
Resolution-Based Model Construction for PLTL
(Extended Version)

Michel Ludwig and Ullrich Hustadt1

Department of Computer Science, University of Liverpool, UK
{Michel.Ludwig, U.Hustadt}@liverpool.ac.uk

10th November 2009

Technical Report ULCS-09-008
Department of Computer Science
University of Liverpool

1Supported by
EPSRC Grant EP/D060451/1

Abstract

With tableaux-based reasoning approaches or model checking techniques for propositional
linear-time temporal logics, PLTL, it is easily possible to construct counter examples for
formulae that are not valid. In contrast, only the information that a formula is satisfiable
is usually available in resolution-based inference systems. In this paper we present a
resolution-based approach for constructing models for satisfiable PLTL formulae. Our
approach is based on using the standard model construction for sets of propositional
clauses saturated under ordered resolution in the different time points of a temporal
model. The temporal model construction procedure is also designed in such a way that
it can be easily implemented in existing theorem provers for PLTL.

1 Introduction

Temporal Logics are a powerful notational framework for specifying computational sys-
tems and associated properties in the area of formal verification. The field of formal
verification is concerned with verifying that a specified system behaves correctly in all
situations. In particular, propositional temporal logics have been successfully applied
to the verification of reactive or concurrent systems [12] and to verification via model-
checking [2].

In this paper we focus on temporal reasoning through clausal resolution-based meth-
ods. More specifically, we consider propositional linear-time temporal logic (PLTL) with
finite past and infinite future. A clausal resolution calculus for this logic has been intro-
duced in [6] and implemented, for example, in the theorem prover TSPASS [11]. Another
type of proof methods for PLTL are, for instance, tableaux-based approaches [15] and an
implementation of a one-pass tableau calculus [13] exists in the Logics Workbench [7]. In
order to prove the validity of a formula ϕ both proof methods operate on the negated
formula ¬ϕ. In the case of tableaux reasoning one essentially tries to construct a model
for the formula ¬ϕ. If no model can be found, then one can conclude that the formula ¬ϕ
is unsatisfiable, which is equivalent to ϕ being valid. For resolution-based proof methods
on the other hand the proof goal consists in deriving a contradiction from the formula
¬ϕ, from which one can conclude again that ϕ is valid.

It is therefore easy to see that formal verification by using tableaux-based systems
bears the advantage that in case of a failure to prove the validity of a specific property
a counter example demonstrating the erroneous behaviour has already been constructed.
For clausal resolution-based reasoning a set of clauses on which every application of an
inference rule will only derive redundant clauses, a so-called saturated set, will have
typically been constructed in that case. If the empty clause is not contained in this
saturated set, one can conclude that the formula ¬ϕ is satisfiable, which implies that ϕ
is not valid. Thus, only the knowledge that the specification does not satisfy the required
property is generally available for clausal resolution-based verification.

A way of constructing a model satisfying a saturated set (under ordered resolution)
both for propositional and first-order logic has been devised in [1]. The model construc-
tion algorithm involves ordering the clauses by using an extension of the ordering on
propositional symbols that has been used in the saturation of the clause set. One positive
(maximal) literal is then satisfied per clause, whenever necessary, starting from the smal-
lest clause w.r.t. the considered ordering. A term model, or so-called Herbrand model,
representing the satisfied literals will be constructed in this way.

In this paper we present a method that allows to construct a model for a satisfiable
PLTL formula. Our approach is based on analysing the saturated clause set that has
been computed under ordered fine-grained resolution with selection, which is in fact a
sound and complete calculus for monodic first-order temporal logic. A temporal model
is then obtained by constructing models for sets of (non-temporal) propositional clauses
at the different time points. The sets of clauses considered for the individual points in
the time line will be constructed dynamically during the model construction process by
taking those clauses into account that allow to express constraints among different time
points. The whole model construction procedure is designed in such a way that it can be
easily incorporated into existing resolution-based theorem provers for PLTL.

The paper is organised as follows. In Section 2 we briefly define the variant of propos-
itional temporal logic we are considering, while Section 3 recalls the calculus of ordered
fine-grained resolution. We then describe the propositional model construction procedure
in Section 4, while in Section 5 we introduce the resolution-based temporal model con-

3

struction algorithm for PLTL and prove its correctness. In Section 6 we consider practical
aspects of the algorithm and its complexity. We conclude with a brief overview of its
implementation in the theorem prover TSPASS and present some experimental results in
Section 7.

2 Propositional Linear Time Temporal Logic

The language of Propositional Linear Time Temporal Logic, PLTL, is an extension of
classical propositional logic by temporal operators for a discrete linear model of time
(i.e. isomorphic to N). The signature of PLTL is composed of a countably infinite set
of propositional symbols p, q, p0, p1, . . . , the propositional operators >, ¬, ∨, and the
temporal operators (‘always in the future’), ♦ (‘eventually in the future’), © (‘at the
next moment’), U (‘until’) and W (‘weak until’) (see e.g. [5]). We also use ⊥ (false), ∧,
and ⇒ as additional operators, defined using > (true), ¬, and ∨ in the usual way. The
set of PLTL formulae is defined as follows: > is a PLTL formula; any propositional symbol
P is an atomic PLTL formula or atom; if ϕ and ψ are PLTL formulae, then so are ¬ϕ,
ϕ∨ψ, ϕ, ♦ϕ, ©ϕ, ϕUψ, and ϕWψ. As usual, a literal is either an atomic formula or
its negation. A propositional clause is a set of literals.

Formulae of this logic are interpreted over temporal structures M = (Dn)n∈N that
associate with each element n of N, representing a moment in time, a propositional model
(or valuation) Dn given by a set of propositional symbols. The definition of the truth
relation Mn |= ϕ is as follows:

Mn |= >
Mn |= p iff p ∈ Dn

Mn |= ¬ϕ iff not Mn |= ϕ
Mn |= ϕ ∨ ψ iff Mn |= ϕ or Mn |= ψ
Mn |=©ϕ iff Mn+1 |= ϕ
Mn |= ♦ϕ iff there exists m ≥ n such that Mm |= ϕ
Mn |= ϕ iff for all m ≥ n, Mm |= ϕ
Mn |= ϕUψ iff there exists a m ≥ n such that Mm |= ψ

and Mi |= ϕ for every i, n ≤ i < m
Mn |= ϕWψ iff Mn |= ϕUψ or Mn |= ϕ

A temporal structure M = (Dn)n∈N is said to be a model for a formula ϕ if and only if
it holds that M0 |= ϕ. A formula is satisfiable if and only there exists a model for ϕ. A
formula ϕ is valid if and only if every temporal structure M = (Dn)n∈N is a model for ϕ.

