
Proceedings of the
Automated Reasoning Workshop 2009
Bridging the Gap between Theory and Practice
ARW 2009

21st–22nd April 2009
University of Liverpool
Liverpool, United Kingdom

Editor:
Ullrich Hustadt

Technical Report ULCS-09-007
Department of Computer Science
University of Liverpool

c© 2009 for the individual papers by the papers’ authors. Reproduction (electronically or by other
means) of all or part of this technical report is permitted for educational or research purposes only, on
condition that (i) this copyright notice is included, (ii) proper attribution to the editor(s) or author(s) is
made, (iii) no commercial gain is involved, and (iv) the document is reproduced without any alteration
whatsoever. Re-publication of material in this technical report requires permission by the copyright
owners.

Organising Committee

Clare Dixon University of Liverpool
Jacques Fleuriot University of Edinburgh
Alexander Bolotov University of Westminster
Simon Colton Imperial College London
David Crocker Escher Technologies
Louise Dennis University of Liverpool
Roy Dyckhoff University of St Andrews
Ullrich Hustadt University of Liverpool
Mateja Jamnik University of Cambridge
Tom Melham University of Oxford
Alice Miller University of Glasgow
Renate Schmidt University of Manchester
Volker Sorge University of Birmingham

Workshop Website

http://www.csc.liv.ac.uk/~arw09/

Preface

This volume contains the proceedings of ARW 2009, the sixteenth Workshop on Automated Reasoning,
held 21st–22nd April 2009, in Liverpool, England (UK). As for the previous events in this series, this
workshop provides an informal forum for the automated reasoning community to discuss recent work,
new ideas and current trends. It aims to bring together researchers from all areas of automated reasoning
in order to foster links and facilitate cross-fertilisation of ideas among researchers from various disciplines;
among researchers from academia, industry and government; and between theoreticians and practitioners.

These proceedings contain the abstracts of two invited talks, by Konstantin Korovin (University of
Manchester), on “Instantiation-Based Automated Reasoning for First-Order Logic”, and Stefan Szeider
(Durham University), on “Finding Hidden Structure in Reasoning Problems”, and twentyone extended
abstracts contributed by participants of the workshop.

The abstracts cover a wide range of topics including the translation of Grid systems into state-based
formal specifications natural deduction calculi for temporal logics, piecewise fertilisation for inductive
proofs, techniques for instantiation based reasoning, explanations for entailments in description logics,
‘exactly one’ epistemic logic, verification of pervasive systems, reasoning about real-time system speci-
fications, resolution calculi and resolution-based theorem provers for monodic first-order temporal logic
and CTL, modal logic correspondence theory and second-order reduction, the embedding of Promela-
Lite into the general purpose theorem prover PVS, fully automated techniques for symmetry reduction
of partially symmetric systems, the classification of quasigroup-structures with respect to their crypto-
graphic properties, diagrammatic reasoning and its use for software verification, first-order logic concept
symmetry for theory formation, model checking auctions, coalitions and trust, synthesising tableau de-
cision procedures, the application of combinations of machine learners, theorem provers, and constraint
solvers in order to solve real world scenarios with incomplete background knowledge.

I would like to thank the members of the ARW Organising Committee for their advice. I would
also like to thank all the colleagues who have helped with the local organisation, namely, Helen Bradley,
Kenneth Chan, Patrick Colleran, Clare Dixon, Louise Dennis, Judith Lewa, Dave Shield, Lisa Smith,
and Thelma Williams.

Liverpool Ullrich Hustadt
April 2009

i

Invited Talks

Instantiation-Based Automated Reasoning For First-Order Logic 1
Konstantin Korovin

Finding Hidden Structure in Reasoning Problems . 3
Stefan Szeider

ii

Contributed Abstracts

State-Based Behavior Specification for GCM Systems . 5
Alessandro Basso, Alexander Bolotov, and Vladimir Getov

Natural Deduction Calculus for Quantified Propositional Linear-time Temporal Logic (QPTL) . . 7
Alexander Bolotov and Oleg Grigoriev

Adapting Piecewise Fertilisation to Reason about Hypotheses . 9
Louise A. Dennis and Lucas Dixon

Combining Generalisation Into Instantiation Based Reasoning In EPR 11
Shasha Feng

Computing Explanations for Entailments in Description Logic Based Ontologies 13
Matthew Horridge, Bijan Parsia, and Ulrike Sattler

“Exactly One” Epistemic Logic . 15
Boris Konev, Clare Dixon, and Michael Fisher

A Decidable Approach to Real-time System Specification . 17
Savas Konur

Verification of Pervasive Systems . 19
Savas Konur and Michael Fisher

TSPASS - a Fair Monodic Temporal Logic Prover . 21
Michel Ludwig and Ullrich Hustadt

Classification of Quasigroup-structures with respect to their Cryptographic Properties 23
Quratul-ain Mahesar and Volker Sorge

Symmetry Reduction of Partially Symmetric Systems . 25
Christopher Power and Alice Miller

Solving Mutilated Problems . 27
Ramin Ramezani and Simon Colton

Diagrammatic Reasoning for Software Verification . 29
Matt Ridsdale, Mateja Jamnik, Nick Benton, and Josh Berdine

Semantic Embedding of Promela-Lite in PVS . 31
Shamim H. Ripon and Alice Miller

The Ackermann Approach for Modal Logic, Correspondence Theory and Second-Order Reduction 33
Renate A. Schmidt

Synthesising Tableau Decision Procedures . 35
Renate A. Schmidt and Dmitry Tishkovsky

On the Readability of Diagrammatic Proofs . 37
Gem Stapleton, Mateja Jamnik, and Judith Masthoff

Efficient Ground Satisfiability Solving in an Instantiation-based Method for First-order Theorem
Proving . 39

Christoph Sticksel

First-Order Logic Concept Symmetry for Theory Formation . 41
Pedro Torres and Simon Colton

Model-Checking Auctions, Coalitions and Trust . 43
Matt Webster, Louise Dennis, and Michael Fisher

CTL-RP: A Computational Tree Logic Resolution Prover . 45
Lan Zhang, Ullrich Hustadt, and Clare Dixon

iii

Instantiation-Based Automated Reasoning For First-OrderLogic

Konstantin Korovin⋆
⋆The University of Manchester
korovin@liverpool.ac.uk

Instantiation-based automated reasoning aims to utilise industrial-strength SAT and SMT technologies in the more
general context of first-order logic. The basic idea behind instantiation-based reasoning is to combine clever generation of
instances with satisfiability checking of ground formulae.

There are a number of challenges arising in this area rangingfrom theoretical issues such completeness, integration of
theories and decidable fragments to efficient implementation: inference strategies, indexing and redundancy elimination.
In this talk I will overview the recent advances in instantiation-based reasoning, focusing on a modular approach which
allows us to use off-the-shelf SAT and SMT solvers for groundformulae as part of general first-order reasoning.

1

2

Finding Hidden Structure in Reasoning Problems (Invited Talk)

Stefan Szeider?
?Department of Computer Science

Durham University
Durham DH1 3LE, UK

stefan.szeider@durham.ac.uk

Abstract

Heuristic methods work often quite well on real-world instances of computational reasoning problems, contrasting the
theoretical intractability of the problems. For example, state-of-the art satisfiability solvers solve routinely real-world
instances with hundreds of thousands of variables; however no algorithm is known to solve instances with n variables
in time 2o(n) (and it is believed that such algorithm does not exist). This discrepancy between theoretical performance
guarantees and empirically observed problem hardness causes a huge gap between theory and practise. It is a widely
accepted view that the good practical performance of heuristic methods is due to a “hidden structure” present in real-
world problem instances. However, classical complexity theory focuses on one dimension only, the input size, and does
not provide a suitable framework for studying how a hidden structure influences the hardness of a reasoning problem.

In this talk I will advocate the framework of Parameterized Complexity (Downey and Fellows, 1999; Flum and Grohe,
2006; Niedermeier, 2006) for the theoretical study of computational reasoning problems. Parameterized complexity con-
siders, in addition to the input size, a secondary measure, the parameter. The parameter can represent, among others,
the degree of hidden structure present in a reasoning problem. This two-dimensional setting allows a more fine grained
complexity analysis with the potential of being closer to problems as they appear in the real world, and thus to narrow the
gap between theory and practise. The central notion of Parameterized Complexity is fixed-parameter tractability which
refers to solvability in time f(k)nc, where n denotes the input size, f is some function (usually exponential) of the pa-
rameter k and c is a constant. The subject splits into two complementary questions, each has its own mathematical toolkit
and methods: how to design and improve fixed-parameter algorithms, and how to gather evidence that a problem is not
fixed-parameter tractable for a certain parameterization.

The reasoning problems considered in this talk will include problems that arise in satisfiability solving, model counting,
quantified Boolean formula evaluation, nonmonotonic reasoning and constraint satisfaction. I will mainly focus on two
groups of parameters: parameters that represent decomposability of problems, and parameters that represent the existence
of reasoning shortcuts through the search space in terms of backdoors. Most topics of the talk are covered by recent
surveys (Gottlob and Szeider, 2006; Samer and Szeider, 2009).

References
Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer

Verlag, 1999.

Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in Theoretical Computer Science.
An EATCS Series. Springer Verlag, 2006.

Georg Gottlob and Stefan Szeider. Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and
database problems. The Computer Journal, 51(3):303–325, 2006.

Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications.
Oxford University Press, 2006.

Marko Samer and Stefan Szeider. Fixed-parameter tractability. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, chapter 13, pages 425–454. IOS Press, 2009.

3

4

State-Based Behavior Specification for GCM Systems∗

Alessandro Basso, Alexander Bolotov, Vladimir Getov
?School of Computer Science, University of Westminster, Watford Road, Harrow HA1 3TP
a.basso@wmin.ac.uk,bolotoa@wmin.ac.uk,v.s.getov@wmin.ac.uk

Abstract

This paper is in the area of automata-based formalisms of stateful systems. In particular, we have analyzed aspects of
Grid systems which can be considered when developing a prototype for dynamic reconfiguration. We describe which parts
of a Grid system can be utilized and translated into state-based formal specification, and how the subsequent deductive
verification tests for the dynamic reconfiguration can be performed.

Introduction. The Grid Component model (GCM) developed by the CoreGRID project (see Baude et al., 2009) is a
purpose-built component model to construct Grid applications. It has been adopted by the Grid Integrated Development
Environment (GIDE), allowing for easy composition, monitoring and steering of Grid systems (see Basukoski et al., 2008).
The features exposed in the GIDE allow us to use formal specification language and deductive reasoning verification
methods in the framework of automated dynamic reconfiguration. It is essential that the properties of a Grid system,
starting from the components stateful properties, and including the ones of resources (which we have collected under
the umbrella of the Environment) can be monitored and reported in order to be able to comprehend the current states
scenario. When monitoring a program we considered the impact on complexity that this type of specification will create
in respect to execution time as well as memory consumption. We have devised a process of repetitive static analysis to
minimize the impact by optimizing the program instrumentation. We can therefore monitor at runtime only a small section
of the components’s specification – the behavior of the stateful system – and leave the proofs of the inner functionality of
primitive components’ behavior to other methods, as in Barros et al. (2005). In this paper we describe how each section
of the Grid system – and the environment it lays on – can be translated into formal specification and fed into a resolution
based proof engine. Our final aim is to give a response to the tool we are developing within the GIDE indicating to whether
the reconfiguration can take place and how.

Automata-based formalism. We began our development on the techniques expressed in Basso et al. (2008a), but
changed our path to simplify development by redefining our concept of a two layers automata to a single one. We consid-
ered a simple finite state automaton on finite strings, and applied a set of specification “patterns” (following the sections
described in the next section). The automata is used for the creation of labels defining various states in which the consid-
ered components and resources can be, the derived model is then directly specified in the normal form for CTL, SNFCTL,
developed by Bolotov and Fisher (1999). It was shown in Bolotov et al. (2002) that a Buchi word automaton can be rep-
resented in terms of SNFPLTL, a normal form for PLTL. In a similar fashion we have represented a Buchi tree automaton
in terms of SNFCTL; we use SNFCTLto specify the tree automaton and (in simulations) extend this specification to the
deontic temporal specification in Basso et al. (2008b). Further, we apply a resolution-based verification technique as a
verification procedure using the tool in Zhang et al. (2008).

Formalizing components and resources. When considering what parts in the GCM can be used for formal specifi-
cation, we have considered four main sections, each of which follows specific criteria and can be easily fed into to a table
of specification “patterns”. We examine the main details below. Please not that not full specification is included for space
reasons. As an example, we consider an Application (the outmost component which must be activated first) which contains
4 components Comp1 (a composite component with a sub component SubComp1.1) which is the first to be started after
the application is as it is the first and only component, two components CompA and CompB running in parallel from a
broadcast of Comp1 (and SubComp1.1 to start in parallel with CompA or CompB), and Comp2 a component from the
gathercast of CompA and CompB.

Hierarchical Components Structure. Components in the GCM have a strict hierarchical nature. The application
can then be described as: start ⇒ Application and components of the application in the form of: Application ⇒
A gComp1, Application⇒ A♦Comp2, Comp1⇒ A g(SubComp1.1 ∧ (CompA ∨ CompB))

Inferring parallel processes from interfaces. When we consider interfaces in the GCM, we can group them in two
different types: one to one, and broadcast/gathercast. In the former we have a simple connection of one server inter-
face to a client one, while in the latter we have a single server interface which can be bound to multiple client ones.

∗This research has been carried out under the European research and development project GridCOMP (Contract IST-2005-034442) funded partially
by the European Commission.

5

Application

Comp1

CompA

CompB

Comp2

Parallel

Sequential

Figure 1: Sequential and Paral-
lel Processes

In either case, interfaces can be very useful to determine whether the com-
munication between components is carried out in a sequential or parallel matter.
Imagine a component with a broadcast server interface (or several one to one
server interfaces): we can easily assume that the components at the client side
of those interfaces can be run in a parallel matter. On the other hand, a compo-
nent which has only one server interface, can only run in a sequential matter with
the component on the client interface side (see Figure: 1). Sequential specifica-
tion looks like: Comp1 ⇒ A♦Comp2 while Parallel specification looks like:
Comp1⇒ A g(CompA ∧ CompB).
When in a sequential process is easy to understand that component will be started
sequentially, in a parallel process, there is no real certainty - component might be

all started at the next step, or first one and then the others, or perhaps none.
State of resources. When considering resources, we are able to formally specify the environment thanks to information

provided in the GCM deployment file as well as other metadata information gathered at development time through a
development interface. Furthermore the current state of each resource can be monitored at runtime giving us a complete
picture of the resources at every given moment in time and any components that might be deployed on or requesting
the use of the resource. External resources are defined as: Comp1 ⇒ A♦Res1. Deployment resources are defines as:
Node1⇒ Res1 and at runtime we can have definitions like: Res1⇒ A (Comp1 ∧ Com2).

State of components. While the states of components could have a wide spectrum of definition points (such as initial-
ized, started, suspended, terminated, . . . for the moment we can only consider the ones defined in the GCM - i.e. started
and stopped. In a way this simplifies further the formalism by representing the specification as: Comp1 for a started
component, and: ¬Comp2 for a stopped one.

Conclusions. The formal specification procedure introduced in this paper will be used in reconfiguration scenarios
to prevent inconsistency while suggesting possible corrections to the system. While we have applied this framework to a
GCM system, such procedure could be applied to other systems, giving the deductive reasoning a chance to assist other
verification methods such as model checking by filling the gaps in those areas where these other well established methods
cannot be used.

References
T. Barros, L. Henrio, and E. Madelaine. Verification of distributed hierarchical components. In In Proc. of the International

Workshop on Formal Aspects of Component Software (FACS’05), volume Electronic Notes in Theor. Computer Sci. 160,
pages 41–55, 2005.

A. Basso, A. Bolotov, and V. Getov. Automata-based formal specification of stateful systems. In In Proc. of Automated
Reasoning Workshop, 2008a.

A. Basso, A. Bolotov, and V. Getov. Behavioural Model of Component-based Grid Environments., volume From Grids To
Service and Pervasive Computing, pages 19–30. Springer, 2008b.

A. Basukoski, V. Getov, J. Thiyagalingam, and S. Isaiadis. Component-based Development Environment for Grid Systems:
Design and Implementation., volume In: Making Grids Work, pages 119–128. Springer, 2008.

F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. Pérez. GCM: A Grid Extension to Fractal
for Autonomous Distributed Components., volume Annals of Telecommunications, vol. 64(1-2), pages 5–24. Springer,
2009.

A. Bolotov and M. Fisher. A clausal resolution method for ctl branching time temporal logic. Journal of Experimental
and Theoretical Artificial Intelligence., 11:77–93, 1999.

A. Bolotov, C. Dixon, and M. Fisher. On the relationship between normal form and w-automata. Journal of Logic and
Computation, Oxford University Press., Volume 12(Issue 4):561–581, August 2002.

L. Zhang, U. Hustadt, and C. Dixon. First-order resolution for ctl. Technical Report ULCS-08-010, Department of
Computer Science, University of Liverpool, 2008.

6

Natural Deduction Calculus for Quantified Propositional Linear-time
Temporal Logic (QPTL)

Alexander Bolotov?

?School of Computer Science
University of Westminster

Watford Road, Harrow HA1 3TP, UK
A.Bolotov@wmin.ac.uk

Oleg Grigoriev†
†Department of Logic, Faculty of Philosophy

Moscow State University, Moscow, 119899, Russia.
grig@philos.msu.ru

Abstract

We present a natural deduction calculus for the quantified propositional linear-time temporal logic (QPTL) and prove
its correctness. The system extends previous natural deduction constructions for the propositional linear-time temporal
logic. These developments open the prospect to adapt search procedures developed for the earlier natural deduction sys-
tems and to apply the new system as an automatic reasoning tool in a variety of applications capturing more sophisticated
specifications due to the expressiveness of QPTL.

1 Introduction
In this paper we continue our investigation of natural deduction framework for non-classical setting, this time tackling
propositional linear-time temporal logic extended with propositional quantification [Sistla (1983)]. We follow the notation
adopted in [French and Reynolds (2002)] calling this logic QPTL. Our construction naturally extends previously defined
system for PLTL [Bolotov et al. (2006)] by new rules to capture the propositional quantification in the setting of linear
time.

While the propositional quantification does not add any expressiveness to the classical logic QPTL is more expressive
than PLTL presenting the same potential of expressiveness as linear-time µ-calculus (linear-time propositional tempo-
ral fixpoint logic) [Kaivola (1997)], ETL (propositional linear-time temporal logic extended with automata constraints)
[Wolper (1981)] and S1S (second order logic of one successor) [Kaivola (1997)] so that each of these formalisms is as ex-
pressive as Buchi Automata [Büchi (1962)]. A well-known example distinguishing the expressiveness of these formalisms
comparing to PLTL is their ability to ”count”, for example, to express that some property occurs at every even moment
of time [Wolper (1981)]. Nevertheless, each of these logics uses its own specific syntax and it makes sense to consider
how easy these logics can be used in specification. We believe that in this list QPTL indeed occupies a special place. For
example, ETL and linear time µ − calculus formulae are very difficult for understanding. It is known, in particular, that
formulae with nested fixpoints very quickly become incomprehensive while automata constraints added to the logic are far
too complex to apprehend intuitively.

The language of QPTL uses the a set, Prop, of atomic propositions: p, q, r, . . . , p1, q1, r1, . . . , pn, qn, rn, . . .; Boolean
operations; temporal operators: – ‘always in the future’;♦ – ‘at sometime in the future’; g– ‘at the next moment in
time’; and propositional quantifiers ∀ (‘for all’) and ∃ (‘there exists’).

