}, {A,B,C}).i
({ai}, ∅). IfR = a1 → a2 → a3 then the complete game tree representation of this protocol is presented in
Figure 6.3.1.

Given Ggame, a natural approach to compute the best strategy for each agent would be to employ backward
induction. Specifically, for a game tree with z levels, backward induction involves sequentially evaluating
the vertices in levels z, z − 1, . . . , 2, 1 and computing the best strategy for the agents represented by the
vertices to play (as given by their preferences over the teams they can form). In this way, the best strategies
at each vertex of the tree are computed given the best strategies at all of its descendants. Given that the
best strategies for every node have been computed, each agent can then compute the best strategies form
themselves. For example, consider the game tree in Figure 6.3.1. Observe that:

• Level 1 contains one vertex representing the turn of the agent a1;

• Level 2 contains two vertices, both representing the turn of the agent a2;

• Level 3 contains three vertices, two of which represent the turn of the agent a3 and one represents the
turn of a1;

• Level 4 contains two vertices, one representing the turn of the agent a1 and one representing the turn
of the agent a3; and,

• Level 5 contains one vertex representing the turn of the agent a2.
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Figure 6.3.1: Complete game tree representation for the protocol in Example 6.2

Beginning with the vertex in level 5, backward induction algorithms sequentially evaluate the vertices in
levels 4, . . . , 1, computing the best strategy for each agent to play with respect to their preferences over
the teams they can form. In Level 5, the only strategy a2 can play is Propose({a2}, ∅). Conversely, in
Level 4, the best strategy a1 and a3 can play is Propose({a1}, ∅) and Propose({a3}, ∅), respectively. How-
ever, in Level 3, with respect to their preferences over the team, the best strategy for a3 is to play Ac-
cept({a1, a2, a3}, {A,B,C}). Given that they play this, in Level 2, out of the three different strategies they
can play, the best strategy for a2 to play is also Accept({a1, a2, a3}, {A,B,C}). Likewise, in Level 1 the
best strategy for a2 to play is Propose({a1, a2, a3}, {A,B,C}). From this backward induction process, the
profile

S = 〈Propose({a1, a2, a3}, {A,B,C}),Accept({a1, a2, a3}, {A,B,C}),

Accept({a1, a2, a3}, {A,B,C})〉,

is a sub-game perfect equilibrium in this example.

6.3.2 Complexity of Backward Induction
Since every vertex in every level of Ggame is analyzed during backward induction, a bound on the number
of levels in Ggame can be used as a measure of the complexity of backward induction.

Theorem 6.4 In any ΓHU
, let T denote the non-null teams that can be proposed by the agents. For any

Ggame representation of PSeq in ΓH, all complete paths in will contain,

O(n+
∑

(C,G′)∈T

(|C| − 1)),

vertices.
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Proof: A longest path is created as follows. Consider the path representing the formation of the struc-
ture consisting exclusively of null teams, in which all teams in T are proposed so that, whenever a team
(C,G′) ∈ T is proposed, the first |C| − 1 agents, as given by R, accept the proposal but the last agent
rejects it and proposes another team instead.

Obviously, since Ggame represents all possible histories up to the formation of every team structure, such
a path will be guaranteed to exist in Ggame. In this path, every time an agent proposes their null team will
be represented by exactly one node, whereas every subsequent strategy involving any (C,G′) ∈ T will be
represented by a path containing exactly |C|−1 nodes. Because a team cannot be proposed more than once,
no path can contain more vertices than the path representing this scenario and, therefore, all complete paths
in will contain no more than,

n+
∑

(C,G′)∈T

(|C| − 1),

vertices.

Backward induction evaluates the best strategy for every vertex in every level, starting from the highest level
and ending at the root. Therefore, against Theorem 6.4, backward induction process will compute the best
strategy for the agents at every node for no more than,

n+
∑

(C,G′)∈T

(|C| − 1),

levels. This is clearly demonstrated in Figure 6.3.1 where the longest complete path is of size 3+(3−1) = 5.

It can be observed that since Ggame represents all histories defining all ways in which all π ∈ ΠT can be
formed, the number of nodes in Ggame grows exponentially in the number of levels. For instance, ifBF ≥ 1
denotes the average branching factor of Ggame (computed, say, from the average number of teams each
agent can form at any moment in time) then at level L > 0 in Ggame, there are BFL nodes. Therefore, even
if ΓH is concise in the number of agents and goals, Ggame may contain a number of vertices that are expo-
nential in both the number of agents and goals. Consequently, backward induction may require analyzing a
number of vertices that are exponential in the number of agents and goals.

Nevertheless, in the next section, a natural class of HQCGs is presented where the equilibrium strategy can
be computed without using backward induction. In this context, the complexity of computing an equilibrium
strategy is circumvented for this class of games.

6.4 HQCGs with Universal Preference
Consider a class of HQCGs in which the preference orderings of the agents are universal (denoted by
HQCGU and ΓHU

). For a real world example, consider a set of agents representing ‘small’ businesses
or universities, that is, universities or business that have very limited resource. There exist leagues tables
(e.g., Fortune 500 or university league tables) which rank university or business as better than others with
respect to certain criteria. Intuitively, these leagues tables can be assumed to constitute a universal ordering
over the entities involved in the coalition formation process and, under the assumption that the resource
is small that each institution can commit to no more than one team, HQCGU can represent collaboration
between these institutions (of course, if this idealisation is relaxed then this may not always be possible).

