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Abstract. Value-based argumentation frameworks (vafs) have proven to
be a useful development of Dung’s seminal model of argumentation in
providing a rational basis for distinguishing mutually incompatible yet
individually acceptable sets of arguments. In classifying argument sta-
tus within value-based frameworks two main decision problems arise:
subjective acceptance (sba) and objective acceptance (oba). These prob-
lems have proven to be somewhat resistant to efficient algorithmic ap-
proaches (the general cases being np–complete and conp–complete) even
when very severe limitations are placed on the structure of the sup-
porting Dung-style framework. Although using the number of values
(k) represented within a given vaf leads to fixed parameter tractable
(fpt) methods, these are not entirely satisfactory: the rate of growth
of the parameter function (k!) making such methods unacceptable in
cases where k is moderately large, e.g. k ≥ 20. In this paper we consider
an alternative approach to the development of practical algorithms in
value-based argumentation. In particular cases this leads to polynomial
(in |X |)methods, i.e. irrespective of the value of k. More general exam-
ples are shown to be decidable in O(f(k)|X |2) steps where f(k) = o(k!)
resulting in worst-case run times that significantly improve upon enu-
merating all value orderings.

Keywords. Computational properties of argumentation; value-based
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Introduction

The standard argumentation framework (af) approach of Dung [8] models argu-
mentation via a directed graph, 〈X ,A〉, wherein X is a finite set of atomic argu-
ments and A ⊆ X ×X defines the attack relation over these: thus 〈x, y〉 ∈ A (read
as “x attacks y”) provides an abstract representation of the property that the
arguments x and y are incompatible. Dung’s model has been augmented to the
concept of value-based argumentation frameworks (vaf) by Bench-Capon [2] so
that the structure 〈X ,A〉 becomes 〈X ,A,V , η〉. Here V is a finite set of k abstract
values1 and η : X → V associates each argument with the value underlying it.

Although vafs provide a number of powerful semantic benefits, as discussed
in [3], [4], there are non-trivial computational problems. In particular, the fact

1The notion of “value” is qualitative – describing, e.g, ethical, social, political, etc. values –
rather than quantitative.



that the two important decision questions in vafs – subjective (sba) and ob-
jective (oba) acceptance – concern properties of orderings of V , as opposed to
properties of subsets of X has been shown to raise significant algorithmic issues.
While restricting the structure of 〈X ,A〉 by various means is known to lead to
efficient methods for all of the semantics proposed within Dung’s model, similar
restrictions have proven less effective within vafs. Thus it is known that requiring
〈X ,A〉 to be acyclic or symmetric or bipartite suffices to yield polynomial time
decision methods as shown in Dung [8], Coste-Marquis et al. [6], and Dunne [9].
In contrast even if 〈X ,A〉 is a binary tree (a subset of those frameworks that are
both bipartite and acyclic) no reduction in complexity results [9].2

Of course within the framework of fixed parameter tractable (fpt) methods,
[7], it would appear that vaf computations are efficiently dealt with: problems
are computable in O(k!|X |) steps so that both sba and oba are fixed parameter
tractable with respect to the parameter k = |V|. Such an approach – enumerate
all possible value orderings, testing each in turn for the property of interest – fails,
however, to be entirely satisfactory. This is not (solely) on account of the k! growth
rate for the parameter function - many feasible fpt methods involve significantly
faster growing functions – but rather because the parameter itself (|V|) may, in
many cases, be moderately large. Ideally, fpt methods exploit parameters whose
value is small in typical instances. In contrast there are natural settings of vafs
in which |V| ≥ 15 rendering algorithms with 15!|X | steps unreasonable.

Our aim in this paper is to consider the following questions.

A. Are there classes of vaf, in addition to systems in which 〈X ,A〉 is sym-
metric, for which sba and oba are polynomial time decidable (in |X |)
irrespective of |V|?

B. To what extent can the k! term be improved (possibly by limiting the
structure of 〈X ,A,V , η〉) to yield fpt methods with run-time O(f(k)|X |r)
(where r is some small constant) and f(k) is significantly smaller than k!?

We obtain positive answers to both questions. In particular we describe a general
category of restricted forms for 〈X ,A,V , η〉 and algorithms on these having run-
time O(k|X |2) for both of the principal decision questions. We further describe
approaches guaranteeing worst-case run-time of O(2ck × |X |2), where c ≤ 1 is
constant. Although 2ck still imposes unrealistic requirements for very large num-
bers of values, it compares favourably with, and significantly improves upon, k!
(which is asymptotically 2O(k log k)).

An important feature of the conditions leading to improved methods is that
these combine structural restrictions on 〈X ,A〉 together with restrictions on the
mapping η : X → V . In other words, the class of systems are not defined using
purely graph-theoretic forms of the type analysed in [9].

We review background concepts in Section 1 and in Section 2 describe the
main results of this paper, introducing the concept of value graphs in Sect. 2.1 and

2Symmetric frameworks do result in efficient vaf methods, however, these are rather more
a consequence of a natural consistency assumption placed on η. We note that the behaviour
commented upon arises in other augmentations of Dung’s approach. In particular the so-called
weighted systems of Dunne et al. [10] not only fail to yield polynomial time decision methods
when 〈X ,A〉 is acyclic but also fail to do so when 〈X ,A〉 is symmetric.



showing how, under certain conditions, these lead to polynomial time methods in
Section 2.2. The properties of value graphs and the cases considered in Section 2.2
motivate consideration of the extent to which such improvements may result for
more general classes of value graph. We consider natural developments of this
type in Section 3. Conclusions are given in Section 4.

1. Preliminaries: afs and vafs

The following concepts were introduced in Dung [8].