The set of well-formed formulae of QPTL, wffQPTL is defined as follows.

1. If A is wffPLTL, then A is wffQPTL.

2. If A is in wffQPTL and α is in Prop then ∃αA are in wffQPTL.

Note that ∀xA = ¬∃¬A an that the U operation is expressible in QPTL Kaivola (1997). For the semantics of QPTL
we utilise the notation of Fisher et al. (2001): it is discrete, linear sequence of states

σ = s0, s1, s2, . . .

which is isomorphic to the natural numbers, N , and where each state, si, 0 ≤ i, consists of the propositions that are true
in it at the i-th moment of time. Let σ′ be an x-variant of σ. For the propositional quantifiers we evaluate a formula A in
σ at the moment i ∈ N as follows 〈σ, i〉 |= ∃xA⇔ 〈σ′, i〉 |= A, for some σ′. A well-formed formula, A, is satisfiable if,
and only if, it is satisfiable in some model, and is valid if satisfied in every possible model,

As QPTL combines the propositional linear time logic with propositional quantification, we work, on the one hand,
in our old framework of natural deduction calculi originally developed by Gentzen [Gentzen (1969)] and Jaskowski

7

[Jaskowski (1967)] and improved by Fitch [Fitch (1952)] and Quine [Quine (1950)]. On the other hand, we build on
our previous ND constructions for the logic PLTL [Bolotov et al. (2006)] and first order logic [Bolotov et al. (2005)].
Namely, the rules for the linear-time framework are adopted from the former paper while the ideology for the rules for
the propositional quantifiers are taken from the latter. The new rules, for the propositional quantifiers, allow us to de-
compose formulae eliminating either the ∀ (freely) or ∃ (with some obvious restrictions) propositional quantifier from the
formula or, on the contrary, to synthesise formulae introducing these quantifiers: ∀ (with some restrictions) or ∃ (without
restrictions). Simple example in the setting of classical logic would be to derive a valid formula ∃x.p ⇒ (x ⇒ p) from
p⇒ (q ⇒ p). Another, perhaps not obvious, example of a valid formula is ∃x.x. Note that in the absence of the temporal
operations formula ∃x.A = A(x/>) ∨ A(x/⊥), i.e. in the classical setting propositional quantification is expressible in
classical logic. An interesting example of a valid formula with temporal operators would be ∃x.x ∧ g ¬x which can
be interpreted as ‘now will never happen again’ [French (2003)]. Obviously, this formula is valid only in the semantics
without repeating states.

To capture these and other specific QPTL properties, such as quantified induction, in our construction we introduce
a range of new rules, such as for example, a 0-premise rule ` ∃x.x. We show that our ND rules are sound and that
every theorem of the axiomatics for QPTL from French and Reynolds (2002) is a theorem in our system thus providing a
completeness argument.

References
A. Bolotov, V. Bocharov, A. Gorchakov, and V. Shangin. Automated first order natural deduction. In Proceedings of IICAI,

pages 1292–1311, 2005.

A. Bolotov, A. Basukoski, O. Grigoriev, and V. Shangin. Natural deduction calculus for linear-time temporal logic. In
Joint European Conference on Artificial Intelligence (JELIA-2006), pages 56–68, 2006.

J. R. Büchi. On a decision method in restricted second-order arithmetics. In Proc.of International Congress of Logic,
Methodology and Philosophy of Science, pages 1–12. Stanford University Press, 1962.

M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions on Computational Logic (TOCL), 1
(2):12–56, 2001.

F. Fitch. Symbolic Logic. NY: Roland Press, 1952.

Tim French. Quantified propositional temporal logic with repeating states. In TIME 2003, pages 155–165, 2003.

Tim French and Mark Reynolds. A sound and complete proof system for QPTL. In Advances in Modal Logic, pages
127–148, 2002.

G. Gentzen. Investigation into logical deduction. In The Collected Papers of Gerhard Gentzen, pages 68–131. Amsterdam:
North-Holland, 1969.

S. Jaskowski. On the rules of suppositions in formal logic. In Polish Logic 1920-1939, pages 232–258. Oxford Univ. Press,
1967.

R. Kaivola. Using Automata to Characterise Fixed Point Temporal Logics. PhD thesis, University of Edinburgh, 1997.

W. Quine. On natural deduction. Journal of Symbolic Logic, 15:93–102, 1950.

A. Sistla. Theoretical issues in the Desing and Verification of Distibuted Systems. PhD thesis, Harvard University, 1983.

P. Wolper. Temporal logic can be more expressive. In Proceedings of the 22nd IEEE Symposium on Foundations of
Computer Science, pages 340–348, Nashville, October 1981.

8

Adapting Piecewise Fertilisation to Reason about Hypotheses

Louise A. Dennis?

?Department of Computer Science
University of Liverpool

L.A.Dennis@liverpool.ac.uk

Lucas Dixon†
†School of Informatics
University of Edinburgh

ldixon@inf.ed.ac.uk

1 Introduction
Fertilisation is the point in an inductive proof when the induction hypothesis is used to discharge (or rewrite) the induction
conclusion.

Piecewise Fertilisation was developed by Armando et al. (1999) for handling situations where logical connectives
appear in the theorem statement which make the fertilisation process less straightforward.

Of particular interest is the situation where an implication appears in the theorem statement. Typically a theorem of
the form

∀x.P (x)⇒ Q(x), (1)

produces (in the case where x is a natural number) a step case of the form

(P (n)⇒ Q(n)) ∧ P (s(n)) ` Q(s(n)), (2)

to discharge this piecewise fertilisation breaks this into two sub-problems:

P (s(n))⇒ P (n), (3)

and
Q(n)⇒ Q(s(n)). (4)

This abstract describes preliminary work to take the idea of piecewise fertilisation and combine it with rippling tech-
niques to provide support for reasoning within the hypotheses of inductive proofs.

2 An Example: Counting an element in a List
Let us consider the theorem

∀x, l.x 6∈ l⇒ cl(x, l) = 0. (5)

Where ∈ is list membership and cl is defined as

cl(a, []) = 0, (6)
cl(a, h :: t) = if (a = h) then s(cl(a, t)) else cl(a, t). (7)

A proof-planning style induction proof on this theorem proceeds by induction on l. The base case is easily discharged,
leaving the step case:

(∀z.z 6∈ t⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ` cl(y, h :: t) = 0, (8)

which ripples/rewrites to

(∀z.z 6∈ t⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ` if (y = h) then s(cl(y, t)) else cl(y, t) = 0, (9)

and then case splits to
(∀z.z 6∈ t⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ∧ y 6= h ` cl(y, t) = 0, (10)

(∀z.z 6∈ t⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ∧ y = h ` s(cl(y, t)) = 0. (11)

9

The second of these has a contradiction in the hypothesis (which can be detected by counter-example finding and
discharged easily)

In piecewise fertilisation the case-split of (2) into (3) and (4) is done by identifying an embedding between the ante-
cedant of the induction hypothesis and another hypothesis of the step case. In this case y 6∈ h :: t embeds into z 6∈ t
(taking into account that z is universally quantified). Instead of forming two sub-problems, as in piecewise fertilisation,
we suggest annotating the hypothesis, as for rippling, and rewriting directly.

(∀z.z 6∈ t⇒ cl(z, t) = 0) ∧ y 6∈ (h :: t) ∧ y 6= h ` cl(y, t) = 0 (12)

(∀z.z 6∈ t⇒ cl(z, t) = 0) ∧ y 6= h ∧ y 6∈ t ∧ y 6= h ` cl(y, t) = 0 (13)

Which then lets us infer that cl(y, t) = 0 and prove the step case.

3 Current Status
We have most of this process implemented in the IsaPlanner proof planning system (Dixon and Fleuriot, 2003). We are
successfully able to perform rippling in the hypothesis of the induction but are not, currently, able to complete the final
steps because of some short comings in the implementation of simplification in IsaPlanner – we are working on this.

We believe that this technique will prove useful for simplifying hypotheses in both fully automated and interactive
proofs.

Acknowledgements
This work was funded by EPSRC Platform Grant EP/E005713/1.

References
A. Armando, A. Smaill, and I. Green. Automatic synthesis of recursive programs: The proof-planning paradigm. Auto-

mated Software Engineering, 6(4):329–256, 1999.

L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in Isabelle. In 19th International Conference on
Automated Deduction (CADE’2003), volume 2741 of LNCS, 2003.

10

Combining Generalisation Into Instantiation Based Reasoning In EPR

Shasha Feng?

?The University of Manchester
Manchester, M13 9PL

fengs@cs.man.ac.uk

Abstract
Effectively propositional logic (EPR for short) is a fragment of first-order logic which can be effectively translated

into propositional logic. Much attention has been drawn to reasoning in EPR because of its ability to represent real life
applications such as bounded model checking and planning. In this paper we summarize some successul calculi in EPR
reasoning and propose combining generalisation into instantiation-based reasoning.

1 Introduction
Effectively propositional logic (EPR for short) is a fragment of first-order logic whose formulae are those in the Bernays-
Schønfinkel class. Much attention has been drawn to reasoning in EPR since several real life applications such as bounded
model checking and planning can be naturally and succinctly encoded as EPR formulae.

When skolemised, EPR formulae contains no function symbols and thus have a finite Herbrand Universe, which al-
lows one to translate them to propositional logic using grounding: substitutions of constants for variables of the formulae.
Grounding and the subsequent use of SAT solvers remains one of the most successful approaches to checking the satisfia-
bility of EPR formulae.

In this paper we summarize some successul calculi in EPR reasoning and propose combining generalisation into
instantiation-based reasoning.

2 Existing Methods

2.1 Competent methods
Pérez and Voronkov (2008) analysed reasoning in EPR from the perspective of proof length. They show that propositional
resolution for EPR may have exponentially longer refutations than resolution for EPR. It suggests that methods based on
ground instantiation may be weaker than non-ground methods. Though their analysis based on resolution, which has so
far been found not competitive on EPR formulae by the recent CASC competition, the conclusion finds some support from
other calculi which are competent in EPR reasoning, as explained in the following two paragraph.

Model Evolution, proposed by Baumgartner and Tinelli (2003), is seen as a lift of DPLL to first-order logic. The
calculus tries to build a model for input formulae. In the model, the presence of a predicate means that all of instances are
satisfied, except those which are also instances of the predicate’s instance, whose complement also appears in the model.
For example, if one model only contains P (x) and ¬P (c), then it stands for a partial model of {P (a), P (b), P (d), . . .}.

Instantiation based theorem proving, proposed by Ganzinger and Korovin (2003), is a cycle of generating instances
and SAT checking, which instances generation is guided by resolution. SAT checking is performed on an abstraction of
current problem. I. e. all the variables occurring are replace by ⊥ Korovin (2008). So, in SAT checking, P (x) and P (a),
abstracted to P (⊥) and P (a), are treated as different propositional variables. In some way, the ⊥ in P (⊥) can be seen as
any constant in the domain. Thus, instantiation based theorem proving makes itself a calculus on the level of EPR instead
of propositional logic.

2.2 Generalisation
Recently, Pérez and Voronkov (2008) introduces a generalisation rule and show that resolution for EPR may have ex-
ponentially longer proofs than resolution with generalisation. Suppose that in an EPR problem, the constants domain is
{c1, c2, . . . , c8}, and we have A[c3], A[c4], A[c5], . . . , A[c8], where A[x] is a quantifier-free formula with a free variable
x. To generalise all the ground cases of A[c3], A[c4], A[c5], . . . , A[c8], it would be much convenient to add ∀xA[x] to the
formulae set. However, ∀xA[x] only holds when x ∈ {c3, c4, . . . , c8}. So, we can add a constrained formula ∀xA[x].C,
C represents the constraints about x. Resolution extends to constrained formulae naturally, with the resolvent’s constraint
being the intersection of the constraints from the two input formulae.

11

3 Combining Generalisation Into Instantiation Based Reasoning
We propose to combine generalisation rule into instantiation based reasoning. Constrained formulae generated by gener-
alisation rule, together with instances generated by resolution rule, are added to the formulae set, which will be fed to a
SAT solver. The constraints will be discarded from constrained formulae after some constraints checking. We illustrate by
the following example.

Example 1 Suppose a formulae set is {P (x) ∨ Q(x),¬P (a),¬P (b),¬Q(b), R(x) ∨ ¬Q(x),¬R(b)}. Generalisation
rule produces the following constrained formulae. ¬P (x).x ∈ {a, b},¬Q(x).x ∈ {b},¬R(x).x ∈ {b}. These constraints
are satisfiable, as x ∈ {b}. Thus, we can add ¬P (x),¬Q(x),¬R(x) to existing formulae set, waiting for a SAT solver,
which will return unsatisfiable.

There are several unsolved problems in our method. One is what should be added when the constaints are unsatisfiable?
One solution is to add only those constrained formulae whose constraints, put together, are satisfiable. Heuristic methods
may be needed when chosing a subset of constrained formulae. Another solution is kind of splitting according to constants
domain. For example, if the constraints formulae are P (x).x ∈ S1, Q(x).x ∈ S2, where S1 ∩ S2 = φ. We can get
two duplications of existing formulae set, with all predicates subscribed by 1 and 2 respectively. Then replace existing
formulae set with the union of duplications, and discard those U1(c) where c /∈ S1 and V2(d) where d ∈ S1. For the
constraints formulae P (x).x ∈ S1, Q(x).x ∈ S2, we add P1(x), Q2(x).

Another problem is about lemma generating. In Ganzinger and Korovin (2003) method, when the problem is satisfiable,
the SAT solver may return some clauses it derived, which can be fed into the problem as lemmas. With generalisation rule
present, it is difficult to tell whether the returned clauses are universally valid or only on a specific subset.

4 Conclusions
We analyzed several successful calculi in EPR reasoning and proposed to combine generalisation into instantiation based
reasoning. Some unsolved problems are described. Comparison with de Moura and Bjørner (2008) is also an interesting
direction. Moreover, implementation is necessary to discovor how to balance over generalisation and instances generation
on different problems.

References
Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In CADE, pages 350–364, 2003.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Deciding effectively propositional logic using dpll and substitution
sets. In IJCAR, pages 410–425, 2008.

Harald Ganzinger and Konstantin Korovin. New directions in instantiation-based theorem proving. In LICS, pages 55–64,
2003.

Konstantin Korovin. iprover - an instantiation-based theorem prover for first-order logic (system description). In IJCAR,
pages 292–298, 2008.

Juan Antonio Navarro Pérez and Andrei Voronkov. Proof systems for effectively propositional logic. In IJCAR, pages
426–440, 2008.

12

Computing Explanations for Entailments in
Description Logic Based Ontologies

Matthew Horridge? Bijan Parsia? Ulrike Sattler?
?The University of Manchester

Oxford Road Manchester, M13 9PL
{matthew.horridge|bparsia|sattler}@cs.man.ac.uk

1 Introduction
Trying to track down and understand the causes of entailments in Description Logic based ontologies1 can be a wretched
and error prone task. Without some kind of tools support many users of ontology editing tools, such as Protégé-4, find
that it is impossible to determine the reasons for unsatisfiable classes or other undesirable entailments that can arise
during the process of constructing an ontology. Indeed, users of such tools have been seen to switch tool purely for
the benefits of explanation (Kalyanpur et al. (2007)). In recent years, there has been a significant amount of interest in
generating explanations for entailments in ontologies. Generally speaking the focus has moved from finding and generating
explanations that correspond closely with a particular proof technique, such as natural deduction, to finding and generating
explanations whose sub-structure is at the level of asserted axioms. This has given rise to explanations that, in their most
general form are known as Justifications (Kalyanpur et al. (2007)). A justification for an entailment in an ontology is a
minimal subset of the ontology that is sufficient for the entailment to hold. More precisely, given an ontology O such that
O |= η, J is justification for η with respect to O if J ⊆ O, J |= η, and for all J ′ (J , J ′ 6|= η. Note that there may be
multiple, potentially overlapping, justifications for a given entailment.

2 Computing Justifications
Methods of computing justifications are broadly categorised into glass-box methods and black-box methods. While both
types of method depend upon reasoning, a glass-box implementation is specific to a given reasoner and therefore reasoning
technique, while a black-box method does not depend on a specific reasoner or reasoning technique.

Glass-box methods usually require thorough and non-trivial modifications to reasoner internals. The tableaux based
reasoner Pellet was augmented with tableaux tracing whereby, as the tableaux is expanded, Pellet tracks the axioms that
are used in the expansion. Computing all justifications for an entailment using this technique would require saturation of
the completion graph, and would require many optimisations to be rolled back. Therefore a hybrid approach, combining
glass-box methods with black-box methods and model diagnosis techniques is used to compute all justifications.

Black-box methods are much easier to implement than glass-box methods as they just require a reasoner2 that can
perform entailment testing, and some (goal directed) procedure to examine subsets of an ontology in order to compute
all justifications. Black-box implementations typically use some optimised “expand/shrink” strategy. For example, the
signature of an entailment is used as an input to a selection function that is repeatedly used to select larger and larger
subsets of the ontology until the entailment in question holds in the subset, at which point axioms in the subset that are not
relevant for the entailment are gradually pruned away.

The work presented in Kalyanpur et al. (2007) provides descriptions of a Pellet based glass-box implementation and
black-box implementation that uses a simple expand/shrink strategy. Empirical investigation showed that it is practical to
compute justifications for a range of ontologies varying in size and expressivity. More recently, we sampled entailments
from over twenty published ontologies ranging from ALC to SHOIQ, and from tens of axioms to tens of thousands
of axioms. With the necessary optimisations to the black-box implementation, it was found that black-box justification
finding can perform equally well, if not better, than glass-box justification finding—the tracing technique used in the glass
box justification finding does impose a slight overhead on satisfiability testing. Given that modifying an existing reasoner
to support glass-box justification finding is highly non-trivial, and binds the implementation to a specific reasoner, we
recommend the use and continued optimisation of black-box methods.

1Description Logics being decidable fragments of First Order Logic
2A reasoner being an implementation of a decision procedure for satisfiability testing etc.

13

3 Fine-grained Justifications: Laconic and Precise Justifications
Given a, potentially very large, ontology, justifications pick out the handfuls of axioms that are responsible for the en-
tailment. This is hugely useful since it allows a user to focus on what could be a very small part of the ontology. Thus,
when trying to understand the reasons for an entailment, the user can devote their attention to examining just a few axioms
compared to examining the whole ontology. However, it is frequently the case that not all parts of axioms are required for
an entailment to hold. This has given rise to the notion of fine-grained justifications, which are justifications whose axioms
do not contain any superfluous parts.

Numerous groups of researchers have identified fine-grained justifications as being important. However, the notion of
fine-grained justifications was only recently formalised in Horridge et al. (2008), which split fined-grained justifications
into laconic justifications and precise justifications. Using the well known structural transformation given in Plaisted and
Greenbaum (1986) to identify the “parts” of axioms, laconic justifications are justifications all of whose axioms do not
contain any superfluous parts and, more over, all of whose parts of axioms are as weak as possible. Precise justifications
are laconic justifications whose parts of axioms have been transferred into separate axioms. Laconic justifications are
geared towards user understanding, while precise justifications are geared towards repair.

The definition of laconic and precise justifications given in Horridge et al. (2008) is given with respect to the deductive
closure of an ontology. In practice, laconic and precise justifications are computed with respect to a filter on the deductive
closure of an ontology. The filter is used to select justifications that contain axioms that have a strong syntactic resemblance
to the axioms in the original ontology. In essence this is essential for usability. The filters used in practice tend to generate
from the ontology an expanded set of axioms that contains controlled, stepwise weakenings of the asserted axioms. While
this generally results in many more justifications for an entailment, various optimisations can be used to ensure good
algorithmic performance on real ontologies. Indeed, results presented in Horridge et al. (2008) show that it is practical to
compute laconic justifications using black-box methods for a range of published ontologies, with all laconic justifications
for an entailment typically being computed in tens of seconds on a standard laptop computer.

