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A Novel Method for Strategy Acquisition and its
Application to a Double-Auction Market Game

Abstract—We introduce a novel method for strategy-
acquisition in non-zero-sum n-player games, and empirically
validate it by applying it to a well-known benchmark problem
in this domain, viz the double-auction market. Many existing
approaches to strategy-acquisition focus on attempting tofind
strategies that are robust in the sense that they are good all-
round performers against all-comers. We argue that in many
economic and multi-agent scenarios the robustness criterion is
inappropriate; in contrast, our method focusses on searching
for strategies that are likely to be adopted by participating
agents. We conclude by discussing several potential applications
of our algorithm, including the mechanism design problem from
economics.

I. I NTRODUCTION

The automatic discovery of game-playing strategies has long
been considered a central problem in Artificial Intelligence.
The most promising technique from evolutionary computing
for discovering new strategies isco-evolution, in which the
fitness of each individual in an evolving population1 of strate-
gies is assessed relative to other individuals by computingthe
payoffs obtained when the selected individuals interact. Co-
evolution can sometimes result inarms-races, in which the
complexity and robustness of strategies in the population in-
creases as they counter-adapt to adaptations in their opponents.

Often, however, co-evolutionary learning can fail to con-
verge on robust strategies. In this paper we explore some of the
limitations of current co-evolutionary algorithms, and review a
field known asempirical game theorywhich combines game-
theoretic analysis together with simulation methods in order
to analyse the strategic interaction amongst anexisting set
of strategies. We then introduce a novel technique based on
empirical game-theory that is able to acquirenew strategies
for the game at hand.

This paper focuses on a specific problem domain – the
double auction. The double auction has come to be recognized
as an importantbenchmark problem, in both economics and
multi-agent systems. In particular, a landmark workshop held
in Santa Fe [1] motivated much contemporary research in this
area by highlighting the difficulty of agents’ decision problems
in non-idealized variants of this type of marketplace, and
the Santa Fe double-auction tournament was one of the first
studies which used advanced agent-based simulation in order
to explore the properties of a realistic economic mechanism
[1]. To this day the double-auction still represents an important
benchmark problem by simultaneously admitting of precise
representations whilst stretching the bounds of both analytical
tractability and computational brute-force.

1Or sometimes several populations.

The outline of this paper is as follows. In section II we
give an overview of game-theory and discuss the use of co-
evolutionary algorithms and empirical game-theory to search
for approximations of game-theoretic equilibria. In section III
we describe in detail the specific problem domain we will
attack, viz. the double-auction. In section IV we describe the
search space of strategies for this game, and in section V we
use empirical game-theory to analyse the strategic-interaction
between existing strategies within this space with a view to
identifying potential candidates for optimisation. In section VI
we describe a novel method for strategy acquisition, and in
section VII we present the results of an empirical validation
of our technique. In section VIII we discuss generalizations
and applications of our approach, and then conclude with a
discussion of strengths and weaknesses in section IX.

II. CO-EVOLUTION AND EMPIRICAL GAME THEORY

A. Nash Equilibrium

The failure of certain types of co-evolutionary algorithms
to converge on robust strategies in certain scenarios is well
known [2], [3], [4], and has many possible causes; for example,
the population may enter a limit cycle if strategies learnt in
earlier generations are able to exploit current opponents and
current opponents have “forgotten” how to beat the revived
living fossil. Whilst many effective techniques have been de-
veloped to overcome these problems, there remains, however,
a deeper problem which is only beginning to be addressed
successfully. In some games, such as Chess, we can safely
bet that if playerA consistently beats playerB, and player
B consistently beats playerC, then playerA is likely to beat
playerC. Since the dominance relationship is transitive, we
can build meaningfulrating systems[5] for objectively ranking
players in terms of ability, and the use of such ranking systems
can be used to assess the “external” fitness of strategies
evolved using a co-evolutionary process and ensure that the
population is evolving toward better and better strategies. In
many other games, however, the dominance graph is highly
intransitive, making it impossible to rank strategies on a single
scale. In such games, it makes little sense to talk about “best”,
or even “good”, strategies since even if a given strategy beats a
large number of opponent strategies there will always be many
opponents that are able to beat it. The best strategy to play in
such a game is always dependent on the strategies adopted by
one’s opponents.

Game theory provides us with a powerful concept for rea-
soning about the best strategy to adopt in such circumstances:
the notion of aNash equilibrium. A set of strategies for a
given game is a Nash equilibrium if, and only if, no player can
improve their payoff by unilaterally switching to an alternative
strategy.
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If there is no dominant strategy (a strategy which is always
the best one to adopt no matter what any opponent does) for
the game, then we should play the strategy that gives us the
best payoff based on what we believe our opponents will play.
If we assume our opponents are payoff maximisers, then we
know that they will play a Nash strategy set byreductio ad
absurdum; if they did not play Nash then by definition at
least one of them could do better by changing their strategy,
and hence they would not be maximising their payoff. This
is very powerful concept, since although not every game has
a dominant strategy, every finite game possesses at least one
equilibrium solution [6].

Note, however, that the Nash strategy is not always thebest
strategy to play in all circumstances. In 2-player zero-sum
games, the minimax theorem tells us that even if there are
multiple equilibria, any equilibrium strategy is guaranteed to
obtain a certain payoff known as the security-level of the game
regardless of the opponent’s actions. Thus in these scenarios,
we have a clear metric for therobustnessof a strategy since if
a particular course of action yields less than the value of the
game we can infer that we are being exploited. However, this
result does not hold when we generalise to n-player non-zero-
sum games; in such games, if there are multiple equilibria
they may yield different payoffs to the same player, and
thus the outcome is not clear-cut. Additionally, in any game
constant-sum or otherwise, players may be able to obtain a
better payoff than their security-level by countering a non-
equilibrium strategy with another non-equilibrium strategy.

B. Beyond Nash equilibrium

Standard game theory does not tell us which of the many
possible Nash equilibria are likely to be played.Evolutionary
game theory [7] and its variants attack this problem by positing
that, rather than computing the Nash strategies for a game
using brute-force and then selecting one of these to play, our
opponents are more likely to gradually adjust their strategy
over time in response to repeated observations of their own
and others’ payoffs. One approach to evolutionary game-
theory uses thereplicator dynamics[7] equation to specify
the frequency with which different pure strategies should be
played depending on our opponent’s strategy:

ṁj = [u(ej, ~m)− u(~m, ~m)]mj (1)

where ~m is a mixed-strategy vector,u(~m, ~m) is the mean
payoff when all players play strategy~m, u(ej , ~m) is the
average payoff to pure strategyj when all players play~m,
and ṁj is the first derivative ofmj with respect to time.
Strategies which gain above-average payoffs become more
likely to be played, and this equation models a simpleco-
evolutionary process of mimicry learning, in which agents
switch to strategies that appear to be more successful.

For any initial mixed-strategy we can find the eventual out-
come from this co-evolutionary process by solvingṁ = 0 ∀j
to find the final mixed-strategy of the converged population,
i.e., the stationary points of the process. This model has the
attractive properties that: (i) all Nash equilibria of the game
are stationary points under the replicator dynamics; and (ii)

all Lyapunov stable states [8] and interior limit states arealso
Nash equilibria [9, pp. 88–89]2.

Thus the Nash equilibrium solutions are embedded in the
stationary points of the direction field of the dynamics spec-
ified by equation 1. Although not all stationary points are
Nash equilibria, by overlaying a dynamic model of learning
on the equilibria we can see which solutions are more likely
to be discovered byboundedly-rationalagents. Those Nash
equilibria that are stationary points at which a larger range of
initial states will end up, are equilibria that are more likely to
be reached (assuming an initial distribution of strategiesthat
is uniform).

This is all well and good in theory, but the model is
of limited practical use since many interesting real-world
games aremulti-state3. Such games can be transformed into
normal-form games, but only by introducing an intractably
large number of pure strategies, making the payoff matrix
impossible to compute.

C. Co-evolution

But what if we were to approximate the replicator dynamics
by using an evolutionary search over the strategy space?
Rather than considering a very large population consistingof a
mixture of all possible pure strategies as per evolutionarygame
theory, we use a small finite population of randomly sampled
strategies to approximate the game. By introducing mutation
and cross-over, we can search hitherto unexplored regions of
the strategy space. Might such a process converge to some
kind of approximation of a true Nash equilibrium? Indeed, this
is one way of interpreting existing co-evolutionary algorithms;
fitness-proportionate selection plays a similar role to therepli-
cator dynamics equation in ensuring that successful strategies
propagate, and genetic operators allow them to search over
novel sets of strategies. There are a number of problems with
such approaches from a game-theoretic perspective, however,
which we shall discuss in turn.

Firstly, the proportions of the population playing different
strategies serve a dual role in a co-evolutionary algorithm[10].
On the one hand, the proportion of the population playing a
given strategy represents the probability of playing that pure
strategy in a mixed-strategy Nash equilibrium. On the other
hand, evolutionary search requires diversity in the population
in order to be effective. This suggests that if we are searching
for Nash equilibria involving mixed-strategies where one of the
pure strategy components has a high frequency, corresponding
to a co-evolutionary search where a high percentage of the
population is adopting the same strategy, then we may be
in danger of over-constraining our search as we approach a
solution.