We say that a set of formulae F entails a formula ψ, written F � ψ, if and only if
every temporal structure M that is a model for every formula ϕ ∈ F is a model for ψ
(analogously for sets of propositional clauses).

Every PLTL formula can be transformed into an equi-satisfiable normal form, called
divided separated clausal normal form (DSCNF).

Definition 1. A propositional temporal problem P in divided separated clausal normal
form (DSCNF) is a quadruple 〈U , I,S, E〉, where

(i) the universal part U and the initial part I are finite sets of propositional clauses;

(ii) the step part S is a finite set of clauses of the form p⇒©q, where p is a propositional
symbol and q is a propositional literal; and

(iii) the eventuality part E is a finite set of formulae of the form ♦l (an eventuality
clause), where l is a propositional literal.

4

We associate with each propositional temporal problem P = 〈U , I,S, E〉 the PLTL
formula I ∧ U ∧ S ∧ E . When we talk about particular properties of a temporal
problem (e.g., satisfiability, validity, logical consequences, etc.) we refer to properties of
this associated formula.

The transformation to DSCNF is based on a renaming and unwinding technique which
substitutes non-atomic subformulae by new propositional symbols and their definitions,
and replaces temporal operators by their fixed point definitions as described, for example,
in [6].

Theorem 1. Any formula in propositional linear-time temporal logic can be transformed
into an equi-satisfiable propositional temporal problem in DSCNF with at most a linear
increase in the size of the problem.

Proof. Follows from [4], Theorem 3.4.

The main purpose of the divided separated clausal normal form is to cleanly separate
different temporal aspects of a PLTL formula from each other.

In this paper we assume that propositional temporal problems in DSCNF contain at
most one single eventuality. This is not a limiting assumption as every propositional
problem can be transformed in such a way that it contains at most one eventuality up to
a linear increase in the size of the problem (see [3], Lemma 7).

Let {p1 ⇒ ©q1, . . . , pn ⇒ ©qn} be a set of step clauses in P. Then (
∧n

i=1 pi) ⇒
©(
∧n

i=1 qi) is called a merged step clause built from P.
In what follows, A ⇒©B and Ai ⇒©Bi denote merged step clauses, and U denotes

the (current) universal part of a propositional temporal problem P.
In the next section we recall the propositional version of the ordered fine-grained res-

olution with selection calculus first presented in [8]. A version of the calculus without
ordering restrictions and selection functions was introduced first in [10]. As the clauses
we are considering are actually sets of literals instead of multisets, we do not have to
introduce factoring rules.

3 Ordered Fine-Grained Resolution with Selection

We assume that we are given an admissible ordering �, that is, a strict partial ordering
on propositional symbols that is well-founded and total, and a selection function S which
maps any propositional clause C to a (possibly empty) subset of its negative literals. The
ordering � is extended to literals by ¬A � A and (¬)A � (¬)B if and only if A � B.
A literal L is called (strictly) maximal w.r.t. a clause C if and only if there is no literal
L′ ∈ C with L′ � L (L′ � L). A literal L is eligible in a clause L ∨ C if either it is
selected in L∨C, or otherwise no literal is selected in C and L is maximal w.r.t. C. The
admissible ordering � and the selection function S are used to restrict the applicability
of the deduction rules of fine-grained resolution as follows.

(i) Ordered resolution with selection between two universal clauses

C1 ∨ A ¬A ∨ C2

C1 ∨ C2

if A is eligible in (C1 ∨A), and ¬A is eligible in (¬A∨C2). The result is a universal
clause.

(ii) Ordered resolution with selection between an initial and a universal clause, between
two initial clauses. These are defined in analogy to the two deduction rules above
with the only difference that the result is an initial clause.

5

(iii) Ordered fine-grained step resolution with selection.

C1 ⇒©(D1 ∨ A) C2 ⇒©(D2 ∨ ¬A)

(C1 ∧ C2)⇒©(D1 ∨D2)

where C1 ⇒ ©(D1 ∨ A) and C2 ⇒ ©(D2 ∨ ¬A) are step clauses, A is eligible in
(D1 ∨ A), and ¬A is eligible in (D2 ∨ ¬A).

C1 ⇒©(D1 ∨ A) D2 ∨ ¬A
C1 ⇒©(D1 ∨D2)

where C1 ⇒©(D1 ∨ A) is a step clause, D2 ∨ ¬A is a universal clause, A is eligible
in (D1 ∨ A), and ¬A is eligible in (D2 ∨ ¬A).

D1 ∨ A C2 ⇒©(D2 ∨ ¬A)

C2 ⇒©(D1 ∨D2)

where D1 ∨ A is a universal clause, C2 ⇒©(D2 ∨ ¬A) is a step clause, A is eligible
in (D1 ∨ A), and ¬A is eligible in (D2 ∨ ¬A).

(iv) Clause conversion. A step clause of the form C ⇒©⊥ is rewritten to the universal
clause ¬C.

(v) Eventuality resolution rule w.r.t. U .

A1 ⇒©B1 · · · An ⇒©Bn ♦l∧n
i=1 ¬Ai

(♦Ures)

where Ai ⇒©Bi are merged step clauses such that for every i, 1 ≤ i ≤ n, the loop
side conditions U ∧ Bi |= ¬l and U ∧ Bi |=

∨n
j=1Aj are valid. (In the case U |= ¬l,

the degenerate clause, > ⇒©>, can be considered as a premise of this rule, and the
conclusion of the rule is then ¬>.)

The set of full merged step clauses, satisfying the loop side conditions, is called a
loop in ♦l and the formula

∨n
j=1Aj is called a loop formula.

Rules (i) to (iii), also called rules of fine-grained step resolution, are either identical or
closely related to the deduction rules of ordered propositional resolution with selection.