Against both P1 and P2, in HQCGU s, every agent can compute the preferences of the other agents over the
teams they can form from the sets of goals in every set v(C). This, in turn, implies that agents can compute
the structure that will be formed if agents participate in the sequential protocol. This insight also implies
that the equilibrium stratergy can be computed without executing backward induction. To this end, consider
the following algorithm for computing the strategy of the agents.
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6.4.1 An Algorithm to Compute the Sub-game Perfect Equilibrium Strategy
In this subsection, a novel algorithm which generates a team structure πO is presented. Once πO has been
generated, in the equilibrium strategy, it is assumed that every ai ∈ Ag will:

• Propose Ti(πO);

• Accept Ti(πO) if proposed it; and,

• If proposed any team T ′ ∈ Ti \ {Ti(πO)}, Reject and Propose Ti(πO) instead.

For notation, denote the strategy described above as S∗. Without loss of generality, when describing this
algorithm, it is assumed that the agents are indexed with respect to their position in the universal ordering,
i.e., a1 is the most preferred, a2 the second most preferred e.t.c. and that, for every coalition C ⊆ Ag, the
agents are ordered non-decreasingly in C with respect to their index values.

This algorithm will incrementally construct πO. To do this, ΓHU
and all v(C) such that v(C) 6= ∅ are input.

The space of all coalitions is organized so that all coalitions C ⊆ Ag of the same size are grouped together.
For notation, let Si(C) denote the set of all coalitions of size i and let S(C) = ∪ni=1Si(C) denote the space
of all coalitions. In the spirit of [56], for i = 1, . . . , n, all coalitions C ⊆ Ag, as well as all appropriate
v(C), are ordered in Si(C) as follows,

• For i = 1, . . . , n, order coalitions in each Si(C) as they are in each list Li of the DCVC algorithm
presented in Section 4.1.1; but,

• For each coalition which occupies the jth position of Li, set it to occupy the ((|Li|−j)+1)th position
of Si(C).

Table 6.4.1 shows how the input space will be represented for a system with agents Ag = {a1, . . . , a4}
(where, in practice, only those coalitions C ⊆ Ag such that v(C) 6= ∅ would be stated). This representation
ensures that the coalitions are ordered non-decreasingly in each Si(C) with respect to the most preferred
coalition of the most preferred agents (as given from the universal ordering). This means that for any
coalition Ci,j ∈ Si(C) that is part of a minimal and successful team, all ak ∈ Ci,j will prefer to form the
team containing this coalition to all minimal and successful teams in Tk which contain either:

(i) a coalition ordered below it in Si(C); or,

(ii) a coalition in any of Si+1(C), . . . , Sn(C).

In the first step of the algorithm, for all C ⊆ Ag, pre-processing is employed to identify all G′ ∈ v(C)
which satisfy all of the agents in C. To achieve this, a function F1 is introduced such that, ∀G′ ∈ v(C),

F1(G′) =

{
1 if ∀ai ∈ C,Gi ∩G′ 6= ∅;
0 otherwise.

Sequentially, for i = 1, . . . , n and j = 1, . . . , |Si(C)|, this function identifies the sets of goals G′ ∈ v(Ci,j)
which coalition Ci,j can successfully accomplish. Specifically, the function F1 is sequentially computed for
all sets of goals that the coalitions in S1(C), . . . , Sn(C) can accomplish.

For the first coalition C∗ encountered where ∃G′ ∈ v(C∗) such that F1(G′) = 1, the team (C∗, G′) is
a minimal and successful team as all teams containing any of the coalitions C ⊂ C∗ are not success-
ful. Furthermore, due to the ordering of the coalitions in S1(C), . . . , Sn(C), all agents who make up C∗

will prefer to form a team containing this coalition over the teams which contain any other coalition in
Sl(C), . . . , Sn(C) to which they belong. Thus, the following action can be undertaken,

πO := πO ∪ {(C∗, G′)}.
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S(C) v(C) F1

S1(C)
C1,1 = {1}
C1,2 = {2}
C1,3 = {3}
C1,4 = {4}
S2(C)
C2,1 = {1, 2}
C2,2 = {1, 3}
C2,3 = {1, 4}
C2,4 = {2, 3}
C2,5 = {2, 4}
C2,6 = {3, 4}
S3(C)
C3,1 = {1, 2, 3}
C3,2 = {1, 2, 4}
C3,3 = {1, 3, 4}
C3,4 = {2, 3, 4}
S4(C)
C4,1 = {1, 2, 3, 4}

Table 6.4.1: Representation of space of coalitions for algorithm

Now, the remaining teams can be found through sequentially executing F1 in v(C) for the remaining coali-
tions (which are disjoint to πO) input. Clearly, due to the ordering of coalitions in the input space, all of the
agents in any coalition Ci,j which belongs to a minimal and successful team will prefer to form the team
consisting of this coalition over all other teams containing either:

(i) a coalition ordered below it in Si(C); or,

(ii) a successful teams containing a coalition in any of Si+1(C), . . . , Sn(C).

Therefore, due to the manner in which the space of all coalitions is searched, every time a coalition which
(does not contain any of the agents in the partial team structure πO and) can successfully accomplish a set
of goals is identified, the team consisting of this coalition and this set of goals will definitely be formed and,
consequently, it is added to πO. This process can be iteratively repeated for the remaining coalitions in the
input space. In this manner, πO can be incrementally constructed.

Once the input space of all coalitions and all v(C) has been exhaustively searched, it may be that some of
the agents do not belong to teams in πO. Against previous reasoning, this means that the only teams they
can form are the null ones. Therefore, these null teams are added to πO and it is output. This algorithm is
formally presented in Algorithm 6.4.1. To show that this strategy is an equilibrium strategy, consider the
following theorem.

Theorem 6.5 For any HQCGU , if all the agents play S∗ in PSeq, πO will always be core stable.