Secondly and relatedly, although the final set of strategies
in the converged population may be best responses to each
other, there is no guarantee that the final mix of strategies
cannot be invaded by other yet-to-be-encountered strategies

2It is important to note, nevertheless, that it is not the casethatall stationary
points are Nash equilibria

3The payoff for a given move at any stage of the game depends on the
history of play.
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in the search space, or even by strategies that became extinct
in earlier generations because they performed poorly against
an earlier strategy mix that differed from the final converged
strategy mix. Genetic operators such as mutation or cross-
over will be poor at searching for novel strategies that could
potentially invade the newly established equilibrium because
of the dual role played by population frequencies. If these
conditions hold, then the final mix of strategies is implausible
as a true Nash equilibrium or Evolutionay Stable State (ESS),
since there will be unsearched strategies that could potentially
break the equilibrium by obtaining better payoffs for certain
players. We might, nevertheless, be satisfied with the final mix
of strategies as an approximation to a true Nash equilibriumon
the grounds that if our co-evolutionary algorithm is unableto
find equilibrium-breaking strategies, then no other algorithm
will be able to do so. However, as discussed above, we expecta
priori that co-evolutionary algorithms will be particularlypoor
at searching for novel strategies once they have discovereda
(partial) equilibrium.

Finally, co-evolutionary algorithms employ a number of
different selection methods, not all of which yield population
dynamics that converge on game-theoretic equilibria [11].

These problems have led researchers in co-evolutionary
computing to design new algorithms employing game-
theoretic solution concepts [12]. In particular, Ficici and
Pollack [10] describe a game-theoretic search technique for
acquiring approximations of Nash strategies in large sym-
metric 2-player constant-sum games with type independent
payoffs. In this paper, we address n-player non-constant-sum
multi-state games with type-dependent payoffs. In such games,
playing an equilibrium strategy (or an approximation thereof)
does not guarantee a participant security against exploitation
if there are multiple equilibria, and thus there is no clear-
cut notion of a scalar robustness metric for assessing different
strategies and ranking them on a single scale. In Section VI we
introduce a new metric for ranking equilibrium strategies based
on their likelihood of actually being played. Meanwhile in the
next section we give an overview of an existing technique for
obtaining approximate versions of game-theoretic equilibria
upon which our algorithm is based.

D. Empirical Game-Theory

Reeveset al. [13] and Walshet al. [14] obviate many of the
problems of standard co-evolutionary algorithms by restricting
attention to small representative sample of “heuristic” strate-
gies that are known to be commonly played in a given multi-
state game. For many complex n-player games representative
of real-world economic interactions, such as the double-
auction, unsurprisingly none of the strategies commonly in
use can be proven to be dominant over the others. Given the
absence of a dominant strategy, it is then natural to ask if
there are mixtures of these “pure” strategies that constitute
game-theoretic equilibria.

For small numbers of players and heuristic strategies, we
can construct a relatively small normal-form payoff matrix
which is amenable to game-theoretic analysis. Thisheuristic
payoff matrix is calibrated by running many iterations of

the game; variations in payoffs due to different player-types
(e.g., private valuations) or stochastic environmental factors
(e.g., PRNG seed) are averaged over many samples of type
information resulting in a single mean payoff to each player
for each cell in the payoff matrix. Players’ types are assumed
to be drawn independently from the same distribution, and an
agent’s choice of strategy is assumed to be independent of its
type, which allows the payoff matrix to be further compressed,
since we simply need to specify the number of agents playing
each strategy to determine the expected payoff to each agent.
Thus for a game withj strategies, we represent entries in the
heuristic payoff matrix as vectors of the form

~p = (p1, . . . , pj)

wherepi specifies the number of agents who are playing the
ith strategy. Each entryp ∈ P is mapped onto an outcome
vectorq ∈ Q of the form

~q = (q1, . . . , qj)

whereqi specifies the expected payoff to theith strategy. For
a game withn agents, the number of entries in the payoff
matrix is given by

s =
(n+ j − 1)!

n!(j − 1)!
(2)

For small n and smallj this results in payoff matrices of
manageable size; forj = 3 andn = 6, 8, and10 we haves =
28, 45, and 66 respectively. Although this technique is only
tractable for small numbers of simultaneous playersn, these
are precisely the scenarios that are typicallymoredifficult to
analyse. Interactions amongst small numbers of agents afford
more opportunity for individual agents to have a large effect
on the final outcome, whereas systems with large numbers of
interacting agents can be more readily modelled as a collection
of homogeneous particle-like entities. The constraint on small
j is more limiting; we shall return this issue in Section VIII-A.

Once the payoff matrix has been computed we can subject
it to a rigorous game-theoretic analysis, search for Nash
equilibria solutions, and apply different models of learning and
evolution, such as the replicator dynamics model, in order to
analyse the dynamics of adjustment to equilibrium.

In this paper, we use the framework described above to
search for a novel strategy for a specific trading game, viz:
the double-auction. In the next section we describe this game
in detail.

III. T HE DOUBLE AUCTION MARKET

A double-auction is a generalisation of the more commonly-
known single-sidedauctions in which a single seller sells
goods to multiple competing buyers (or the reverse). In a
double-auction, as well as multiple buyers competing against
each other resulting in price rises, multiple sellers of thesame
commodity compete against each other resulting in price falls.
Institutions of this type are also known as exchanges, and
are typically used to trade commodities whose valuations are
subject to much uncertainty and can vary rapidly over time;
for example, equity shares traded on stock exchanges. We now
present a formal model of a double auction.
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A. The resource allocation problem

The market place is populated by a finite number oftraders,
represented by the setA = {a1, a2, . . . an}. A single class
of resourceΨ is traded in the market place. The resource is
divided up intounits: Ψ = {ψ1, ψ2, . . . }. Each individual unit
of the resource is indivisible. Each traderownsa certain subset
of the resourceΨ defined by the function

Ω : A→ 2Ψ

whereΩ(ai) ⊂ Ψ denotes the units of resource to which trader
ai has exclusive access, and with which it is free to do with
as it pleases.

The resource isnon-sharable; that is:

Ω(ai) ∩ Ω(aj) = ∅ ∀i6=j(ai, aj) ∈ A
2

The function Ω defines theallocation of the resourceΨ
amongst the tradersA. Traders cannot be coerced into re-
linquishing ownership of resources, but they may volunteerto
transfera certain number of units of resource to another trader
which results in a new allocation. A transaction involving the
resource is represented by a tupler = (ri ∈ A, rj ∈ A, rψ ∈
2Ψ) ∈ R representing a transfer ofrψ units from traderri to
traderrj . The function mapping from an original allocationΩ
to the allocation resulting from a transactionr ∈ R is:

Ω′ = trans({r},Ω)

where:

Ω′(aj) = Ω(aj) ∪ T

Ω′(ai) = Ω(ai)− T

Ω′(ax) = Ω(ax)∀x 6=i6=jax ∈ A

For multiple transactions thetrans function is defined
recursively. Given a set of transactionsRS ⊂ R =
{rs1, rs2, . . . , rsk}, and an initial allocationΩ, the allocation
resulting from the sequence of transactions inRS is given by

|RS| > 1 =⇒ Ω′ = trans(RS,Ω)

where:

ω0 = Ω

Ω′ = ωk

ωi = trans({rsi}, ωi−1) ∀rsi ∈ RS

Traders participate in the market in order to exchange units
of Ψ for cash. The amount of cash owned by an trader is
given by the functionΓ : A → R. Traders cannot be coerced
into relinquishing cash, but they may volunteer to transfera
certain amount of cash to another trader, which again results in
a new allocation. A transfer of cash is represented by a tuple
c = (ci ∈ A, cj ∈ A, cp ∈ R) meaning that traderci transfers
cp to tradercj . The functionpay maps from an original cash
allocation Γ to the new allocationΓ′ resulting from a cash
transfer thus:

Γ′ = pay({c},Γ)

where:

Γ′(cj) = Γ(cj) + cp

Γ′(ci) = Γ(ci)− cp

For multiple transactions thepay function is defined recur-
sively as per thetrans function.

Typically, traders enter in mutual transfers of cash and
resource. If a traderai transfers cash to traderaj , and in return
traderaj transfers resource to traderai, then we say thatai
buysresource, and that traderaj sells resource.

Each traderai has differentpreferencesover the possible
allocations of cashΓ and resourceΩ. Preferences are defined
by the trader’sutility function:

ui(Γ,Ω) = u(ai,Γ,Ω) (3)

A trader i prefers an allocation(Γ′,Ω′) over an alternative
allocation(Γ,Ω) if, and only if:

ui(Γ
′,Ω′) > ui(Γ,Ω)

A trader i is indifferent over two allocations(Γ′,Ω′) and
(Γ,Ω) if, and only if:

ui(Γ
′,Ω′) = ui(Γ,Ω)

Our model of utility is simplified by dividing traders into two
distinct sets:buyers, represented by the setB ⊂ A; andsellers,
represented by the setS ⊂ A, such thatS ∪B = A andS ∩
B = ∅. Both sets of traders are indifferent to their allocation
of commodity: their utility is soley a function of cash. We also
assume that traders are risk-neutral (utility increases linearly
with increased cash). Our utility function is then:

u(i,t) = Γ(i,t) (4)

Buyers cancash in their allocation of resource. If buyer
bi ∈ B cashes in, then

Ωt+1(bi) = ∅

Γt+1(bi) = Γt(bi) + vi

Sellers canproduce additional resource. If sellersi ∈ S
produces a single unit of resourceψx ∈ Ψ then

Ωt+1(si) = Ωt(si) ∪ ψx

Γt+1(si) = Γt(si)− vi

Ψt+1 = Ψt ∪ ψx

In general, traders will only perform actions that increasetheir
own utility. We will refer to such actions asindividually-
rational actions.