In contrast, rule (v) is much more complex, as it requires not just one or two premises,
but an indeterminate (though finite) number of complex combinations of step clauses,
which have to satisfy certain conditions. To find premises suitable for an application of
the eventuality resolution rule we use a particular algorithm, called FG-BFS (for fine-
grained breadth-first search), which conducts a so-called loop search (see e.g. [4] for more
details). The algorithm internally uses the deduction rules (i) to (iii) and returns a loop
formula H =

∨n
j=1 Aj, which allows to directly add ¬H to the universal part of a temporal

problem as the result of applying the eventuality resolution rule.
Let ordered fine-grained resolution with selection be the calculus consisting of the rules

(i) to (iv) above, together with the eventuality resolution rule (v). We denote this calculus
by IS,�

FG . The calculus can be extended by redundancy elimination rules, like for example,
clause subsumption.

The version of the calculus without ordering restrictions and selection functions will
be called fine-grained resolution and be denoted by IFG.

Definition 2 (Derivation). A (linear) derivation D (in IS,�
FG) from a temporal problem P

in DSCNF is a sequence of tuples

D = 〈U1, I1,S1, E〉, 〈U2, I2,S2, E〉, . . .

6

such that each tuple 〈Ui+1, Ii+1,Si+1, E〉 is obtained from 〈Ui, Ii,Si, E〉 by adding the con-
clusion of an application of one of the inference rules of IS,�

FG to premises from one of
the sets Ui, Ii, Si to exactly one of the sets Ui, Ii, Si, with the other sets as well as E
remaining unchanged2.

A derivation D such that the empty clause is an element of a Ui ∪Ii is called a (IS,�
FG -)

refutation of 〈U1, I1,S1, E〉.
A derivation D is fair if and only if for each clause C which can be derived from

premises in
〈
⋃

i≥1 Ui,
⋃

i≥1 Ii,
⋃

i≥1 Si, E〉
there exists an index j such that C occurs in 〈Uj, Ij,Sj, E〉.

Ordered fine-grained resolution with selection is sound and complete for propositional
temporal problems as stated in the following theorem.

Theorem 2 (see [8], Theorem 5). Let P be propositional temporal problem in DSCNF.
Let � be an admissible ordering and S a selection function. Then P is unsatisfiable iff
there exists a IS,�

FG -refutation of P. Moreover, P is unsatisfiable iff any fair IS,�
FG -derivation

is a refutation of P.

4 Propositional Model Construction

In this section we briefly recall the model construction procedure for satisfiable sets of
(non-temporal) propositional clauses as it was introduced in [1]. This model construction
procedure uses an admissible ordering on propositional symbols again, which is then
extended on propositional clauses as its (multi)set extension. The model is constructed
by considering which literals have to be satisfied in a given clause, starting from the
smallest clause w.r.t. the clause ordering.

Definition 3 (Propositional Model Construction). Let � be an admissible ordering and S
be a selection function. Additionally, let N be a set of propositional clauses.

For a propositional clause C ∈ N we inductively define a propositional model I�,S(C)
and a set εC as follows.

Let C ∈ N be a propositional clause. Then, we define I�,S(C) =
⋃

C�D εD, and if the
clause C

(i) is of the form C ′ ∨ A, where A is the maximal literal in C,

(ii) is false in I�,S(C), and

(iii) if no negative literal is selected in C,

we define εC = {A}; otherwise we set εC = ∅. Finally, we define I�,S(N) =
⋃

C∈N εC.
If it is clear from the context which selection function S we are referring to, we also

denote I�,S(N) by I�(N).

A clause C is said to be productive and said to produce the atom A if and only if
εC = {A}. It can be shown that for an arbitrary admissible ordering, an arbitrary
selection function and for an arbitrary saturated set of propositional clauses (w.r.t. to
the given ordering) which does not contain the empty clause, the propositional model
construction indeed constructs a model.

2In an application of the eventuality resolution rule, the set U in the definition of the rule refers to Ui.

7

Theorem 3 (see [1], Theorem 3.16). Let � be an admissible ordering and S be a selec-
tion function. Moreover, let N be a set of propositional clauses that is saturated under
inferences by the rules of ordered (propositional) resolution with selection and let N not
contain the empty clause. Then it holds that I�,S(N) |= N .

5 Temporal Model Construction

Before we define the model construction formally, we present two examples that should
illustrate the basic ideas behind the model construction procedure. Let us first consider
the construction of a temporal modelM1 for the following satisfiable temporal problem P1:

P1 = 〈{d ∨ e}, {a}, {a⇒©b, b⇒©c, c⇒©a}, ∅〉.

We observe that P1 does not contain an eventuality and that it is already saturated under
ordered fine-grained resolution w.r.t. any admissible ordering (and selection function).
Additionally, for M1 to be a model of P1, M1 has to fulfil the initial (unit) clause
a and the universal clause d ∨ e at the initial point in time. Thus, if we apply the
standard propositional model construction on the propositional clause set {a, d∨ e} with
an ordering � given by a � b � c � d � e, we obtain the propositional model H0 =
{a, d}. Then, for constructing the propositional model in the time point 1 we have to
consider the universal clause d ∨ e again together with the right-hand sides of those
(merged) step clauses whose left-hand sides were triggered at the initial time point. In
this case only the step clause a ⇒ ©b was triggered by the model H0. Consequently,
we construct a propositional model for the clause set {d ∨ e, b} by using the ordering �
and obtain H1 = {b, d}. Similarly, we can build the propositional model H2 = {c, d}
for the time point 2. Now, we have to consider the clause set {d ∨ e, a} again for the
time point 3, which results in the propositional model H3 = {a, d} = H0 through the
standard propositional model construction with the ordering �. Hence, we can see that
M1 = (H0, H1, H2, H3, H0, H1, H2, H3, H0, . . .) is a temporal model for P1.

In the previous example one single ordering on propositional symbols was sufficient for
constructing a temporal model. But as we will see in the following example, it can be
necessary to change the ordering used for the propositional model construction. Let us
consider the construction of a temporal model M2 for the following satisfiable temporal
problem P2:

P2 = 〈{¬f ∨a, a∨p,¬f ∨b,¬d∨¬l∨e, f ∨g}, {a}, {a⇒©¬l, b⇒©d, c⇒©¬e}, {♦l}〉.