4 Lemmatising Justifications
We have observed that some justifications can be very difficult for people to understand. In a user study we found that
approximately 20% of justifications that were generated from over 100 entailments taken from published ontologies could
not be understood by a wide range of people. Justifications essentially gather the premises of a proof together and present
them to a user. The user is left to fill in the gaps and work out how the interplay between axioms in order to figure
out how they result in the conclusion, i.e. the entailment of interest. One of the areas that we are currently exploring
is the lemmatisation of justifications so as to make helpful intermediate inference steps explicit. A justification can be
lemmatised by replacing one or more axioms with summarising/bridging axiom. The result is a simpler and easier to
understand justification. The replacement axiom is essentially a lemma, with the axioms that were replaced being a
justification for this lemma. There can be multiple lemmatisations per justification, and the justification for lemmas
can themselves be lemmatised. This results in a proof DAG that can be used as an input to a presentation service for
use in end user tools such as Protégé-4. It should be noted that the notion of how easy or difficult a justification is
to understand is governed by a complexity model, which is used to predict whether or not a justification ought to be
lemmatised. We developed a complexity model based on the results from the aforementioned user study and used this to
compute lemmatised justifications for entailments from published ontologies. It was found that it was feasible to lemmatise
justifications, with many lemmatisations being computed in the order of tens of seconds.

References
Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and precise justifications in owl. In ISWC 08 The International

Semantic Web Conference 2008, Karlsruhe, Germany, 2008.

Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding all justifications of owl dl entailments. In
ISWC 07 The International Semantic Web Conference 2007, Busan, Korea, 2007.

David A. Plaisted and Steven Greenbaum. A structure-preserving clause form translation. Journal of Symbolic Computa-
tion, 1986.

14

“Exactly One” Epistemic Logic

Boris Konev, Clare Dixon and Michael Fisher?
? Department of Computer Science, University of Liverpool, Liverpool, L69 3BZ, UK

{Konev,CLDixon,MFisher}@liverpool.ac.uk

1 Introduction
Epistemic logic is a modal logic of knowledge (see for example (Fagin et al., 1995)) in which the knowledge of agents,
players or processes can be represented. When combined with temporal logics, to represent dynamic aspects, such logics
can be used to represent and reason about systems where evolving knowledge plays a key part such as agent based systems,
knowledge games, security protocols etc. Many such systems contain subsets of the set of propositions needed to represent
the system where exactly one member of each subset holds at any moment. An example of an “exactly one” set in a game
playing environment, where all the cards are dealt out to players a, b, c or d and ten spadesi represents that player i holds
the ten of spades card, is the set {ten spadesa, ten spadesb, ten spadesc, ten spadesd} i.e. the ten of spades card must
be held by exactly one player.

Recently we have been investigating, mechanising, and applying, temporal logics with additional constraints of the
“exactly one” type considered above (Dixon et al., 2007a,b, 2008). In our work, each logic is parametrised by a set of
propositions (or, predicates in the first-order case) where exactly one of these propositions is satisfied at any temporal
state. We have shown that, if problems can be described in such a logical framework, then not only is the description
more succinct, but the decision procedure for the logic is simpler (reducing certain aspects of the decision procedure from
exponential to polynomial).

In this extended abstract we investigate theorem proving for epistemic modal logics allowing “exactly one” sets. In
particular, we define a tableau procedure for this logic, which incorporates a DPLL (Davis et al., 1962) like mechanism to
satisfy the “exactly one” sets and show that this reduces the number of states we must construct. The full details of this
work can be found in (Konev et al., 2009).

2 Example
To illustrate the approach we focus on a simple card game from (van Ditmarsch et al., 2005). In this simple game there are
three different cards; a heart, a spade and a club. In the most basic scenario, one card is dealt to one player, a further card
is placed face down on the table and the final card is returned (face down) to the card holder.

Following (van Ditmarsch et al., 2005) we use simple propositions to represent the position of the cards. So, if spadesw
is true, then Wiebe holds a spade, if clubst is true, then the clubs card is on the table, if heartsh is true, then the hearts card
is in the holder, etc. Similarly, Kwspadesw means that Wiebe knows he holds a spade. And so on.

We can identify six “exactly one” sets, firstly

{spadesw, spadesh, spadest}
denoting the spades cards can be in exactly one place at any moment, and the same for clubsi and heartsi for each of
i = w, h, t. Further,

{spadesi, heartsi, clubsi}
for i = w, h, t denotes for i = w that Wiebe can only hold exactly one card or for i = h exactly one card can be in the
holder or i = t exactly one card can be on the table.

3 SX5n— “Exactly One” sets in Epistemic Logic
The logic we consider is called “SX5n”. The main novelty in SX5n is that it is parametrised by “exactly-one”-sets P1,
P2,. . . , denoted SX5n(P1,P2, . . .), which are constructed under the restrictions that exactly one proposition from every
set Pi is true in any state. Additionally there may be a set A of normal (unconstrained) propositions.

Assuming a set of agents where Ag = {1, . . . n}, formulae are constructed from a set PROP = {p, q, r, . . .} of atomic
propositions, using the usual Boolean connectives: ¬ (not), ∨ (or), ∧ (and) and⇒ (implies) plus Ki, for i ∈ Ag (agent i
knows).

15

A model structure, M , for SX5n is a structure M = 〈S,R1, . . . , Rn, π〉, where: S is a set of states; Ri ⊆ S × S, for
all i ∈ Ag, is the agent accessibility relation where Ri is an equivalence relation; and π : S × P → {T, F} is a valuation.

As usual, we define the semantics of the language via the satisfaction relation ‘|=’. This relation holds between pairs of
the form 〈M, s〉 (where M is a model structure and s ∈ S), and S5n-formulae. The rules defining the satisfaction relation
are given below where the semantics of the Boolean operators is as usual.

〈M, s〉 |= q iff π(s, q) = true (where q ∈ PROP)

〈M, s〉 |= Kiφ iff ∀s′ ∈ S′ if (s, s′) ∈ Ri then 〈M, s′〉 |= φ

If there is a model structureM and state s such that 〈M, s〉 |= ϕ then ϕ is said to be satisfiable. If 〈M, s〉 |= ϕ for all states
s and all states s then ϕ is said to be valid. The set of modal relations (for each agent i) are assumed to be equivalence
relations.

4 Results
In (Konev et al., 2009) we present a tableau algorithm for SX5n. Consider an SX5n formula ϕ to be shown satisfiable. The
algorithm constructs sets of extended assignments of propositions and modal subformulae i.e. a mapping to true or false,
that satisfy both the exactly one sets and ϕ. However, rather than using the usual alpha and beta rules (see for example
the modal tableau in (Halpern and Moses, 1992; Wooldridge et al., 1998)) these are constructed using a DPLL-based
expansion (Davis et al., 1962). Next the algorithm attempts to satisfy formulae of the form ¬Kiψ made true in such
an extended assignment by constructing Ri successors which are themselves extended assignments which must satisfy
particular subformulae (and the exactly one sets).

We show that the tableau algorithm is sound and complete and that given ϕ an SX5n formula then the tableau algorithm
runs in time polynomial in (

k × |P1| × . . .× |Pn| × 2|A|+k
)

where |Pi| is the size of the set Pi of exactly one propositions, |A| is the size of the set A of non-constrained propositions,
and k is the number of Ki operators in ϕ.

Future work involves applying this logic to more case studies and extending SX5nwith temporal aspects to target
evolving knowledge allowing us to be able to represent and reason about problems from complex domains such as security
and planning more efficiently.

References
M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-Proving. Communications of the ACM, 5

(7):394–397, 1962.

C. Dixon, M. Fisher, and B. Konev. Temporal Logic with Capacity Constraints. In Proc. of the 6th International Symposium
on Frontiers of Combining Systems (FroCoS), pages 163–177. LNAI, 2007a.

C. Dixon, M. Fisher, and B. Konev. Tractable Temporal Reasoning. In Proc. International Joint Conference on Artificial
Intelligence (IJCAI), pages 318–23. AAAI Press, 2007b.

C. Dixon, M. Fisher, B. Konev, and A. Lisitsa. Practical First-Order Temporal Reasoning. In Proceedings of TIME 2008
the Fifteenth International Symposium on Temporal Representation and Reasoning, Montreal, Canada, 16th-18th July
2008. IEEE Computer Society Press.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT Press, 1995.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of knowledge and belief. Artificial
Intelligence, 54(3):319–379, April 1992.

B. Konev, C. Dixon, and M. Fisher. Playing Cards with Wiebe [Solving Knowledge Puzzles with ”Exactly One” S5n]. In
Proceedings of Wiebefest 2009, Liverpool, UK, March 2009.

H.P. van Ditmarsch, W. van der Hoek, and B.P. Kooi. Playing cards with Hintikka. An introduction to dynamic epistemic
logic. Australasian Journal of Logic, 3:108–134, 2005.

M. Wooldridge, C. Dixon, and M. Fisher. A Tableau-Based Proof Method for Temporal Logics of Knowledge and Belief.
Journal of Applied Non-Classical Logics, 8(3):225–258, 1998.

16

A Decidable Approach to Real-time System Specification

Savas Konur?
?Department of Computer Science, University of Liverpool, Liverpool L69 3BX

konur@liverpool.ac.uk

1 Introduction
Most formal methods employed for the specification and development of distributed systems are either event-based or
state-based (For a more detailed account for the concepts ‘events’ and ‘states’, please see [2]). For system development
both views are important [6]. More generally, in early phases of systems development, event-based methods are more
suitable; in contrast, in later phases state-based methods are more suitable [1].

We can, therefore, say that a formal method should cover both event-based and state-based views in order to model the
behaviour of real-time systems. Most temporal logics employed for the specification of real-time systems, however, do not
support both methods. They are either event-based or state-based. For this reason, finding a temporal logic which covers
both views, and which can be used in specifying real-time system properties is an important research subject in this area.

On the other hand, choosing a mathematical model of time has been also a primary concern in this context. A basic
way to characterise temporal logics is whether points (instants) or intervals are used to model time. It has been turned out
that the interval-based scheme provides us with a richer representation formalism than the point-based scheme. Especially,
the notion of interval is necessary to represent continuous processes and to make temporal statements which are based on
intervals.

Unfortunately, in the area of interval logics, undecidability is very common, and decidability is very rare. Most interval
logics have indeed turned out to be (highly) undecidable. In the literature various methods have been proposed to achieve
decidability for interval logics. However, most of the methods, such as translating interval logics into point-based ones,
cause some syntactic and semantic restrictions. A major challenge in this area is thus to genuinely identify interval-based
decidable logics, that is, logics which are not explicitly translated into point-based logics or other semantic restrictions.

In order to overcome these drawbacks we introduce a decidable event- and state-based interval temporal logic, called
TL [2]. The logic TL covers both event- and state-based views. In TL intervals are used as primitive objects of the model
by allowing quantification over only interval objects. Unlike many other interval logics, we do not translate the logic TL
into a point-based variant, and we therefore try to minimise semantic restrictions. Since we restrict ourselves to genuine
intervals, this logic is theoretically more challenging.

Another important feature of TL is that it incorporates the notion of duration, denoting the length of a state (or an
event), and accumulation, denoting the total duration of a state. These notions have been found useful for reasoning about
time durations of dynamic systems.

In [2] we prove that TL has the finite model property, and the satisfiability problem is decidable. Its unique ‘quasi-
guarded’ character of the quantification is very important to guarantee the decidability. [2] also provides a tableau based
decision procedure to find a complexity bound for satisfiability, showing that this problem can be solved in NEXPTIME.

2 Real-Time System Applications
In order to show the usefullness of the logic TL in specifying properties of real-time systems, in [2] we apply it to well-
known mine pump and gas burner examples. The mine pump was first described in [3], where a discrete-time interval
logic is used. However, in distributed systems the discrete-time approach cannot specify precisely the behaviour of the
computer programs that run on different components of the system with different clocks. Since TL is a continuous-time
interval logic, it resolves this problem. The gas burner system was described in [5, 4], where it was modeled by an
undecidable interval logic. Since TL is a decidable logic, it removes this limitation. To the best of our knowledge, TL is
the first decidable logic which formalizes the gas burner system.

2.1 Water Pump
A mine has water seepage which must be removed by operating a pump. If the water is above danger-mark, an alarm must
be sounded, an operating of pump must stop. The mine also has pockets of methane which escape. When there is methane,
an alarm must be sounded, and all electrical activity must be shut down to prevent explosion.

17

The mine pump system was first described in [3], where a logic called QDDS is used. QDDS is a discrete-time variant
of Duration Calculus, and it can specify the behaviour of computer programs running on a component with a unique
clock. However, in this case it can only specify approximately the behaviour of physical components, and if the system
is distributed, it cannot precisely specify the behaviour of the computer programs that run on different components of the
system with different clocks. Thus, in specifying the hybrid and distributed systems, the continuous time should be used.

In the logic TL, system states are modeled by intervals which have the finite variability meaning that in any finite
interval of time there is only a finite number of discontinuous points. Thus, the time in TL is continuous, and we can
reason about the behavioural timing properties of computer programs. Therefore, TL is more preferable than QDDC in
this perspective.

An example specification is given as follows: The alarm will sound within δ seconds of the water level becoming
dangerous. Alarm will persist while the water level is dangerous:

Alarmcontrol1 ≡ [DWater] 〈Alarm〉f> (` ≤ δ)

2.2 Gas Burner System
A gas burner is a device to generate a flame to heat up products using gas. The gas burner system is a safety-critical system
as excessive leaking of gas may lead to an accident. The gas burner system was first specified in [4], where an undecidable
logic Duration Calculus [7] used. To the best of our knowledge, so far the gas burner system has not been formalized with
a decidable language. So, TL is the first decidable logic to specify the requirements of the gas burner system.

One example specification is given as follows: An ignite failure happens when gas does not ignite within 0.5 s:

IgniteFail ≡ [Gas] [Ignition] (` ≤ 0.5 ∨ ([Flame]df> (` > 0.5)) ∧ [Flame]se⊥)

3 Conclusion and Future Research
In this paper, we briefly discussed a new decidable interval temporal logic, called TL. TL uses intervals as primitive objects
of model. TL can specify both event-based and state-based statements. TL also incorporates the notion of duration. To
show the usability of TL we applied it to well-know gas-burn and water pump systems. We addressed that using TL
removed some limitations with previous specifications. Future research will include implementing the tableau method
presented in [2], so that (un)satisfiability of a formula can be returned automatically.

References
[1] E. Kindler and T. Vesper. Estl: A temporal logic for events and states. ICATPN’98, LNCS 1420, pages 365–384, 1998.

[2] S. Konur. An Interval Temporal Logic for Real-time System Specification. PhD thesis, University of Manchester, 2008.

[3] P. K. Pandya. Specifying and deciding quantified discrete-time duration calculus formulas using dcvalid. Workshop
on Real-Time Tools, 2001.

[4] A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and verifying requirements of real-time systems. IEEE
Transactions on Software Engineering, 19(1), 1993.

[5] E. V. Sorensen, A. P. Ravn, and H. Rischel. Control program for a gas burner: Part 1. informal requirements. Technical
Report ID/DTH EVS2, ProCoS Case Study 1, 1990.

[6] W. van der Aalst. Three good reasons for using a petri-net-based workflow management system. Proceedings of the
International Working Conference on Information and Process Integration in Enterprises, pages 179–201, 1996.

[7] C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real-Time Systems. EATCS Series, Springer,
2004.

18

Verification of Pervasive Systems∗

Savas Konur and Michael Fisher?
?Department of Computer Science, University of Liverpool, Liverpool L69 3BX

{konur, mfisher}@liverpool.ac.uk

1 Introduction
Pervasive computing refers to a general class of mobile systems that can sense their physical environment, i.e., their context
of use, and adapt their behaviour accordingly. Pervasive systems live around us providing services to the inhabitants of a
home, the workers of an office or the drivers in a car park. We know that requirements for current and future pervasive
systems involve a great diversity of types of services [6], such as multimedia, communication or automation services.

The success of pervasive computing depends crucially on verifying interoperability requirements for the interaction
between the devices and their environment. These requirements introduce an important layer of abstraction because they
allow modularity in the verification process: it suffices to show that each mobile device or fixed component meets the
interoperability requirements, and that the interoperability requirements entail the desired high-level properties, such as
“Are visitors properly prevented from accessing confidential information on our wireless network?”

Our focus is on the verification of designs; in particular we focus on the design of basic component behaviours and
the protocols which dictate access to them and interaction between them. It is important to note that our intention is not
to develop pervasive computing systems as such, but rather to draw motivation from, and test our ideas in, a number of
planned and existing pervasive systems.

The project brings together qualitative techniques, including deductive methods, model checking, and abstraction
methods, with quantitative techniques, including probabilistic and performance analysis, in order to tackle the problem of
verifying pervasive systems. Working together, we aim to make a step change in verification technology by developing
novel techniques and learning which techniques are most effective in different contexts. We will be investigating problems
which are both new and challenging (hence new techniques and methods will be required), but are still sufficiently close
to existing work that our established techniques provide a solid foundation for solving them. The outcomes will directly
benefit system designers and, indirectly, end users. They will include techniques applicable to a wide range of applica-
tion domains, and results and lessons learned from three specific applications including a message forwarding system, a
homecare system and RFID system infrastructure.

2 Case Studies
The formal techniques are used to verify the consequent interoperability requirements, and their effectiveness is evaluated
through some case studies, which include a message forwarding system - Scatterbox [4], a home-care application - MATCH
[3] and underlying RF technology [1]. These systems are briefly described as follows:

The Scatterbox system has been designed to serve as a test bed for context-aware computing in a pervasive computing
environment. It provides a content-filtering service to its users by forwarding relevant messages to their mobile phone. The
user’s context is derived by tracking his/her location and monitoring his/her daily schedule. As messages arrive, Scatterbox
forwards them to subscribed users provided the user’s available context suggests they are in a situation where they may be
interrupted.

MATCH is an event driven home-care system. An event is a requirement that when a given condition is met the system
takes appropriate action. Typical examples of events include: “if the front door is left open and nobody is downstairs, then
send a message to a stakeholder”, “if the lights are left on and nobody is in the house, then turn the lights off”, “If Bill is
laid down but not in bed, then contact Gill”, etc. The MATCH system consists of a set of components and a set of users.
The set of components can be split into 4 main categories: sensors, alert triggers, tasks and outputs.

Radio frequency (RF) technology is used in many applications for automated indentification of objects or people. A
RF system consists of two main components: RF chips and RF readers. RF chips are small microchips supporting wireless
data transmission. Data is stored (remotely or not) in the RF chip and can remotely be retrieved by a RF reader. RF chips
can be incorporated into products, animals, or people for the purpose of identification and tracking using radio waves.
∗Work is part of an ongoing project on “Verifying Interoperability Requirements in Pervasive Systems”, funded by EPSRC (EP/F033567) and

involving collaboration with the universities of Birmingham and Glasgow.

19

RF readers query these chips for some identifying information about the objects to which chips are attached. Current and
emerging applications using this technology include amongst others electronic toll collection, documents such as electronic
passports and visas, and RF passes for public transportation.

Our case studies will be drawn from three layers typical within pervasive systems: individual component, protocols
between individual components and information access.