Definition 1 An argumentation framework (af) is a pair H = 〈X ,A〉, in which X
is a finite set of arguments and A ⊆ X×X is the attack relationship for H. A pair
〈x, y〉 ∈ A is referred to as ‘y is attacked by x’ or ‘x attacks y’. The convention
of excluding “self-attacking” arguments is assumed, i.e. for all x ∈ X , 〈x, x〉 6∈ A.
For R, S subsets of arguments in the af H(X ,A), we say that s ∈ S is attacked
by R – written attacks(R, s) – if there is some r ∈ R such that 〈r, s〉 ∈ A. For
subsets R and S of X we write attacks(R, S) if there is some s ∈ S for which
attacks(R, s) holds; x ∈ X is acceptable with respect to S if for every y ∈ X that
attacks x there is some z ∈ S that attacks y; S is conflict-free if no argument in
S is attacked by any other argument in S.

A conflict-free set S is admissible if every y ∈ S is acceptable w.r.t S; S is a
preferred extension if it is a maximal (with respect to ⊆) admissible set; S is a
stable extension if S is conflict free and every y 6∈ S is attacked by S;

For S ⊆ X ,

S− =def { p : ∃ q ∈ S such that 〈p, q〉 ∈ A}
S+ =def { p : ∃ q ∈ S such that 〈q, p〉 ∈ A}

An argument x is credulously accepted if there is some preferred extension
containing it; x is sceptically accepted if it is a member of every preferred exten-
sion.

Bench-Capon [2] develops the concept of “attack” from Dung’s model to take
account of values.

Definition 2 A value-based argumentation framework (vaf), is defined by a triple
H(V) = 〈H(X ,A),V , η〉, where H(X ,A) is an af, V = {v1, v2, . . . , vk} a set of
k values, and η : X → V a mapping that associates a value η(x) ∈ V with each
argument x ∈ X .

An audience for a vaf 〈X ,A,V , η〉, is a binary relation R ⊂ V × V whose
(irreflexive) transitive closure, R∗, is asymmetric, i.e. at most one of 〈v, v′〉,
〈v′, v〉 are members of R∗ for any distinct v, v′ ∈ V. We say that vi is preferred
to vj in the audience R, denoted vi ≻R vj, if 〈vi, vj〉 ∈ R∗. We say that α is a
specific audience if α yields a total ordering of V. The notation U is used for the
set of all specific audiences over V

A standard assumption from [2] which we retain in our subsequent development
is the following:



Multivalued Cycles Assumption (mca)
For any simple cycle of arguments in a vaf, 〈X ,A,V , η〉, – i.e. a finite sequence
of arguments y1y2 . . . yiyi+1 . . . yr with y1 = yr, |{y1, . . . , yr−1}| = r − 1, and
〈yj , yj+1〉 ∈ A for each 1 ≤ j < r – there are arguments yi and yj for which
η(yi) 6= η(yj).

In less formal terms, this assumption states every simple cycle in H(V) uses
at least two distinct values.

Using vafs, ideas analogous to those introduced in Defn. 1 are given by
relativising the concept of “attack” using that of successful attack with respect
to an audience. Thus,

Definition 3 Let 〈X ,A,V , η〉 be a vaf and R an audience. For arguments x, y in
X , x is a successful attack on y (or x defeats y) with respect to the audience R
if: 〈x, y〉 ∈ A and it is not the case that η(y) ≻R η(x).

Replacing “attack” by “successful attack w.r.t. the audience R”, in Defn. 1 yields
definitions of “conflict-free”, “admissible set” etc. relating to value-based systems,
e.g. S is conflict–free w.r.t. to the audience R if for each x, y in S it is not the
case that x successfully attacks y w.r.t. R. It may be noted that a conflict-free
set in this sense is not necessarily a conflict-free set in the sense of Defn. 1: for x
and y in S we may have 〈x, y〉 ∈ A, provided that η(y) ≻R η(x), i.e. the value
promoted by y is preferred to that promoted by x for the audience R.

Bench-Capon [2] proves that every specific audience, α, induces a unique
preferred extension within its underlying vaf: for a given vaf, H(V), we use
P (H(V), α) to denote this extension: that P (H(V), α) is unique and can be con-
structed efficiently, is an easy consequence of the following fact, implicit in [2].

Fact 1 For any vaf, H(V)(〈X ,A,V , η〉) (satisfying mca) and specific audience α,
the framework induced by including only attacks in the set

B = A \ {〈x, y〉 : η(y) ≻α η(x)}

is acyclic.

Proof: Suppose the contrary and let y1y2 . . . yr (with yr = y1) be any simple
cycle in the vaf 〈〈X ,B〉,V , η〉 defined from H(V) via the specific audience α. Since
each of the attacks 〈yi, yi+1〉 for 1 ≤ i ≤ r− 1 occurs in A∩B from the definition
of B we must have

∀ 1 ≤ i ≤ r − 1 ¬(η(yi+1) ≻α η(yi))

That is,

∀ 1 ≤ i ≤ r − 1 (η(yi) ≻α η(yi+1))
∨

(η(yi) = η(yi+1))

With some minor abuse of notation, we write v �α w if (v = w) ∨ v ≻α w, so
that the expression above implies

η(y1) �α η(y2) �α . . . �α η(yr−1) �α η(y1) �α . . .



Since α is a specific audience so that �α is a total ordering, the only possible

choice of values which this behaviour could arise is

η(y1) = η(y2) = . . . = η(yi) = . . . = η(yr−1)

This, however, contradicts the assumption that H(V) satisfies mca. �

Analogous to the concepts of credulous and sceptical acceptance, in vafs the

ideas of subjective and objective acceptance arise.

Subjective Acceptance (sba)

Instance: H(X ,A,V , η) and x ∈ X .

Question: Is there a specific audience, α, for which x ∈ P (〈X ,A,V , η〉, α)?

Objective Acceptance (oba)

Instance: H(X ,A,V , η) and x ∈ X .

Question: Is x ∈ P (〈X ,A,V , η〉, α) for every specific audience α?

The complexity of sba and oba is known to be unchanged under quite ex-

treme restrictions on the form of instances.