Here, the saturation of P2 under ordered fine-grained resolution w.r.t. the ordering �0

given by a �0 b �0 c �0 d �0 e �0 f �0 g �0 l �0 p (and an empty selection function)
will derive the merged step clauses b⇒©(¬l ∨ e) and (b ∧ c)⇒©¬l. There is no loop
formula derivable from the problem P2. We can see that the two (merged) step clauses
a ⇒ ©¬l and (b ∧ c) ⇒ ©¬l imply the negation of the eventuality literal l at the next
time point whenever their left-hand sides are fulfilled at the currently considered point of
the time line. Now, if one wants to construct a model for a temporal problem that contains
exactly one eventuality, then one has to ensure that the eventuality is satisfied infinitely
often. The approach that we take in this paper consists in fulfilling the eventuality at
a given time point whenever the clauses that have to be considered for this point in the
time line do not imply the negated eventuality. In this way we can add the eventuality
unit clause l to the clause set and saturate the enlarged clause set under propositional
ordered resolution without deriving the empty clause.

Now, for the temporal problem P2 we have to consider the clause set {f ∨ g,¬d∨¬l ∨
e,¬f ∨ b, a, a ∨ p,¬f ∨ a} for the initial time point. As this clause set does not imply

8

the negated eventuality ¬l, we add the unit clause l and obtain the propositional model
H0 = {l, f, b, a} by using the ordering �0. Then, as the model H0 triggers the merged
step clauses a ⇒ ©¬l, b ⇒ ©d and b ⇒ ©(e ∨ ¬l), we have to additionally consider
their right-hand sides for the propositional model construction in the time point 1, i.e. the
clauses ¬l, d and e ∨ ¬l. Consequently, as the clause set {¬l, f ∨ g, e ∨ ¬l, d,¬d ∨ ¬l ∨
e,¬f ∨ b, a∨ p,¬f ∨ a} implies the negated eventuality ¬l, we do not add the unit clause
l to the clause set. The propositional model construction with the ordering �0 yields the
model H1 = {f, d, b, a}.

We can see that the model H1 again triggers the left-hand side of the step clause
a⇒©¬l. Additionally, due to the universal clause a∨p, the ordering �0 will enforce that
the symbol a is fulfilled (and thus l cannot be satisfied at the next time point) whenever
the propositional model construction is performed with the ordering �0 (the symbol a
does not occur negatively in the temporal problem). Thus, if we want the temporal model
construction to succeed we have to use a different ordering for constructing propositional
models in some points of the time line. As the model H1 also triggers the step clauses
b ⇒ ©d and b ⇒ (e ∨ ¬l), we have to consider the clause set {d,¬f ∨ a,¬f ∨ b, f ∨
g,¬l, e∨¬l,¬d∨¬l∨e, a∨p} for the time point 2. If we now use the ordering �1 given by
p �1 l �1 g �1 f �1 e �1 d �1 c �1 b �1 a for the propositional model construction, we
first of all observe that the set is already saturated under ordered propositional resolution
w.r.t. the ordering �0. We hence obtain the model H2 = {p, g, d}.

Finally, as H2 does not trigger any of the step clauses, we only have to consider
the clause set {l, f ∨ g,¬d ∨ ¬l ∨ e,¬f ∨ b, a ∨ p,¬f ∨ a}, which contains the even-
tuality unit clause l, for the propositional model construction. By using the order-
ing �0 again we obtain the model H3 = {l, f, b, a} = H0. We can thus conclude that
M2 = (H0, H1, H2, H3, H0, H1, H2, H3, H0, . . .) is a temporal model for P2.

As illustrated by these examples, the temporal model construction for a temporal prob-
lem P = 〈U , I,S, E〉 is based on using the regular propositional model construction for
the different time points of a temporal model. For the initial time point 0 the regular
propositional model construction will be performed over the set of universal clauses to-
gether with the set of initial clauses. For time points different from the initial point in
time, the (merged) step clauses C ⇒ ©D whose left-hand sides C were fulfilled at the
previous moment in time have to be considered in addition to the set of universal clauses.

If the temporal problem P contains a single eventuality, i.e. E = {♦l}, special care has
to be taken for allowing it to be satisfied infinitely often. We add the eventuality to the
set of clauses used for the model construction in a specific time point if the newly-added
eventuality unit clause does not lead to a contradiction. As a result, the constructed model
will satisfy the eventuality in every time point in which the set of universal clauses and
the right-hand sides of the step clauses whose left-hand sides were fulfilled at the previous
time point do not imply the negated eventuality. Consequently, the only ‘critical’ merged
step clauses A ⇒ ©B are those with U ∪ {B} � ¬l and U 6� ¬A. In particular one has
to avoid that the left-hand side of one of these ‘critical’ merged step clauses is constantly
fulfilled from any given time point onwards. One way of ensuring this requirement consists
in varying the ordering on propositional symbols that is used to construct the models for
the different time points, which is also the approach that is taken in this paper.

For example, if we were to construct a temporal model as described above for the
temporal problem P3 = 〈{p ∨ q}, ∅, {p ⇒ ©¬l}, {♦l}〉, we have to ensure that the pro-
positional symbol p is not satisfied at every time point as otherwise we would obtain the
sequence of propositional models {p, l}, {p}, {p}, The constructed sequence would
obviously not satisfy the formula ♦l.

In the next subsection we describe the model construction procedure in a formal way

9

and give an example for the construction of a model, while we prove the correctness of
the procedure in the subsequent subsection.

5.1 Construction Principle

Before we can introduce the model construction procedure, we still need to give a couple
of auxiliary definitions.

First of all, for a temporal problem P we associate with every set of merged step
clauses C (and with the power set P(C)) a set OC of strict total orderings on Symbols(P).

Definition 4. Let P be a propositional temporal problem in DSCNF, and let C = {A1 ⇒
©B1, . . . ,An ⇒©Bn} be a set of merged step clauses built from the temporal problem P,
where Ai =

∧mi

j=1 a
i
j for 1 ≤ i ≤ n and ai

1, . . . , a
i
mi

are propositional symbols for 1 ≤ i ≤ n.