Proof: Suppose that the structure πO = {T1, . . . , Tk} is formed when every agent plays S∗ in the sequential
protocol PSeq in any ΓHU

. To complete this proof, it must be shown that for every ai ∈ Ag, if there exists
a team T ∈ T , such that T .i Ti(πO) then ∃aj ∈ T such that Tj(πO) .j T . This is proven to be true via
reductio ad absurdum, i.e., the converse is assumed to be true and it is then proven that it cannot be. Thus,
it is claimed:

∃T ∈ Ti such that ∀aj ∈ T, T .j Tj(πO).
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In S∗, agents form their most preferred team given that those above them in the universal ordering form
their most preferred teams. Consequently, if all the agents played S∗ and it was the case that T .j Tj(πO),
∀aj ∈ T then every aj ∈ T would have,

• Proposed T instead of Tj(πO);

• If proposed Tj(πO), would have rejected it and counter-proposed T instead; and,

• If proposed T , accepted the proposal.

Therefore, if every agent played S∗, T would have been formed instead of Tj(πO). Thus, since every agent
played S∗, such a team cannot exist and so the converse claim is not true. Therefore, πO is core stable in
any HQCGU where the agents play S∗ in PSeq.

Algorithm For Computing S∗

Input: ΓHU
, S(C)1, . . . , S(C)|Ag|, δ, πO := ∅.

Step 1. For i = 1, . . . , n and j = 1, . . . , |Si(C)|, ∀G′ ∈ v(Ci, j) do F1(G′). If
a coalition C∗ is found such that ∃G′ ∈ v(C∗) where F1(G′) = 1 then do
πO := πO ∪ {(C∗, G′)}.

Step 2. Repeat Step 1 for all coalitionsC ′ in S|C′|(C), . . . , S|Ag\C′|(C) such thatC ′ ⊆
Ag \ ∪C∈πOC, maintaining the sequential order in which the coalitions are
searched.

Step 3. After all coalitions have been searched, if Ag \ ∪C∈πOC = ∅ then output
πO. Otherwise, if Ag \ ∪C∈πOC 6= ∅ then ∀ai ∈ Ag \ ∪C∈πOC, set πO :=
πO ∪ {({ai}, ∅)} and output πO.

Output: πO.

Algorithm 6.4.1: An algorithm for computing a sub-game perfect equilibrium strategy for ΓHU

Theorem 6.5 proves that there does not exist a team T ∈ T such that, for every agent ai ∈ T , T .i Ti(πO).
Therefore, following this theorem, were any ai ∈ Ag to deviate from their strategy λi ∈ S∗ and play λ′i
instead, the team proposed instead of Ti(πO) will be rejected by at least one agent who also belongs to it,
regardless of the history. Thus, if there exists a team T ∈ T such that, for every agent ai ∈ T , T .i Ti(πO)
then, were this team proposed in strategy λi, it will not be formed as at least one agent will reject it. Thus,
at any step of the negotiation process, no matter what the history is, no agent is motivated to deviate and use
another strategy other than that which they played in S∗. Theorem 6.6 immediately follows.

Theorem 6.6 In the sequential protocol PSeq of any HQCGU , S∗ is a sub-game-perfect Nash Equilibrium
strategy.

Theorem 6.5 also proves that, in contrast to the general HQCG representation, in HQCGs with universal
preference, there always exists a core stable structure. Against Theorem 6.1, this also implies that there
always exists a Nash stable and, therefore, an individual and contractual individual stable structure.

When analyzing the sets of goals in every set v(C), since no coalition can contain more than n agents and
no set of goals can contain more than m goals, verifying if a given set of goals in set v(C) satisfies every
agent in the coalition C requires no more than nm operations. Therefore, the time complexity of Algorithm
6.4.1 is,

O(
∑
C⊆Ag

(|v(C)| × (mn))),
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where |v(C)| denotes the number of sets of goals in v(C). Against HQCG1 and HQCG2, this implies
that this algorithm can compute the equilibrium strategy in a number of operations that are polynomial in
both the number of agents and goals. Furthermore, this algorithm can be computed whilst the agents are
constructing their preferences, meaning backward induction is avoided.

6.5 Further Assessment of the Protocol
Having addressed the computational complexity of computing an equilibrium strategy in the sequential
protocol, in this section the protocol is assessed with respect to other factors, such as:

1. The fairness of the protocol, that is, whether certain agents have an advantage over others with respect
to forming their most preferred teams;

2. The stability of the formed structure; and,

3. The worst case optimal guarantees of the formed structure.

First, consider fairness in Pseq . In particular, consider the problem of control [6]. The problem of control
computes if it is possible for an agent to affect the formed structure through changing the order in which
agents propose teams, that is, through controlling R. This is undesirable in the sequential process, since an
agent may have an advantage over others based only on the rule of order and the ordering may affect the
structure which is actually formed. Thus, a dishonest entity may be able to influence the rule of order so that
certain agents have an advantage over others.

In a number of instances of ΓH, the protocol may not be control-proof. For instance, consider Example
6.1 and suppose a1 is the first agent as given by R. Here, a1 can guarantee not to form their null team.
For instance, were they to play Propose({a1, a3},{g1, g2, g3}) then this team would be formed as it is a3’s
most preferred team. On the other hand, if a1 plays Propose({a1, a2}, {g1, g2, g3}) then a2 can either ac-
cept or reject the proposal. If they accept it then this team will be formed, however, if a2 plays Reject and
Propose({a2, a3}, {g1, g2, g3}) instead then a3 will play Reject and Propose ({a1, a3}, {g1, g2, g3}) as it
prefers this team. Given that a rejected team cannot be proposed again, a1 will accept this team because
otherwise they will have to form their null team. In this way, a1 can guarantee not to form their null team.
Following this intuition, were either a2 or a3 the first agents, as given by R, they too can be guaranteed not
to form their null teams. In this way, it can be argued that the first agent, as given byR, has a distinct advan-
tage over the other agents. Consequently, because different rules of order can result in different structures
being formed, the protocol is not control-proof in the general HQCG representation.