Fact 2 (Dunne [9])

1. Let sba(T ) be the decision problem sba with instances restricted to those

for which the graph structure 〈X ,A〉 is a binary tree: sba(T ) is np–

complete.

2. Let sba(T,ǫ) be the decision problem sba(T ) in which instances are re-

stricted to those in which |V| ≤ |X |ǫ: ∀ ǫ > 0 sba(T,ǫ) is np–complete.

3. Suppose sba(V,≤r) is the decision problem sba restricted to instances for

which ∀ v ∈ V |η−1(v)| ≤ r, i.e. at most r arguments share a common

value, v ∈ V. Similarly, sba(T ),(V,≤r) is this problem with instances addi-

tionally restricted to trees: sba(T ),(V,≤3) is np–complete.

Analogous conp–completeness results for oba also hold for the restricted frame-

works of Fact 2.

2. Algorithms for Subjective and Objective Acceptance

We now describe a general approach by which improvements to the O(k!|X |) upper

bounds on sba and oba may be obtained. Underpinning these is the concept of the

value graph obtained from a vaf. We describe these and their role in algorithms for

the decision problems of interest in Section 2.1. In certain cases value graphs allow

the set, U , of all specific audiences to be treated in terms of a partition resulting

from, what we term, the set of relevant audiences with respect to a particular

value. Thus, instead of the k! coefficient qualifying algorithmic behaviour, the

number of distinct relevant audiences becomes the important factor. In Section 2.2

we establish some upper bounds on this measure for some special classes of value

graph.



2.1. Value graphs

Given H(V)(X ,A,V , η) the value graph of H(V), denoted GH(V ,B), is the directed
graph with vertices V and edges

B = {〈vi, vj〉 : ∃ 〈x, y〉 ∈ A s.t. η(x) = vi and η(y) = vj} \ {〈vi, vi〉 : vi ∈ V}

It should be noted that value graphs exclude so-called self-loops, i.e. directed edges
of the form 〈x, x〉, although in general there will be attacks involving arguments
with the same value. To simplify the notation, where no ambiguity arises, we omit
the subscript H and write G(V ,B).

The idea behind our improved algorithms is to consider structural properties
of the value graph rather than structural properties of the Dung-style framework
described by 〈X ,A〉: in view of Fact 2 the latter approach appears unpromising
as a source of efficient methods.

Before introducing these forms, it will be helpful to introduce the following
notation which aids in relating properties of value graphs to properties of subsets
of arguments in 〈X ,A,V , η〉.

Definition 4 Given 〈X ,A,V , η〉 with V = {v1, v2, . . . , vk}, the af induced
by vj, denoted Hj(Xj ,Aj) has Xj = { x ∈ X : η(x) = vj} and
Aj = {〈x, y〉 : η(x) = η(y) = vj} ∩ A. More generally, the af induced by a
subset, W of V – HW (XW ,AW ) has

XW = {x ∈ X : η(x) ∈ W}
AW = {〈x, y〉 : {η(x), η(y)} ⊆ W} ∩ A

The two principal forms of value graph we consider are strict trees and chains
the latter being a subclass of the former.

Definition 5 A value graph, G(V ,B) is a strict tree if the undirected graph formed
by replacing each directed edge 〈vi, vj〉 with the undirected edge {vi, vj} is acyclic,
i.e. defines a tree.

An important subclass of strict trees is the class of chain graphs

Definition 6 A value graph, G(V ,B) is a chain if it satisfies:

a. G(V ,B) is a strict tree.
b. The undirected graph resulting from G(V ,B) (as described in Defn. 5)

forms a simple path joining all vertices in V.

Figure 1 gives examples of strict trees and chains defined over the value
set V = {A, B, C, D, E, F}. For a vertex v in a strict tree the set of vertices
{ wi : 〈wi, v〉 ∈ B} are referred as the children of v (similarly v is called the
parent of wi). The notation ch(v) will be used for the set of children of v and
par(w) for the parent of w.

The sub-tree of G rooted at v, denoted 〈Wv , Fv〉, is recursively defined as
follows:

a. If v has no children, i.e. ch(v) = ∅, then Wv = {v} and Fv = ∅.
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Figure 1. (a) Strict tree examples. (b) Two Chain graphs.

b. Otherwise, let ch(v) = {w1, . . . , wr}. In this case,

Wv = {v} ∪
⋃

u∈ch(v)

Wu ; Fv =
⋃

u∈ch(v)

{〈u, v〉} ∪ Fu

The height of w ∈ 〈Wv, Fv〉 is denoted ht(v). This is defined to be 0 when ch(v) =
∅ and 1 + maxw∈ch(v) ht(w) otherwise.

We note the following, easily proven, property of the sub-tree 〈Wv , Fv〉 arising
from the strict tree G(V ,B):

Given a value graph, G(V ,B) defining a strict tree, the sub-tree rooted at v
induces a partial order, ⊑F over Wv defined via vi ⊑F vj if i = j or there is a
sequence vi = v0v1 · · · vr = vj of distinct values such that 〈vt, vt+1〉 ∈ Fv for each
0 ≤ t < r.

Let µF denote the set of minimal elements in this partial order. The second
example from Fig 1(a) gives rise to the partial order

C ⊑ E ; D ⊑ B ⊑ A ⊑ E ; F ⊑ E

With the sets of minimal elements being {C, D, F}
It is not hard to show that,

a. w ∈ Wv if and only if w ⊑F v.
b. The root vertex v is the unique maximal element w.r.t. ⊑F among the

vertices Wv.
c. If w is not the root vertex than par(w) contains exactly one vertex (in

〈Wv, Fv〉), otherwise par(w) = ∅.



Finally we note the following important property of (strict) trees: given any
u ∈ Wv there is a unique sequence, δ(u, v), of distinct directed edges in Fv with

δ(u, v) = 〈u, u1〉 · 〈u1, u2〉 · 〈u2, u3〉 · · · 〈ur−1, ur〉 · 〈ur, v〉

That is, there is a unique path from u to v within Fv. When u = v this is the
empty sequence.