We define OC to be the smallest set of admissible orderings on Symbols(P) which
contains for every tuple (i1, . . . , in) ∈ {1, . . . ,m1}× . . .×{1, . . . ,mn} exactly one ordering
� ∈ OC with Symbols(P) \ {a1

i1
, . . . , an

in} � a1
i1
, . . . , an

in.
For the power set P(C) of C we define that OP(C) =

⋃
S∈P(C)OS, where O∅ = ∅.

The next definition introduces the set RS(M) which contains the right-hand sides of
step clauses contained in a set S whose left-hand sides are triggered by a propositional
model M.

Definition 5. Let P = 〈U , I,S, E〉 be a propositional temporal problem such that E = ∅
or E = {♦l}. Additionally, let S ′ be a set of step clauses derived by IS,�

FG from P and M
be a propositional model over Symbols(P). Then we define:

RS
′
(M) = { l1 ∨ . . .∨ lm | (p1 ∧ . . .∧ pm)⇒©(l1 ∨ . . .∨ lm) ∈ S ′ and M |= p1 ∧ . . .∧ pm }

Next we define the set LE(N), which adds to a set N the unit clause l if E = {♦l} and
N 6� ¬l.

Definition 6. Let P = 〈U , I,S, E〉 be a propositional temporal problem such that E = ∅
or E = {♦l}. Furthermore, let N be a set of propositional clauses over Symbols(P). Then
we define:

LE(N) =

{
N ∪ {l} if E = {♦l} and N 6� ¬l
N otherwise

Finally, for a set of propositional clauses N we denote by Res�,S(N) the set of all
the clauses obtained by an application of the ordered resolution with selection rule using
the ordering � to premises in N and the selection function S. We also define that
Res∞�,S(N) =

⋃
i∈N Resi

�,S(N), where Res0
�,S(N) = N .

We can now give the definition of the temporal model construction procedure.

Definition 7 (Temporal Model Construction). Let P = 〈U , I,S, E〉 be a propositional
temporal problem in DSCNF such that ⊥ 6∈ U ∪ I, and E = ∅ or E = {♦l}. Additionally,
let S be a selection function, and if E = {♦l}, let C = {A1 ⇒ ©B1, . . . ,An ⇒ ©Bn}
be the set of all the merged step clauses built from the temporal problem P and freed of
duplicate propositional symbols such that for every i, 1 ≤ i ≤ n:

(i) U ∪ {Bi} � ¬l, and

(ii) U 6� ¬Ai.

10

The merged step clauses from the set C will also be called critical merged step clauses for
the temporal problem P.

We then define a sequence of propositional models H0, H1, . . . as follows:

H0 = I�0,S(Res∞�0,S(LE(U ∪ I))))

and for i ≥ 1:
Hi = I�i,S(Res∞�i,S

(LE(U ∪RS(Hi−1))))

where �i (i ∈ N) are admissible orderings on Symbols(P) such that for every j, j ≥ 1,
with Hj |=

∨n
k=1Ak and such that Hj occurs infinitely often,

OP(C) ⊆ {�t+1| t ≥ j and Ht = Hj }.

Additionally, for every Hj, j ≥ 1 with Hj 6|=
∨n

k=1Ak we have �j+1 = �0.
Let H = (H0, H1, . . .) denote the temporal model obtained in this way.

As explained above, the sets of initial and universal clauses are considered for the model
construction in the time point 0. Additionally, the eventuality is added to the clause set
used for model construction if its presence does not lead to a contradiction. The regular
model construction is then performed through an initial ordering �0 on Symbols(P) after
the model construction clause set has been saturated under regular ordered resolution
with selection using the ordering �0. This saturation process is necessary in order to
guarantee the correctness of the propositional model construction.

Then, for any time point other than the initial point of the time line, the universal
clauses together with the right-hand side of any step clause whose left-hand was satisfied
at the previous time point are used for the propositional model construction. Again,
the eventuality is added to the considered set if it does not lead to a contradiction. It
is now important to note that the ordering on propositional symbols under which the
propositional resolution and model construction is performed has to be varied for the
temporal model construction to succeed.

For example, for the temporal problem P3 = 〈{p ∨ q}, ∅, {p ⇒ ©¬l}, {♦l}〉 again, we
cannot use the ordering l � p � q at every time point as it would not lead to a correct
temporal model. We have to use an ordering �′ with q �′ p at some time points instead.

We conclude this section by applying the temporal model construction procedure on a
concrete example. We consider the temporal problem P4 = 〈{p ∨ q}, {p}, {p ⇒ ©q, q ⇒
©p}, {♦¬p}〉. Saturating the problem P4 under ordered fine-grained resolution (with an
empty selection function) using the ordering p � q derives the universal clause ¬p ∨ ¬q
(through loop search), the initial clause ¬q, and the step clause q ⇒©¬q. The step clause
q ⇒©p is a critical step clause for the set of universal clauses as {p∨q,¬p∨¬q, p} � ¬¬p.

For the initial time point we hence consider the set of propositional clauses {¬q, p, p∨
q,¬p∨¬q} for the propositional model construction procedure. With the symbol ordering
p � q, we obtain the model H0 = {p}.

Then, as the step clause p⇒©q has been triggered at the initial time point, we have
to add the unit clause q to the considered clause set. As {q, p∨ q,¬p∨¬q} 6� ¬¬p, we add
the unit clause ¬p and obtain the set {q, p ∨ q,¬p,¬p ∨ ¬q}, which is to be used for the
propositional model construction. After saturation with the ordering p � q, the standard
propositional model construction yields the propositional model H1 = {q} in the time
point 1.

Finally, as the step clauses q ⇒©p, q ⇒©¬q have been triggered in time point 1, the
unit clauses p and ¬q have to be added to the clause set used for the propositional model
construction. Additionally, as the set {¬q, p, p ∨ q,¬p,¬p ∨ ¬q} is unsatisfiable, the set

11

{¬q, p, p ∨ q,¬p ∨ ¬q} has be to be considered for the propositional model construction,
which results in the model H2 = {p} for the ordering p � q.

As H0 = H2 the temporal model construction procedure will now construct models for
the remaining time points analogously to ones shown above.

5.2 Correctness

In this section we prove the correctness of the construction procedure introduced in Defin-
ition 7, i.e. we show that the constructed sequence of propositional models is indeed a
model for the considered temporal problem. First of all, we introduce three lemmata that
will be required for the subsequent correctness theorem.