Against this insight, to circumvent any issues regarding control, it is assumed that the rule of order is ran-
domly generated in ΓH. Of course, in ΓHU

, control-proofness in PSeq is guaranteed since a core stable
coalition structure is guaranteed to exist and the strategy of the agents involves generating a core stable
structure and playing a strategy that results in its formation. Therefore, no matter the rule of order, this
structure will always be formed. In this way, as well as circumventing the complexity in computing equilib-
rium strategies, the problem of control is also circumvented in ΓHU

.

Now, consider stability of the formed structure. Even though there is no guarantee of a core, Nash or indi-
vidual stable team structures existing in ΓH, stability of πO is guaranteed because, when forming teams in
PSeq, the commitment is binding between the agents. This means that, once πO is formed, every agent is
unable to defect from the teams they belong to in this structure and form another team instead. Therefore,
because agent transfers between teams are prohibited, if there is no core or Nash stable structure, πO is
inherently stable, even if πO does not necessarily satisfy the requirements of core and Nash Stability. In
this context, problems concerning non-emptiness of the core are circumvented by the binding commitment
assumption.
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Of course, this is not a problem in ΓHU
because, following Theorem 6.5, the structure formed from all the

agents playing the strategies in profile S∗ in Pseq is always core stable. Furthermore, against the intuition
expressed in Theorem 6.1, πO must also be Nash stable (and, therefore, individual and contractual individual
stable as well). In this way, even without binding commitment, πO is always stable if the agents play their
strategy that belongs to the equilibrium profile in Pseq.

As well as fairness and stability, in any HQCG, a notion of optimality can be captured in the following
definition.

Definition 6.17 A team structure π∗ ∈ ΠT is optimal if it maximizes the number of satisfied agents.

Obviously, due to the self-interested nature of the agents, there is no guarantee that πO will maximize the
number of satisfied agents. Nevertheless, note that no more than n agents can be satisfied in any team struc-
ture.

For notation, let:

• ΠT denote the set of team structures that consist of null or minimal and successful teams (that is,
those that would be formed by the agents with preferences according to P1 and P2);

• Π′T denote the set of all possible team structures;) (ΠT ⊆ Π′T );

• π∗F denote an optimal structure in Π′T ;

• π∗T denote an optimal structure in ΠT ; and,

• πO the structure formed from the agents participating in the protocol.

Proposition 6.1 In any ΓH,

the number of agents satisfied in π∗F − the number of agents satisfied in πO ≤ n− 1.

Proof: Firstly, suppose there are no successful teams in ΓH. This, means that ΠT contains a single structure
which consists exclusively of null teams and πO = π∗T . In such a case, as there are no externalities from
coalition formation, in any unsuccessful team, no more than n−1 agents can be satisfied. For example, sup-
pose Ag = {a1, . . . , an} and ∀i = 1, . . . , n, Gi = {gi}. If v({a1, .., ai, ..an}) = {g1, .., gi−1, gi+1, ..gn}
and v(C) = ∅ for all C ⊂ Ag then the structure π∗T = {({a1, . . . , an}, {g1, .., gi−1, gi+1, ..gn})} satisfies
n− 1 agents. Therefore:

the number of agents satisfied in π∗F − the number of agents satisfied in πO ≤ n− 1.

Now, if there exists at least one successful team then at least one of the minimal and successful teams will
be formed by the agents. Thus, a structure containing any of these teams will be formed, meaning at least
one agent will be satisfied. If there is exactly one successful team consisting of the grand coalition then,
trivially, this team is also minimal and successful, meaning πO = π∗F and the number of agents satisfied in
π∗F is equal to the number of agents satisfied in π∗T . However, if there exists other successful teams then,
against P2, some of these teams will be formed in πO. Consequently, it follows that:3

the number of agents satisfied in π∗F − the number of agents satisfied in πO ≤ n− 1.

Proposition 6.1 shows that either an optimal team structure will be formed or at least one agent will be
satisfied in the the formed structure. In addition to this proposition, it should be noted that πO will be
optimal if and only if:

3Although the HQCGs studied in this chapter assume that no agent can accomplish any of their goals, this proof
does not consider such assumptions. Therefore, for the games considered in this chapter, in Proposition 6.1, ‘n − 1’
must be changed with ‘n− 2’.
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(a) all successful teams contain the coalition Ag; or,

(b) all team structures in Π′T satisfy zero agents.

If (a) is true then all teams containing the coalition C = Ag will be minimal and successful. Against previ-
ous discussion, the agents will formulate their preferences over these teams and will be indifferent between
these minimal and successful teams but will prefer any of them to their null team. Consequently, any of the
team structures consisting of this minimal and successful team will be formed by the agents in Pseq and πO
will consist of a structure in which n agents are satisfied.

On the other hand, if (b) is true then all team structures that can be formed will satisfy zero agents. Given
there are no minimal and successful teams, πO will exclusively consist of every agent’s null team and so, in
this system, πO will also satisfy zero agents.

6.6 Summary
In this chapter, hedonic qualitative coalitional games were formally defined. However, only those games
where assumptions regarding the conciseness of the representation and the preferences of the agents were
studied. For this class of games, stability concepts, based on those formulated for hedonic coalitional games,
were formalized for HQCGs. In these games, although there is always guaranteed to be a contractually indi-
vidually stable structure, there is no guarantee that there will be a core, Nash or individually stable structure.
Furthermore, computing if there exists a core stable structure cannot be done in polynomial time complexity,
even if the representation is concise.