A key idea underpinning our improved algorithms is the concept of the set
of relevant audiences for a sub-tree rooted at v. We give the definition below and
discuss its application subsequently.

Definition 7 Let 〈Wv , Fv〉 be the sub-tree rooted at v of a strict tree G(V ,B). Let
R ⊆ V × V be an audience. We say that R is relevant with respect to v if

p ≻R q ⇒ 〈q, p〉 ∈ Fv and ∀ 〈x, y〉 ∈ Wq × Wq ¬(x ≻R∗ y)

The strict tree induced in 〈Wv, Fv〉 by R, denoted 〈VR, ER〉, has

VR = { u ∈ Wv : ∀ 〈p, q〉 ∈ δ(u, v) ¬(q ≻R p) }

ER = Fv ∩ {〈p, q〉 : p ∈ VR, q ∈ VR}

For w ∈ VR of the strict tree induced by R, we use ch(w, R) to denote the set
of children of w in the strict tree 〈VR, ER〉, i.e.

ch(w, R) = { u : 〈u, w〉 ∈ ER}

We note that ch(w, R) may be a strict subset of ch(w) the children of w in the
strict tree 〈Wv, Fv〉. The height of w in 〈VR, ER〉, ht(w, R), is defined as

ht(w, R) =

{

0 if ch(w, R) = ∅
1 + maxu∈ch(w,R) ht(u, R) otherwise

For example, in the case of the second example from Fig. 1(a) there are exactly
16 relevant audiences with respect to E. These are

∅
{E ≻ A}, {A ≻ B}, {B ≻ D}
{E ≻ F}, {E ≻ F, E ≻ A}, {E ≻ F, A ≻ B}, {E ≻ F, B ≻ D}
{E ≻ C}, {E ≻ C, E ≻ A}, {E ≻ C, A ≻ B}, {E ≻ C, B ≻ D}
{E ≻ F, E ≻ C}, {E ≻ F, E ≻ C, E ≻ A}
{E ≻ F, E ≻ C, A ≻ B}, {E ≻ F, E ≻ C, B ≻ D}

Some of the resulting strict trees induced are shown in Fig. 2
For a value v ∈ V we denote by Rv the set of relevant audiences with respect

to v, i.e.

Rv = {R ⊂ Wv × Wv : R is relevant w.r.t. v}

Given R ∈ Rv with 〈VR, ER〉 the strict tree induced in 〈Wv, Fv〉 by R we define
the framework associated with R, denoted 〈ZR,DR〉, as the af with
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Figure 2. Strict trees induced by relevant audiences

ZR =
⋃

w∈VR

{ x : η(x) = w}

DR = (A ∩ {〈x, y〉 : x ∈ ZR, y ∈ ZR}) \ {〈x, y〉 : η(y) ≻R η(x)}

It may be noted that 〈ZR,DR〉 is a sub-graph of af induced by VR.

Lemma 1 Let H(V)(X ,A,V , η) be a vaf whose value graph, G(V ,B) defines a
strict tree. For every v ∈ V and every R ∈ Rv the framework, 〈ZR,DR〉, asso-
ciated with R is acyclic and thus has a unique (non-empty) preferred extension,
P (ZR,DR).

Proof: Let H(V)(X ,A,V , η) satisfy the premises of the Lemma statement. Con-
sider any v ∈ V and R ∈ Rv letting 〈ZR,DR〉 be the framework associated
with R ∈ Rv. Suppose, to the contrary, that there is a sequence of r (dis-
tinct) arguments z0z1z2 · · · zr in Z for which zr = z0 and 〈zi, zi+1〉 ∈ DR for
each 0 ≤ i < r. Consider the sequence of values defined by this cycle, i.e.
η(z0)η(z1) · · · η(zr−1)η(zr). By definition η(zr) = η(z0), and there is at least one
argument, zi, on this cycle for which η(zi) 6= η(z0). Furthermore, since all of
the attacks 〈zi, zi+1〉 are present in DR, we must have {z0, z1, . . . , zr} ⊆ ZR and
¬(η(zi+1) ≻R η(zi)) for each 0 ≤ i < r. From the definition of value graph, we
deduce that G(V ,B) contains both a directed path from vη(z0) to vη(zi) and a di-
rected path from vη(zi) to vη(z0). This, however, contradicts the assumption that
G(V ,B) is a strict tree.

Having established that the framework associated with R is acyclic, it follows
that this has a unique, non-empty preferred extension. �



Definition 8 Let R be a relevant audience w.r.t. v in 〈Wv, Fv〉, and 〈VR, ER〉 the
strict tree induced by R. A specific audience, α, is said to be R-compatible if

S1. ∀ 〈p, q〉 ∈ ER p ≻α q.
S2. ∀ 〈p, q〉 ∈ Fv (q ≻R p) ⇒ (q ≻α p)

We denote by χ(R, v) the set of specific audiences that are R-compatible.
For α a specific audience, we say that a relevant audience w.r.t. v is α-

compatible if

R1. ∀ 〈p, q〉 ∈ Fv (q ≻α p) ⇒ q ≻R p and ∀ 〈x, y〉 ∈ Wp × Wp ¬(x ≻R∗ y)
R2. ∀ 〈p, q〉 ∈ ER p ≻α q.

We use ρ(α, v) to denote the set of relevant audiences w.r.t. v that are α-
compatible.

It is straightforward, using these definitions, to show that,

∀ α ∈ U , ∀ R ∈ Rv α ∈ χ(R, v) ⇔ R ∈ ρ(α, v)

We need two key properties of the set of relevant audiences w.r.t. v in obtaining
improved algorithms for sba and oba. The first – Thm. 1 – shows that Rv induces
a partition of U ; the second, presented in Thm. 2, establishes that it suffices
to consider only the partial (i.e. not specific) audiences represented in Rv when
considering acceptance properties of arguments with value v.