Lemma 4. Let N be a set of propositional clauses such that every clause contains at least
one negative literal. Let � be an arbitrary admissible ordering on Symbols(N) and let S
be an arbitrary selection function.

Then it holds that I�,S(N) = ∅.
Proof. We show by induction on N with respect to the well-founded (and total) multiset
extension of the ordering � on clauses that for every clause C ∈ N it holds that εC = ∅.

For the minimal clauses we have I�,S(C) = ∅. As C contains a negative literal, C is
true in I�,S(C), and therefore, εC = ∅. The proof for remaining clauses proceeds along
the same line.

Lemma 5. Let N be a satisfiable set of propositional clauses. Moreover, let a1, . . . , an be
propositional symbols and let � be an admissible ordering on propositional symbols such
that Symbols(N) \ {a1, . . . , an} � a1, . . . , an. Finally, let S be a selection function. Then
it holds that:

I�,S(Res∞�,S(N)) � a1 ∨ . . . ∨ an iff N � a1 ∨ . . . ∨ an

Proof. The implication “⇐” follows from Theorem 3. For the remaining implication “⇒”,
we assume that I�,S(Res∞�,S(N)) � a1 ∨ . . . ∨ an. As clauses which contain a literal p or
¬p with p � a1 � . . . � an cannot produce an atom ai (1 ≤ i ≤ n) in the interpretation
I�,S(Res∞�,S(N)), it follows that there exist clauses C1, . . . , Cm ∈ Res∞�,S(N) that only
contain atom symbols from {a1, . . . , an}, i.e. for every i, 1 ≤ i ≤ m, there exists an index
j, 1 ≤ j ≤ n, such that Ci = C ′ ∨ aj, C

′ ⊆ { ak | 1 ≤ k ≤ n } ∪ {¬ak | 1 ≤ k ≤ n } and
I�,S(Res∞�,S(N)) � aj. (Note that the index j could be the same for every i, 1 ≤ i ≤ m.)

Then, if we assume that every clause Ci for 1 ≤ i ≤ m contains at least one neg-
ative literal, it would follow from Lemma 4 that I�,S({C1, . . . , Cm}) = ∅ and thus,
I�,S(Res∞�,S(N)) 6� a1 ∨ . . . ∨ an, which contradicts with our assumptions. Thus, there
exists a clause Ci ∈ Res∞�,S(N) (1 ≤ i ≤ m) such that Ci is positive and Ci ⊆ a1∨ . . .∨an.
We can infer that N � a1 ∨ · · · ∨ an.

Lemma 6. Let P be a propositional temporal problem and let N be a satisfiable set of
propositional clauses which only uses propositional symbols from P. Additionally, let C =
{A1 ⇒ ©B1, . . . ,An ⇒ ©Bn} be a set of merged step clause built from the temporal
problem P, and let S be a selection function. Then it holds that:

N �
∨n

i=1Ai iff ∀� ∈ OC : I�,S(Res∞�,S(N)) |=
∨n

i=1Ai

Proof. The implication “⇒” is obvious. For the implication “⇐”, let Ai =
∧mi

j=1 a
i
j for

1 ≤ i ≤ n and propositional symbols ai
1, . . . , a

i
mi

for 1 ≤ i ≤ n. Then we have:

n∨
i=1

Ai ≡
∧

(i1,...,in)∈{1,...,m1}×...×{1,...,mn}

(a1
i1
∨ . . . ∨ an

in)

12

Furthermore, it follows from the assumptions that:

∀ �∈ OC ∀ (i1, . . . , in) ∈ {1, . . . ,m1}×. . .×{1, . . . ,mn} : I�,S(Res∞�,S(N)) |= a1
i1
∨. . .∨an

in

Thus, as for every tuple (i1, . . . , in) ∈ {1, . . . ,m1} × . . .× {1, . . . ,mn} there exists an or-
dering � ∈ ON with Symbols(N)\{a1

i1
, . . . , an

in} � a1
i1
, . . . , an

in , we obtain from Lemma 5:

∀ (i1, . . . , in) ∈ {1, . . . ,m1} × . . .× {1, . . . ,mn} : N � a1
i1
∨ . . . ∨ an

in

We can therefore conclude that N �
∨n

i=1Ai.

We can now state and prove the correctness theorem for the model construction pro-
cedure.

Theorem 7. Let P = 〈U , I,S, E〉 be a propositional temporal problem with E = ∅ or
E = {♦l} which is saturated under ordered fine-grained resolution with selection and does
not contain the empty clause. Additionally, let H = (H0, H1, . . .) be the corresponding
sequence of propositional models obtained through temporal model construction. Then it
holds that:

H0 |= I ∧ U ∧ S ∧ E

Proof. Let S be the selection function used in the saturation. Then, first of all, as the set
U ∪ I does not contain the empty clause, it is easy to see that ⊥ 6∈ Res∞�0,S(LE(U ∪ I)).
We can thus conclude that H0 |= I and H0 |= U .

We now show by induction on t that Ht |= S and Ht+1 |= U for every t ∈ N. For t = 0,
we already have H0 |= U , and if we assume that ⊥ ∈ Res∞�1,S(LE(U ∪ RS(H0))), then it

would follow that ⊥ ∈ Res∞�1,S(U ∪ RS(H0)). Thus, as ⊥ 6∈ Res∞�1,S(U) there would exist
a derivation of a step clause A ⇒ ©⊥ with H0 |= A. Then, as the temporal problem P
is saturated, we would have U � ¬A and hence, H0 6|= A, which is a contradiction. We
can infer that ⊥ 6∈ Res∞�1,S(LE(U ∪RS(H0))), H0 |= S and H1 |= U .

If t > 0, then it follows from the induction hypothesis that Ht−1 |= S and Ht |= U .
Again, if we assume that ⊥ ∈ Res∞�t+1,S(LE(U ∪ RS(Ht))), then there would exist a
derivation of a clause A ⇒ ©⊥ with Ht |= A. Additionally, as the temporal problem P
is saturated, we would again have U � ¬A and Ht 6|= A, which is a contradiction. Thus,
we obtain ⊥ 6∈ Res∞�t+1,S(LE(U ∪RS(Ht))), Ht |= S and Ht+1 |= U .