Note that since, in the general case

(∃bi)B(∃sj)S vi > vj
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there may exist the possibility for traders to increase their
utility by entering into mutual transfers of cash and resource.
That is, in general, there are potentialgains from trade.

B. Optimal allocations and the equilibrium price

A natural question then is how we can maximise the utility
of all agents by selecting a set of transactions of cash and
resource that are individually-rational for individual agents.
More formally, given an initial allocation(Γ,Ω), we need to
solve the following optimization problem:

arg max
(C∗,R∗)

|A|
∑

i=1

ui(pay(C∗,Γ), trans(R∗,Ω))

We restrict attention to scenarios in which sellers produce
resource which they then sell to buyers. Accordingly, for each
tuple c ∈ C∗

ci ∈ B

cj ∈ S

cp ∈ R
and

∀c∈C∗∃r∈R∗ ri = cj ∧ rj = ci (5)

∀r∈R∗∃c∈C∗ ci = rj ∧ cj = ri (6)

Let vb(c) denote the valuation of the buyer involved in
the transaction, and letvs(c) denote the valuation of the
corresponding seller:

vb(c) = vci

vs(c) = vcj

Assumingvs(c) < cp < vb(c), the gain in utility to each
trader involved in a transactionc is vb(c) − cp for the buyer,
and cp − vs(c) for the seller. Therefore, the total gain from
trade for a solutionC∗ is:

E(C∗) =
∑

c∈C∗

vb(c)− vs(c) (7)

We can solve this maximisation problem by choosing the
elements ofC∗ so that buyers with higher valuations are paired
with sellers with lower valuations. Let the functionV : 2A →
2R denote the multiset of valuations corresponding to a given
set of traders:

V (T ) = {vi : ai ∈ T }

Let V B = {vb1, vb2, . . . } denote the multisetV (B), where
vb1 denotes the highest valuation of any buyer, andvbi denotes
the ith highest valuation of any buyer. So that we have

∀ij i < j =⇒ vbi ≥ vbj

Similarly, let V S = {vs1, vs2, . . . } denote the multisetV (S)
where, wherevs1 denotes thelowestvaluation of any seller,
andvsi denotes theith lowest valuation of any seller.
V S is called thesupply schedule, andV B is the demand

schedule. These have corresponding natural graphical repre-
sentations which, in the continuous case (e.g.,V B = [a, b]
wherea and b are arbitrarily constants∈ R), can be repre-
sented as smooth curves known as the supply and demand
curves. We retain this nomenclature for the discrete graphical
representation of supply and demand.

LetMB andMS denote the subsets ofV B andV S where
buyer valuationsmatchseller valuations; that is, where buyer
valuations are greater than seller valuations:

MB = {mb1,mb2, . . . } ⊂ V B

MS = {ms1,ms2, . . . } ⊂ V S

such that:

mbi ≥ msi ∀i

mb1 ≥ mb2 ≥ mb3 ≥ . . .

ms1 ≤ ms2 ≤ ms3 ≤ . . .

Claim 3.1The maximum possible gain from trade is:

TP =

|MB|
∑

i=1

mbi −msi (8)

Proof:
We will prove this claim using a Reductio ad Absurdum

argument.
Let bi denote the buyer whose valuation isvbi and letsi

denote the seller whose valuation isvsi.
Suppose that the optimal gain from trade can be obtained

through a set of transactionsC∗ involving at least one trans-
action involving a pair of tradersbi andsj wherei 6= j. Then
equation 7 will contain a term

mbi −msj

However, if i < j, then we could obtain a larger value of
E, since we could choose a set of transactionsC′ in which
we pairσi with bi, instead ofbi andsj and

i < j =⇒ msi < msj

=⇒ E(C′) > E(C∗)

This contradicts our original assertion thatC∗ is optimal,
and thus the result holds by Reductio ad Absurdem.

The ratio

EA(C) =
E(C)

TP
(9)

is known as theefficiencyof the market. The market isefficient
if, and only if, EA = 1.
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1) The Equilibrium Price:Of particular interest are solu-
tions to the maximisation problem in which all transactions
share a common pricep∗ so that we have(∀c)C∗ p(c) = p∗.
Faced with any given pricep, any given buyerbi ∈ B will
voluntarily buy from any sellersj ∈ S at the specified price
provided thatp ≤ vi, otherwise they will refrain from entering
into a transaction. Similarly, any given sellersi ∈ S will
voluntarily sell to any buyerbj ∈ B at the specified price
provided thatp ≥ vi. Thus given anyp our transaction setC
consists of all transactions satisfying the following constraint:

C = {(ai, aj, p) : ai ∈ S ∧ aj ∈ B ∧ vi ≤ p ≤ vj}

The total increase in utility across all traders is thus given
by:

S(p) =
∑

ai∈S∧p>vi

p− vi +
∑

ai∈B∧p<vi

vi − p

=
∑

ai∈B∧aj∈S∧p≤vi∧p≥vi

vi − vj
(10)

We refer to this metric as thesocial welfareof the market,
and our maximisation problem is

argmax
p∗

S(p∗)

We can solve

S(p∗) = TP (11)

from equations 10 and 8:

∑

ai∈B∧aj∈S∧p∗≤vi∧p∗≥vi

vi − vj =

|MB|
∑

i=1

mbi −msi (12)

by noting that we must choosep∗ so that the induced
transactions include only those agents with valuations in the
match setsMB andMS.

In order to include allMB we must constrainp∗:

p∗ ≥ min(MB) (13)

and in order to include allMS we must constrainp∗:

p∗ ≤ max(MS) (14)

The above inequalities are necessary conditions for achiev-
ing TP , however we must also take care to exclude agents
with valuations not in the match sets. LetMB′ and MS′

denote the unmatched buyer valuations and unmatched seller
valuations respectively:

MB′ = V B −MB

MS′ = V S −MS

In order to exclude valuations from these sets we must also
ensure that

min(MS′) < p∗ < max(MB′) (15)

Inequalities 13, 14 and 15 can be solved by choosing

p∗ ∈ [eqa, eqb] (16)

where

eqa = max(max(MS),max(MB′)) (17)

eqb = min(min(MS′),min(MB)) (18)

Thus yieldingS(p∗) = TP .
The solutionp∗ is known as theequilibrium price. Although

in the general case there are a range of possible solutions,
by convention when we refer to the equilibrium price we
arbitrarily take a value from the middle of this range; that
is:

p∗ =
eqb − eqa

2
(19)

C. The auction model

In this section we give a formal description of the variant of
the double-auction used in this paper. This model is adapted
from [15], [16], [17], [18], and is an attempt to describe
these different market scenarios within a unified model. In
this model, time is represented in discrete slicest ∈ N. We
will follow the convention of representing the value of any
time-dependent variable X at timet by subscripting witht:
Xt.

1) Rounds:Trading in the market proceeds inrounds. Each
round may consist of variable number of time slices. During
each round, every trader in the market-place is given the
opportunity to submit ashout to the auctioneer. During any
given time-slice only one trader may place ashout.

2) Shouts:A shout is a commitment to buy or sell a pre-
specified quantity of commodity at a particular price. Shouts
are divided into two sub-classes. An offer to sell is called an
ask, and an offer to buy is called abid. Shouts are represented
as tuples of the form:

ρ = (ρc ∈ {bid, ask, ∅}, ρa ∈ A, ρp ∈ R, ρq ∈ N, ρt ∈ N) ∈ P

whereρc is the class of offer,ρa is the trader making the offer,
ρp is the price that the trader is willing to buy or sell at,ρq is
the quantity of commodity that they are committed to trade,
and ρt is the time at which the shout was submitted to the
auctioneer. A buyer who submits a bidb ∈ P is committed
to buying at any pricep ≤ bp. Similarly, a seller who submits
an aska ∈ P is committed to sellingaq units at any price
p ≥ ap. A trader may submit anull shoutby settingρc = ∅
meaning that the trader does not currently wish to trade and
will not be held to buying or selling at any price.

Alternatively, we also use the following functions to denote
the subfields of a shout tuple
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price(ρ) = ρp

class(ρ) = ρc

agent(ρ) = ρa

time(ρ) = ρt

3) Active traders:The finite setKt = {kt1, kt2, . . . , ktn}
denotes the traders who are eligible to place shouts in the
auction at timet. We pick the next trader whose turn it is to
shout,τt, randomly from this set:

τt = ktδt

where δt ∈ N is a discrete random variable distributed
according to a uniform distribution on the interval[1, |Kt|],
and we then remove this trader from the active set:

Kt+1 = Kt − τt

4) Events:Some of our state variables change in response
to events. The possible types of event in our market are
represented by the set:

ǫ = {eor, eod, sp, clr}

These events denote “the end of a round”, “the end of a
day”, “shout placed” and “market clearing” respectively, and
are defined formally later. Events are time-stamped according
to the time-slice at which they occurred. We denote this by
subscripting events thus:

ǫt = {eort, eodt, . . . }

Thus, we have:

ǫ1 = {eor1, eod2, . . . }

ǫ2 = {eor2, eod2, . . . }

The setEt denotes the set of events thatoccurred at time
t, as well as the set of events that were previously active in
prior time slices. An eventxt occurredat time t if, and only
if xt ∈ Et.

5) The end of round event:The end of round event,eor,
is defined thus:

Kt = {} =⇒

eort+1 ∈ Et+1

eort ∈ Et =⇒

Kt+1 = A

∧ roundt+1 = roundt + 1

That is, the end of round event occurs once all traders have
submitted offers, and when this event occurs we resetK to
allow all traders to submit shouts in the next round.