Theorem 1 For 〈Wv, Fv〉 the sub-tree of G(V ,B) with root v ∈ V, the set of relevant
audience audiences w.r.t. v, Rv, satisfies all of the following properties:

a. ∀ R ∈ Rv χ(R, v) 6= ∅, i.e. there is at least one R-compatible specific
audience for each R ∈ Rv.

b. For every α ∈ U there is some R ∈ Rv for which α is R-compatible.
Formally

⋃

R∈Rv

χ(R, v) = U

c. Given R and S in Rv, the sets of R-compatible specific audiences are
disjoint from the set of S-compatible specific audiences, i.e.

∀ R, S ∈ Rv χ(R, v) ∩ χ(S, v) 6= ∅ ⇔ R = S

Proof: For part (a), given R ∈ RV with induced sub-tree 〈VR, ER〉 any specific
audience, α, for which p ≻α q whenever p ≻R q or 〈p, q〉 ∈ ER is in χ(R, v). Noting
that p ≻R q implies 〈q, p〉 ∈ Fv leading to q 6∈ VR, this construction means that
for every 〈p, q〉 ∈ Fv exactly one of p ≻α q or q ≻α p will hold.

For part (b), it suffices to show that for every α ∈ U , ρ(α, v) 6= ∅. This is
easily seen using R ⊆ Wv × Wv defined as follows. First form the set

S = {〈p, q〉 ∈ Wv × Wv : 〈q, p〉 ∈ Fv and p ≻α q}

We now obtain R ∈ ρ(α, v) via

p ≻R q ⇔ 〈p, q〉 ∈ S \ {〈u, w〉 : {u, w} ⊆ Wt and par(t) ≻α t}



It is straightforward to check that R defined in this way is a relevant audience
w.r.t. v and satisfies the conditions R1 and R2 for α-compatability.

Finally for part (c), that χ(R, v)∩χ(S, v) 6= ∅ whenever R = S is self-evident.
So assume, to the contrary, that α ∈ χ(R, v) ∩ χ(S, v) for distinct R ∈ Rv and
S ∈ Rv. Since R 6= S, without loss of generality, there is some 〈x, y〉 ∈ Fv for which
y ≻R x but ¬(y ≻S x). Consider the strict trees 〈VR, ER〉 and 〈VS , ES〉 induced
by R and S. From y ≻R x and 〈x, y〉 ∈ Fv we must have y ≻α x via condition S2
for α ∈ χ(R, v). On the other hand, from ¬(y ≻S x) we must have x ∈ VS since
the path 〈x, y〉 · δ(y, v) is preserved in ES . We now obtain a contradiction: from
condition S1, since α ∈ χ(S, v) and 〈x, y〉 ∈ ES therefore y ≻α x and α cannot
satisfy both x ≻α y as results from α ∈ χ(R, v) and y ≻α x which results from
α ∈ χ(S, v). �

Corollary 1 Given H(V)(X ,A,V , η) whose value graph is a strict tree, let 〈Wv, Fv〉
be the sub-tree with root v. For all specific audiences, α, ρ(α, v) contains exactly
one relevant audience w.r.t. v.

Proof: Immediate from Thm. 1: for R ∈ ρ(α, v) we have α ∈ χ(R, v) but from
Thm. 1(c) there is exactly one R ∈ Rv for which α ∈ χ(R, v). �

Recalling that 〈Xv,Av〉 is the af induced by arguments with value v, we now
establish the second key property of relevant audiences w.r.t. v.

Theorem 2 For all v ∈ V, R ∈ Rv and α ∈ χ(R, v)

Xv ∩ P (ZR,DR) = Xv ∩ P (H(V), α)

Proof: We proceed by induction on ht(v), to prove Q(t), where Q(t) is the state-
ment

“If ht(v) = t then for all R ∈ Rv and α ∈ χ(R, v), Xv ∩ P (ZR,DR) =
Xv ∩ P (H(V), α)”

Base: t = 0, so that ht(v) = 0
When ht(v) = 0 we have ch(v) = ∅ so that Rv = {∅} and χ(∅, v) = U . In
consequence, ZR = Xv and DR = Av. Again from ch(v) = ∅ we deduce that
if y ∈ X−

v then η(y) = v. It now follows that every argument in P (Xv,Av) is
objectively accepted: regardless of the value ordering of α ∈ U no attacks on
Xv will be altered, thus P (Xv,Av) will be a subset of P (H(V), α) as required.
Inductive Step: Assuming Q(s) for all s ≤ t − 1, we show that Q(t) holds.
Suppose ht(v) = t ≥ 1 in 〈Wv , Fv〉. Let ch(v) = {w1, w2, . . . , wr}. From the
inductive hypothesis, since ht(w) ≤ t − 1 for each w ∈ ch(v), we know that

∀ R ∈ Rw ∀α ∈ χ(R, w) Xw ∩ P (ZR,DR) = Xw ∩ P (H(V), α)

Consider any R ∈ Rv. From the definition of relevant audience, it follows that
this is characterised by some subset S = {s1, s2, . . . , sq} of ch(v) and, for each
member si of S, a relevant audience, Si w.r.t. to si in 〈Wsi

, Fsi
〉 so that



R =

q
⋃

i=1

Si ∪
⋃

t∈ch(v)\S

{v ≻R t}

Furthermore, for R ∈ Rv defined from 〈S1, S2, . . . , Sq〉 as described, χ(R, v) is

q
⋂

i=1

χ(Si, si) ∩
⋂

s∈S

{ α : s ≻α v} ∩
⋂

t∈ch(v)\S

{ α : v ≻α t}

so that χ(R, v) ⊆ χ(Si, si) for all 1 ≤ i ≤ q.
Now let 〈S1, . . . , Sq〉 be the relevant audiences from the subset S of ch(v) used

in forming R. From the inductive hypothesis we know that for each j (1 ≤ j ≤ q)
and each α ∈ χ(Sj , sj),

Xsj
∩ P (ZSj

,DSj
) = Xsj

∩ P (H(V), α)

Noting that

ZR = Xv ∪
⋃

si∈S

ZSi

let Pj = P (ZSj
,DSj

) ∩ Xsj
. Then

Pj = Xsj
∩ P (ZSj

, DSj
) = Xsj

∩ P (H(V), α) ∀ α ∈ χ(Sj , sj)

via the inductive hypothesis, and hence Pj = Xsj
∩P (H(V), α) for all α ∈ χ(R, v).