To this end, a sequential coalition formation protocol was refined for HQCGs. In this protocol, there always
exists an equilibrium strategy and, if all the agents play this strategy in any HQCG, then this structure is core
stable if and only if there exists a core stable structure. However, computing this strategy requires backward
induction which can be exponentially complex. Furthermore, this protocol is not control-proof.

Given this insight, motivated through real world examples, a natural class of HQCGs were studied. In this
class of games there always exists a core and Nash stable structure. Furthermore, if all the agents play their
equilibrium strategy then the formed structure is always core and Nash stable (and, therefore, individual and
contractual individual as well). Additionally, it was demonstrated that this strategy can be computed with
time complexity that is polynomial in the size of the representation. This is particularly significant if the
representation is naturally concise. Also, if the agents play their equilibrium strategy then this protocol is
control-proof in this class of games.
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Chapter 7

Conclusions and Future Work

Coalition formation is fundamental to the functioning of certain multi-agent systems. In these multi-agent
systems, to understand which coalitions will be formed by the agents, the system can be represented as
a cooperative game and concepts from game theory can be employed. Although there are advantages to
using game theory, there also exist a number of limitations. For example, a number of natural problems
concerning game theory are intractable, i.e., there is no guarantee that these problems can be efficiently
solved. In particular, the problem concerned with generating an optimal coalition structure concept, which
can be used to identify the coalitions that will be formed by fully cooperative agents, is NP-hard. The
complexity of this problem stems from the fact that the number of coalition structures grows exponentially
in the number of agents and, consequently, one line of work has focused on designing algorithms that can
generate an optimal coalition structure as efficiently as possible. Building upon this research, this thesis
makes two significant contributions.

Contribution 1.

Firstly, an optimal coalition structure generation algorithm was developed for characteristic
function games. This contribution is particularly significant because it is the first optimal coali-
tion structure generation algorithm that considers both coalition value calculation and optimal
coalition structure generation processes. Furthermore, this algorithm was a heavily refined
version of the sequential application of the distributed coalition value calculation algorithm
and the integer partition algorithm. To be precise, the procedure was heavily refined by:

1. Introducing filter rules to both the DCVC and IP stages to identify coalitions that cannot
belong to optimal coalition structures;

2. Transferring the process of identifying promising subspaces of coalition structures from
the IP stage to the DCVC stage; and,

3. Changing the manner in which the coalition structure values are computed in each sub-
space.

Empirical results suggest that, for normally distributed of coalition values, these filter rule can
exponentially improve the efficiency in which an optimal coalition structure is generated in
this sequential DCVC-IP procedure. Also, the anytime property of the IP optimal coalition
structure generation algorithm is retained and it is ensured that the transfer load of the agents,
as well as the resource usage, is minimized.

Contribution 2.

An optimal coalition structure generation algorithm was developed for natural classes of par-
tition function games. This was the first algorithm that considered optimal coalition structure
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generation when there are non-zero externalities from coalition formation. Inherent to the ef-
fectiveness of this algorithm is the proof that all coalition values can be bounded by first com-
puting the values of all coalitions that are embedded in those coalition structures that belong
to a fraction of Π. Empirical results show that, when the effect of the externalities are large
and the effect of the sub- or super-additivity is small, or vice-versa, the algorithm generates
an optimal coalition structure through computing the values of only a number of structures.
In contrast, when the effects are similar, almost every coalition structure value is computed in
order to generate an optimal.

Now, the complexity of problems concerning non-emptiness and membership of the core solution concept,
which can be used to identify coalitions that will be formed by self-interested agents, is related to the size of
the cooperative game representation. Because the number of coalitions grows exponentially in the number of
agents, this means that, given a fully-expressive cooperative game representation, these problems cannot be
solved with polynomial time complexity. Consequently, one line of research has focused on developing fully
expressive representations of cooperative games which, for certain natural instances, enable core-related
problems to be computed with time complexity that is polynomial in the number of agents. Following on
from this research, the work presented in this thesis makes the following contribution.

Contribution 3.

Hedonic qualitative coaltional games were formalized. Given this novel representation, it was
shown that, in those games where assumptions regarding both the preferences of the agents and
the conciseness of the representation, although there is always guaranteed to exist a contractual
individual stable structure, this guarantee could not be extended to core, Nash or individual sta-
bility. Nevertheless, under these assumptions, core stability implies both Nash and individual
stability but, even if the representation was concise, no algorithm could be guaranteed to com-
pute if there exists a core stable structure with time complexity that is polynomial in the size
of the representation.

If there is no core stable structure in a HQCG then it is not immediately apparent how the
agents should partition themselves. To this end, a sequential coalition formation protocol was
developed for which there always existed a equilibrium strategy for the agents to play. In this
way, the agents were motivated to participate in the protocol, even if there were no core stable
structures. However, computing this strategy may require time complexity that is exponential
in the size of the representation.

Finally, a natural class of hedonic qualitative coaltional games were studied. It was shown that
if the previously defined assumptions preferences of the agents held, then there always exist a
core stable structure. Furthermore, this structure could be computed with time complexity that
was polynomial in the size of the representation.

As can be seen from the three contributions presented in this section, this thesis uses algorithm design
and representation to tackle the computational complexity of using game theory to understand coalition
formation in multi-agent systems. In this way, this thesis provides important contributions to the state-of-
the-art understanding of distributed artificial intelligence, game theory and complexity theory.