6) Shout processing:The auctioneer maintains four sets of
shouts. The setsM̂St andM̂Bt represent the set of matched
asks and matched bids respectively. These are analogous to
the setsMS andMB defined in Section III-B.

We denote theith highest matched bid at timet by ˆmb(t,i),
where

price(m̂b(t,1)) ≥ price(m̂b(t,2)) ≥ price(m̂b(t,3)) ≥ . . .

Similarly, for matched asks we have:

price(m̂s(t,1)) ≤ price(m̂s(t,2)) ≤ price(m̂s(t,3)) ≤ . . .

The match sets are maintained such that the following con-
straints hold:

∀i price(m̂b(t,i)) ≥ price(m̂s(t,i)) (20)

|M̂St| = |M̂Bt| (21)

Analogous toMS′ and MB′, the setsM̂S′
t and ˆMB′

t

contain all unmatched shouts at timet. Intuitively, the sets
M̂St andM̂Bt can be thought of as the potential “winning”
shouts at timet, and the setsM̂S′

t and ˆMB′
t as the “runner-

up” or “outbid” shouts at timet.
Let ρ denote the shout submitted to the auctioneer byτt —

the trader who is currently shouting. These sets are updated
as follows:

ρc = bid ∧ (∃a ∈ M̂S′
t : ρp ≥ ap) =⇒

M̂St+1 = M̂St ∪ {a}

∧ M̂S′
t+1 = M̂S′

t − {a}

∧ M̂Bt+1 = M̂Bt ∪ {ρ}

(22)

ρc = bid ∧ (∄a ∈ M̂S′
t : ρp ≥ ap) =⇒

ˆMB′
t+1 = ˆMB′

t ∪ {ρ}
(23)

ρc = ask ∧ (∃b ∈ ˆMB′
t : bp ≥ ρp) =⇒

M̂Bt+1 = M̂Bt ∪ {b}

∧ ˆMB′
t+1 = ˆMB′

t − {b}

∧ M̂Bt+1 = M̂Bt ∪ {ρ}

(24)

ρc = ask ∧ (∄b ∈ M̂B
′

t : bp ≥ ρp) =⇒

M̂S′
t+1 = ˆMB′

t ∪ {ρ}
(25)

ρc 6= ∅ =⇒

sp ∈ Et+1

(26)

7) Quotes:Analogous to definitions 18 and 17, we have:

êqa(t) = min(min(M̂S′
t),min(M̂Bt)) (27)

êqb(t) = max(max(M̂St),max( ˆMB′
t)) (28)

The pair(êqa(t), êqb(t)) is called themarket quote, and is pub-
lic information to all traders participating in the market.If all
traders bid truthfully, then we havêeqa = eqa and êqb = eqb.
Thus the market quote encapsulates the hypothesised range of
equilibrium prices assuming truthful bidding.
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8) Trading days: A trading day consists of a number of
rounds of trading. Different events may take place at the end
of a day depending on the scenario we are modelling. For
example, in many scenarios we will allocate new randomly
drawn valuations for traders at the end of each trading day.
These conditions will be introduced later. For now, we intro-
duce the variabledayt which denotes the current trading day:

eodt ∈ Et =⇒

dayt+1 = dayt + 1

¬eodt ∈ Et =⇒

dayt+1 = dayt

9) The clearing operation:The key role of the auctioneer
is to compute a payment setCt and a transaction setRt as a
function of the auction state(M̂St, M̂Bt, M̂S′

t, ˆMB′
t). Dif-

ferent variants of the double-auction mechanism computeCt
differently in order to bring about different design objectives.
The specific variant we discuss in this paper is theclearing-
house (CH) mechanism [16, p. 5] with uniform-pricing, in
which the auctioneer batches up shouts from multiple traders
before computing a clearing price which applies to all trades.
These rules are formalised as follows.

A uniform pricing policy specifies that all traders with
matched offers (that is, all the potentially efficient trades)
should all trade with each other at the same price computed
as a function of the market quote (as determined byêqa and
êqb). Thus, at any given time, all traders are transacting at the
same global market price (which may change over time):

clrt ∈ Et =⇒

Γt+1 = pay(Ct,Γt)

∧ Ωt+1 = trans(Rt,Ωt)

∧ ˆMSt+1 = {}

∧ ˆMBt+t = {}

¬clrt ∈ Et =⇒

Ct = {}

∧ Rt = {}

where:

∀i≤|M̂B| ci = (agent(m̂b(t,i)), agent(m̂s(t,i)), pt)

and:

pt = êqa(t)k + êqb(t)(1 − k)

wherek ∈ [0, 1] is a constant chosen by the market designer.
In this paper we use ak = 1

2 mechanism.
In a CH mechanism, the clearing operation is scheduled at

the end of every round:

eort ∈ Et =⇒

clrt+1 ∈ Et+1

clrt ∈ Et =⇒

Ct = {c1, c2, . . . }

IV. SEARCH SPACE

In the previous section we described in detail the game to
which we apply our method for strategy acquisition. In this
section we describe a space of strategies for this game.

Each agentai has an associated trading strategy, which
specifies a mappingZ between its valuationvi and the shout
ρ ∈ P that it will place at timet. For simplicity, we shall
assume that: buyers always submit bids, sellers always submit
asks, each agent only submits shouts for a single unit, and
only the active tradersKt place shouts (see III-C3) . Thus:

Z(i, t) = (bid, ai, ζ(i, t), 1, t) ⇐⇒ ai ∈ B ∧ ai ∈ Kt

Z(i, t) = (ask, ai, ζ(i, t), 1, t) ⇐⇒ ai ∈ S ∧ ai ∈ Kt

Z(i, t) = (∅, ai, 0, 0, t) ⇐⇒ ai /∈ Kt

whereζ is a function that sets theprice of the shout according
to the strategy being deployed.

A. The Truth-Telling Strategy

The truth-telling strategy (abbreviationTT) simply places
shouts equal to the agent’s valuation:

ζ(i, t) = vi (29)

Although it is extremely simple, the truth-telling strategy is
of fundamental importance, since in anincentive-compatible
mechanism by definition this strategy is guaranteed to obtain
the optimal payoff for agentai no matter what strategies are
adopted by the other agents [19].4

B. The Gjerstad-Dickhaut strategy

The Gjerstad-Dickhaut (abbreviationGD) strategy estimates
the probability of a shout being accepted based on historical
observations and then places its shout to maximise the agent’s
expected profit [20].

Agents using theGD strategy make use of a memory
mechanism that records the shouts that gave rise to the last
n transactions in the market, wheren = GDN ∈ N is
the parameter that determines the size of the memory. The
memory is divided into four sets:

ĤSt ⊂ P The history of accepted asks up until timet
ĤBt ⊂ P The history of accepted bids up until timet
ĤS′

t ⊂ P The history of unaccepted asks up until timet
ˆHB′

t ⊂ P The history of unaccepted bids up until timet

4There are many single-sided auctions which are incentive-compatible;
however, most double-auction mechanisms, including the uniform price k =
1

2
CH discussed in this paper, arenot incentive-compatibile and henceTT is

not dominant. However, it is is important to note that in aCH auction an
homogeneous population of agents usingTT will bring about high-efficiency
outcomes (EA = 1).
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The history is empty at the start of trading:

ĤS0 = ĤB0 = ĤS′
0 = ˆHB′

0 = {} (30)

As shouts areplaced(Section III-C6) they are recorded in the
history of unacceptedshouts:

ĤS′
t+1 = ĤS′

t ∪ ρ ⇐⇒ ρ ∈ M̂S′
t (31)

ˆHB′
t+1 = ˆHB′

t ∪ ρ ⇐⇒ ρ ∈ ˆMB′
t (32)

As shouts arematched(Section III-C6) they are recorded in
the history ofacceptedshouts:

ĤSt+1 = ĤSt ∪ ρ ⇐⇒ ρ ∈ M̂St (33)

ĤBt+1 = ĤBt ∪ ρ ⇐⇒ ρ ∈ M̂Bt (34)

Note that the history is unaffected by the clearing operation
(Section III-C9), hence once a shout is recorded as accepted
it remains so, unless it is removed due to memory-size
restrictions as defined below.

Let

~hst = {hs(1,t), hs(2,t), . . . , hs(GDN ,t)} (35)

wherehs(1,t) ∈ N represents the total number of asks that
were recorded before the1st most recent transaction,hs(2,t) is
the total number of asks before the2nd most recent transaction
etc.
Similarly let

~hbt = {hb(1,t), hb(2,t), . . . , hb(GDN ,t)} (36)

wherehb(1,t) ∈ N represents the total number of bids that were
recorded before the1st most recent transaction,hb(2,t) is the
total number of bids before the2nd most recent transactionet
cetera.
Let the scalarht ∈ [0, GDN) represent the current transaction
number defined as follows

clrt ∈ Et =⇒ ht+1 = ht + |Ct| mod GDN (37)

∃ρ : ρt = t ∧ ρc = ask =⇒

hs(ht+1,t+1) = hs(ht+1,t) + 1 (38)

Agents using theGD strategy use the history data to form an
estimate,GDp̂a(p) of the probability of a shout with pricep
being accepted, based on:

• the number of asks accepted at prices greater than or
equal top;

GDTAG(p,t) = |{ρ : ρ ∈ ĤSt ∧ ρp ≥ p}| (39)

• the total number of bids in the history at prices greater
than or equal top;

GDBG(p,t) = |{ρ : ρ ∈ (ĤBt ∪ ĤB
′

t) ∧ ρp ≥ p}| (40)

• the number of rejected asks in the history at prices less
than or equalp;