The interoperability of components depends on the components exhibiting the right behaviour as individuals. We will
identify the relevant properties, and formulate them using logic-based languages (such as temporal and first-order logics
and model-checking languages). We aim to develop specific approaches to describing behavioural requirements for trusted
pervasive computing components. The protocols between individual components will include application-level protocols
specific to the case studies (for example, protocols related to the chemotherapy sensors and mobile equipment), as well as
low-level protocols of authentication and data distribution. We will formalise the expected properties of the protocols for
later analysis using some process algebra languages. The case studies will identify issues and problems of access control
(typically what component or group of components has the right to access a certain resource in a pervasive computing
infrastructure) and privacy. We will develop and refine models of access control systems, and techniques for proving
properties about them. We will also identify the deficiencies of the languages and their ability to scale up for pervasive
computing.

3 Formal Verification
After specifying the requirements of the use cases with a suitable formal language, we will develop suitable technologies
to verify these requirements formally. Current state of the art formal methods appear incapable of coping with the verifi-
cation demand introduced by pervasive systems, because reasoning about such systems requires combinations of multiple
dimensions such as quantitative, continuous and stochastic behaviour to be considered, and requires proving properties
which are quite subtle to express. In order to tackle the challenge of pervasive system verification, the project aims to
leverage the power of established techniques, notably

model checking, a logic-based approach to analysing properties of state-based systems. There has been work (some
of which was carried out by the investigators) on extensions such as parametrised model checking, infinite state model
checking and probabilistic model checking, and this will be developed further within the project.

using deduction and abstraction, two closely linked, approaches that can be used either to reduce the verification
problem to a scale suitable for model checking, or to tackle the larger problem directly.

process calculi allowing high level descriptions of interaction, communication and synchronisation.

Part of our effort will involve pushing each technique further, but the majority of it will be on pushing the combination,
i.e. bending and synthesising techniques such as [2, 5] to make them give meaningful results in our case studies.

References
[1] url=http://en.wikipedia.org/wiki/RFID.

[2] R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher. Automated verification of multi-agent programs. In Proc. 23rd
IEEE/ACM Int. Conf. Automated Software Engineering (ASE), pages 69–78, 2008.

[3] J. S. Clark and M. R. McGee-Lennon. Match: Mobilising advanced technologies for care at home. Poster at Delivering
Healthcare for the 21st Century, Glasgow, 2007.

[4] S. Knox, A. K. Clear, R. Shannon, L. Coyle, S. Dobson, A. Quigley, and Paddy Nixon. Scatterbox: Mobile message
management. Journal Revue d’Intelligence Artificielle, 22, 2008.

[5] S. Konur. A decidable temporal logic for events and states. In Proc. 13th International Symposium on Temporal
Representation and Reasoning (TIME), pages 36–41. IEEE, 2006.

[6] R. Want, T. Pering, G. Borriello, and K.I. Farkas. Dissapearing hardware. Pervasive Computing, 1, 2002.

20

TSPASS - a Fair Monodic Temporal Logic Prover

Michel Ludwig Ullrich Hustadt

Department of Computer Science, University of Liverpool, Liverpool, UK
{Michel.Ludwig, U.Hustadt}@liverpool.ac.uk

1 Introduction

First-Order Temporal Logic, FOTL, is an extension of classical first-order logic by temporal operators for a discrete linear
model of time (isomorphic toN). The set of valid formulae of this logic is not recursively enumerable. However, the set
of valid monodic formulae is known to be finitely axiomatisable.

A first resolution-based calculus for monodic first-order temporal logic was introduced in Degtyarev et al. (2003).
Then, a more machine-oriented version, the fine-grained first-order temporal resolution calculus, was described in Konev
et al. (2005). A refinement of fine-grained temporal resolution, the ordered fine-grained temporal resolution with selection
calculus, is presented in Hustadt et al. (2005). However, while these calculi represent important steps towards fully auto-
mated reasoning in the monodic fragment, they still all haveone major drawback: they contain inference rules, reflecting
the inductive nature of reasoning in this logic, whose applicability is only semi-decidable as they depend on first-order side
conditions which in general are not decidable. This poses a problem for the development of refutation-complete theorem
provers based on these calculi.

In more detail, resolution-based calculi for monodic first-order temporal logic require that a given set of monodic
temporal formulae is transformed in a satisfiability equivalence preserving way into a clausal form consisting of four types
of temporal clauses, namelyinitial, universal, step andeventuality clauses. These clauses are then used in inferences by
the rules of the monodic fine-grained temporal resolution calculus. The majority of the rules, the so-called step resolution
rules, are based on standard (ordered) first-order resolution between different types of temporal clauses. The remaining
inference rules, the ground and the non-groundeventuality resolution rule, reflect the induction principle that holds for
monodic temporal logic over a flow of time isomorphic to the natural numbers. We present the non-ground eventuality
resolution rule; the ground version is similar:

∀x(A1(x) ⇒©B1(x)) . . . ∀x(An(x) ⇒©Bn(x)) ♦L(x)
∀x∧n

i=1 ¬Ai(x)
(♦Ures) ,

where∀x(Ai(x)⇒© Bi(x)) are complex combinations of step clauses such that for alli ∈ {1, . . . , n}, the loop side
conditions∀x(U ∧ Bi(x) ⇒ ¬L(x)) and∀x(U ∧ Bi(x) ⇒ ∨n

j=1(Aj(x))), with U being the current set of all universal
clauses, are both valid. The formula

∨n
j=1Aj(x) is called aloop formula (for ♦L(x)).

In the realisation of the eventuality resolution rules a special resolution-based algorithm, called loop search algorithm,
is used to find∀x(Ai(x)⇒ © Bi(x)) for an eventuality♦L(x) satisfying the loop side conditions of the eventuality
resolution rule. To do so, the loop search algorithm constructs a sequence of sets containing universal and step clauses,
which are then saturated under a subset of the rules of fine-grained step resolution. For each attempt to apply a eventuality
resolution rule an instance of the loop search algorithm needs to be executed. As a consequence of the undecidability of
the validity of the loop side conditions, executions of the loop search algorithm cannot be guaranteed to terminate. It is
therefore possible, for example, that a partial loop formula, which is essential for a refutation, has been discovered by the
algorithm but, due to an infinite saturation process, this loop formula is never used in the computation of a consequence of
an application of the eventuality resolution rule, and, therefore, is not available to construct the refutation. Moreover, if we
try to solve the problem by delaying the application of the eventuality resolution rules until the set of temporal clauses is
first saturated under inferences with all other rules, then it might happen that the loop search algorithm will not be executed
at all as the saturation under these other inference rules isalso not guaranteed to terminate.

To solve this problem we have developed a calculus which onlycontains inference rules whose applicability is de-
cidable. The basic idea underlying the calculus is that witheach clause set which occurs in the sequence of clause sets
constructed by an invocation of the loop search algorithm wecan associate a unique marker literal which is added to every
clause occurring in such a set. In the loop search algorithm we can then work with just one clause set in which clauses
are separated by those marker literals, instead of constructing a sequence of clause sets. Furthermore, we do not even
have to use different instances of the loop search algorithmfor each application of an eventuality resolution rule, butcan
instead use one global clause set incorporating all of them.This then allows us to fairly perform step resolution inferences

21

Problem
Clauses Generated Time

ResultTeMP TSPASS TeMP TSPASS
0 19611 5707 0.481s 0.386s Satisfiable
1 21812 833 0.519s 0.075s Unsatisfiable
2 - 4827 - 0.372s Unsatisfiable
12 689 793 0.029s 0.073s Unsatisfiable
18 32395 5262 0.975s 0.389s Unsatisfiable

Table 1: Results obtained for the robot specification examples

which essentially drive forward all computations in a parallel way, whereas they were executed sequentially in the original
approach. This fair inference architecture has been presented in Ludwig and Hustadt (2008a) and in more detail in Ludwig
and Hustadt (2008b).

2 Implementation and Experimental Results

The fair inference architecture has been implemented in thetheorem prover TSPASS1, which is based on the first-order
resolution prover SPASS 3.0.

The practical performance of TSPASS has been analysed on different temporal problems and we have found it to be
competitive with TeMP. In the monodic first-order temporal logic prover TeMP (Hustadt et al., 2004), which is based on
the sequential reasoning approach described above, the first-order prover Vampire is used as a black box which saturates
sets containing the first-order translations of temporal clauses.

The experimental setting was as follows: the experiments were run on a PC equipped with an Intel Core 2 6400 CPU
and 3 GB of main memory. The execution timeout on each problemwas set to 12 minutes. For TeMP the input problems
were first transformed into its clausal input form and then TeMP was started on this clausal input without any additional
settings. TSPASS was instructed to perform subsumption-based loop search testing.

Table 1 shows the satisfiability status, the number of clauses generated and the median CPU time in seconds over three
different runs of TeMP and TSPASS for five representative examples (out of 39) based on the specifications of simple
foraging robots and some associated properties. The robot specification results from a novel application of monodic first-
order temporal logic in the verification of the behaviour of robot swarms. Further details can be found in (Behdenna et al.).
The specification of the robot transition system was given asproblem 0, and the remaining problems verify some properties
of the transition system. Each of these problems contains atleast seven eventualities. TeMP and TSPASS both terminate on
the satisfiable problem 0, but TeMP cannot solve the unsatisfiable problem 2 within the given time limit. Additionally, on
average TeMP derives more clauses and requires more execution time than TSPASS, except for problem 12. We attribute
this observation to the subsumption-based loop search testin TSPASS and to the fact that inferences in TSPASS which
have been computed once for a loop search instance do not haveto be computed again for further loop search saturations.
Further details and more examples can be found in (Ludwig andHustadt, 2008b).

References

A. Behdenna, C. Dixon, and M. Fisher. Deductive verificationof simple foraging robotic behaviours. To appear.

A. Degtyarev, M. Fisher, and B. Konev. Monodic temporal resolution. In Proc. CADE-19, volume 2741 ofLecture Notes
in Computer Science, pages 397–411. Springer, 2003.

U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A temporal monodic prover. InIn Proc. IJCAR-04, volume
3097 ofLNAI, pages 326–330. Springer, 2004.

U. Hustadt, B. Konev, and R. A. Schmidt. Deciding monodic fragments by temporal resolution. InProc. CADE-20,
volume 3632 ofLNAI, pages 204–218. Springer, 2005.

B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Mechanising first-order temporal resolution.Information
and Computation, 199(1-2):55–86, 2005.

M. Ludwig and U. Hustadt. Fair monodic temporal reasoning. In Proc. ARW’08, 2008a.

M. Ludwig and U. Hustadt. Implementing a fair monodic temporal logic prover. 2008b. Submitted.

1http://www.csc.liv.ac.uk/˜michel/software/tspass/

22

Classification of Quasigroup-structures with respect to their
Cryptographic Properties

Quratul-ain Mahesar⋆ and Volker Sorge†
⋆School of Computer Science, University of Birmingham

Edgbaston, Birmingham
B15 2TT, United Kingdom

{Q.Mahesar|V.Sorge}@cs.bham.ac.uk

1 Introduction

Computationally simple but cryptographically strong ciphers play an important role for efficient Computer Security tasks.
It is suggested in (Knapskog, 2008) that there is a need for simple cryptographic primitives to implement security in
an environment with end users connected with terminals having limited storage and processing power. Constructing
ciphers using the algebraic structures of Quasigroup leadsto particular simple yet efficient ciphers. Quasigroups are
structures very similar to groups with the primary difference that they are in general not associative. Stream ciphers can be
constructed from quasigroups using a permutation based scrambling technique (Maruti, 2006). For security considerations
the main goal of the scrambler is to maximize the entropy of the produced output. Depending on the quasigroup used the
cryptographic strength of the cipher can vary significantly. In order to find strong ciphers quasigroups have to be generated
and the resulting ciphers are tested with respect to standard statistical methods. Quasigroups are then categorised as
cryptographically strong or weak according to the outcome of these tests.

In our research we aim to tackle the problem from a different angle. We consider quasigroups that have already
been categorised with respect to their cryptographic properties. We then automatically classify these quasigroups with
respect to their algebraic properties, with the goal to identify properties common to cryptographically strong quasigroups
in order to use them for a goal directed construction of quasigroups for strong ciphers. Our work builds on previous
work (Sorge et al., 2008) that was concerned with the generation of classification theorems in quasigroup theory. A
bootstrapping algorithm was designed to successively refine a classification of quasigroups of a given finite order by
constructing algebraic invariants using machine learningtechniques, until a full classification into non-equivalent classes
was achieved. The procedure incorporated a set of diverse reasoning techniques, including first order resolution theorem
proving, model generation, satisfiability solving and computer algebra methods, and was successfully applied to produce
a number of novel classification theorems for loops and quasigroups with respect to isomorphism and isotopism.

2 Quasigroup Ciphers

Following (Pflugfelder, 1990), a quasigroupQ can be defined as a group of elements(1, 2, 3...n) along with a multiplica-
tion operator ‘∗’, such that for every elementx, y ∈ Q, there exists a unique solutionz ∈ Q such that the following two
conditions hold (1)x ∗ a = z, and (2)y ∗ b = z, where the elementsa, b andz belong to the QuasigroupQ.
These conditions ensure that a quasigroup can also be viewedas a Latin square; that is, each element ofQ occurs exactly
once in each row and each column of the multiplication table defining ‘∗’. Conditions (1) and (2) essentially postulate the
existence of unique left and right divisors for each elementin Q. This gives rise to an explicit definition of left and right
division operations:

Let (Q, ◦) be a Quasigroup, then two operations\ and/ on Q can be defined as:
(3) x ∗ (x\y) = y and x\(x ∗ y) = y (4) (y/x) ∗ x = y and (y ∗ x)/x = y

The following is an example of a QuasigroupQ of order4 given in terms of multiplication tables for all three operations:

* 1 2 3 4
1 2 3 1 4
2 4 1 3 2
3 3 4 2 1
4 1 2 4 3

\ 1 2 3 4
1 3 1 2 4
2 2 4 3 1
3 4 3 1 2
4 1 2 4 3

/ 1 2 3 4
1 4 2 1 3
2 1 4 3 2
3 3 1 2 4
4 2 3 4 3

23

Quasigroup Encryption

We can now define a quasigroup cipher in terms of encryption and decryption function following (Dimitrova and Markovski,
2004). Let(Q, ∗, \, /) be a Quasigroup anda1, a2, a3, ..., an ∈ Q. We define the encryption functionE with respect to
the keya ∈ Q as

Ea(a1, a2, a3, ..., an) = b1, b2, b3, ...bn

whereb1, b2, b3, ..., bn ∈ Q are computed by (i)b1 = a ∗ a1, and (ii)bi = bi−1 ∗ ai, for i = 2, . . . , n.

Quasigroup Decryption

The decryption process is similar to the encryption but the left division operation ’\’ is used as operation. The decryption
functionD is then define as:

Da(a1, a2, a3, ...an) = e1, e2, e3...en

where the original plaintext is computed by (i)e1 = a\a1, and (ii)ei = ai−1\ai, for i = 2, . . . , n.

3 Examining Cryptographic Properties

The cryptographic properties of quasigroup ciphers are primarily determined by subjecting the resulting pseudo-random
sequences to statistical tests for randomness. In (Markovski et al., 2004) eight bespoke statistical tests are performed by
random walk on torus examining the properties of strings obtained from specific quasigroup transformations. This can
provide an empirical classification of Quasigroups with respect to their cryptographic hardness. However, exhaustiveclas-
sification of quasigroups is prohibitive even for small sizes of quasigroups due to the sheer number of different structures
to consider. For example, there are over2 · 1030 different isomorphism classes of quasigroups of order10 (McKay et al.,
2004). Moreover, (Markovski et al., 2004) shows that quasigroups belonging to the same isomorphism class can behave
differently with respect to their cryptopgraphic properties and therefore considering quasigroups up to isomorphismwould
not be enough. In (Koscielny, 2002) a system for generating quasigroups for cryptographic applications is presented giving
a set of procedures implemented in Maple 7. It is also stated that practical ciphers should be constructed using quasigroups
of order between32 and256. Since the generation of structures of this size is non-trivial, the construction of larger quasi-
groups is done via composition of smaller ones and cryptographic properties are lifted from the smaller to larger structures.
Nevertheless the final cryptographic hardness can only be ensured using randomness test.

The goal of our work is to use these results as a bases on which to start an algebraic classification process, establishing
properties that discriminate small quasigroups with good cryptographic properties from those with poor cryptographic
behaviour using the automated bootstrapping approach from(Sorge et al., 2008). Once invariants of this nature have been
established they have to be examined with respect to their behaviour under compositions of quasigroups. After appropriate
relationships between algebraic and cryptographic properties can be established they can subsequently be exploited to aid
the modular construction of larger quasigroups for more effective ciphers.

References

V. Dimitrova and J. Markovski. On quasigroup sequence random generator.Proceedings of the 1st Balkan Conference in
Informatics, pages 393–401, 2004.

S. J. Knapskog. New cryptographic primitives (plenary lecture). 7th Computer Information Systems and Industrial Man-
agement applications, 2008.

C. Koscielny. Generating quasigroups for cryptographic applications. Int. J. Appl. Math. Comput. Sci., 12(4):559–569,
2002.

S. Markovski, D. Gligoroski, and J. Markovski. Classification of quasigroups by random walk on torus.IJCAR workshop
on Computer Supported mathematical Theory Development, 2004.

Satti Maruti. A quasigroup based cryptographic system.CoRR, 2006.

Brendan D. McKay, Alison Meynert, and Wendy Myrvold. Small Latin Squares, Quasigroups and Loops. Preprint, 2004.

Hala O. Pflugfelder.Quasigroups and Loops: Introduction, volume 7 ofSigma Series in Pure Mathematics. Heldermann
Verlag, Berlin, Germany, 1990.

V. Sorge, S. Colton, R. McCasland, and A. Meier. Classification results in quasigroup and loop theory via a combination
of automated reasoning tools.Comment.Math.Univ.Carolinae, 49(2):319–339, 2008.

24

Symmetry Reduction of Partially Symmetric Systems

Christopher Power
Department of Computing Science

University Of Glasgow
power@dcs.gla.ac.uk

Alice Miller
Department of Computing Science

University Of Glasgow
alice@dcs.gla.ac.uk

Abstract

Previous research into symmetry reduction techniques have shown them to be successful in combatting the state-space
explosion problem. We provide a brief overview of a fully automated technique for the application of symmetry reduction
to partially symmetric systems.

1 Introduction
As software becomes more complex the need for development techniques capable of uncovering errors at design time
is critical. A model checker [2] accepts two inputs: a specification P , described in a high level formalism and a set of
testable properties, φ. A model checker generates and exhaustively searches a finite state model M(P) to confirm if a
property holds, or conversely, report a violation of the system specification. The intuition being, bugs found in the model
of the system will reveal bugs in the system design. However, the application of model checking is limited as the state-
space of even moderately sized concurrent systems can be too large for state-of-the art machines to exhaustively search.
Although verification algorithms have a linear run time complexity, this is offset as the number of states in a model grows
exponentially as parameters are added. Consequently, research often focuses on techniques to reduce the impact of the
state-space explosion.

One such technique is symmetry reduction [1]. If a concurrent system is comprised of many replicated processes
then checking a model of the system may involve redundant search over equivalent, or symmetric, areas of the state-
space. Symmetry reduction is concerned with exploiting these underlying regularities by only storing one representative
of a structure. For highly symmetric systems, this can result in a reduction factor exponential to the number of system
components. However, standard symmetry reduction techniques often discount many symmetries. These symmetries are
discounted due to a process having a transition that distinguishes it from other processes while all other behaviour is
shared [4].