7.1 Future Work
Following on from these contributions, a natural progression of Contribution 1 would be to develop a
fully distributed optimal coalition structure generation algorithm. The algorithm and filter rules presented
in Chapter 4 would form a useful foundation from which such an algorithm could be developed.
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In addition, one line of future work would involve extending the optimal coalition structure generation prob-
lem so that different metrics could be used to assess the welfare of the system. For example, consider a
characteristic function game with non-transferable utility where the gain from forming a coalition is allo-
cated among the agents who belong to it using a fixed sharing rule. Here, if xi ∈ v(C) denotes ai’s share of
the gain then metrics that measure the welfare of the system using the utilities of the individual agents can
be employed including:

• The egalitarian metric, where the value of a structure π ∈ Π is given by:

arg minxi∈v(C)xi,∀C ∈ π; and,

• The elitist metric, where the value of a structure π ∈ Π is given by:

arg maxxi∈v(C)xi, ∀C ∈ π.

With regards to these metrics, the structure with biggest egalitarian or elitist value is egalitarian or elitist
optimal, respectively. Following reasoning presented in [23], in many settings that can be represented as
characteristic function games with non-transferable utility, these metrics may be more suitable than a utili-
tarian one. For instance, an elitist metric may be appropriate for systems where agents cooperate to support
the agent with the highest utility. A typical scenario could be where fully cooperative agents, who all have a
common goal, cooperate and are satisfied if at least one agent achieves that goal no matter what happens to
the others. In contrast, an egalitarian metric may be more appropriate in systems where the minimal needs
of a large number of agents must be satisfied.

From a computational perspective, once v(C) is known for all coalitions C ⊆ Ag then an elitist optimal
coalition structure is any structure that contains the coalition which has the biggest individual utility value.
However, generating an egalitarian optimal coalition structure is not as trivial and, in the worst case, every
possible structure must be analyzed in order to guarantee an egalitarian optimal coalition structure. Thus,
one line of future work could involve developing algorithms that can efficiently generate an egalitarian op-
timal coalition structure without having to analyze every possible structure that can be formed.

Finally, another possible line of future work could involve investigating the link between optimal coali-
tion structure generation and winner determination in combinatorial auctions. In the multi-agent systems
paradigm, auction mechanisms can be used for allocating items such as goods, services and resources among
agents. The agent allocating the item(s) is referred to as the auctioneer and the agents who desire the item(s)
are referred to as the bidders. Typically, the auctioneer is acting on behalf of a seller who is selling the goods.

For a set of atomic goods Z = {z1, . . . , zm}, bidder agents may bid over bundles B1, . . . , Bm of the goods
in Z , where, for j = 1, . . . ,m, Bj ⊆ Z . The aim of the auctioneer is to maximize the profit of the seller.
This means that if several bids have been submitted on the same bundleBj , the auctioneer is only concerned
with the highest bid and discards the others since it can never be beneficial for the seller to accept one of
these inferior bids. Consequently, any bundle Bj can be attributed a value,

v(Bj) = arg maxi∈Agvi(Bj),

where vi(Bj) denotes the value of the bid submitted by agent ai ∈ Ag for all of the goods in bundle Bj . In
this context, the winner determination problem determines which partition(s) πz ∈ Πz ofZ is (are) maximal
with respect to the combined value of all bundles that belong to it, i.e.,

π∗z = arg max πz∈Πz

∑
Bi∈πz

v(Bi).

Computing this problem draws obvious parallels with the optimal coalition structure generation problem
where:
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1. The set of goods represent the set of agents;

2. A bundle of goods represents a coalition of agents; and,

3. The maximal bid represents the coalition value.

As with characteristic function games, it is assumed that there are no externalities in these auctions, meaning
every bundle has the same value in every partition to which it belongs. To this is end, in the spirit of ex ante
optimal coalition structure generation algorithms, winner determination algorithms have been developed
which generate π∗z without having to analyze all possible partitions of the goods in Z , including those that:

• Employ dynamic programming techniques [63];

• Restrict the number of combinations of goods in order to guarantee winner determination in polyno-
mial time [68]; and,

• Exploit the sparseness in the bids in order to guarantee efficient computation of the winner determi-
nation problem [65].

In the spirit of Contribution 2, one line of work could involve considering winner determination in auctions
where there exist externalities. For example, there may exist identity based externalities where the identity
of the agent who submits the winning bid on a given bundle may negatively or positively influence what the
other agents may bid on the remaining bundles of items [79] or financial based externalities where the value
of the winning bid on a given bundle may negatively or positively influence what the other agents may bid on
the remaining bundles of items [37]. Whereas these externalities have been considered from a mechanism
design approach (see [32, 31]), the efficiency in which the winner determination problem can be solved has
not been considered thus far. This line of work may involve representing the externalities in a manner that
enables efficient computation of the winner determination problem or reformulating the existing algorithms
so that they can efficiently solve the winner determination problem in the presence of these externalities.
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Appendix A

Key Concepts from Computational
Complexity Theory

Computational complexity theory is a branch of computer science that focuses on classifying problems
according to their inherent difficulty. In this discipline, a computational problem is a general question on
some mathematical object which is described by giving:

1. A general description of all of its parameters; and,

2. A statement of what properties the solution to this problem should satisfy.

The computational problems studied in this discipline are decision problems, that is, problems that have
only ‘yes’ or ‘no’ answers. Decision problems are very important in computation because they are simple to
express and many complex problems can be reduced to the solution of one or more decision problems. Given
a decision problem D, its complementary decision problem D consists of the same object and parameters,
but the complement question is asked. For instance, consider the following decision problem.

D1

INPUT: A positive integer N .
QUESTION: Does there exist a positive integer k such that N = 4k?

The complementary decision problem D1 is expressed as follows:

D1

INPUT: A positive integer N .
QUESTION: For all positive integers k, is it the case that N 6= 4k?