GDRAL(p,t) = |{ρ : ρ ∈ ĤS
′

t ∧ ρp ≤ p}| (41)

• the number of accepted bids at prices less than or equal
to p;

GDTBL(p,t) = |{ρ : ρ ∈ ĤBt ∧ ρp ≤ p}| (42)

• the total number of asks in the history at prices less than
or equal top;

GDAL(p,t) = |{ρ : ρ ∈ (ĤSt ∪ ĤS
′

t) ∧ ρp ≤ p}| (43)

• and the number of rejected bids at prices greater than or
equal toρp

GDRBG(p,t) = |{ρ : ρ ∈ |{ρ ∈ ˆHB′
t ∧ ρp ≥ p}| (44)

Where we have recorded an ask at pricep in the history (i.e.,
∃ρ : ρ ∈ (ĤSt ∪ ĤS

′

t) ∧ ρp = p), the estimated probability
of a new ask being accepted at the same price is given by the
following equation:

GDp̂a(p,t) =
GDTAG(p,t) +GDBG(p,t)

GDTAG(p,t) +GDBG(p,t) +GDRAL(p,t)
(45)

Similarly, where we have recorded a bid at pricep in the
history, the estimated probability of a new bid being accepted
is:

GDp̂a(p,t) =
GDTBL(p,t) +GDAL(p,t)

GDTBL(p,t) +GDAL(p,t) +GDRBG(p,t)
(46)

For prices not recorded in the history, the function

GDpa(p,t) = α(3,t)p
3 + α(2,t)p

2 + α(1,t)p+ α(0,t)

is obtained using cubic-spline interpolation over the pairs
defined by the functionGDp̂a(p,t).

Now that we have an estimate of the probability of a shout
being accepted at a particular price, we are in a position to
estimate the expected surplus as a result of bidding at different
prices. For buyeri:

GDE(p,i,t) = (vi − pp)GDpa(p) (47)

and for selleri:

GDE(p,i,t) = (pp − vi)GDpa(p) (48)

Finally, the GD strategy chooses prices in order to maximise
expected surplus:

ζ(i, t) = argmax
p∗

GDE(p∗,i,t) (49)
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C. Reinforcement-learning Strategies

Reinforcement-learning strategies rely only on the immedi-
ate feedback from interacting with the mechanism; the surplus
that each agent was able to obtain in the most recent round
of trading (thus they are general-purpose enough to be used
in any auction-mechanism, even where we do not have access
to market-data, for example, in repeatedsealed-bidauctions).

These strategies choose their markup over their valuation
price thus:

ζ(i, t) = vi +RLλi
(t)RLµi

⇐⇒ ai ∈ S (50)

ζ(i, t) = vi −RLλi
(t)RLµi

⇐⇒ ai ∈ B (51)

based on areward signalRLρi
(t) which represents the most

recent profits of agentai:

RLρi
(t) = Γt(ai)− Γt−1(ai) (52)

The functionRLλi
: N→ Θi represents the output of learning

algorithmλ whereΘi = [0, RLki
) ⊂ N is the set of possible

outputs fromλ.

Parameter name Semantics
RLλi

(t) A function specifying the output from a
reinforcement learning algorithm

RLµi A scaling factor used to map learning outputs
onto actual prices

RLki
The number of possible outputs fromRLλi

TABLE I
REINFORCEMENT-LEARNING PARAMETERS

1) The Dumb-Random learning algorithm:The dumb-
random learning algorithm (abbreviationDR) is a control
algorithm that in fact performs no learning and chooses actions
randomly:

RLλi
= δit (53)

whereδit is a discrete random variable distributed uniformly
in the range[0, RLki

). This algorithm can be used in control
experiments by substituting it for one of the other algorithms
below; if an observation is preserved under this substitution
we can conclude that our observation is not likely to be due
to learning behaviour.

2) The Roth-Erev learning algorithm:The Roth-Erev al-
gorithm (abbreviationRE) is designed to mimic human game-
playing behaviour in extensive form games [21]. Agents bid
probabilistically according to:

RLλi
(t) = REi(t) = δit (54)

whereδit ∈ Θi is a discrete random variable distributed:

P (δit = x) = REp(x, i, t) (55)

The propensities are initialised based on the scaling parameter
REsi

; ∀ai ∈ A and∀θ ∈ Θi:

REq(θ, ai, t0) =
REsi

RLki

(56)

the REq are then updated based on the experience function
REǫ:

REq(θ, ai, t) = (1−REρi
)REq(θ, ai, t− 1) (57)

+REǫ(θ, ai)

where the experience function depends on the most recent
reward signalRLρ and the last action chosen by the agent
REi(t− 1):

REǫ(θ, ai, t) = RLρi
(t− 1)[1−REηi

]

⇐⇒ θ = REi(t− 1) (58)

REǫ(θ, ai, t) = RLρi
(t− 1)

REηi

RLki
−1

⇐⇒ θ 6= REi(t− 1) (59)

and then normalized to produce a vector of probabilities; let
Qit denote the sum of all the propensities for agenti:

Qit =
∑

θ∈Θi

REq(θ, ai, t) (60)

Then∀θ ∈ Θi and∀ai ∈ A:

REp(θ, ai, t) =
REq(θ, ai, t)

Qit
(61)

Parameter name Semantics
REki

The number of possible outputs
REρi The recency parameter
REηi The experimentation parameterη
REsi The scaling parameter

TABLE II
PARAMETERS FOR THEROTH-EREV LEARNING ALGORITHM

State variable Semantics
REi(t) The output of the learning algorithm at timet

REp(θ, ai, t) The probability distribution over each possible action
θ ∈ Θi

REq(θ, ai, t) The propensityfor each possible action
θ ∈ Θi

REǫ(θ, ai, t) The experience function

TABLE III
STATE VARIABLES FOR THE ROTH-EREV LEARNING ALGORITHM

3) Nicolaisenet al.’s modified Roth-Erev algorithm:Nico-
laisen, Petrov and Tesfatsion [17] (abbreviationNPT) used a
modified version of the Roth-Erev algorithm for their trading
strategy which they used to explore market power effects in a
simulated electricity market:

RLλi
(t) = RE′

i(t) (62)

whereRE′
i(t) is computed identically toREi(t) but for a

modification to the experience function:



11

REǫ′(θ, ai, t) = RLρi
(t− 1)[1−REηi

]

⇐⇒ θ = RLI(t− 1) (63)

REǫ′(θ, ai, t) = REqi

REηi

RLki
−1

⇐⇒ θ 6= REi(t− 1) (64)

4) The Stateless Q-Learning algorithm:The Stateless Q-
learning algorithm (abbreviationSQ) is a single-state ver-
sion of a temporal-difference reinforcement-learning algorithm
called Q-Learning [22]. The algorithm maintains a table
SQQ(θ, ai, t) which can be thought of as an estimate of the
payoff to each possible actionθ ∈ Θi. The estimates are
updated using the rule:

SQQ(θ, ai, t+ 1) = SQQ(θ, ai, t)

+SQαi

[

RLρi
+ SQγi

max
θ′

SQQ(θ′, ai, t)− SQQ(θ, ai, t)
]

(65)

whereSQγi
∈ R is a discount factor andSQαi

is a parameter
controlling the rate of convergence.

Actions are chosen to maximise estimated payoff using an
ǫ-greedy rule:

RLλi
(t) = δit ⇐⇒ ǫ′it ≤ SQǫi

RLλi
(t) = argmax

θ∗
SQQ(θ∗, ai, t) ⇐⇒ ǫ′it > SQǫi

whereǫ′it ∈ R is a random variable distributed uniformly on
the interval[0, 1] and δit ∈ N is a discrete random variable
distributed uniformly on the interval[0, RLki

− 1].

Parameter name Semantics
SQǫi The exploration parameter
SQγi The discount factor
SQαi The learning rate

TABLE IV
PARAMETERS FOR THE STATELESSQ-LEARNING ALGORITHM

V. I NTERACTION BETWEEN STRATEGIES

In the previous section we described a space of strategies
for the double-auction. In this section we analyse the strategic-
interaction between a representative subset of these strategies
using the empirical game-theory methodology described in
Section II-D. As in [14], at the start of each game half the
agents are randomly assigned to be buyers and the remainder

Abbreviation Description
TT The truth-telling strategy, (section IV-A)
RE The reinforcement-learning strategy (section IV-C),

configured with Roth-Erev (section IV-C2)
GD The Gerstad-Dickhaut strategy (section IV-B)

TABLE V
THE INITIAL HEURISTIC STRATEGIES CHOSEN FOR THE ANALYSIS

as sellers. For each run of the game, valuations are drawn as
in [14]:

∀i vi ∼ U(a, a+ b)

a ∼ U(161, 260)

b ∼ U(60, 100)

but valuations remain fixed across periods in order to al-
low agents to attempt to learn to exploit any market-power
advantage in the supply and demand curves defined by the
limit prices for that game. Additionally, although we discard
limit-prices which do not yield an equilibrium price, we do
not ensure that a minimum quantity exists in competitive
equilibrium as this introduces a floor effect which fails to
expose the inferior efficiency of aCDA. The 64-bit version
of the Mersenne Twister random number generator [23] was
used to draw all random values used in the simulation and
all floating point calculations were performed usingIEEE 754
double-precision arithmetic [24]. Each entry in the heuristic
payoff matrix was computed by averaging the payoff to each
strategy across104 simulations.