1.1 Partial Symmetry Reduction
A system can be considered partially symmetric if the majority of updates can be performed by most processes in a specific
context. Therefore, a large degree of similarity can be observed between the processes in a system. In an attempt to exploit
these symmetries it is better to represent all similar behaviour between processes as a single program and annotate the
exceptions.

An annotation is a partition of the set of process indices [6]. A state is marked with an annotation if it lies on a path
containing a transition that distinguishes two components. The annotation places the violating process indices into separate
partitions. Upon further exploration of the path only processes in the same partition may be permuted. This can lead to the
situation where a state is reached along two paths: one with many asymmetric transitions and the other containing only
symmetric transitions. In order to make the largest reduction in the state space, it is assumed the state was reached through
the symmetric path. The asymmetric state is said to have been subsumed by the symmetric one. This leads to a reduction
technique only suitable for reachability analysis as it creates a quotient structure that is not bisimulation-equivalent to the
original.

1.2 Detecting Partial Symmetries
A system comprised of n processes can be abstractly represented as a state transition diagram where local states are nodes
and local transitions edges. These transitions have the form

A
φ,Q−−→ B

25

The transition predicate φ takes two variables as input: a state s defining the context in which the edge is to be executed
and a process id i. The predicate φ(s, i) returns the value true if in state s, process i is allowed to make a transition from
local state A to local state B. Predicate φ can be written in any logical formalism that allows for basic arithmetic operation
to be conducted on state and index variables. Q defines the partitioned set of permutations that preserve predicate φ. It is
critical for an adaptive symmetry reduction algorithm dealing with a partially symmetric system to be capable of finding
Q, thus enabling states to be annotated.

Current approaches to the reduction of partially symmetric systems suggest symmetries be specified by the user, man-
ually or with the aid of a proposition solver [6]. This hinders reduction by adding the overhead of repetitive computation
and requires the user to be an expert in the technique. For symmetry reduction to be viable it must be possible to calculate
the state annotations without explicitly building the state space or placing the onus on the user. Therefore, we propose a
technique capable of calculating Q directly from the source text of a program.

It has been establish [1] that there is a correspondence between symmetries in a model’s underlying communication
structure and those in the subsequently generated Kripke structure. To determine the symmetry present in a system, a
structure called a static channel diagram [3], a graphical representation of potential communication within the system, can
be generated directly from a model specification. Typically the static channel diagram of a system is a small graph and
symmetries of this graph can be efficiently found.

Symmetry of the static channel diagram induces symmetry in the model corresponding to the system, provided certain
conditions are satisfied. These are generally conditions on assignments to process ID sensitive variables and can be
efficiently checked. The set of strictly valid symmetries can therefore be calculated and tagged to each individual update
in the high level system description [3]. These tags represent the values of i for which predicate φ(s, i) returns true. If the
update is enabled in the context of state s

This information can be used by an adaptive symmetry reduction algorithm [6] to explore a partially symmetric state
space. From an initial state s the algorithm attempts to generate and explore the reachable part of the state space. Successor
states of s are found by iterating through all edges valid in the context of state s. Due to the tags, information regarding
the solution to φ(s, i) is available. However, as we are dealing with a partially symmetric system, two slightly differing
processes may have the same available update. The update common to these processes will be tagged with a different
set of personal symmetries. Therefore, at each state, tags can be concatenated for identical edge updates regardless of
the process that initiates them. This allows for the largest possible value of Q to be returned and the coarsest annotation
appended to the state. The algorithm continues by reconciling any symmetry violations so only states not subsumed by
others are explored.

2 Conclusion
The use of an adaptive symmetry reduction algorithm allows for potentially larger reductions in the state space of a partially
symmetric system to be achieved. Encouraging experimental results for this technique have been shown using the SMC
model checker [5]. However, as with all current approaches, information regarding partial symmetries is assumed to be
known prior to reduction. The proposed technique would alleviate this issue by enabling annotations to be calculated
directly from the source text. This in turn allows the application of an adaptive symmetry reduction algorithm to be fully
automated.

References
[1] E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry reductions in model checking. In Computer Aided

Verification, volume 1427 of Lecture Notes in Computer Science, pages 147–158. Springer, 1998.

[2] E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. Springer, 1999.

[3] A.F. Donaldson, A. Miller, and M. Calder. Finding symmetry in models of concurrent systems by static channel
diagram analysis. Electronic Notes in Theoretical Computer Science, 128(6):161–177, 2005.

[4] E.A. Emerson and R.J. Trefler. From asymmetry to full symmetry: New techniques for symmetry reduction in model
checking. In Conference on Correct Hardware Design and Verification Methods, pages 142–156. Springer, 1999.

[5] A.P. Sistla, V. Gyuris, and E.A. Emerson. SMC: a symmetry-based model checker for verification of safety and
liveness properties. ACM Transactions on Software Engineering and Methodology (TOSEM), 9(2):133–166, 2000.

[6] T. Wahl. Adaptive symmetry reduction. In Computer Aided Verification, volume 4590 of Lecture Notes in Computer
Science, page 393. Springer, 2007.

26

Solving Mutilated Problems

Ramin Ramezani and Simon Colton
?Computational Creativity Group, Department of Computing, Imperial College, London, UK

raminr,sgc@doc.ic.ac.uk

1 Introduction and Motivation
Constraint solving, theorem proving and machine learning provide powerful techniques for solving AI problems. In all
these approaches, information known as background knowledge needs to be provided, from which the system will infer
new knowledge. Often, however, the background information may be obscure or incomplete, and is usually presented in
a form suitable for only one type of problem solver, such as a first order theorem prover. In real world scenarios, there
may not be enough background information for any single solver to solve the problem, and we are interested in cases
where it may be possible to combine a machine learner, theorem prover and constraint solver in order to best use their
incomplete background knowledge to solve the problem. We present here some preliminary experiments designed to test
the feasibility of such an approach. We concentrate on the scenario of a police investigation of a murder case. In such a
scenario, there may be previous solved cases which bear resemblance to the current case. Given that the previous cases
were solved, one can imagine employing a machine learning system to learn a set of rules which can classify suspects
in a case as either guilty or not guilty. The rule set could then be applied to the current case. If only one person was
classified as guilty, this would solve the problem. While this reasoning may not be sound, it would at least help to identify
a prime suspect. In addition, in the current case, there may be information describing the particulars of the case, arising
from physical evidence, motives, alibis, general knowledge, etc. If so, it may be possible to define a set of constraints that
the guilty suspect must satisfy, and then use a constraint solver to rule out suspects. If only one suspect satisfies all the
constraints, again the problem is solved. Alternatively, the same information about the case may be used as axioms in a
theorem proving setting. In such a setting, one could attempt to prove a set of conjectures, each one stating that a particular
suspect is guilty/not guilty. If only one suspect is proved to be guilty (or alternatively, it is possible to prove that all but
one suspects are not guilty), then the problem is once again solved.

2 The Mutilated Aunt Agatha Problem
To show the feasibility of using three different types of solvers to attack the same problem, we looked at the “Who Killed
Aunt Agatha” problem from the TPTP library (i.e., problem PUZ001 in (Sutcliffe and Suttner, 1998), originally from
(Pelletier, 1986)). The background knowledge for this problem is stated in English as follows: Someone who lives in
Dreadbury Mansion killed Aunt Agatha. Agatha, Butler and Charles live in Dreadbury Mansion and are the only people
who live therein. A killer always hates his victim and is never richer than the victim. Charles hates no one that Aunt
Agatha hates. Agatha hates everyone except the Butler. The Butler hates everyone not richer than Agatha. The Butler
hates everyone Aunt Agatha hates. No one hates everyone and Agatha is not the butler. This problem is usually posed as
a logic puzzle for theorem provers, where the aim is to prove that Aunt Agatha killed herself. However, in a more general
setting, the answer wouldn’t be given, i.e., we would be asked to find out who killed Aunt Agatha. With this tweak, we
can make it amenable to the three different solving approaches as described above.

To show that – in principle – such problems are amenable to a machine learning approach, we firstly invented some
data which embodies the axioms of the problem. In particular, we wrote down the details of five case studies with three
people in, one of whom had been murdered. We specified who was richer than who, who hated who, who was killed and
who the murderer had turned out to be. This was done in such a way that (a) there was a direct mapping from Agatha,
Butler and Charles to one of the people in the case study, where the Agatha character was always killed and (b) all the
axioms from the problem statement about who could possibly hate who, etc., were upheld. In the first instance, the data
reflected the fact that the murderer and the victim were always the same person – the Agatha character. This data was
produced in the syntax of the Progol machine learning system (Muggleton, 1995). We ran Progol and it hypothesised the
rule that killed(A,A). Given that Progol’s output is generated in Prolog syntax, it was very easy to check that this profile
applied to only Aunt Agatha in the current case. To make matters more interesting, in the second instance, we generated
the data to still satisfy the axioms, but we varied the murderer/victim combination. In this instance, Progol hypothesised
the following rule: killed(A,B) ← hates(A,B),¬richer(A,B). Again, when we applied this to the data about the
current case, only Aunt Agatha fitted the profile.

27

To show that such problems are amenable to a constraint solving approach, we wrote a constraint satisfaction problem
(CSP) in the syntax of the Sicstus Prolog CLPFD module (Carlsson et al., 1997). In brief, the CSP had one variable which
could take one of three values representing Agatha, Butler and Charles respectively, and was constrained as per the axioms
of the problem. Sicstus solved the problem in such a way that it ruled out Butler and Charles, but could not rule out
Agatha, hence solving the problem of who killed Aunt Agatha. Finally, we specified six conjectures to the Otter theorem
prover (McCune, 1994). The axioms in the conjectures represented the information from the problem statement, and the
conjectures were respectively: Agatha killed/didn’t kill Agatha; Butler killed/didn’t kill Agatha; Charles killed/didn’t kill
Agatha. Otter successfully proved that Agatha killed Agatha, and that Butler and Charles didn’t kill Agatha. If failed to
prove any of the other conjectures. This shows that such whodunnit problems are amenable to solution by theorem provers.

The Aunt Agatha problem becomes more interesting if we remove information from each of the three problem state-
ments in such a way that neither Progol, Sicstus nor Otter can solve the problem. We can then investigate methods for
combining these reasoning systems in such a way that a solution can still be found. Our experiments are still preliminary,
and we plan in future to investigate many different ways to mutilate the problem, yet still solve it via a combination of
systems. So far, we have only investigated one opportunity for combining different reasoning systems. In particular, from
the theorem proving and CSP problems, we removed the axiom that “no-one hates everyone”. This is crucial to solving the
problem, because without it, Sicstus cannot rule out Butler as the killer, and Otter can similarly prove that both Butler and
Agatha killed Agatha. We investigated whether the data from the machine learning approach could be used to recover the
missing axioms. In particular, we employed the HR automated theory formation (Colton, 2002) to form a theory about the
previous case studies. Details are omitted, but using HR’s forall, exists, negate and compose production rules,
HR made the conjecture that in all case studies: 6 ∃x s.t. person(x)∧ (∀ y, (person(y)→ hates(x, y))). This states that,
in all cases, there is no person who hates everyone. Hence we see that HR has recovered the missing axiom, which could
be used by the constraint solver or prover to solve the problem.

3 Future Work
We are building a system which is able to take a general problem statement, such as a whodunnit problem and translate it
to the syntax of various solvers such as Sicstus, Otter and Progol. Moreover, in situations where none of the solvers are
initially successful, the system will be able take the partial solutions from each solver and see whether these can be used
together to fully solve the problem. In addition, the system will employ a theory formation program such as HR to discover
potential axioms exhibited by the data which enable a solution to be found. This will give us a platform to investigate more
exotic combinations of reasoning systems which are able to solve ill-formed problems. For instance, the axioms provided
to a theorem prover could be used to generate artificial data to supplement the given data in a machine learning problem,
hopefully enabling the learner to solve the problem. We believe that such combined AI systems will enable more powerful,
more flexible solvers to be built and employed.

Acknowledgements
This work is funded by EPSRC grant EP/F036647. We would like to thank John Charnley and Murray Shanahan for their
input into the mutilated Aunt Agatha problem.

References
M Carlsson, G Ottosson, and B Carlson. An open-ended finite domain constraint solver. In Proc. Programming Languages:

Implementations, Logics, and Programs, 1997.

S Colton. Automated Theory Formation in Pure Mathematics. Springer-Verlag, 2002.

W McCune. Otter 3.0 Reference Manual and Guide. Technical Report ANL-94/6, Argonne National Laboratory, Argonne,
USA, 1994.

S Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–286, 1995.

F Pelletier. Seventy-five Problems for Testing Automatic Theorem Provers. Journal of Automated Reasoning, 2(2):191–
216, 1986.

G Sutcliffe and C Suttner. The TPTP problem library: CNF release v1.2.1. Journal of Automated Reasoning, 21(2):
177–203, 1998.

28

Diagrammatic Reasoning for Software Verification

Matt Ridsdale, Mateja Jamnik⋆

⋆University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue

Cambridge CB3 0FD, U.K.
mer39@cam.ac.uk, mj201@cl.cam.ac.uk

Nick Benton, Josh Berdine†
†Microsoft Research Cambridge

Roger Needham Building
7 JJ Thomson Avenue

Cambridge CB3 0FB, U.K.
nick@microsoft.com, jjb@microsoft.com

1 Introduction

Diagrams have historically been seen as informal aids to understanding, rather than rigorous mathematical tools. However
they are widely used in mathematics teaching and informal communication. Recent work has challenged the historical
view, with formal diagrammatic reasoning systems implemented for geometry, arithmetic, and other areas of mathematics.
(Mumma, 2009; Jamnik, 2001; Barker-Plummer and Bailin, 1997).

This work is about formalising diagrams for program verification. Program verification using symbolic logic is a
well-developed field, but anecdotes suggest that diagrams are widely used by researchers in informal reasoning and com-
munication about the subject. Typically, a “boxes and arrows” diagram is used to indicate the input state to the program,
and modifications to this diagram trace the program’s execution. Humans can informally “verify” an algorithm this way
by satisfying themselves that it works correctly for some typical input. We therefore specify a formal semantics of box-
and-arrow diagrams and define operations corresponding to the program commands of our language.

1.1 Why diagrams?

As compared to symbolic logic, diagrammatic languages can be seen as domain-specific, while symbolic logics such as
predicate logic are generic. This specificity enables domain knowledge to be encoded in the representation, which allows
diagrams to concisely capture information which would require a verbose symbolic description, and can support inference
by decreasing the proof search space. Diagrams offer other advantages too: diagrammatic proofs can be easier for humans
to understand, and they can support the inference of generalconclusions by reasoning about specific examples.

Our system will be used to investigate whether the above advantages can be exploited in this problem domain.

2 Reasoning With Diagrams

We intend to make use of diagrams in at least three aspects of program verification: writing the program specifications,
deciding entailment problems between program states, and reasoning about programs. We briefly describe an approach to
each of these.

α0

.

x↓
α1

.
α2

nil

Figure 1: Examples of what our diagrams look like diagrams. This diagram represents a linked list.

Fig. 1 shows some examples of the kinds of diagrams we are using. We define a syntax and semantics of diagrams such
that each square represents a memory location, which can hold values (αi or nil) or pointers to other memory locations.
Adjacent squares represent adjacent cells in memory, and the roman letters outside of the squares represent program
variables, which store memory locations or values. Thus each diagram represents a set of memory states.

The semantics of programs can be specified as a partial function from sets of program states to sets of program states,
as in the well-known notion ofHoare triples. The Hoare triple{P} prog {Q} asserts that ifprog is run in a state in which
the predicateP holds, and ifprog terminates, then the predicateQ holds in the resulting state. In our system,P andQ
will be replaced with diagrams describing sets of states, enabling us to write program specifications using diagrams.

29

In software verification, there are two levels of inference that can be performed: entailments between static program
states, and reasoning about the effects of program commands. For example in the Hoare triple

{x = 4 ∧ y = x} z := y {x = 4 ∧ y = x ∧ z = 4}

we must first deduce that(x = 4 ∧ y = x ⇒ y = 4) before we can deduce that the triple holds. This can be accomplished
with diagrams by defining operations which strengthen, weaken or preserve a diagram’s meaning. An example was given
in Ridsdale et al. (2008) of a diagrammatic proof of entailments between program states (Fig. 2). Fig. 2 shows a pair of
lists which are implicitly connected, as the valuey at the end of the first list equals the address of the head of thesecond
list. A diagrammatic proof that the lists are connected needconsist of only a single operation, replacing both instances of
y with a pointer. We argue this is more intuitive than the corresponding symbolic proof in separation logic.

nil. . .

x α α

. . .
x

nil. . .

α α

. . .
y β β1 n

y

1 m

β

1 m

nβ1

Figure 2: Alist segment and alist, which are implicitly connected.

3 Reasoning About Programs

Our approach to reasoning about programs is based on Jamnik (2001), on diagrammatic proofs in arithmetic, in which a
diagrammatic proof consists of a program which acts on diagrams. We have a set of diagrammatic operations correspond-
ing to commands in our programming language, and use those tomodel the program to be verified with a program on
diagrams. The hope is that a way can be found to do this such that the resulting diagrammatic program is easier to verify
than the original program, but we have not yet been able to determine that this will be the case.

References

Dave Barker-Plummer and Sidney C. Bailin. The role of diagrams in mathematical proofs.Machine Graphics and Vision,
6(1):25–56, 1997.

Mateja Jamnik.Mathematical Reasoning with Diagrams: From Intuition to Automation. CSLI Press, Stanford, CA, USA,
2001.

John Mumma. Proofs, pictures, and euclid. http://www.contrib.andrew.cmu.edu/ jmumma/list.html.Synthese (To appear),
2009. URLhttp://www.contrib.andrew.cmu.edu/ jmumma/list.html.

Matt Ridsdale, Mateja Jamnik, Nick Benton, and Josh Berdine. Diagrammatic reasoning in separation logic. InDiagram-
matic Representation and Inference, 5th International Conference, Herrsching, Germany. Proceedings, volume 5223 of
Lecture Notes in Computer Science, pages 408–411. Springer, 2008.

30

Semantic Embedding of Promela-Lite in PVS

Shamim H Ripon∗ Alice Miller
∗
Department of Computing Science

University of Glasgow
{shamim,alice}@dcs.gla.ac.uk

1 Introduction

Promela-Lite [3] is a specification language which capturesthe essential features of Promela [4]. Unlike Promela a full
grammar and type system of the language, and Kripke structure semantics of Promela-Lite specification have been defined
and used to prove the correctness of automatic symmetry detection techniques used in Promela.

Mechanical verification is widely used as a tool to verify theproperties of a language. It allows one to identify
potential flaws in the language and gives confidence in the language definition. Theorem provers are heavily used as a tool
to mechanically verify language properties. The language is to be embedded into the theorem prover for this purpose. Here
we outline work in progress to embed Promela-Lite syntax andsemantics into the general purpose theorem prover PVS [5]
and use these embeddings to interactively prove both consistency with the syntax/semantics definitions and language
properties.

2 Promela-Lite

Promela-Lite includes the core features of Promela including parameterised processes, channels (first class) and global
variables, but omits some features such as rendez-vous channels, enumerated and record types, and arrays. The syntax
of Promela-Lite is specified by using the standard BNF form [1] summarised in Figure 1(a). The language has primitive
datatypes and channel types of the formchan{T}, whereT is comma separated list of types (details in [3]). A Promela-Lite
specification consists of a series of channel and global variable declarations, one or more proctypes and aninit process.
Part of Promela-Lite syntax is shown as a production rule in Figure 1(b), where only the syntax ofexpr is presented.