An instance of a problem is obtained by specifying particular values for all of the problem’s parameters.
For example, N = 12 is an instance of problem D1. The length function of a problem D (denoted Length)
assigns a natural number (a size) to each instance of this problem. Typically, this number reflects the
size of the input, that is, the number of items input. For example, in problem D1, for instance N = 12,
because 12 can be represented as 0011 in binary form, a natural length for this instance would be 4, i.e.
Length(N = 12) = 4.1

1Abstractly, computation is considered via a Turing machine model. Typically, the problem is input to the Turing
machine model as a string of symbols. Generally, numbers are input in binary form since this exponentially more
concise than in unit form. For more details, see [25, 50].
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A.1 The Class P
Given any decision problem, algorithms are general, step-by-step procedures that, when given the problem
as input, output its solution. An algorithm solves an input problem if, for any instance of that problem, the
algorithm gives the correct answer for that instance. For instance, if N = 12 then an algorithm will solve
this instance of D1 if it outputs ‘yes’. To provide a measure of difficulty in solving a problem, consider the
following definition.

Definition A.1 Suppose an algorithm A is able to solve some instance I of a decision problem D in s(I)
steps. The time complexity of algorithm A is given by,

timeA(n) = max argLength(I)=ns(I).

The time complexity of a problem can also be referred to as the worst case complexity of a problem. It
is this time complexity that provides a natural foundation from which to measure the difficulty in solving
problems. Firstly, consider the following definition.

Definition A.2 An algorithm A solves an instance I of a decision problem D in polynomial time if there is
a polynomial function q : N → N such that, for every instance I , the number of steps that A takes to solve
D is bounded above by,

q(Length(I)).

For notation, ‘bound above by’ can be expressed via ‘big oh’ notation ‘O’. Thus, if an algorithm A solves
an instance I of a decision problem D in polynomial time then the number of steps that A takes to solve I
is equal to O(q(Length(I))). In words, if an algorithm A solves every instance I of decision problem D
in polynomial time then this means thats D can be solved with polynomial time complexity. This intuition
gives rise to the following class of problems.

Definition A.3 The complexity class P contains all decision problems that have polynomial-time complex-
ity.

A.2 Non-deterministic Computation and the class NP
An algorithm is said to solve problems using non-deterministic computation if it can be separated into two
separate stages:

Guessing Stage Given an instance I of problem D, this stage “guesses” a potential solution (referred to as
a certificate C(I) of instance I); and,

Checking Stage Given both I and C(I), this stage then computes if C(I) is a yes instance to I .

Definition A.4 The complexity class NP contains all decision problems that can be solved in polynomial
time via non-deterministic computation.

When analyzing the class NP, for any instance I of a decision problem D, it is not the complexity of finding
a certificate of I (c(I)) that is the issue but rather the complexity of solving the problem from an input of
(I, c(I)). For example, for the instance N = 12, given a certificate k = 3, it can be easily verified that
12
3 = 4. Thus, problem D1 is in the class NP. Clearly,

P ⊆ NP.

However, in contrast, the question of whether,

NP ⊆ P,
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is one of the most famous open problems in the scientific community today. Were this to be true then it
would imply that NP=P, meaning all decision problems in the class NP have polynomial-time complexity.

Although, there is no formal proof that either NP=P or NP 6= P is true, there does exist plenty of evidence
suggesting the latter. For example, consider the following theorem (proven in [25]).

Theorem A.1 If a problem D belongs to the class NP then there exists a polynomial q : N→ N such that
any instance I of D can be solved by a deterministic algorithm having time complexity

2q(Length(I)).

The potential for a non-deterministic algorithm to check an exponential number of possibilities is one strong
argument which supports the claim that no decision problems in NP \ P have polynomial time complexity,
i.e., NP 6= P. Against this intuition, consider the following definition.

Definition A.5 A decision problem D is intractable if it does not have polynomial-time complexity.

In other words, a decision problem is intractable if there cannot exist any algorithm that can solve every in-
stance of this problem in a number of steps that are polynomial in the size of the input. From a computational
perspective, intractable problems are undesirable since, even for moderately large inputs, it may be impos-
sible to solve them in reasonable time, even with the help of very powerful or non-deterministic computers.
This is since the rate of growth of their complexity is exponential in the input size (Length(I)). Clearly, all
problems in the class P ∩ NP are tractable. However, this intuition is not applicable to all problems in the
class NP \ P, particularly if NP 6= P. In particular, consider the following class of problems.

A.3 NP-Complete Problems
To define this class of problems, a notion of equivalence among decision problems must first be defined.

Definition A.6 For any two decision problems D and D′, a polynomial transformation between D and D′

is a function F that maps all instances of D to all instances of D′ subject to satisfying the following two
conditions:

1. F is computable by a polynomial time algorithm; and,

2. For every instance I of D, F (I) is a ‘yes’ instance of D′ if and only if I is a yes instance of D.

If there exists a polynomial transformation of D to D′ then this is denoted as D ∝ D′. Decision problems
D and D′ are said to be polynomial equivalent whenever both,

D ∝ D′ and D′ ∝ D,

are true.

From this definition, it is possible to define the concept of NP-completeness as follows.

Definition A.7 A decision problem D is said to be NP-complete if and only if:

1. D ∈ NP; and,

2. For all other decision problems D′ ∈ NP, D′ ∝ D.

Against Definition A.6:

• If any NP-complete problem can be solved in polynomial time then every NP-complete problem can
be solved in polynomial time; and,

• If any NP-complete problem is intractable then every NP-complete problem is also intractable.