We use the representative strategiesTT, RE, GD as described
in table V: theTT strategy was chosen since it is the simplest
strategy that is able to achieve high efficiency outcomes in a
homogenous population in theCH mechanism; theGD strategy
was chosen as a representative of the class of highly-principled
and highly-engineered strategies that analyse historicalmarket
data, and finally theRE strategy was chosen to represent
naive human-like behaviour, and thus was configured with
parameters that best-fit human game-playing [25]:

∀i REki
= 50

∀i REρi
= 0.1

∀i REηi
= 0.2

∀i REsi
= 9

∀i RLµi
= 1

In a conventional game-theoretic analysis, we solve the
game by finding either a dominant strategy or the Nash equilib-
ria: the sets of strategies that are best-responses to each other.
However, because classical game-theory is a static analysis,
it is not able to make any predictions about which equilibria
are more likely to occur in practice. Such considerations are
of vital importance in analysing real-world problems. For
example, if we are interested in using game-theory to analyse
economic outcomes, we should give more consideration to
outcomes that are more likely than low probability outcomes;
if there is a Nash equilibrium for our mechanism which yields
very low allocative efficiency, we should not worry too much
if this equilibria is extremely unlikely to occur in practice. On
the other hand, we should give more weight to equilibria with
high probability.

As in [14], we will use evolutionarygame-theory [7] to
model how agents might gradually adjust their strategies over



12

time as they learn to improve their behavior in response to their
payoffs. We use the replicator dynamics equation (Equation1),
to recap:

ṁj = [u(ej, ~m)− u(~m, ~m)]mj

where ~m is a mixed-strategy vector,u(~m, ~m) is the mean
payoff when all players play~m, andu(ej , ~m) is the average
payoff to pure strategyj when all players play~m, andṁj is
the first derivative ofmj with respect to time. Strategies that
gain above-average payoff become more likely to be played,
and this equation models a simpleco-evolutionaryprocess of
mimicry learning, in which agents switch to strategies that
appear to be more successful. Since mixed strategies represent
probability distributions, the components of~m sum to one. The
geometric corollary of this is that the vectors~m lie in theunit-
simplex△n = {~x ∈ Rn :

∑n
i=1 xi = 1}. In the case ofn =

3 strategies the unit-simplex△3 is a two-dimensional plane
triangle embedded in three-dimensional space which passes
through the coordinates corresponding to pure strategy mixes:
(1, 0, 0), (0, 1, 0), and(0, 0, 1). We shall use a two dimensional
projection of this triangle to visualise the replicator dynamics
in the next section5.

For any initial mixed-strategy we can find the eventual out-
come from this co-evolutionary process by solving∀j, ṁj =
0 to find the final mixed-strategy of the converged population.
As discussed in Section II-B, this has a significant advantage
over non-game-theoretic co-evolutionary search, such as [26],
in that we canguarantee[9, pp. 88–89]:

• all Nash equilibria of the (approximated) game are sta-
tionary points under the replicator dynamics; and

• all interior limit states are Nash equilibria; and
• all Lyapunov stable states [8] are Nash equilibria.

Thus the Nash equilibrium solutions are embedded in the
stationary points of the direction field of the dynamics spec-
ified by Equation 1. Although not all stationary points are
Nash equilibria, by overlaying a dynamic model of learning
on the equilibria we can see which solutions are more likely
to be discovered byboundedly-rationalagents. Those Nash
equilibria that are stationary points at which a larger range of
initial states will end up, are equilibria that are more likely
to be reached (assuming an initial distribution ofmj that is
uniform); in the terminology of dynamic systems they have
a larger basin of attraction. The basin of attraction for a
stationary point is proportion of mixed strategies in△ which
have flows terminating at that point6. The larger the basin, the
larger the region of strategy-space which leads to the attractor,
and hence the stronger the attractor, and the moreattainable
the corresponding equilibrium [27]. This intuitive definition of
basin size is formalized as follows. Let the function

T : △n × 2△
n

→ N
5See [9, pp. 3–7] for a more detailed exposition of the geometry of mixed-

strategy spaces.
6In many cases this will be thevolumeof the state space which terminates

at the attractor, and this provides a useful intuition for thinking about attractor
strength. However, in the general case this definition breaks down. For
example, if we have chaotic dynamics then a strange attractor may capture
many flows, but the volume of its basin will be zero.

represent the trajectories that terminate at each coordinate in
the n-dimensional unit-simplex△n ⊂ Rn, so that we have:

T (~x,M ⊂ △n) =

|{~y : ~y ∈M ∧ ~m(0) = ~y ∧ ∃t ~m(t) = ~x ∧ ṁ(t) = 0}| (66)

whereM is a set of starting points and~x is a limit state.
Let β(~x,M) denote theproportionof the elements ofM that
terminate at~x:

β(~x,M) =
T (~x,M)

|M |
(67)

If we choose a random sampleM ⊂ △ that is distributed
uniformly over the simplex, the functionβ will provide us
with an estimate of the probability of arriving at any given
stationary point, assuming that all starting points in the simplex
are equally likely; that is, it will provide an estimate of the
true basin size of the limit state~x, denoted byβ(~x), and:

lim
M→△

β(~x,M) = β(~x)

Figure 1 shows the direction-field of the replicator-dynamics
equation for our three heuristic strategies. In this and the
subsequent direction-field diagrams, the points in the simplex
represent alternative mixed and pure strategies, and the arrows
indicate the direction of convergence when any such strategy
is adopted. The three pure strategies (here,TT, RE and GD)
are represented by the three vertexes of the simplex. A point
on an external edge of the simplex represents a mixed strategy
comprising two of the three pure strategies, and a point strictly
inside the simplex represents a mixed strategy comprised of
all three pure strategies. Thus, for example, the point on the
left-most edge between the vertexes labeledTT andRE which
is one-third the way from the vertex labeledTT represents
a mixed strategy where strategyTT is chosen 66.7% of the
time, strategyRE is chosen 33.3% of the time, and strategy
GD not chosen at all; this position on the simplex is denoted
(66.7, 33.3, 0). A vector (a line with an arrow) shows the
likely direction of strategic play from any given initial position.
In other words, if the arrows converge on some point in the
simplex, this strategy represented by that point is the end-point
of repeated interactions as the game proceeds.

Looking at Figure 1, we can see there are two points where
the direction vectors converge: these two points correspond to
alternative equilibrium solutions of the evolutionary game. The
first such point is the vertex at the bottom right, labeledGD.
Since this point represents a pure strategy, the fact that this
point is also a convergence point indicates thatGD is a best-
response strategy to itself, i.e., a pure-strategy equilibrium.
We can also see that this point has a very largebasin of
attraction; for any randomly-sampled initial configuration of
the population most of the flows end up in the bottom-
right-hand-corner. The second point in the simplex where
direction vectors converge is on the left-most edge between
the points labeledTT and RE. This point corresponds to a
second equilibrium, but is a mixed-strategy equilibrium, with
co-ordinates of (0.88, 0.12, 0). This point represents an 88%
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mix of strategyTT and a 12% mix ofRE. However, the basin
of attraction for this equilibrium is much smaller than for
the pure-strategyGD equilibrium; only 6% of random starts
terminate at this mixed equilibrium vs. 94% for pureGD.
Hence, according to this analysis, we would expect most of the
population of traders to adopt theGD strategy. Note also that
neither of the vertexes labeledTT or RE are the convergence
points of direction flows; this indicates that neither strategy is
the best response to itself.

TT 

RE 

GD 

Fig. 1. The original replicator dynamics direction field fora 12-agent
clearing-house auction with the original unoptimized Roth-Erev strategy
(labeledRE).

TT 

RE’ 

GD 

Equilibrium 2 

Equilibrium 1 

Fig. 2. Replicator dynamics direction field for a 12-agent clearing-house
auction perturbed with +5% payoffs to the Roth-Erev strategy (labeledRE’)

How much confidence can we give to this analysis given
that the payoffs used to construct the direction-field plot were
estimates based on simulation? One approach to answering
this question is to conduct a sensitivity analysis; we perturb
the mean payoffs for each strategy in the matrix by a small
percentage to see if our equilibria analysis is robust to errors
in the payoff estimates. Figure 2 shows the direction-field plot

after performing a perturbation where 2.5% of the payoffs
are removed from each of theTT and GD strategies and
an additional +5% payoffs added to theRE strategy. This
peturbation results in a qualitatively different set of equilibria.
the two new equilibria are shown in Figure 2: one is a pure
RE strategy, and the other a mix ofGD and RE strategies.
The RE strategy thus becomes a best-response to itself with
a large basin of attraction (some 61%). We conclude from
this peturbation analysis that the initial equilibrium analysis is
sensitive to small changes or errors in payoff estimates, and
so our initial prediction of widespread adoption ofGD may
not occur if the payoffs toRE have been under-estimated.

If we observe a mixture of all three strategies in actual
play, however, the perturbation analysis also suggests that we
could bring about widespread defection toRE if were able
to tweak the strategy by improving its payoff slightly;the
perturbation analysis thus points toRE as a candidate for
potential optimization.

VI. STRATEGY ACQUISITION

In the previous section we saw how heuristic-strategy ap-
proximation could be used to identify a potential candidate
strategy for optimization. We also introduced an intriguing
metric for ranking strategies on a single fully-ordered scale:
viz, the size of the strategy’s basin of attraction under the
replicator dynamics. In this section we shall use this metric
to perform a heuristic search of a space of strategies closely
related to theRE strategy. In the following we shall define the
space of strategies that are to be searched, and the details of
the search algorithm.