Finally, if E = {♦l}, let t ∈ N. We still have to show that Ht |= ♦l. If we assume
for all t′ ∈ N with t′ ≥ t that Ht′ 6|= l, then for every t′ ≥ t with t′ ≥ 1 it holds that
U ∪RS(Ht′−1) � ¬l. It also holds that U 6� ¬l as otherwise we could apply the eventuality
resolution rule and have ⊥ ∈ U . Additionally, for every t′ ≥ t with t′ ≥ 1 there exists
a merged clause At′ ⇒ ©Bt′ ∈ C with U ∪ RS(Ht′−1) = U ∪ {Bt′}, Ht′−1 � At′ and
U ∪ {Bt′} � ¬l, where C is the set of merged step clauses from Definition 7. Then, as
there are only finitely many valuations Hi (i ∈ N), it follows that there exists an index
T ≥ max(t, 1) such that every valuation Hi with i ≥ T occurs infinitely often in the
sequence Hi, Hi+1, Hi+2, Furthermore, as there are only finitely many merged step
clauses which have been freed of duplicate propositional symbols, there exist merged step
clauses A′1 ⇒©B′1, . . . ,A′m ⇒©B′m ∈ C such that

{A′1 ⇒©B′1, . . . ,A′m ⇒©B′m} = {At′ ⇒©Bt′ | t′ ≥ T }.

By Lemma 6 it holds for every t′ ≥ T that there exists a subset {i1 . . . , ik} ⊆ {1, . . . ,m}
such that U ∪ {Bt′} �

∨k
j=1A′ij , from which we can infer that U ∪ {Bt′} �

∨m
i=1A′i.

Consequently, we obtain for every i with 1 ≤ i ≤ m that U ∪ {B′i} �
∨m

i=1A′i and
U ∪ {B′i} � ¬l. We could hence apply the eventuality resolution rule and derive the set of

13

universal clauses
∧n

j=1 ¬A′j. Thus, as the temporal problem P is saturated under ordered

fine-grained resolution with selection, we can infer that HT−1 6� AT holds, which is a
contradiction.

6 Practical Considerations and Complexity

The temporal model construction as described in the previous section constructs an in-
finite sequence of propositional models, as suggested by the definition of the semantics of
PLTL given in Section 2. However, for practical applications, a finite representation of a
temporal structure, as given by an ultimately periodic model is more useful.

Definition 8 (Ultimately Periodic Model). Let P = 〈U , I,S, E〉 be a propositional tem-
poral problem such that either E = ∅ or E = {♦l}, and let H = (H0, H1, H2, . . .) be the an
infinite sequence of propositional models over Symbols(P). Furthermore, let I, J, L ∈ N
be indices such that I ≤ L < J , HI = HJ and HL |= l if E = {♦l}, I = L otherwise.

We then define a sequence of propositional models H′ = (H ′0, H
′
1, . . .) as follows:

(i) H ′i = Hi for every 0 ≤ i ≤ J

(ii) H ′i = HI+((i−I) mod (J−I)) for every i ≥ J + 1

It can be shown that if the sequence H is a model for P, then the sequence H′ is also
a model for P [14].

More concretely, in an implementation of the temporal model construction procedure
one has to keep track of the ordering that has been used for the saturations used in the
different time points. Whenever a previously considered set of clauses is encountered
again, the symbol ordering used for the model construction in the considered time point
has to be changed cyclically. Finally, the construction procedure can terminate whenever
a previously encountered valuation has been computed again and the possibly present
eventuality has been satisfied in between those two time points.

Moreover, it easy to see that for a set C = {A1 ⇒ ©B1, . . . ,An ⇒ ©Bn} of critical
merged step clauses for a temporal problem P the set OP(C) can be constructed from
P(∪n

i=1Symbols(Ai)), the power set of all the propositional symbols occurring in left-
hand sides of critical step clauses. Every ordering � ∈ OP(C) is characterised by the
subset P ⊆ ∪n

i=1Symbols(Ai) such that Symbols(P) \ P � p for every p ∈ P . Thus, in an
implementation it is sufficient to consider all the subsets of ∪n

i=1Symbols(Ai) in order to
construct the required orderings.

Furthermore, it is also possible to eliminate redundant cycles in constructed temporal
models. For example, if one has built a model for a temporal problem P with a single even-
tuality ♦l and the constructed model contains a sequence of valuations Hi, Hi+1, . . . , Hj

such that Hi = Hj and Hk 6|= l for every i ≤ k ≤ j, then the sequence Hi, . . . , Hj−1 can
be removed from the final model as it does not contribute to satisfying the eventuality.

It is important to note that the model construction procedure is completely determ-
inistic, that is, neither the basic building blocks given by I�,S and Res∞�,S, nor the con-
struction of the sequence of propositional models that form the ultimately periodic model
involves any non-deterministic operation that in an implementation would force us to use
a form of backtracking-search to find a model. On the other hand, just as for standard
tableaux-based model generation procedures for PLTL, there is no guarantee that we will
produce a minimal, that is, shortest possible, ultimately periodic model for a temporal
problem or PLTL formula.

The computational complexity of the temporal model construction procedure is de-
termined mainly by the time required to compute the saturation Res∞�,S(N) of a set N

14

of clauses under ordered resolution, which is exponential in the size of N , the size of
the Res∞�,S(N), which is also exponential in the size of N , and the maximal length of
the sequence of propositional models in an ultimately periodic model H′ for a satisfiable
temporal problem P = 〈U , I,S, E〉, which is again exponential in the size of P. Overall,
we obtain the following result.

Theorem 8. Let P = 〈U , I,S, E〉 be a satisfiable propositional temporal problem with
E = ∅ or E = {♦l}. Then an ultimately periodic model H for P can be constructed by the
temporal model construction procedure in time exponential in the size of P.

Since for a given PLTL formula ϕ an equi-satisfiable propositional problem P in DSCNF
can be computed in polynomial time and space, this result also implies the we can con-
struct an ultimately periodic model for ϕ in time exponential in the size of ϕ.

It is important to remember that while the satisfiability problem of PLTL is PSPACE-
complete, given that ultimately periodic models can be of exponential size in the worst
case, we cannot hope for a model construction procedure of better complexity.