〈type〉::= int
| pid
| 〈chantype〉
| 〈typevar〉

〈chantype〉 ::= 〈recursive〉? chan {〈type − list , ‘,′ 〉}
〈recursive〉 ::= rec 〈typevar〉
〈typevar〉 ::= 〈name〉

(a) Promela-Lite type systax

〈expr〉 ::= 〈name〉
| 〈number〉
| pid
| null
| len(〈name〉)
| (〈expr〉)
| 〈expr〉 ◦ 〈expr〉 (where ◦ ∈ {+,−, ∗})

(b) Syntax forexpr

Figure 1: Promela-lite syntax

A Promela-Lite specification is considered to be well-typedif its statements and declarations are well-typed according
to the typing rules. The typing rules of Promela-Lite are defined by following the notation used in [2]. For example, the
typing rule for〈expr〉 ◦ 〈expr〉 in Figure 1(b) is defined as follows:

Γ ⊢ e1 : int Γ ⊢ e2 : int ◦ ∈ {+,−, ∗}
Γ ⊢ e1 ◦ e2 : int

The semantics of a Promela-Lite specificationP is denoted as a Kripke structureM. If P is well-typed according to
the typing rules then the Kripke structureM is well-defined. A functionevalp,i is defined that evaluates an expressione
for a processi at states, whereproctype(i) = p. For the syntax ofexpr mentioned earlier,evalp,i is used to evaluate the
expressions at a given state as follows (details in [3]):

evalp,i(s, e1 ◦ e2) = evalp,i(s, e1) ◦ evalp,i(s, e2) where ◦ ∈ {+,−, ∗}
∗The author is supported by EPSRC grant EP/E032354/1

31

3 PVS Embedding

Promela-Lite

Syntax

Semantics

Properties

PVS
Define

Properties
Prove Properties

Figure 2: Mechanisation steps

An embedding is a semantic encoding of one
specification language into another. There are
two main variants for the embeddings:shallow
anddeepembeddings [6]. In a shallow embed-
ding, a program or a specification is translated
into a semantically equivalent representation of
the host logic. In a deep embedding, the lan-
guage and the semantics are fully formalised
in the logic of the specification language. This
allows reasoning about the language itself, not
just concrete programs.

Our mechanisation is based on deep em-
bedding. Figure 2 briefly outlines the steps that
we follow to mechanise Promela-Lite in PVS.
The syntax of the language is defined using the
abstract datatype mechanism of PVS which allows recursive definitions over the terms of the language. The definition is
similar to the traditional use of BNF to define the syntax. Thedatatype definition enumerates constructors, lists their pa-
rameters, and provides recogniser predicates. Part of the datatype definition to define the syntax ofexpr (〈expr〉 ◦ 〈expr〉)
is shown here:

expr_syntax : DATATYPE
BEGIN
plus (e1:expr_syntax, e2:expr_syntax) : plus?
minus(e1:expr_syntax, e2:expr_syntax) : minus?
star (e1:expr_syntax, e2:expr_syntax) : star?
...

END expr_syntax

The semantics are defined recursively by following the original definitions. Care has to be taken to ensure that these
definitions follow the typing rules. Following the definitions of how expressions are evaluated, a recursive definition is
given to the semantics, part of which is shown as follows:

sem(e : expr_syntax, env: environment, s : STATE): RECURSIVE VALUE =
CASES e OF
plus(e1,e2) : integer_value(intvalue(sem(e1,env,s)) + intvalue(sem(e2,env,s))
...

ENDCASES MEASURE BY <<

After embedding the semantics, the properties to be proved will be defined in the form of theorems and supporting
lemmas, and proved using the interactive theorem prover.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers – Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] Luca Cardelli.The Computer Science and Engineering Handbook, chapter Type Systems, pages 2208 – 2236. CRC
Press, Boca Raton, 1997.

[3] Alastair F. Donaldson and Alice Miller. Automatic symmetry detection for promela.Journal of Automated Reasoning,
41:251–293, 2008.

[4] Gerard J. Holzman.The SPIN MODEL CHECKER: Primer and Reference Manual. Addison-Wesley, 2003.

[5] Sam Owre, J.M. Rushby, and N Shankar. PVS: A Prototype Verification System. In Deepak Kapur, editor,CADE’92,
volume 607 ofLNAI, pages 748–752. Springer-Verlag, June 1992.

[6] R. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert, and J. van Tassel. Experience with embedding hardware description
languages in HOL. InTPCD’93, pages 129–156. North-Holland, 1993.

32

The Ackermann Approach for Modal Logic, Correspondence Theory
and Second-Order Reduction: Extended Abstract

Renate A. Schmidt
⋆School of Computer Science, The University of Manchester

renate.schmidt@manchester.ac.uk

Abstract

We introduce improvements for second-order quantifier
elimination methods based on Ackermann’s Lemma and
investigates their application in modal correspondence
theory. In particular, we define refined calculi and pro-
cedures for solving the problem of eliminating quanti-
fied propositional symbols from modal formulae. We
prove correctness results and use the approach to compute
first-order frame correspondence properties for modal ax-
ioms and modal rules. Our approach can solve two new
classes of formulae with wider scope than existing classes
known to be solvable by second-order quantifier elimina-
tion methods.

1 Second-Order Quantifier Elimi-
nation

An application of second-order quantifier elimination is
correspondence theory in modal logic. Propositional
modal logics, when defined axiomatically, have a second-
order flavour, but can often be characterized by classes
of model structures which satisfy first-order conditions.
Frequently, with the help of second-order quantifier elim-
ination methods, these first-order conditions, called frame
correspondence properties, can be automatically derived
from the axioms. For example, using the standard rela-
tional translation method the modal axiomD = ∀p[�p →
♦p] translates to this second-order formula:

∀P∀x[∀y[R(x, y) → P (y)] (1)

→ ∃z[R(x, z) ∧ P (z)]].

This formula is equivalent to a first-order formula, namely
∀x∃y[R(x, y)], and is the first-order correspondence
property of axiomD. It can be derived automatically with
a second-order quantifier elimination method by eliminat-
ing the second-order quantifier∀P from (1).

Several second-order quantifier elimination meth-
ods exist. These methods belong to two categories:
(i) substitution-rewrite approaches which exploit mono-
tonicity properties, and (ii) saturation approaches, which
are based on exhaustive deduction of consequences.
Methods following the substitution-rewrite approach in-
clude the Sahlqvist-van Benthem substitution method for
modal logic, the DLS algorithm introduced by Szalas

in (1993) and together with Doherty and Lukaszewicz
in (1997), the SQEMA algorithm for modal logic intro-
duced by Conradie, Goranko and Vakarelov in (2006).
Methods following the saturation approach include the
SCAN algorithm of Gabbay and Ohlbach (1992), and hi-
erarchical resolution of Bachmair, Ganzinger and Wald-
mann (1994).

Here, I am interested in methods using the substitution-
rewrite approach to second-order quantifier elimination.
In particular, my focus is on methods that are based on a
general substitution property found in Ackermann (1935).
This result, calledAckermann’s Lemma, tells us when
quantified predicate symbols are eliminable from second-
order formulae. For propositional and modal logic Ack-
ermann’s Lemma can be formulated as follows. In any
model,

∃p[(α → p) ∧ β(p)] is equivalent to βp
α, (2)

provided these two conditions hold: (i)p is a proposi-
tional symbol that does not occur inα, and (ii) p occurs
only negatively inβ. The formulaβp

α denotes the formula
obtained fromβ by uniformly substitutingα for all oc-
currences ofp in β. This property is also true, when the
polarity ofp is switched, that is, all occurrences ofp in β
are positive and the implication in the left conjunct is re-
versed. Applied from left-to-right the equivalence (2) of
Ackermann’s Lemma eliminates the second-order quanti-
fier ∃p. In fact, all occurrences ofp are eliminated. This
idea can be turned into an algorithm for eliminating exis-
tentially quantified propositional symbols. I refer to this
algorithm as thebasic Ackermann algorithm.

2 A Refined Ackermann Approach

Based on the basic Ackermann algorithm I introduce a
refined second-order quantifier elimination approach for
modal logic. Like the SQEMA algorithm, rather than
translating the modal axiom into second-order logic and
then passing it to a second-order quantifier elimination
method, the approach performs second-order quantifier
elimination directly in modal logic. Only in a sub-
sequent step the translation to first-order logic is per-
formed. For example, given the second-order modal for-
mula∀p[�p → ♦p], the approach first eliminates∀p from
the formula and returns the formula♦⊤. Subsequently

33

this is translated to first-order logic to give the expected
seriality property∀x∃y[R(x, y)].

The approach is defined for propositional multi-modal
tense logics, more precisely, the logicKn

(m)(
`, π+) with

forward and backward looking modalities, nominals, and
second-order quantification over propositional symbols.

A main motivation for this work has been to gain a
better understanding of when quantifier elimination meth-
ods succeed, and to pinpoint precisely which techniques
are crucial for successful termination. I define two new
classes of formulae for which the approach succeeds:
the classC and an algorithmic version calledC>. The
classes define normal forms for when Ackermann-based
second-order quantifier elimination methods succeed.C
and C> subsume both the Sahlqvist class of formulae
and the class of monadic-inductive formulae of Goranko
and Vakarelov (2006). I present minimal requirements
for successful termination for all these classes. This al-
lows existing results of second-order quantifier elimina-
tion methods to sharpened and strengthened.

I consider two applications of the approach:

(i) Computing correspondence properties for modal
axioms and modal rules. For example, equiva-
lently reducing axiomD to the seriality property,
or equivalently reducing the modal rule�p/♦p to
∀x∃y∃z[R(x, y) ∧ R(z, y)].

(ii) Equivalently reducing of second-order modal prob-
lems. For example, the second-order modal formula
∀p∀q[�(p ∨ q) → (�p ∨ �q)] equivalent reduces
to ∀p[♦p → �p], or the axiomD equivalently re-
duces to♦⊤.

While the approach follows the idea of the basic Ack-
ermann algorithm and is closely related to the DLS algo-
rithm and the SQEMA algorithm, I introduce a variety of
enhancements and novel techniques.

First, which propositional symbols are to be eliminated
can be flexibly specified, and the approach is not lim-
ited to eliminating all propositional symbols. Second, in
order to be able to ensure effectiveness and avoid unin-
tended looping, the approach is enhanced with ordering
refinements. In the approach an ordering on the non-base
symbols (these are the symbols that we want to elimi-
nate) must be specified and determines the order in which
these symbols are eliminated. At the same time the or-
dering is used to delimit the way that the inference rules
are applied. It turns out, that the adoption of ordering
refinements allows for a more in-depth analysis of how
the inferences are performed and a better understanding
of the properties of the approach. Third, for reasons of
efficiency, and improved success rate, it is beneficial to
incorporate techniques for pruning the search space. A
general notion of redundancy is thus included. It is de-
signed so that it is possible to define practical simplifica-
tion and optimization techniques in a flexible way. Fourth,
the approach is defined in terms of calculi given by sets of

inference rules. This has the advantage that the approach
can be studied independently of practical issues such as
rule application order, strategies and heuristics. It allows
for a more fine-grained analysis of the computational be-
haviour of the approach and more general results can be
formulated.

3 Results

The following results have been obtained.

1. Any derivation in the approach is guaranteed to ter-
minate and the obtained formula is logically equiv-
alent to the input formula. This means the refined
modal Ackermann calculus is correct and terminat-
ing.

2. Any problem in the classC> is effectively and suc-
cessfully reducible by the rules of the approach using
some ordering.

3. For the subclassC of C>, the sign switching rule,
redundancy elimination are not needed, and the or-
dering is immaterial.

4. Whenever the approach successfully eliminates all
propositional symbols for a modal formulaα then
(a) ¬α is d-persistent and hence canonical, and
(b) the formula returned is equivalent toα.

5. All modal axioms equivalent to the conjunction of
formulae reducible to clauses inC andC> are ele-
mentary and canonical.

These results are improvements for substitution-rewrite
approaches based on Ackermann’s Lemma, and present
strengthenings of Sahlqvist’s theorem and the corre-
sponding result for monadic-inductive formulae.

The significance of the last result is that axioms that are
equivalent to first-order properties and are canonical can
be used to provide sound and complete axiomatizations
of modal logics.

4 Further details

For a full account of the approach and the results, I refer
to Schmidt (2008) and Chapter 13 in Gabbay et al. (2008).

References

D. M. Gabbay, R. A. Schmidt, and A. Szałas.Second-
Order Quantifier Elimination: Foundations, Computa-
tional Aspects and Applications. College Publications,
2008.

R. A. Schmidt. Improved second-order quantifier elimi-
nation in modal logic. InProc. JELIA’08, volume 5293
of LNAI, pages 375–388. Springer, 2008. The long ver-
sion is under review for publication in a journal.

34

Synthesising Tableau Decision Procedures

Renate A. Schmidt?
?University of Manchester

renate.schmidt@manchester.ac.uk

Dmitry Tishkovsky†
†University of Manchester

dmitry.tishkovsky@manchester.ac.uk

Abstract
We formalise sufficient conditions for synthesising sound, complete, and tableau decision procedures for a logic of

interest. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules
which can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which
is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined
first-order semantics then adding a general blocking mechanism produces a terminating tableau calculus. The process of
generating tableau rules can be completely automated and produces, together with blocking, an automated procedure for
generating tableau decision procedures for logics.

1 Synthesising Tableau Calculus
Our interest is the problem of automatically generating a tableau calculus for a given logic. We assume that the logic is
defined by a high-level specification of the formal semantics of the logic. Our aim is to turn this specification into a set
of inference rules that provide a sound and complete tableau calculus for the logic. In addition, for a decidable logic we
further want to generate a terminating calculus.

In previous work we have described a framework for turning sound and complete tableau calculi into decision pro-
cedures (Schmidt and Tishkovsky, 2008). The prerequisites in the framework are that the logic admits an effective finite
model property shown by a filtration argument, and that

(i) the tableau calculus is sound and constructively complete, and

(ii) a weak form of subexpression property holds for tableau derivations.

Constructive completeness is a slightly stronger notion than completeness. It means that for every open branch in a tableau
there is a model which reflects all the expressions (formulae) occurring on the branch. The subexpression property says
that every expression in a derivation is a subexpression of the input expression with respect to a finite subexpression closure
operator.

In order to be able to exploit the ‘automatic termination framework’ results in (Schmidt and Tishkovsky, 2008), our
goal is to generate tableau calculi that satisfy the prerequisites (i) and (ii). It turns out that provided that the semantics of
the logic is well-defined in a certain sense, the subexpression property can be imposed on the generated calculus. Crucial
is the separation of the syntax of the logic from the ‘extras’ in the meta-language needed for the semantic specification of
the logic. The process can be completely automated and gives, together with the unrestricted blocking mechanism and the
results in (Schmidt and Tishkovsky, 2007, 2008), an automated procedure for generating tableau decision procedures for
logics, whenever they have an effective finite model property with respect to a well-defined first-order semantics.

That the generated calculi are constructively complete has the added advantage that models can be effectively generated
from open, finished branches in tableau derivations. This means that the synthesised tableau calculi can be used for model
building purposes.

The method works as follows.

(a) The user defines the formal semantics of the given logic in a many-sorted first-order language so that certain well-
definedness conditions hold.

(b) The method automatically reduces the semantic specification of the logic to Skolemised implicational forms which are
then rewritten as tableau inference rules. These are combined with some default closure and equality rules.

The set of rules obtained in this way provides a sound and constructively complete calculus.

Theorem 1 There exists a procedure for synthesising a sound and constructively complete tableau calculus from a well-
defined specification of the semantics of the logic.

Under certain conditions it is possible to refine the rules of the calculus in order to reduce branching and redundancy in
the syntax of the calculus.

35

2 Synthesising Decision Procedures
If the logic can be shown to admit finite filtration, then the generated calculus can be automatically turned into a terminating
calculus by adding the unrestricted blocking mechanism from (Schmidt and Tishkovsky, 2007):

(ub):
x ≈ x, y ≈ y
x ≈ y | x 6≈ y .

Let t < t′, whenever the first appearance of term t′ in the branch is strictly later than the first appearance of term t. The
conditions that blocking must satisfy are:

(i) If t ≈ t′ appears in a branch and t < t′ then all further applications of rules which introduce new terms to formulae
containing t′ are not performed within the branch.

(ii) In every open branch there is some node from which point onwards before any application of a rule introducing a
new term all possible applications of the (ub) rule have been performed.

Theorem 2 If for every formula ϕ and model satisfying ϕ, there is a finite filtrated model satisfying ϕ, then extending the
tableau calculus which is synthesised in Theorem 1 with the (ub)-rule gives a terminating calculus.

This gives a nondeterministic decision procedure which can be turned into a deterministic decision procedure by using
appropriate search strategies that are fair.

3 Applications
The method can be applied to many familiar logics that are first-order representable. These include propositional intu-
itionistic logic, many standard, Kripke complete modal logics, and a wide set of description logics such as ALCO and
SO. ALCO is the description logic ALC with singleton concepts, or nominals. SO is the extension of ALCO with
transitive roles. For these logics, the synthesised tableau calculi are very close to common ‘classical’ tableau calculi used
for satisfiability checking in these logics.

4 Further Details
For further details we refer to (Schmidt and Tishkovsky, 2009), which introduces the method of synthesising tableau
calculi, and to (Schmidt and Tishkovsky, 2008), which describes ‘automatic termination’ of a tableau calculi for logics
having the effective finite model property.

5 Conclusion
The results of the paper can be regarded as a mathematical formalisation and generalisation of tableau development
methodologies. The formalisation separates the creative part of tableau calculus development which needs to be done
by a human developer and the automatic part of the development process which can be left to an automated (currently
first-order) prover and an automated tableau synthesiser.

The tableau calculi generated are Smullyan-type tableau calculi, i.e., ground semantic tableau calculi. We believe that
other types of tableau calculi can be generated using the same techniques.

Our future goal is to further reduce human involvement in the development of calculi by finding appropriate automati-
cally verifiable conditions for optimal calculi to be generated.

References
Renate A. Schmidt and Dmitry Tishkovsky. Automated synthesis of tableau calculi, 2009. Submitted to TABLEAUX’09,

http://www.cs.man.ac.uk/˜dmitry/papers/astc2009.pdf.

Renate A. Schmidt and Dmitry Tishkovsky. A general tableau method for deciding description logics, modal logics and
related first-order fragments. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, Proc. IJCAR’08,
volume 5195 of Lect. Notes Comput. Sci., pages 194–209. Springer, 2008.

Renate A. Schmidt and Dmitry Tishkovsky. Using tableau to decide expressive description logics with role negation. In
Proc. ISWC’07, volume 4825 of Lect. Notes Comput. Sci., pages 438–451. Springer, 2007.

36

On the Readability of Diagrammatic Proofs

Gem Stapleton?

?University of Brighton
Brighton, UK

g.e.stapleton@bton.ac.uk

Mateja Jamnik†
†University of Cambridge

Cambridge, UK
mateja.jamnik@cl.cam.ac.uk

Judith Masthoff‡
‡University of Aberdeen

Aberdeen, UK
j.masthoff@abdn.ac.uk

Abstract

Recently, much effort has been placed on developing diagrammatic logics, with a focus on obtaining sound and com-
plete reasoning systems. A hypothesis of the diagrammatic reasoning community is that many people find diagrammatic
proofs easier to read than symbolic proofs. This hypothesis has not been thoroughly tested, although significant effort has
been directed towards understanding what makes diagrams more readable than symbolic formulae. We are interested in
how to automatically find readable diagrammatic proofs. To achieve this aim, significant research is required that builds
on the existing state-of-the-art. This extended abstract summarizes our plans for research on this topic.