Therefore, under the assumption that P 6= NP, all NP-complete problems are intractable.
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A.4 The Class CoNP and the ‘Difference’ Class
As well as the classes P and NP, two other natural complexity classes include:

coNP - A decision problem D belongs to the class coNP if its complement D belongs to the class NP; and,

DP - A decision problem D belongs to the difference class DP if it belongs to both the class NP and the
class coNP, i.e., it is contained in the class NP ∩ coNP.

Intuitively, the complement to every NP-complete decision problem is complete for the class coNP. As with
NP and P, it is generally accepted that NP 6= coNP, although there is no formal proof to either support or
contradict this. Of course, if P=NP then NP=coNP since P is closed under complement, however, conceiv-
ably, it could be that P 6= NP and NP=coNP. Generally, it is assumed that NP 6= coNP.

The difference class DP was formally introduced in [51]. In words, the difference class is the class of
decision problems that can be solved via both NP and coNP computation. As proven in [51], DP 6= NP ∩
coNP. Conversely, like NP and P, there exist problems that are complete for the class DP. To highlight the
difference between the complexity classes considered thus far, observe the following problems.

SAT*
Input: A set of boolean variables X = {x1, . . . , xn} , a boolean expressions Φ over these
variables and a truth assignment Z ⊆ X (meaning that all variables in X belonging to Z are
assigned > and all else ⊥).
Question: Does Φ[Z] = >?

SAT
Input: A set of boolean variables X = {x1, . . . , xn} and a boolean expressions Φ over these
variables.
Question: Does there exist a truth assignment Z ⊆ X such that Φ[Z] = >?

UNSAT
Input: A set of boolean variables X = {x1, . . . , xn} and a boolean expressions Φ over these
variables.
Question: Is it the case that for every truth assignment of these variables Z ⊆ X Φ is never
satisfied (that is, Φ[Z] = ⊥ for every truth assignment Z)?

SAT-UNSAT
Input: Two sets of boolean variables X1 = {x1, . . . , xn} and X2 = {x′1, . . . , x′n}, as well as
two boolean expressions Φ and Φ′ over these sets of variables.
Question: Does there exist a truth assignment Z1 ⊆ X1 such that Φ is satisfiable (that is,
Φ[Z1] = >) and is it the case that for all truth assignments Z2 ⊆ X2 Φ′ is unsatisfied (that is,
Φ′[Z2] = ⊥ for every truth assignment Z2)?

Clearly, SAT* belongs to the class P (and therefore NP since P⊆NP) since this problem can be solved in |Φ|
steps2 and, therefore, has polynomial time complexity. However, SAT belongs to the class NP since it can
be solved non-deterministically by guessing an assignment Z ⊆ X and verifying if Φ[Z] = >. Membership
to NP follows from the fact that the latter verification can be done in polynomial time. In fact, this problem
was proven to be NP-complete [25]. Since UNSAT is the complement to SAT then it is coNP-complete and,
by definition, belongs to the class coNP. Finally, SAT-UNSAT belongs to the class DP since computing if Φ
is satisfiable is NP-complete whereas, computing if Φ′ is unsatisfiable is coNP-complete.

In this context, although all of these four problems are intuitively similar, they all belong to four different
complexity classes. It is from these classes that a polynomial hierarchy can be formalized.

2Here, |Φ| denotes the number of variables in Φ.
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A.5 The Polynomial Hierarchy
The polynomial hierarchy is a hierarchy of complexity classes that generalizes the relationship between the
classes P and NP. For notation, if C and C′ are complexity classes then CC′ denotes the class of problems
that are in C assuming the availability of an oracle3 for problems in C′ [50]. For example, NPNP denotes
the class of problems that may be solved in nondeterministic polynomial time, assuming the presence of an
oracle that can solve problems in NP.

In this context, given the classes P and NP, a polynomial hierarchy is defined with respect to these classes.
Formally, beginning with,

∆P
0 = ΣP

0 = ΠP
0 = P,

a hierarchy of tiers containing problems of increasing inherent complexity are defined as follows,

∆P
U+1 = PΣP

U ,

ΣP
U+1 = NPΣP

U ,

πPU+1 = coΣP
U+1.

In words, ∆P
0 , ΣP

0 and ΠP
0 denote the class of problems that can be solved in deterministic polynomial time.

The first level of the hierarchy is occupied by the complexity classes ∆P
1 = P, ΣP

1 = NP and ΠP
1 =coNP.

The second level contains the classes ∆P
2 = PNP , ΣP

2 = NPNP and ΠP
2 =coNPNP . As with the first level,

although there are no formal proofs in support or against, it is assumed that all three classes are distinct. The
same holds for the third level and so on. At level i, the SAT problem is expressed as follows.

QiSAT
Input: A set of boolean variables partitioned into i sets X1, . . . , Xi and a boolean expressions
Φ over these variables.
Question: ∃Z1 ⊆ X1,∀Z2 ⊆ X2,∃Z3 ⊆ X3, . . ., QZi ⊆ Xi is Φ satisfiable, where quantifier
Q is ∃ if i is odd and ∀ if i is even?

In contrast, the complement problem is expressed as follows.

QiSAT
Input: A set of boolean variables partitioned into i sets X1, . . . , Xi and a boolean expressions
Φ over these variables.
Question: ∀Z1 ⊆ X1,∃Z2 ⊆ X2,∀Z3 ⊆ X3, . . ., QZi ⊆ Xi is Φ unsatisfied, where the
quantifier Q is ∀ if i is odd and ∃ if i is even?

It is worth noting that each class at each level includes all classes at previous levels. Therefore, if it were
shown that any two classes in the hierarchy were equal, the hierarchy would collapse. As this is unlikely, it
is therefore assumed that this hierarchy is unbounded.

3Conceptually, an oracle is a machine that can instantaneously output the answer to any problem without any
computation whatsoever.
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