7 Implementation

The temporal model construction has been implemented as an extension of the theorem
prover TSPASS3 [11], which is a fair theorem prover for monodic first-order temporal logic
based on ordered fine-grained resolution with selection. It is important to note that while
the temporal problem is saturated by TSPASS, the minimal critical merged step clauses
for the considered temporal problem are also computed as part of the overall loop search
process. Independently of the model construction procedure, the loop search algorithm,
which is used to find premises for applications of the eventuality resolution rule, computes
all critical merged step clauses for the considered temporal problem. These clauses are
kept by TSPASS and are easily identifiable as critical merged step clauses (by a particular
marker literal). Consequently, the model construction procedure can just extract those
clauses from the saturated clause set without the need for further computation.

Clauses Generated Time Nr. of Critical
Merged Step

Clauses

TSPASS
Model
Length

TSPASS TSPASS
Model Construction

LWB ‘Model’ TSPASS TSPASS
Model Construction

C1ran (n=5) E1 682 8779 11.75s 0.04s 0.41s (0.08s) 0 2

C2ran (n=5) E2 1263 15846 0.06s 0.06s 0.73s (0.03s) 0 2

C1ran (n=12) E3 606 110605 151.62s 0.05s 94.68s (34.78s) 552 348

C2ran (n=12) E4 31445 516454 0.06s 1.17s 65.81s (0.71s) 0 2

Table 1: TSPASS and LWB model construction procedures applied on selected examples

We have compared the resolution-based model construction implemented in TSPASS
with the one-pass tableau calculus described in [13], which is implemented in the Logics
Workbench (LWB) version 1.1 [7]. We have applied both systems to all the satisfiable
PLTL formulae in the benchmark classes introduced in [9]. Two of the benchmark classes,
C1

ran (n = 5) and C1
ran (n = 12), where n is the number of propositional symbols over

which the formulae are constructed, are designed in such a way that they can be theoret-
ically solved easily by resolution-based decision procedures, whereas two of the benchmark
classes, C2

ran (n = 5) and C2
ran (n = 12), are designed so that the satisfiable formulae in

them can be theoretically solved more easily by tableaux-based systems. In particular,
in [9] the implementation of the one-pass tableau calculus in the LWB was indeed per-
forming best on these formulae.

3http://www.csc.liv.ac.uk/˜michel/software/tspass/

15

The experiments were run on a PC equipped with an Intel Core 2 E6400 CPU and 3 GB
of main memory and an execution timeout of 5 minutes was imposed on each formula.

Results for one formula taken from each class are shown in Table 1 with time values in
the table being the average CPU time of three identical runs. The first two columns show
the number of clauses generated during the initial saturation of the problem before the
model construction procedure is started. We can observe that the number of generated
clauses and the execution times increase for the model construction run, which is due
to the transformation to single-eventuality problems. The numbers in brackets in the
model construction time column for TSPASS indicate the amount of time actually spent
on model construction.

As one might expect, the Logics Workbench can maintain its advantage on C2
ran (n = 5)

and C2
ran (n = 12). For all satisfiable formulae in these two classes, the Logics Workbench

can find a model of length 2. On the other hand, the model construction of TSPASS
proves quite successful on C1

ran (n = 5) and C1
ran (n = 12). The runtime of TSPASS on

E3 illustrate that a high number of critical merged step clauses complicates the model
construction and leads to a considerable amount of time being spend on it (34.78s).
Formula E4 is an example of a formula where the model construction only takes a trivial
amount of time (0.71s), but the dominating factor is the initial saturation of the temporal
problem (65.81s).

Overall, model construction in TSPASS appears to be a viable option for the construc-
tion of countermodels.

8 Conclusion

We have presented a procedure for constructing models for satisfiable PLTL formula.
The procedure is based on computing saturations under ordered fine-grained resolution
with selection while using the standard model construction for propositional clauses to
construct models for the different time points. It is important to observe that the temporal
model construction procedure is not based on performing a search with backtracking but
the construction is guaranteed to succeed once the appropriate symbol orderings have
been considered. We have proved the correctness of the model construction algorithm,
analysed some of its practical aspects, and briefly introduced our implementation of the
algorithm. In future work we intend to address the problem of constructing short, ideally
minimal, ultimately periodic models for PLTL formulae.

References

[1] L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Auto-
mated Reasoning, volume 1, chapter 2, pages 19–99. Elsevier, 2001.

[2] E. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[3] A. Degtyarev, M. Fisher, and B. Konev. A simplified clausal resolution procedure for
propositional linear-time temporal logic. In Proc. TABLEAUX’2002, volume 2381 of
LNCS, pages 85–99. Springer, 2002.

[4] A. Degtyarev, M. Fisher, and B. Konev. Monodic temporal resolution. ACM Trans-
actions On Computational Logic, 7(1):108–150, 2006.

[5] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, pages 995–1072. Elsevier, 1990.

16

[6] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions
on Computational Logic, 2(1):12–56, 2001.

[7] A. Heuerding, G. Jäger, S. Schwendimann, and S. Michael. The Logics Workbench
LWB: A snapshot. Euromath Bulletin, 2(1):177–186, 1996.

[8] U. Hustadt, B. Konev, and R. A. Schmidt. Deciding monodic fragments by temporal
resolution. In Proc. CADE-20, volume 3632 of LNAI, pages 204–218. Springer, 2005.

[9] U. Hustadt and R. A. Schmidt. Scientific benchmarking with temporal logic decision
procedures. In Proc. KR’02, pages 533–546. Morgan Kaufmann, 2002.

[10] B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Towards the imple-
mentation of first-order temporal resolution: the expanding domain case. In Proc.
TIME-ICTL 2003, pages 72–82. IEEE Computer Society, 2003.

[11] M. Ludwig and U. Hustadt. Implementing a fair monodic temporal logic prover. AI
Communications. To appear.

[12] A. Pnueli. The temporal logic of programs. In Proc. FOCS’77, pages 46–57. IEEE
Computer Society, 1977.

[13] S. Schwendimann. A new one-pass tableau calculus for PLTL. In Proc.
TABLEAUX’98, volume 1397 of LNCS, pages 277–292. Springer, 1998.

[14] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.
J. ACM, 32(3):733–749, 1985.

[15] P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1/2):72–99, 1983.

17