1 Introduction
Diagrammatic reasoning has only recently, in the last decade, enjoyed research attention which demonstrated that diagrams
can be used for formal reasoning. However, diagrammatic proofs have been so far constructed without much attention paid
to their readability: a major hypothesis of the diagrammatic reasoning community, which is often assumed, is that they
are more readable than symbolic proofs due to their intuitive visual appeal. This may not be the case for an arbitrary
diagrammatic proof, and some diagrammatic proofs will be more appealing, easier to understand, or more economical
with information than other diagrammatic proofs. In order to take full advantage of the widely acknowledged advantages
of diagrammatic reasoning, we need to understand what constitutes, and how to create, readable diagrammatic proofs.

In symbolic reasoning, theorem provers have come a long way in devising strategies, criteria and heuristics for con-
structing proofs that are human readable, yet these symbolic proofs are still complex for humans to understand. By
contrast, diagrammatic reasoners have paid virtually no attention to this readability issue. This extended abstract discusses
a plan of work for addressing this issue in a principled way by producing a framework of readability criteria that can be
employed in diverse diagrammatic reasoners in the form of heuristics or other higher level strategies. Indeed, we hope that
diagrammatic readability criteria, and any principles learned about readability, will extend to symbolic reasoning systems
too. Our main hypothesis is: readable diagrammatic proofs can be constructed automatically by devising and employing
readability criteria. This represents a major challenge in diagrammatic and automated reasoning.

2 Diagrammatic Proofs
We demonstrate the kind of diagrammatic proofs we plan to examine, some possible readability criteria, and how these can
be used to guide the search for a more readable diagrammatic proof with a toy example. Initially we will focus our work
on the domain of spider diagrams [4] which are used to prove theorems that can be expressed in monadic first order logic
with equality. Thus, spider diagrams make statements which provide constraints on set cardinality, such as |A − B| = 2,
|A ∩ B| ≥ 3, and A ⊆ C (equivalently, |A − C| = 0). Diagrams of this type are frequently seen in mathematics text
books to intuitively illustrate set theory concepts. Spider diagrams are based on Euler diagrams, augmenting them with
shading and so-called spiders. Visually, spiders are trees (dots connected by lines), placed in regions of the diagram; each
spider represents the existence of an element in the set represented by the region in which it is placed, thus providing lower
bounds on set cardinality. Shading is used to place upper bounds on set cardinality: in a shaded region, all elements are
represented by spiders. Here is an example theorem expressed symbolically and using spider diagrams:

∃x (x ∈ A ∩B ∧ C ⊆ A) ⇒ ∃x (
(x ∈ A− C ∨ x ∈ A ∩ C) ∧ C ⊆ A

) Ù

A
C

A B

Þ

A
C

Two diagrammatic proofs of this theorem are shown in Fig. 1. Notice that the second proof is not only shorter than the
first one, but also that its diagrams consist of fewer elements and can therefore be considered to be less cluttered. Spider
diagrams are very strongly related to other systems, such as those in [7], and form the basis of more expressive notations
making them an ideal choice for investigating readability. We have developed theorem provers for spider diagrams and
their Euler diagram fragment but they do not yet incorporate readability criteria except for finding shortest proofs [8].

37

Ù

A
C

A B

Ù

A
C

A B

C

Þ By adding C

Ù

A CA B

C

Þ
By adding a

shaded zone

Ù

A CA B

C

Þ By adding B

B

A B

C

Þ By combining

A

C

Þ By removing B

Þ
By removing a

shaded zone

A
C

Ù

A
C

A B

Ù

A
C

Þ By removing B

Þ
By removing a

shaded zone

A
C

A

Ù

A
C

Þ By adding C

A C

ÙÞ

A C
By adding a

shaded zone

A C

Þ

A C

By combining

Figure 1: Two diagrammatic proofs.

We propose to devise and use readability criteria in order to construct more readable and intuitive diagrammatic proofs
than currently possible. Lessons about the representation and use of heuristics, tactics [5], methodicals [6], strategies and so
forth in symbolic theorem proving will inform our analysis. In addition, and most importantly, we will also experimentally
test what people find more readable in order to identify readability criteria and relevant proof situations for them and also,
later, to assess which readability criteria are better than others. Other possible indicators of readability are, for example: (1)
diagram clutter: it is easier to read and understand diagrams that have fewer elements in them, (2) length of proof: often
shorter proofs are more readable than longer ones, (3) known lemmas: if an inference rule leads to a statement proved
before, then this lemma can be used rather than derived again, (4) the size of the step that an inference rule makes: too big
steps may be obscure, but too small steps may be tedious, and (5) topological properties matching semantics: diagrams
that are better matched to their semantics may be more readable.

Investigating symbolic theorem provers, especially proof planners [1], that already use techniques to guide search [2]
will inform our work. In particular, proof planners such as λClam [6] and ISAPLANNER [3] use methods and methodicals
to structure the search. Similarly, ΩMEGA uses control rules and strategies. It is not clear what will be the best framework
for employing readability criteria in order to guide the search to produce readable proofs; devising this framework is one of
our main goals. Once we have this framework, we will implement it in a diagrammatic theorem prover for spider diagrams.
The hope is that any principles learned are general enough that they will extend to symbolic reasoners as well.

Acknowledgements Gem Stapleton is supported by EPSRC grant EP/E011160/1 for the Visualisation with Euler Diagrams
project. Mateja Jamnik is supported by an EPSRC Advanced Fellowship GR/R76783/01.

References
[1] A. Bundy. The use of explicit plans to guide inductive proofs. 9th Conf. on Automated Deduction, Springer, 111–120,

1988.

[2] L. A. Dennis, M. Jamnik, and M. Pollet. On the comparison of proof planning systems: LambdaClam, Omega and
IsaPlanner. ENTCS 151(1):93–110, 2006.

[3] L. Dixon. A Proof Planning Framework for Isabelle. PhD thesis, University of Edinburgh, UK, 2005.

[4] J. Howse, G. Stapleton, and J. Taylor. Spider diagrams. LMS J. of Computation and Mathematics, 8:145–194, 2005.

[5] L.C. Paulson. Isabelle: A generic theorem prover. LNCS 828, Springer, 1994.

[6] J.D.C. Richardson, A. Smaill, and I. Green. System description: proof planning in higher-order logic with lambda-
clam. 15th Conf. on Automated Deduction, Springer, 129–133, 1998.

[7] S.-J. Shin. The Logical Status of Diagrams. Cambridge University Press, 1994.

[8] G. Stapleton, J. Masthoff, J. Flower, A. Fish, and J. Southern. Automated theorem proving in Euler diagrams systems.
J. of Automated Reasoning, 39:431–470, 2007.

38

Efficient Ground Satisfiability Solving in an Instantiation-based
Method for First-order Theorem Proving

Christoph Sticksel?
?University of Manchester

csticksel@cs.man.ac.uk

1 Introduction
In the domain of first-order theorem proving, recently
so-called instantiation-based methods have gained some
attention as they promise advantages over longer estab-
lished methods. Although modern instantiation-based
methods for first-order logic were proposed only in this
decade, they are already competitive with and in some ar-
eas outperform classical methods that have a history of
development since the 1970s. Because of the novelty of
instantiation-based methods, not many results exist for
equational reasoning and reasoning modulo theories. An
integration of these features would make a calculus more
mature and open up new areas of application. The main
subject of this research is the Inst-Gen calculus as initially
presented in Ganzinger and Korovin (2003).

The central rationale behind the Inst-Gen calculus and
its implementation in the iProver system is the combi-
nation of industrial-strength ground satisfiability solving
with true first-order reasoning. In particular, the iProver
approach aims to harness the strengths of an off-the-
shelf ground satisfiability solver in a first-order proce-
dure for satisfiability modulo theories (SMT). The lack
of complete handling of quantification is a shortcoming of
many SMT provers and their limited support of quantified
clauses makes them essentially reason on ground satisfia-
bility. However, they are efficient in ground solving and
iProver therefore delegates detecting unsatisfiability to a
ground SMT solver and focuses on generating instances
from first-order clauses such that ground unsatisfiability
can be witnessed.

The work presented here is concerned with efficient in-
tegration of ground solving modulo equality into the first-
order instantiation process of Inst-Gen. So to speak, the
first-order reasoning needs to stand firmly on the ground,
but robust integration of ground reasoning also guides the
instantiation process through provision of satisfiable mod-
els and is used to justify simplifications.

2 The Inst-Gen Calculus
Formally, the set of first-order clauses S is abstracted to
a set of ground clauses S⊥ by substituting all variables
with a distinguished constant ⊥ with a substitution that is
also denoted by⊥. If this ground abstraction S⊥ is unsat-
isfiable, then, by Herbrand’s Theorem, S is unsatisfiable

as well and the procedure can terminate. In the case of
satisfiability of S⊥, the first-order clause set S is satisfi-
able if it is saturated under instantiation inferences of the
calculus. Otherwise, one needs to continue generating in-
stances either as witnesses for the unsatisfiability of S⊥
or to reach saturation.

If the ground abstraction S⊥ has been proved to be sat-
isfiable by the ground solver, the first-order reasoning can
make use of a ground model I⊥ for S⊥ by means of a
selection function sel that constrains possible inferences
between clauses to their respective selected literals. Al-
though Inst-Gen inferences are sound regardless of the
selection function, the selection function adds an amount
of goal-direction that is necessary to be efficient in prac-
tice. In each clause C, the selection sel(C) = L returns
a literal L in C such that the ground literal L⊥ is true in
I⊥. See Korovin (2009) for a detailed description of the
calculus, especially for arguments of its completeness.

It is important to note that literal selection in the Inst-
Gen calculus is different from literal selection in resolu-
tion, as described e.g. in Bachmair and Ganzinger (2001).
The selection function does select exactly one literal from
every clause, but is not fixed throughout the derivation. It
may need to be adapted to reflect changes of the ground
model I⊥ when instances are added to S.

3 The Saturation Process, Ground
Solving and Selection

The implementation of the iProver system as described in
Korovin (2008) uses a variant of the given-clause algo-
rithm. It keeps two disjoint sets of active clauses A and
passive clauses P where all inferences between clauses
in A have been generated. In every step, a clause Cg (the
given clause) is taken from P , all possible inferences with
clauses in A are added to P and Cg is moved from P to
A. If P is empty, then all clauses are in A and it is sat-
urated, which establishes satisfiability of S. Separately,
all clauses in A and P are grounded with the ⊥ constant
and checked for unsatisfiability in the ground solver. The
procedure then either terminates with unsatisfiable as a
result or obtains a model I⊥ to be used for the selection
function.

The model I⊥ is given by a ground solver that may
choose to discard as much of the model from the previous

39

step as it sees fit, therefore giving rise to an uncontrol-
lable number of changes to the selection function. When
sel(C) for a clause C in the active set A changes, the
clause C has to be moved to the passive set P as with a
different selection new inferences may become possible
that have not been generated, violating the invariant of
saturation of A under inferences.

Therefore, it seems beneficial to attempt to keep the
selection in the active clause set A and only to change
it when necessary, i.e. when there is no model of S⊥
containing the selected literals

⋃
C∈A sel(C)⊥. This lazy

strategy allows for a deviation from the particular model
the ground solver provides by maintaining a separate
model that follows the literal selection and the heuristics
involved while still being sound and complete in the case
of clauses without equality.

With equality or other background theories, induced
equalities have to be considered on potentially many se-
lected literals, making it seem inefficient to check if a
set of selected literals can be extended to a model. Pos-
sible alternative strategies for selection would either ea-
gerly follow the model as it is obtained from the ground
solver, thus weakening the selection heuristics and caus-
ing more frequent moves of clauses from the active set.
Alternatively, the incompleteness of checking if the se-
lected literals are a model could be accepted and deferred
until the active set becomes saturated. Then, a full check
on all selected literals would either bring up inconsistent
literals and subsequently move clauses or find the selected
literals to be consistent and thus prove satisfiability.

4 Results and Future Work

Which strategy is most successful will certainly depend
on the solver, its strategies and the amount of cooperation,
and, of course, on the clause set itself. Ongoing work is
evaluating CVC3 and Z3, two leading SMT solvers, as
ground satisfiability solvers modulo equality and modulo
theories as well as the most successful strategies for literal
selection as described above. Early experiments with the
problems of the TPTP library show that the lazy strategy
leaves only relatively few problems with an inconsistent
set of selected literals on saturation. Moreover, in most
cases the problem is proved satisfiable with a literal selec-
tion that is a model for S⊥ after only one or two further
checks, indicating that the lazy strategy might be viable
for ground solving modulo equality and theories.

Comparing a version of iProver using MiniSAT for
ground solving without equality with an early implemen-
tation integrating CVC3 as a ground solver modulo equal-
ity on the TPTP library (detailed figures in table 1) show
that on the one hand, there is a significant overhead for the
SMT solving such that SAT solving is still faster in many
cases. On the other hand, there are cases where ground
equational reasoning is profitable and the overhead pays
off such that additional problems can be solved. As ex-

Equational Num. only in iProver + faster in iProver +
atoms Probl. CVC3 MiniSAT CVC3 MiniSAT

0% 3130 6 346 522 1736
0% - 10% 1915 24 118 54 449

10% - 20% 2622 49 76 205 408
20% - 30% 1593 15 44 47 336

...
100% 1515 205 26 85 100

Table 1: Solved problems in TPTP v3.5.0 grouped by per-
centage of equational atoms. No significant number of
problems available with between 30% and 100% of equa-
tional atoms. Run on AMD Athlon XP 2200+ with 500
MB and a timeout of 3 mins.

pected, ground solving with equality is most useful for
pure equational problems.

Future work will use the good grip the iProver system
is getting on ground solving modulo equations and the-
ories to progress with instance generation of first-order
clauses modulo equality and theories where lifting the
ground model to obtain a literal selection is even more
important and thus help iProver climb up to the important
application areas of satisfiability modulo theories.

Acknowledgements
Joint work with Konstantin Korovin and Renate Schmidt,
based on the iProver system, as in described in Korovin
(2008).

References
Leo Bachmair and Harald Ganzinger. Resolution Theo-

rem Proving. In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, volume 1.
Elsevier Science and MIT Press, 2001.

Harald Ganzinger and Konstantin Korovin. New Direc-
tions in Instantiation-Based Theorem Proving. In Sym-
posium on Logic in Computer Science, LICS 2003. Pro-
ceedings, pages 55–64, 2003.

Konstantin Korovin. An Invitation to Instantiation-Based
Reasoning: From Theory to Practice. In A. Podel-
ski, A. Voronkov, and R. Wilhelm, editors, Volume
in memoriam of Harald Ganzinger, Lecture Notes in
Computer Science. Springer, 2009. Invited paper. To
appear.

Konstantin Korovin. iProver - An Instantiation-Based
Theorem Prover for First-Order Logic (System De-
scription). In International Joint Conference on Auto-
mated Reasoning, IJCAR 2008. Proceedings, volume
5195 of Lecture Notes in Computer Science, pages
292–298. Springer Berlin / Heidelberg, 2008.

40

First-Order Logic Concept Symmetry for Theory Formation

Pedro Torres∗ and Simon Colton
Computational Creativity Group

Department of Computing, Imperial College London, UK

ptorres,sgc@doc.ic.ac.uk

1 Introduction
SURICATA (Torres and Colton, 2008) is a hybrid automated theory formation system which uses both production rules
and structured language biased search to produce new concepts and make conjectures about those concepts. The idea
of implementing a highly-configurable theory formation system able to work with arbitrary first-order production rules
started from the observation that it was helpful for users of automated theory formation systems to be able to define their
own production rules. We implemented a generic first-order production rule (Torres and Colton, 2006) for the HR system
(Colton, 2002) and showed how new user-defined production rules led to the discovery of novel conjectures in quasigroup
theory.

During theory formation, SURICATA searches for regularities in newly formed concepts — defined as first-order logic
(FOL) formulas — in order to make conjectures. Currently, these conjectures arise by comparing the available examples
of concepts (see final part of section 2). To improve SURICATA’s ability to make conjectures, we explore here a large
set of new and relevant regularities which arise from intrinsic symmetries of the concepts under study. An example of
concept symmetry is ∀x, y, z.(φ(x, y, z) ↔ φ(y, x, z)). The motivation for studying these regularities is two-fold: (i) the
symmetry group of a set is traditionally a useful mathematical tool to capture the properties of a set and hence we hope
that the characterisation of a concept through its symmetries will lead to improved ways to search for concepts; (ii) the
symmetries studied here partially propagate through FOL formulas, and hence through FOL production rules, decreasing
the time complexity of the search for symmetries in the space of concepts. Group theory has been previously applied to
detecting structural symmetries of models of concurrent systems (Donaldson and Miller, 2005).

Given a set of concepts with some particular symmetries, new concepts built from them will present symmetries which
we know to be true by construction, without having to actually prove them: they come for free. To the best of our
knowledge, the exact way in which these symmetries propagate within first-order logic and which symmetries are in fact
relevant for theory formation, has not been studied in detail. Our goal is to get a better understanding of how exactly
symmetries propagate and how that can be exploited within theory formation. We present preliminary results here.

2 First-order Theory Formation Setting
A concept is a relation between any n types. We will consider here concepts of the form φ(x1, . . . , xn), where φ is
some first-order logic formula with free variables x1, . . . , xn. We write xi : τi to say that variable xi has type τi and,
if each xi has type τi, we say that concept φ(x1, . . . , xn) has type τ1 × · · · × τn. To make types explicit, we write
φ(x1 : τ1, . . . , xn : τn). We use the symbol C for the set of all concepts and C[τ] for the set of all concepts of type τ .

A production rule is a function π : D → C, where D ⊆ Cq , for some q. Suppose we have φ(x : τ1, y : τ2) and
ϕ(y : τ2, z : τ3). Then, for instance, we can define a production rule as: (φ(x, y), ϕ(y, z)) 7→ ∃y.(φ(x, y) ∧ ϕ(y, z)). In
this expression, φ and ϕ act as placeholders for concepts of the type described.

From an initial set of background concepts {φ1, . . . , φk}, by recursively applying production rules with appropriate
domains, we can define new concepts. Given a set of initial concepts C0 and a set of production rules Π, we recursively
define Π∗(C0) as the set of all concepts which: (i) are in C0 or (ii) can be written as π(φ1, . . . , φn) where π is in Π and
every φi is in Π∗(C0). The set Π∗(C0) can be described as the set of all concepts that can be produced from the concepts
in C0 by using the production rules in Π. If we fix C0, the set Π defines exactly which concepts are in the search space.

One way of making conjectures in a production rule based system is to compare the concepts produced. If at some
point during theory formation, we have two concepts of the same arity and types for which all the available examples of
one are also examples of the other and vice versa, it is possible to conjecture that they are equivalent. Similar situations
may lead to implication and non-existence conjectures. The conjectures that such a system may come up with are therefore
all of the form [∀~x.(φ1(~x)→ φ2(~x))], [∀~x.(φ1(~x)↔ φ2(~x))] or [∀~x.¬φ1(~x)] where ~x is some set of variables and φ1 and
φ2 are concepts in Π∗(C).

∗First author supported by Fundação para a Ciência e a Tecnologia, grant SFRH/BD/12437/2003.

41

3 Concept Symmetries
Types of symmetries We will assume here that concept variables all have the same type, τ . If a concept has variables
with different types, we can always consider the symmetries we are about to describe restricted to those variables of the
same type. Symmetries in concepts can take several forms. We will consider the symmetries defined below.