It follows that, without loss of generality, in determining P (ZR,DR)∩Xv we need
only consider the af 〈YR, CR〉 in which

YR = Xv ∪
⋃

sj∈S

Pj

CR = {〈x, y〉 : x ∈ Xv, y ∈ Xv} ∩ A ∪
{〈x, y〉 : η(y) = v, η(x) = sj , x ∈ Pj} ∩ A

and in this af we have

Xv ∩ P (YR, CR) = Xv ∩ P (H(V), α) ∀ α ∈ χ(R, v)

so that

Xv ∩ P (ZR,DR) = Xv ∩ P (H(V), α) ∀ α ∈ χ(R, v)

competing the inductive proof. �

Corollary 2 Let H(V)(X ,A,V , η) be a vaf whose value graph defines a strict tree.
Let x ∈ X be any argument and η(x) = v ∈ V.

a. sba(H(V), x) if and only if there exists some R ∈ Rv, i.e. a relevant audi-
ence with respect to η(x), for which x ∈ P (ZR,DR)

b. oba(H(V), x) if and only if for every, R ∈ Rv, x ∈ P (ZR,DR).



Proof: For part(a), if x with η(x) = v is subjectively accepted in 〈X ,A,V , η〉,
consider the specific audience, α, witnessing this property. From Corollary 1 and
Thm. 1 we identify R ∈ Rv for which α ∈ χ(R, v). Thus, from Thm. 2, x ∈
P (ZR,DR) as required. Conversely, if x ∈ P (ZR,DR) for some R ∈ Rv then we
for any any α ∈ χ(R, v) we have x ∈ P (H(V), α) so that x is subjectively accepted.

For part (b), should x be objectively accepted then x ∈ P (H(V), α) for every
specific audience and hence, via Thms. 1 and 2, x ∈ P (ZR,DR) for every R ∈ Rv.
Similarly, if x ∈ P (ZR,DR) for every R ∈ Rv then, from Thm. 2, x ∈ P (H(V), α)
for every α ∈ χ(R, v), and from Thm. 1 every specific audience is R-compatible
for some R ∈ Rv so that x ∈ P (H(V), α) for every specific auidence, i.e. x is
objectively accepted. �

In total, Thms. 1, 2 and Corollary 2 suggest the approach of Algorithm 2 for
deciding sba and oba.

The orientation of G(V ,B) with respect to ⊑F is recursively defined via the
process of Algorithm 1 so that each v ∈ V is assigned a label (called its orientation
level) denoted ω(v).

Algorithm 1 Assigning Orientation Levels to Strict Trees

1: for v ∈ µF do

2: ω(v) := 0
3: end for

4: for v ∈ V \ µF do

5: ω(v) := ⊥
6: end for

7: while ∃ w ∈ V : ω(w) := ⊥ do

8: Choose any such w having ω(v) 6= ⊥ for all v ∈ ch(w).
9: ω(w) := 1 + maxv∈ch(w) ω(v)

10: end while

Notice that each of the sets 〈R, 〈ZR,DR〉〉 need be computed only once (and
subsequently stored). Via Thm. 2, any R ∈ Rv is uniquely described from S =
{s1, . . . , sq} ⊆ ch(v), by

q
⋃

i=1

Si ∪
⋃

t∈ch(v)\S

{v ≻ t}

where Si ∈ Rsi
.

Noting that P (ZR,DR) can be obtained in O(|ZR|) steps, the run-time of
Alg. 2 is bounded above by O(|Rv |× |X |). Hence in structures for which |Rv| can
be guaranteed to be polynomial in |V|, Alg. 2 provides a polynomial time decision
process for subjective and objective acceptance in vafs.

2.2. Bounding the number of relevant audiences

In this section we consider the behaviour of the function r : 〈X ,A,V , η〉 → N

with |V| = k, G(V ,B) defining a strict tree, and r(〈X ,A,V , η〉) defined as



Algorithm 2 Deciding argument status in strict tree vafs

1: function status(〈X ,A,V , η〉, x ∈ X )
2: 〈Wη(x), Fη(x)〉 := strict tree with root η(x)
3: Orientate 〈Wη(x), Fη(x)〉 using Alg. 1.
4: Mark each u ∈ Wη(x) as unprocessed.
5: while ∃ u ∈ Wη(x) : u is unprocessed do

6: while ∃ w ∈ Wη(x) : ω(w) = 0 and w is unprocessed do

7: Compute P (Xw,Aw)
8: Mark w as processed.
9: end while

10: Choose any w which is unprocessed and ∀ u ∈ ch(w) u is processed.
11: for R ∈ Rw do

12: Compute P (ZR,DR)
13: end for

14: Mark w as processed

15: end while

16: if x ∈ P (ZR,DR) for every R ∈ Rη(x) report oba(x)
17: if x ∈ P (ZR,DR) for some R ∈ Rη(x) report sba(x)
18: else report x is indefensible.

r(〈X ,A,V , η〉) = max
v∈V

|Rv|

In terms of Alg. 2, we obtain algorithms with run-time O(r(〈X ,A,V , η〉)|X |2).
We first show that when the value graph is a strict tree we always obtain an

improvement on k!