The RE strategy discussed in the previous section be-
longs to a more general class of strategies: those based on
reinforcement-learning. This class of strategies is described in
detail in section IV-C. To recap, these strategies adjust their
markup in response to the most recent profits obtained in
the market using one of the following reinforcement learning
algorithms: the Roth-Erev algorithm (RE), NPT’s modifications
to RE (NPT), the stateless Q-learning algorithm (SQ), and
the control algorithm (DR). The parameters governing these
algorithms are detailed in Tables I to IV.

Individuals in this search space were represented as a 50-bit
string, where:

• bits 1-8 coded for parameterRLµ in the range(1, 10);
• bits 9-16 coded for the parametersSQǫ or REη in the

range(0, 1);
• bits 17-24 coded for parameterRLk in the range(2, 258);
• bits 25-32 coded for parametersSQγ orREρ in the range

(0, 1);
• bits 33-40 coded for parameterREs in the range

(1, 15000);
• bits 41-42 coded for the choice of learning algorithm

amongstRE, NPT, SQ or DR; and
• bits 43-50 coded for parameterSQα in the range(0, 1).

A. Search algorithm

A genetic-algorithm (GA) was used to search this space of
strategies, where the fitness of each individual strategy inthe
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search space was computed by estimating its basin size under
the replicator dynamics under interaction with our existing
three strategies:GD, TT and RE. As in Section V, basin size
was estimated using the functionβ defined in Equation 67, but
since we recompute all entries in the heuristic-payoff matrix
in support of each candidate strategy, we used lower sample
sizes in order to facilitate evaluation of many strategies.The
sample size for the number of games played for each entry
in the heuristic payoff matrix was increased as a function of
the generation number:10 + int(100 ln(g + 1)) allowing the
search-algorithm to quickly find high-fitness regions of the
search-space in earlier generations and reducing noise and
allowing more refinement of solutions in later generations.
We used a constant number of replicator-dynamics trajectories
|M | = 50 in order to estimate the basin size from the payoff
matrix once it had been recomputed for our candidate strategy.
Thus our fitness function is:

F (i, S, [H ]) =
∑

~x∈ǫ[H]S

β[H](~x,M) · xi (68)

where: i is the index of the candidate heuristic strategy
being evaluated from amongst the set of heuristic strategies S
with heuristic payoffs[H ], β[H] denotes the basin size of an
equilibrium in the game defined by payoffs[H ] as specified by
Equation 67 (p. 12), andǫ[H]S is the set of heuristic equilibria:

ǫ[H]S = {~x ∈ △|S| : β[H](~x,M) > 2× 10−2}

Since we are comparing with our three existing strategies, in
this experiment we have:

S = {s*,TT,GD,RE}

where s* is our candidate strategy (i.e.,i = 1). Thus the
fitness function estimates the expected frequency with which
our candidate strategy will be played in equilibrium outcomes.
The entire search process is summarised in pseudo-code in
Algorithm 1; we call this theFiSH algorithm, since we will
use it to “fish” for a new heuristic strategy.

A GA was chosen to search the spaceΠ of potential
variations onRE, principally because of its ability to cope
with the additional noise that the lower sample size introduced
into the objective function. TheGA was configured with a pop-
ulation size of 100, with single-point cross-over, a cross-over
rate of 1, a mutation-rate of10−4 and fitness-proportionate
selection. TheGA was run for 32 generations, which took
approximately 1800 CPU hours on a dual-processor Xeon
3.6Ghz workstation.

VII. R ESULTS

Figure 3 shows the mean fitness of theGA population for
each generation. As can be seen, the variance in fitness values
in later generations is still large. However, inspection ofa
random sample of strategies from each generation revealed a
partial convergence of phenotype, but with significant fluctu-
ations in fitness values due to small sample sizes (see above).
Most notably, the fittest individual at generation 32 had also

appeared intermittently as the fittest individual five timesin
the previous 10 generations, and thus this was taken as the
output from the search.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

M
ea

n 
fit

ne
ss

Fig. 3. Mean fitness of theGA population with one standard deviation

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
(s

tr
at

eg
y)

OS
TT
GD
RE

Fig. 4. Replicator dynamics time series plot for a 12-agent clearing-house
auction showing interaction between optimised strategy (OS) versusGD, TT

and the original Roth-Erev strategy (RE)

The optimised strategy that evolved used the stateless Q-
learning algorithm (SQ) with the following parameters:

RLµ = 1.210937

RLk = 6

SQǫ = 0.18359375

SQγ = 0.4140625

SQα = 0.1875

The notable feature of this strategy is the small number of
possible markupsRLk, and the narrow range of the markups
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Algorithm 1 . FiSH

input : A set of heuristic strategiesS = {s1, s2, . . . sn}
output: A new heuristic strategyOS

[H ]← GetHeuristicPayoffMatrix(S);

F̂ ← 0;
for i← 1 to n do

[H ]′ ← perturb payoffs in[H ] in favour of si;
if F (i, S, [H ]′) > F̂ then

F̂ ← F (i, S, [H ]′);
ÔS← si;

end
end

Π← create a search space based on generalisations ofÔS;
OS← argmaxs*∈Π F (1, s*∪ S,GetHeuristicPayoffMatrix(s*∪ S));

[0, (RLk − 1)RLµ] as compared with the distribution of
valuation distribution widths. This feature was shared by all
of the top five strategies in the last ten generations, and is
another factor that indicated convergence of the search.

We proceeded to analyze our specimen strategy under a full
heuristic-strategy analysis using104 samples of the game for
each of the 455 entries in the payoff matrix. UsingJASA, the
Java Auction Simulator API7 developed by the first author
[28], this analysis was completed in under twenty-four hours
using a dual-processor 3.6Ghz Xeon workstation.

Figure 4 shows twenty trajectories of the replicator-
dynamics plotted as a time-series graph for each strategy, and
shows the interaction between the new, optimised strategy,OS,
together with the existing strategies:GD, TT and RE.

Taking M ⊂ △4 : |M | = 103 randomly sampled initial
mixed-strategies, we calculate that there are two attractors:

~A = (0, 0, 1, 0)

~B = (0.67, 0.32, 0, 0)

over (OS,TT,GD,RE). AttractorA captures only

β( ~A,M) = 0.03

that is, three percent of trajectories, whereas attractorB
captures virtually the entire four-dimensional simplex:

β( ~B,M) = 0.97

Although this basin is very large, our optimized strategy shares
this equilibrium with the truth-telling strategy (TT), giving us
a final total market share

F = 0.67× 0.97 = 0.65

This compares favourably with a market-share of 32% for
truth-telling and 3% for GD. The originalRE strategy is
dominated by our optimised strategy. Figures 5 and 6 show the
direction field for two of the 3-strategy combinations involving

7http://freshmeat.net/projects/jasa

our optimised strategy:(OS,TT,GD) and (OS,GD,RE)
respectively.

VIII. D ISCUSSION

It is somewhat remarkable that our fairly simplistic op-
timised strategy is able to gain defectors from a highly
sophisticated strategy likeGD, whilst at the same time truth-
telling is able to retain a share of followers in a population
predominated byOSers (TT appears to beparasitic on OS).
What accounts for the ability of smallOS mixes to invade high-
probability mixes of a sophisticated adaptive strategy (GD),
whilst remaining vulnerable to invasion by a low-probability
mix of a non-adaptive strategyTT? A possible explanation is
as follows.

OS

TT

GD

Equilibrium A

Equilibrium B

Equilibrium C

Fig. 5. Replicator dynamics direction field for a 12-agent clearing-house
auction showing interaction between optimised strategy (OS) versusTT and
GD

As discussed earlier, we use the same method of assigning
valuations as in [14]; that is, for each run of the game,
the lower-bound,b, of the valuation distribution is selected
uniformly at random from the range[61, 160] and the upper-
boundb′ is similarly drawn from[b+60, b+209]. For that run
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Equilibrium A

Equilibrium B

OS

GD

RE

Fig. 6. Replicator dynamics direction field for a 12-agent clearing-house
auction showing interaction between optimised strategy (OS) versusGD and
the original Roth-Erev strategy (RE)

of the game, each agent’s valuation is then drawn uniformly
from [b, b′]. However, it is possible that this results in a
statistical correlation between the meta-bounds and the average
slope of truthful supply and demand schedules— that is, given
these distribution parameters there is insufficient variance in
the difference between valuations of traders who are neighbors
on the supply or demand curve. Since we are using a uniform-
price k = 0.5 clearing rule, the mechanism is vulnerable to
price-manipulation from the least efficient trades; the buyer
with the lowest matched bid, and the seller with the highest
matched ask can potentially manipulate the final clearing price
- provided that they do not overstate their value claim to
the extent that it impinges on the 2nd-lowest matched bid,
or the 2nd-highest matched ask. For example, in the case of
buyerai ∈ B who finds themselves with the lowest matchable
valuation, and if we assume that the other agents are truth-
tellers then our competitors’ bids will be given by a subset of
MB = {mb1,mb2, . . . ,mbn}. The 2nd-lowest matched bid
will be mbn−1 and our valuation will be givenmbn. Let:

∆mb = mbn−1 −mbn

This is a random variable. However if we know the distribution
of ∆mb, we can calculate the probability of our bid being
accepted as a function of its price:Paccept(v̂i). Since our
profit will be vi − v̂i, given knowledge of the distribution of
∆mb it would be straightforward to choose a bid pricev̂i that
maximises our expected profit:

argmax
v̂i

E(Ui(v̂i)) = (vi − v̂i)Paccept(v̂i)

Given sufficient variance in the distribution of∆mb this
feature of the market is not easily exploited. However, in
a market with a small number of traders and a narrow
distribution for∆mb there is an opportunity to trade at small
margin above truth if you find yourself with a valuation close
to the equilibrium pricep∗. This is precisely the behaviour of
the strategies that we observe to be predominant in the later

generations of ourGA: they all use a small number of possible
markups, each of them small in comparison to the possible
valuation bounds. The reinforcement-learning component of
the strategy is then able to fine-tune the markup depending on
where the trader finds themselves on the supply or demand
curve after valuations are drawn. If the trader’s valuationis
far away from the equilibrium-price, the trader can adjust its
margin close to zero, whilst if the trader’s valuation is near to
the equilibrium-price, the trader can find a small margin that
does not impinge on its nearest-neighbour. This hypothesisis
also consistent with parasitic truth-telling; it is easy tosee
that truth-telling is a best-response for a 2nd-lowest matched
bidder to a lowest matched bidder playingOS.