1. Let Pn be the set of all permutations of the set {1, . . . , n} and let σ ∈ Pn. Given an n-tuple of variables ~x, we write
σ~x to denote the tuple of variables obtained by reordering ~x according to σ. A concept φ(~x) of arity n has variable
symmetry if there exists σ ∈ Pn such that ∀~x. (φ(~x)↔ φ(σ~x)). E. g. ∀x, y, z.(φ(x, y, z)↔ φ(y, z, x)).

2. A concept φ(~x) has variable collapse symmetry if there exists a set of substitutions of each variable xi by another
variable xj (i and j may be equal) such that ∀~x. (φ(S~x)) is true, where S acts on ~x to perform the mentioned set of
variable substitutions. E. g. ∀x, y.(φ(x, x, y)) is true.

3. A concept φ(~x) is said to have ground symbol symmetry if there exists a bijective function f : τ → τ such that
∀~x.(φ(~x) ↔ φ(f̂~x)), where f̂ is a function which acts as f on one of the components of ~x and leaves all other
components unchanged E. g. ∀x, y.(φ(x, y)↔ φ(fx, y)), with τ = Z and fx = −x.

4. Let τ be a type and define a groupG = (τ, ∗). We define the (left) g-action ofG on itself as the function αg : G→ G
such that αg(x) = g ∗ x. A concept φ(~x) has G-action symmetry if ∀g, ~x.(φ(~x) ↔ φ(α̂g~x)), for some α̂g , where
α̂g is a function which acts as αg on one of the components of ~x and leaves all other components unchanged. E. g.
∀g, x, y.(φ(x, y)↔ φ(x, g ∗ y)). Group action symmetries can be generalised to arbitrary algebraic structures.

For each symmetry on the examples, we can write a corresponding conjecture. Searching for symmetries corresponds
to having additional sophisticated conjecture making techniques which do more than mere testing sets of examples for
equality or inclusion. Each of these techniques actually searches for intricate patterns in the examples which would take
various steps to find in the normal theory formation setting of “concept formation followed by elementary conjecture
making techniques”, if at all reachable.

Symmetry Propagation Suppose that concepts φ1 and φ2 satisfy, ∀x, y.(φ1(x, y) ↔ φ1(y, x)) and ∀x, y.(φ2(x, y) ↔
φ2(y, x)). Then, we know that any new concept formed from these two concepts will have some kind of symmetry (not
necessarily the same). For example, concept φ defined as φ1(x, y) ∧ φ2(x, y) would still preserve the same symmetry, i.e.
φ(x, y)↔ φ(y, x), for all x and y. Moreover, more intricate concepts such as φ1(x, y)∧ ∃z. (φ3(z) ∧ φ2(y, x)) where φ3

is some arity 1 concept, will still preserve the same symmetry. In the general case, symmetry propagation is more involved
as variables from different concepts can interact in non-trivial ways. Our main observation is that, since in an automated
theory formation system all concepts are produced using logical production rules, if we know how symmetries propagate
through FOL basic connectives, we will know symmetries of concepts in the theory formed without having to prove them.
They will be true by construction. Knowing symmetries of initial concepts allows us to know that certain symmetries will
be present in the final concepts. It does not, however, give us a full account of all the symmetries of the final concepts.
To know the remaining symmetries of a concept we will still have to compute them. Nevertheless, if we take symmetry
propagation into account, we need to check for fewer symmetries in total to get the complete picture.

Current work We are currently implementing a SURICATA module which computes all the symmetries of a concept
and which, given some initial concepts and a set of production rules, computes the symmetries of all producible concepts
making use of symmetry propagation knowledge. We hope to show that the use of this knowledge makes the computation
of symmetries more time efficient. Using this new symmetry module we will be able to perform theory formation using a
greedy search on the number of symmetries of concepts and, also, to search for concepts which present particular bespoke
symmetries, which is a novel paradigm in theory formation.

References
S. Colton. Automated Theory Formation in Pure Mathematics. Springer-Verlag, 2002.

A F Donaldson and A Miller. Automatic symmetry detection for model checking using computational group theory.
Lecture Notes in Computer Science, 3582:481–496, 2005.

P Torres and S Colton. Using Model Generation in Automated Concept Formation. In Proceedings of ARW’06, 2006.

P Torres and S Colton. Automated Meta-Theory Induction in Pure Mathematics. In Proceedings of ARW’08, 2008.

42

Model-Checking Auctions, Coalitions and Trust1

Matt Webster? Louise Dennis? Michael Fisher?
?Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, UK

{matt,louised,mfisher}@liverpool.ac.uk

Abstract

In this paper we tackle the verification of auction models that are at the heart of many market-based multi-agent
systems. Specifically, we program auctions with auctions and trust in a BDI-based programming language and then use
agent model checking to verify logical properties concerning beliefs within the multi-agent system.

1 Auctions and Verification in Multi-Agent Systems
The basic idea of an auction (Klemperer, 2004) is at the heart of many multi-agent scenarios. Not only are auctions central
to e-commerce applications, but are implicit within many market-based approaches to agent computation. These include
resource-allocation, telecommunications, electricity supply management, agent mobility, task allocation and scheduling.
However, although much work has been carried out on the deep analysis of auction mechanisms, such as through formal
mechanism design (Wooldridge et al., 2007), the analysis of implementations of auction mechanisms has lagged behind.
While there has been some work on the formal verification of auction implementations, such as (Doghri, 2008), this
has been lacking an agent perspective. Thus, the more sophisticated agent aspects such as goals, intentions, beliefs and
deliberation have not been verified within an auction context. It is this we aim to tackle in this paper.

We have been developing techniques for verifying multi-agent systems over a number of years. The agents involved
are rational (and, so, are capable of “intelligent” autonomous behaviour) and are represented in a high-level language
describing their beliefs, intentions, etc. In particular, we have previously looked at the verification of BDI languages such
as GWENDOLEN, and both homogeneous and heterogeneous multi-agent systems (Dennis and Fisher, 2008). In order to
carry out formal verification, formal descriptions of both the system being considered and the properties to be verified are
required. Producing formal descriptions for multi-agent systems is well understood, with the BDI approach to rational
agency being particularly popular (Rao and Georgeff, 1995). Our approach, based on model checking, is outlined in (Bor-
dini et al., 2008; Webster et al., 2009), and is available from http://sourceforge.net/projects/mcapl.

A multi-agent program, originally programmed in some agent programming language is executed in an interpreter
via an interface to the Agent Infrastructure Layer (AIL). Each agent uses AIL data structures to store its internal state
comprising, for instance, a belief base, a plan library, a current intention, and a set of further intentions (as well as
other temporary state information). They also use the specific interpreter for the agent programming language built using
AIL classes and methods. Therefore, the AIL streamlines the development and verification of heterogenous multi-agent
systems. The interpreter defines the reasoning cycle for the agent programming language which interacts with the model
checker, essentially notifying it when a new state is reached that is relevant for verification. This allows the model checker,
AJPF (Agent JPF), to create a Java product automata from the program and a property defined in the AJPF property
specification language.

The product automata runs in the JPF virtual machine (see http://javapathfinder.sourceforge.net).
This is a Java virtual machine specially designed to maintain backtrack points and explore, for instance, all possible thread
scheduling options (that can affect the result of the verification). The JPF model checker is extensible and configurable,
which allows us to optimise its performance for AIL-based systems, for instance AJPF has a specialised Property Listener
which terminates execution of the product automata if it detects that the property has been, and will remain, satisfied for
the rest of the run.

1.1 Example: Auction with Coalitions and Trust
A basic sealed-bid English auction scenario was extended to include the possibility of coalitions (Sandholm and Lesser,
1997). In our model, a coalition is when several agents collaborate by pooling their bid resources in order to win the
auction. For example, if three agents x,y,z bid 100, 150 and 200 respectively, then z ought to win every time. However, if
x and y form a coalition, their collective bid of 250 will be enough to win the auction.

1Work funded by EPSRC project “Model Checking Agent Programming Languages” (EP/D052548).

43

Our simple coalition scenario consists of five agents: one auctioneer, four bidders. At the start of the auction all bidders
submit a bid and the auctioneer announces the winner. One of the agents is a coalition-forming agent: if it loses the first
auction, it then tries to form a coalition with an agent it trusts. After forming a coalition the agent bids again. Then, if its
coalition is successful in winning the auction, it stops. However, if its coalition is unsuccessful then it no longer believes
that it can trust the other agent in the coalition, and will try to form another coalition with another agent it trusts.

For illustrative purposes a specification for the coalition-forming agent is laid out below in the GWENDOLEN agent
programming language; the complete specification is given in (Webster et al., 2009).

AGENT: ag2
Initial Beliefs: my name(ag2), trust(ag4), trust(ag5)
Initial Goals: +!pbid
Plans:

↓Ag tell(B) :> <- +B

+!pbid : my name(Name)∧¬↑ag1 tell(bid(150,Name)) <- ↑ag1 tell(bid(150,Name))

+win(A) :
[

my name(Name)∧¬win(Name)∧ trust(Ag)
∧¬ f ormed coalition(Ag′)∧¬↑Ag tell(coalition(Name))

]
<-

[↑Ag tell(coalition(Ag));
+ f ormed coalition(Ag)

]

+win(A) :
[

my name(Name)∧¬win(Name)∧ trust(Ag)
∧ f ormed coalition(Ag′)∧¬↑Ag tell(coalition(Name))

]
<-

 ↑Ag tell(coalition(Ag));
+ f ormed coalition(Ag);
−trust(Ag′)


+agree(A,X) :> <- ↑ag1 tell(bid(150+X,ag2))

The GWENDOLEN agent specification was converted automatically into a lower-level Java/AIL program and verified that
♦B(a1,win) where a1 forms a coalition with one of the trusted agents after losing the auction to a2, i.e. eventually the
agent believes that a1 will win. If it chooses a4 first, it wins and stops. If it chooses a3 first, it loses the auction and distrusts
that agent, trying subsequently with a4. It then wins the auction. Verification took place in 20m 30s using 22 MB on a
Windows XP PC with an Intel Core 2 Duo (E6750 @ 2.66GHz) CPU and 2 GB of RAM.

2 Concluding Remarks
In this paper we have discussed the verification by model-checking of agent-based auction software. We have shown that
it is a realistic proposition to model-check the properties of interesting multi-agent implementations within a reasonable
time. For example, as we reach the situation where agents form coalitions together, based on a dynamic notion of trust, in
order to compete with other agents, then we are not far from realistic agent systems. Clearly, for bigger scenarios improved
efficiency will be required (and, indeed, this is something we are actively working on), but the examples implemented and
verified in this paper show that small, but non-trivial, market-based multi-agent systems can be automatically verified.

References
R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher. Automated Verification of Multi-Agent Programs. In Proc. 23rd IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 69–78, 2008.

L. A. Dennis and M. Fisher. Programming Verifiable Heterogeneous Agent Systems. In Koen Hindriks, Alexander Pokahr, and Sebastian
Sardina, editors, Sixth International Workshop on Programming in Multi-Agent Systems (ProMAS’08), Estoril, Portugal, May 2008.

Ines Doghri. Formal verification of WAHS: an autonomous and wireless P2P auction handling system. In Proc. 8th International
Conference on New Technologies in Distributed Systems (NOTERE), pages 1–10, New York, NY, USA, 2008. ACM. doi: http:
//doi.acm.org/10.1145/1416729.1416754.

Paul Klemperer. Auctions: Theory and Practice. Princeton University Press, Princeton, USA, 2004.

A. S. Rao and M. Georgeff. BDI Agents: From Theory to Practice. In Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS), pages 312–319, San Francisco, CA, June 1995.

Tuomas Sandholm and Victor R. Lesser. Coalitions Among Computationally Bounded Agents. Artificial Intelligence, 94(1-2), 1997.

Matt Webster, Louise Dennis, and Michael Fisher. Model-Checking Auctions, Coalitions and Trust. Technical Report ULCS-09-
004, Department of Computer Science, University of Liverpool, 2009. http://www.csc.liv.ac.uk/research/techreports/tr2009/ulcs-09-
004.pdf.

Michael Wooldridge, Thomas Ågotnes, Paul E. Dunne, and Wiebe van der Hoek. Logic for Automated Mechanism Design - A Progress
Report. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, pages 9–. AAAI Press, 2007.

44

CTL-RP: A Computational Tree Logic Resolution Prover∗

Lan Zhang⋆ Ullrich Hustadt⋆
⋆ Department of Computer Science, University of Liverpool

Liverpool, L69 3BX, UK
{Lan.Zhang,U.Hustadt,CLDixon}@liverpool.ac.uk

Clare Dixon⋆

1 Introduction

Temporal logic is considered an important tool in many different areas of Artificial Intelligence and Computer Sci-
ence, including the specification and verification of concurrent and distributed systems. Computational Tree Logic CTL
(Clarke and Emerson, 1982) is a branching-time temporal logic. Here we present the first resolution theorem prover for
CTL, CTL-RP, which implements the sound and complete clausal resolution calculusR≻,S

CTL (Zhang et al., 2008) based
on an earlier calculus by Bolotov (2000). The calculusR≻,S

CTL is designed in order to allow the use of classical first-order
resolution techniques to emulate the rules of the calculus.We take advantage of this approach in the development of our
prover CTL-RP which uses the first-order theorem prover SPASS (Weidenbach et al., 2007).

2 Normal form for CTL SNFg
CTL and clausal resolution calculus R≻,S

CTL

The calculusR≻,S
CTL operates on formulae in a clausal normal form called Separated Normal Form with Global Clauses

for CTL, denoted bySNFg
CTL. The language ofSNFg

CTL clauses is defined over an extension of CTL in which we label
certain formulae with an indexind taken from a countably infinite index setInd and it consists of formulae of the following
form.

A2(start ⇒ ∨k
j=1 mj) (initial clause)

A2(true ⇒ ∨k
j=1 mj) (global clause)

A2(
∧n

i=1 li ⇒ A#∨k
j=1 mj) (A-step clause)

A2(
∧n

i=1 li ⇒ E#∨k
j=1 mj〈ind〉) (E-step clause)

A2(
∧n

i=1 li ⇒ A3l) (A-sometime clause)

A2(
∧n

i=1 li ⇒ E3l〈LC(ind)〉) (E-sometime clause)

wherestart is a propositional constant,li (1 ≤ i ≤ n), mj (1 ≤ j ≤ k) andl are literals, that is atomic propositions
or their negation,ind is an element ofInd. The symbolsind andLC(ind) represent indices and limit closure of indices,
respectively. As all clauses are of the formA2(P ⇒ D) we often simply writeP ⇒ D instead.

We have defined a set of transformation rules which allows us to transform an arbitrary CTL formula into an equi-
satisfiable set ofSNFg

CTL clauses, a complete description of which can be found in (Zhang et al., 2008). The transforma-
tion rules are similar to those in (Bolotov, 2000), but modified to allow for global clauses.

R≻,S
CTL consists of two types of resolution rules,step resolution rules (SRES1 to SRES8) andeventuality resolution rules

(ERES1 and ERES2). Motivated by refinements of propositional and first-order resolution, we restrict the applicabilityof
step resolution rules by means of an atom ordering≻ and a selection functionS, which helps to prune the search space
dramatically. Due to lack of space, we only present two of thestep resolution rules and one of the eventuality resolution
rules. In the followingl is a literal,P andQ are conjunctions of literals, andC andD are disjunctions of literals.

SRES2
P ⇒ E#(C ∨ l)〈ind〉, Q ⇒ A#(D ∨ ¬l)

P ∧Q ⇒ E#(C ∨D)〈ind〉

SRES3
P ⇒ E#(C ∨ l)〈ind〉, Q ⇒ E#(D ∨ ¬l)〈ind〉

P ∧Q ⇒ E#(C ∨D)〈ind〉

ERES1
P † ⇒ E#E2l, Q⇒ A3¬l

Q ⇒ A(¬P †W ¬l)
whereP † ⇒ E#E2l represents a set ofSNFg

CTL clauses
which together implyP † ⇒ E#E2l.

We develop a new completeness proof with a different approach from (Bolotov, 2000). The proof also shows that
some eventuality resolution rules in (Bolotov, 2000), which are the most costly rules of the calculus, are redundant. The
inference rules ofR≻,S

CTL can be used to decide the satisfiability of a given setN of SNFg
CTL clauses by computing the

saturationN ′ of N using at most an exponential number of inference steps;N is unsatisfiable iffN ′ contains a clause
true ⇒ false or start ⇒ false. This gives a complexity optimal EXPTIME decision procedure for CTL.

∗This work is supported by EPSRC grant EP/D060451/1.

45

Figure 1: Performance on a set of benchmark formulae

3 CTL-RP

In order to obtain an efficient CTL theorem prover and to reuseexisting state-of-the-art first-order resolution theorem
provers, we adopt an approach analogous to that used in (Hustadt and Konev, 2004) to implement a resolution calculus
for PLTL to implement the calculusR≻,S

CTL and the associated decision procedure for CTL. A formal description of the
approach and related proofs are presented in detail in (Zhang et al., 2008).

In our implementation ofR≻,S
CTL, we first transform all SNFgCTL clauses exceptA- andE-sometime clauses into first-

order clauses. Then we are able to use first-order ordered resolution with selection to emulate step resolution. For this
part of the implementation we are using the theorem prover SPASS.A- andE-sometime clauses cannot be translated to
first-order logic. Therefore, we continue to use the eventuality resolution rules ERES1 and ERES2 for inferences withA-
andE-sometime clauses, respectively, and use the loop search algorithm presented in (Bolotov and Dixon, 2000) to find
suitable premises for these rules. We utilise first-order ordered resolution with selection to perform the most costly task of
“looking for merged clauses” in the loop search algorithm and we compute the results of applications of the eventuality
resolution rules in the form of first-order clauses.

Besides CTL-RP, there is only one other CTL theorem prover weknow of, namely a CTL module for the Tableau
Workbench (TWB) (Abate and Goré, 2003). We have created several sets of benchmark formulae that we have used to
compare CTL-RP version 00.09 with TWB version 3.4. The comparison was performed on a Linux PC with an Intel Core
2 CPU@2.13 GHz and 3G main memory, using the Fedora 9 operating system. In Figure 1, we show the experimental
results on one of those sets of benchmark formulae. This set of benchmark formulae consists of one hundred formulae
such that each formula specifies a randomly generated state transition system. The graph in Figure 1 indicates the CPU
time in seconds required by TWB and CTL-RP to establish the satisfiability or unsatisfiability of each benchmark formula
in the set of benchmark formulae. CTL-RP shows a much more stable performance on these benchmarks than TWB.

References

P. Abate and R. Goré. The Tableaux Workbench. InProc. TABLEAUX’03, pages 230–236. Springer, 2003.

A. Bolotov. Clausal Resolution for Branching-Time Temporal Logic. PhD thesis, Manchester Metropolitan University,
2000.

A. Bolotov and C. Dixon. Resolution for Branching Time Temporal Logics: Applying the Temporal Resolution Rule. In
Proc. TIME’00, pages 163–172. IEEE, 2000.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal
Logic. In Logic of Programs, Workshop, volume 131 ofLNCS, pages 52–71. Springer, 1982.

U. Hustadt and B. Konev. TRP++: A Temporal Resolution Prover. In Collegium Logicum, pages 65–79. Kurt Gödel
Society, 2004.

C. Weidenbach, R. A. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. System description: Spass version 3.0. InProc.
CADE-21, volume 4603 ofLNCS, pages 514–520, 2007.

L. Zhang, U. Hustadt, and C. Dixon. First-order Resolution for CTL. Technical Report ULCS-08-010, Department of
Computer Science, University of Liverpool, 2008.

46