Lemma 2 For any vaf, 〈X ,A,V , η〉 whose value graph is a strict tree,

r(〈X ,A,V , η〉) ≤ 2k−1

Proof: Let 〈Wv, Fv〉 be the strict tree defined by the value graph G(V ,B). Then
|Rw| is maximised when w = v the root of this tree. Any R ∈ Rv maps to a
subset of Fv so that |Rv| cannot exceed the total number of subsets of Fv.3 Since
〈Wv, Fv〉 is a strict tree and |Wv| ≤ |V| = k, it follows that |Fv| = k − 1 giving
the upper bound claimed. �

Although, as we shall see, the upper bound of Lemma 2 overestimates |Rv| there
are cases where this bound cannot be improved.

Lemma 3 Let 〈X ,A,V , η〉 be such that 〈Wv, Fv〉 consists of a root vertex v with
ch(v) = V \ {v}. Then r(〈X ,A,V , η〉) = 2k−1.

Proof:

r(〈X ,A,V , η〉) =
∑

S⊆ch(v)

∏

t∈S

|Rt| =
∑

S⊆ch(v)

1 = 2|ch(v)| = 2k−1

3Recall that Fv will only contain directed edges in δ(u, v) for some u ∈ Wv thus |Fv| =
|Wv| − 1 ≤ k − 1.



�

When G(V ,B) is a chain graph we obtain a further significant improvement

Theorem 3 If the value graph G(V ,B) of 〈X ,A,V , η〉 is a chain then

r(〈X ,A,V , η〉) ≤











(k−1)2

4 if k is odd

k(k−2)
4 if k is even

Proof: Suppose v ∈ V maximises r(〈X ,A,V , η〉), i.e. is the root of the strict tree
arising from G(V ,B). If ch(v) = {w} then |Rv| = 1 + |Rw|, thus we can assume
that ch(v) = {u, w} so that

|Rv| = 1 + |Ru| + |Rw| + |Ru| × |Rw | = (1 + |Ru|) × (1 + |Rw|)

The sub-trees with roots u and w must consist of single directed paths from
(distinct) vertices with no children and exactly one parent (in order to maximise
|Rv|). Letting ku denote |Wu| and kw = |Ww | so that ku + kw = k − 1, it follows
that

|Rv| ≤ max
ku, kw : ku+kw=k−1

(1 + ku)(1 + kw)

When k is the odd these are achieved by ku = kw = (k − 1)/2; when k is even by
k/2 and (k − 2)/2. �

In fact, Thm. 3, is alternatively derived as the special case t = 1, d = 2 of a more
general upper estimate of the maximum size of |Rv| that we now consider. Let
e(k, t, d) be defined as

max
〈Wv ,Fv〉

{|Rv| : |Wv| = k, max
w∈Wv

|ch(w)| = d, |{w ∈ Wv : |ch(w)| > 1}| = t}

In the following theorem our aim is not to prove exact bounds on e(k, t, d) but
rather to give an indication of the circumstances where polynomial time algo-
rithms for sba and oba would result from Alg. 2.

Theorem 4

a. e(k, 0, 1) = e(k, 0, d) = k

b. e(k, t, d) ≤
(t(d − 2) + k + 1)td

(k − t)t−1 × (t(d − 1) + 1)t(d−1)+1

Proof: (outline) Part (a) is an easy induction on k ≥ 1. For part (b) we make use
of the following: in bounding e(k, t, d) it suffices to consider strict trees 〈Wv, Fv〉
for which |ch(v)| = d and in which the sub trees whose roots are the children of v
maximise, e((k−1)/d, (t−1)/d, d) (we omit the rather tedious proof of this fact).
In other words, if there are t values in Wv having d children, it may be assumed
that these values form a d-ary tree, i.e. with dr leaf nodes, each such leaf being a
chain of (k − t)/dr values as illustrated in Fig. 3.

Thus, e(k, t, d) is maximised when 〈Wv , Fv〉 is formed as a t vertex d-ary tree
in which each leaf is replaced by a chain of (k− t)/(t(d−1)+1) values. This leads



Remaining vertices
split over equal length

v

d children of v

d

chains

d

d−ary tree with
t vertices

Figure 3. Strict tree maximising e(k, t, d)

to the recurrence relation, e(k, t, d) ≤ α(r) where r = logd(t(d− 1) + 1) and α(r)
satisfies

α(0) = k−t
t(d−1)+1

α(r) = (1 + α(r − 1))d

The general case, α(r) when r > 0, is derived from

α(r) =
∑

S⊆ch(v)

∏

w∈S

α(r − 1)

so that

α(r) =

d
∑

j=0

(

d
j

)

α(r − 1)j × 1d−j = (1 + α(r − 1))d

by the Binomial Theorem.
Noting that 1 ≤ α(r − 1)/α(0) for every r ≥ 1 we obtain,

α(r) ≤

(

1 + α(0)

α(0)

)d

× α(r − 1)d

which reduces to

α(r) ≤

(

1 + α(0)

α(0)

)

P

l
j=1

dj

× α(r − l)dl

valid while r − l ≥ 1, so that



α(r) ≤

(

1 + α(0)

α(0)

)

Pr−1

j=1
dj

× (1 + α(0))dr

Simplifying to

α(r) ≤

(

1 + α(0)

α(0)

)

dr
−1

d−1
−1

× (1 + α(0))dr

Recalling that α(0) = (k − t)/(t(d − 1) + 1) and dr = t(d − 1) + 1

α(r) ≤

(

t(d − 2) + k + 1

k − t

)t−1

×

(

t(d − 2) + k + 1

t(d − 1) + 1

)t(d−1)+1

so that

e(k, t, d) ≤
(t(d − 2) + k + 1)td

(k − t)t−1 × (t(d − 1) + 1)t(d−1)+1

as claimed. �

Some specific consequences of Thm. 4 are given in

Corollary 3 For 〈X ,A,V , η〉 whose value graph is a strict tree 〈Wv, Fv〉 and x
such that η(x) = v,

a. The decision problems sba(〈X ,A,V , η〉, x) and oba(〈X ,A,V , η〉, x) are
polynomial time decidable when 〈Wv, Fv〉 has t vertices with more than
1 child, no vertex with more than d children and d × t is constant, i.e.
independent of k = V.