In future work we will examine this hypothesis in more
detail and conduct a statistical analysis in which we deter-
mine the distribution of∆mb for different parameters of
the valuation distribution range, and attempt to correlateit
with the parameters of the evolved strategy. Meanwhile, we
have demonstrated that the search technique presented hereis
capable of finding a new strategy that not only has a large
attractor, but also has interesting properties worthy of further
analysis.

A. An iterative approach

We started out by asking whether our original equilibrium
analysis of TT, GD and RE was sensitive to small pertur-
bations in payoff estimates. By doing so, we identified that
hypothetical variations on theRE strategy might be able to
easily invade our existing equilibria. We then identified a new
entrant OS that was able to penetrate the original mix of
strategies and displace the ancestral incumbentRE, forming
two new equilibria comprising mixes ofOS, TT and GD.
Thus by performing this analysis we haverefinedour original
equilibrium analysis, since our original equilibria did not
take into account the existence ofOS. This process can be
generalised to an arbitrary set of initial heuristic-strategies, as
shown in Algorithm 1, theFiSH Algorithm.

We have validatedFiSH empirically by applying it to a
highly complex game, the double-auction, and demonstrated
that it is capable8 of finding a new strategy with interesting
properties, as demonstrated in the previous section. However,
one might ask whether our new strategyOS, or more accurately
our new set of equilibria overOS ∪ S, is not susceptible to
the same process of systematically searching for an invader?
Of course, the answer is that this is indeed a possibility. We
could straightforwardly test for this by applying exactly the
same analysis to our new set of equilibria; that is, we could
perform another sensitivity analysis to see whether our new
equilibria are stable under payoff perturbation. If they were,
then we might conclude that our equilibria are comparatively
stable for the time being. If they are not stable, however, we
could then perform another systematic search for variations in
the current strategies which are good candidates for potential
invaders of the status quo; that is, new strategies which form
equilibria with estimated large basin size in interaction with
the incumbents. By performing this process repeatedly we will

8for at least one set of initial strategiesS = {TT, GD,RE}
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eventually end up with a refined set equilibrium strategies.The
pseudo-code for this process is shown in Algorithm 2, called
the FiSH+ Algorithm.

B. Applications

Many algorithms for strategy-acquisition focus on searching
for strategies that are generallyrobust when played against
existing strategies. However, as discussed in Section II itis
extremely difficult to formulate objective metrics for ranking
the robustness of strategies in the non-zero-sum n-player
games which typify interactions in marketplaces and multi-
agent systems. In contrast, our method for strategy acquisition
focusses on searching for strategies thatare likely to be
adopted by the participants. This has several applications
in both economics and computer science, which we discuss
below.

Firstly, the level of adoption of a particular strategy may be
a real-world design consideration in and of itself. For example,
the inventor of a trading strategy such asZIP [15] may have
intellectual property rights that generate revenue in proportion
to its level of adoption. In a wider context, many other software
artifacts exist in a competitive ecology, and as Papadimitriou
notes:

“If an artifact (a new congestion control proto-
col, a new caching scheme, a new routing algorithm,
etc.) is demonstrated to have superior performance,
this does not necessarily mean that it will be success-
ful. For the artifact to be ‘fit’, there must exist apath
leading from the present situation to its prevalence.
This path must be paved with incentives that will
motivate all kinds of diverse agents to adopt it,
implement it, use it, interface with it or just tolerate
it. In the absence of such a path, the most clever, fast
and reliable piece of software may stay just that.”
[29]

Secondly, the primary economic application of our method
is to the mechanism designproblem [19], [30], [31]. In a
mechanism design problem one attempts to define market
“mechanisms”, that is, the rules of the market (Section III-C),
in such a way that design objectives such as maximising
the market efficiencyEA are achieved when agents follow
their utility-maximising strategies. The revelation principle
[19, p. 82] states that we can restrict this search problem to
mechanisms in which agents directly reveal their valuations
to the auctioneer; it then suffices to demonstrate that the
TT strategy (Section IV-A) is a dominant strategy under
our candidate mechanism (this property is calledincentive-
compatibility), and that efficiency, or other design objectives,
are maximised when all agents adoptTT. However, real-
world considerations mean that it is rarely possible to design
incentive-compatible mechanisms in which a simple strategy
such asTT is unequivocally dominant (and hence likely to be
adopted), especially in the case of double-sided mechanisms,
or when we have legacy constraints on design [32]. In such
scenarios it may more practical to demonstrate that design-
objectives such as high efficiency are satisfied when agents
use an existing non-truthful strategy such asZIP [15] or GD,

provided that this strategy islikely to to be adopted. However,
in many cases it will be difficult to demonstrate that a single
existing strategy has a high probability of adoption. TheFiSH
algorithm can be used in precisely such a situation in order to
search for highly-adoptable strategies [28].

Finally, there is a sense in which our algorithm may be
useful for searching for robust strategies in non-zero-sumn-
player games. In 2-player zero-sum games the Nash solution is
guaranteed to yield the security level of the game, and is thus
demonstrably robust. As discussed in Section II this resultdoes
not generalise to n-player non-zero-sum games. In such games,
the best we can do is play a best-response to the strategies
adopted by other agents; however, in the general case (i.e.,
with multiple equilibria) there is no unequivocal method that
will tell us which strategies will be selected by our opponents.
TheFiSH algorithm escapes from this logic by searching for
hitherto unconsidered strategies that are likely to be adopted
by agents wholearn. Thus if we modify Equation 68 to
incorporate payoff maximisation in addition to basin size:

F ′(i, S, [H ]) =
∑

~x∈ǫ[H]S

u(ei, ~x) · β[H](~x,M) · xi (69)

we can then use the algorithm to find strategies that are
simultaneously payoff-maximising and are also likely to be
adopted by one’s opponents (provided that they choose from
the available strategies using a learning-process similarto
that modelled by the replicator dynamics). In future work we
will explore this application of our algorithm to more general
games.

IX. CONCLUSION

In this paper, we have introduced a novel method for acqui-
sition of strategies in non-zero-sum n-player games, and have
empirically validated this approach by applying it to a well-
known benchmark problem, the double-auction market. Many
existing approaches to strategy acquisition focus on attempting
to find strategies that are robust in the sense that they are
good all-round performers against any other strategy. We have
argued that in many economic and multi-agent scenarios the
robustness criterion is inappropriate and impossible to assess,
due to the large number of possible strategies and the non-
transitive relationships between these strategies. Instead, our
method focusses on searching for strategies that arelikely to
be adoptedby agents participating in the interaction, and then
developing effective responses to these strategies.

The key strength of our proposed method for strategy
acquisition is its ability to be applied in realistically complex
games, such as the double-auction. However, just as the
domain to which we have applied it suffers from a lack of
analytic tractability, one potential weakness of the method is
the lack of an analytical proof demonstrating its efficacy inthe
general case. However, this is mitigated by the fact that the
single-iteration algorithm calledFiSH combines two fields in
a very simple way, each with a growing analytical literature,
namely, empirical game-theory and optimisation. Additionally,
we have demonstrated that this algorithm works effectively
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Algorithm 2 . FiSH+

input : A set of heuristic strategiesS = {s1, s2, . . . sn} for some mechanismµ
output: A refined set of heuristic-strategies

[H ]← GetHeuristicPayoffMatrix(S, µ);
repeat

F̂ ← maxi=1...n F (i, S, [H ]);
for i← 1 to n do

[H ]′ ← perturb payoffs in[H ] in favour of si;
if F (i, S, [H ]′) > F̂ then

F̂ ← F (i, S, [H ]′);
i*← i;
ÔS← si;

end
end
if F̂ < F (i*, S, [H ]) then return S;

Π← create a search space based on generalisations ofÔS;

OS← argmaxs*∈Π F (1, s*∪ S,GetHeuristicPayoffMatrix(s*∪ S, µ));

S ← OS ∪ S;
[H ]← GetHeuristicPayoffMatrix(S, µ);
S ← eliminate dominated strategies fromS based on[H ];

until forever ;

in at least one highly complex setting, thereby presenting
an existence proof that the algorithm can be effective in a
realistically-complex domain. For the empirical study in this
paper we have used a general purpose optimisation method,
i.e., a genetic algorithm. In future work we will attempt to
find a specialised optimisation algorithm for the purposes of
maximising attractor size by interleaving the optimisation and
heuristic-strategy analysis steps in a similar manner to that
proposed by Walshet al. [33].

We have not attempted to validate the proposed iterative
version of the algorithm, theFiSH+ Algorithm, in this paper.
Again, this algorithm is a fairly simple elaboration on the non-
iterative version, so the lack of analytical validation should
not detract from its potential. However, the fact that the
approach is highly computationally intensive for a single
iteration warrants an analysis of how the algorithm might
converge prior to investing in a full empirical case study.
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