b. If 〈Wv, Fv〉 has exactly one vertex (v) with more than one child and
|ch(v)| = d then sba(〈X ,A,V , η〉, x) and oba(〈X ,A,V , η〉, x) are decidable
by an algorithm taking at most

(

k + d − 1

d

)d

i × O(|X |) steps

Proof: Both cases are immediate from the general upper bound given in
Thm. 4(b). �

3. Beyond trees and chains

The fact that, in some circumstances, the structure of the value graph yields
polynomial time solutions for sba and oba, as demonstrated by Corollary 3(a)
and (b) (when d is constant) motivates considering forms other than the trees
and chains considered in Section 2. We note that our analysis of the preceding
section easily extends to value graphs which are acyclic.4

4Value graphs which are trees in the sense used earlier may contain cycles, e.g. when the
underlying vaf contains arguments {x, y, z} with η(x) = η(y), and 〈x, z〉, 〈z, y〉 ∈ A.



A natural development would be to find analogous construction for “tree-like”

structures, i.e. value graphs with bounded treewidth, see e.g [5,1]. We recall that a

tree decomposition of a graph G(V, E)5 is a pair 〈X, 〈I, F 〉〉 where 〈I, F 〉 is a tree

and X is a collection {Xi : i ∈ I} of |I| subsets of V for which V = ∪i∈ I Xi;

for every edge 〈v, w〉 ∈ E there is at least one i ∈ I for which {v, w} ⊆ Xi; for

every i, j, k ∈ I should j occur on the (unique) path from i to k in 〈I, F 〉 then

Xi ∩ Xk ⊆ Xk. The width of a tree decomposition 〈X, 〈I, F 〉〉 is maxi∈I |Xi| − 1

and the treewidth of G(V, E), denoted tw(G), is the minimum width over all tree

decompositions of G(V, E).

For many problems that are computationally hard in general, polynomial

time algorithms exist when instances are restricted to those whose treewidth is

constant. Given the results of Section 2, which can be interepreted as dealing

with value graphs whose treewidth is 1, it seems reasonable to look for related

constructions for value graphs whose treewidth is constant (but greater than 1).

Noting that the basic component of a tree decomposition is the structure 〈I, F 〉
it is plausible that further limiting the structure of 〈I, F 〉, e.g. to chains, will

yield efficient methods for those cases not covered by Corollary 3(a). In fact such

expectations turn out to be over optimistic.

Theorem 5

a. The decision problem sba is np–complete even when restricted to instances

〈X ,A,V , η〉 whose value graph 〈V ,B〉 has tw(〈V ,B〉) = 2 and a witnessing

tree decomposition 〈I,F〉 which is a chain.

b. The decision problem oba is conp–complete even when restricted to in-

stances 〈X ,A,V , η〉 whose value graph 〈V ,B〉 has tw(〈V ,B〉) = 2 and the

tree decomposition 〈I,F〉 witnessing this is a chain.

Proof: Both parts use the reductions given in [9] in order to classify these prob-

lems in vafs when the supporting Dung-style af, 〈X ,A〉 is a tree.

Consider the vaf, illustrated for the case

ϕ = (z1 ∨ z2 ∨ z3)(¬z2 ∨ ¬z3 ∨ ¬z4)(¬z1 ∨ z2 ∨ z4)

in Fig. 4, used in this reduction from 3-sat to sba. The value graph G(V ,B) of this

vaf has V = {pi, ni : 1 ≤ i ≤ n} ∪ {c}, where n is the number of propositional

variables in the instance of 3-sat, and B contains

{〈pi, ni〉, 〈ni, pi〉, 〈pi, c〉, 〈ni, c〉 : 1 ≤ i ≤ n}

This graph has a width 2 tree decomposition whose structure is a chain, i.e. the

decomposition of Fig. 5. It follows that deciding sba when value graphs have

treewidth 2 defining chain structures is as hard as deciding sba in general. �

5For reasons that are clear from the definition we do not need to distinguish directed and
undirected cases.
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Figure 4. The tree using in reducing sat to sba from [9]
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Figure 5. The value graph of Fig 4 and its width 2 tree decomposition

4. Conclusions

This paper has considered the question of identifying tractable special cases for
the decision problems Subjective and Objective Acceptance (sba, oba) in value-
based argumentation. In contrast to acceptabilty concepts in standard Dung style
argumentation frameworks, only the case of symmetric afs had been known to
lead to polynomial time approaches for these problems. By considering properties
of the so-called value graph – the directed graph structure defined by considering
the values involved in conflicting arguments – we have identified an extensive,
further, class of systems for which sba and oba admit polynomial time solutions:
specifically those whose value graph is a tree in which the product of t – the
number of vertices with more than one child – and d – the maximum number of
children of any vertex in the tree – is constant, i.e. indepedent of the number of
values. Unfortunately, and providing a further indication of the extent to which
value-based argumentation has proven resistant to tractable solution methods,



attempts to extend these ideas from value graphs which are trees, equivalent
to the class of graphs whose treewidth equals 1, to value graphs with bounded
treewidth encounter difficulties: even if the value graph has treewidth 2 and the
structure of the witnessing tree decomposition is a chain, sba and oba remain
np–complete, resp. conp–complete. Nevertheless despite the failure of bounded
treewidth to yield effective solutions in general, given that some progress can be
made with restricted structures on the value graph, a natural development would
be to consider other graph-theoretic restrictions: a possible candidate structure,
and the subject of current investigation is the class of bipartite value graphs. For
these the reduction of Thm. 5 is inapplicable: the value graph in this instance
being tripartite.
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