Model-Checking Auctions, Coalitions and Trust*

Matt Webster, Louise Dennis, and Michael Fisher
Department of Computer Science, University of Liverpool, Liverpool, UK
EMAIL: {M .P.Webster,L.A.Dennis, MFisher}@liverpool .ac.uk

January 2009

Abstract

In this paper we tackle the verification of basic auction models that are at the heart of many market-
based multi-agent systems. Specifically, we program auctions in a BDI-based programming language
and then use agent model checking to verify logical properties concerning time, beliefs and goals within
the multi-agent system. The basic auction model is then extended with coalition formation and trust, and
verification of these aspects is carried out.

1 Introduction

The basic idea of an auction [36, 26] is at the heart of many multi-agent scenarios [7]. Not only are auc-
tions central to e-commerce applications [12, 21], but are implicit within many market-based approaches
to agent computation. These include resource-allocation [23], telecommunications [22], electricity supply
management [13], agent mobility [8], task allocation and scheduling [38, 33, 14]. However, although much
work has been carried out on the deep analysis of auction mechanisms, such as through formal mechanism
design [40], the analysis of implementations of auction mechanisms has lagged behind. While there has
been some work on the formal verification of auction implementations, such as [19], this has been lack-
ing an agent perspective. Thus, the more sophisticated agent aspects such as goals, intentions, beliefs and
deliberation have not been verified within an auction context. It is this we aim to tackle in this paper.

We aim to implement simple and intuitive auction models in a BDI-based programming language and
then apply agent verification techniques to these implementations. Although initially used sparsely, the BDI
aspects will become more relevant as we extend and develop the auctions to incorporate coalition formation,
trust, and dynamic aspects of both these properties. In addition, although the examples are small, they are
clearly representative of many larger, and more sophisticated, multi-agent systems. The verification will be
carried out using an agent model-checking system [4] and the (simple) properties verified will be given in a
logic of belief, goals and time.

In carrying out this work, we point the way towards the future formal verification of sophisticated
market-based approaches. As such approaches are increasingly used in both safety critical and business
critical scenarios, deep analysis such as this will be vital in establishing the reliability, security and efficacy
of such systems.

*Work supported by EPSRC (UK) grant EP/D052548.

1.1 Background: Agent Programming Languages

As the concept of an “agent” becomes more popular, so the variety of programming languages based upon
this concept increases. These agent-oriented programming languages range from minimal extensions of
Java through to logic-based languages for “intelligent” agents [3, 20]. In our work, we are particularly
concerned with approaches based on rational agent theories [41], primarily the BDI theory developed by
Rao and Georgeff [31]. Such languages not only incorporate the autonomous behaviour required for the
agent concept, but also provide sophisticated mechanisms for instigating, controlling, and reasoning about
goal-directed behaviours.

In the area of autonomous agents and multi-agent systems, AgentSpeak is one of the best known agent-
oriented programming languages based on the BDI architecture. It is a logic-based agent-oriented program-
ming language introduced by Rao [30], and subsequently extended and formalised in a series of papers
by Bordini, Hiibner, and colleagues'. Various ad hoc implementations of BDI-based (or “goal-directed”)
systems exist, but one important characteristic of AgentSpeak is its formal semantics. This aspect is par-
ticularly important, since BDI approaches are increasingly used in complex, critical applications such as
space exploration [28, 9, 35]. Once we have a BDI language with clear formal semantics, then the possi-
bility of applying formal verification techniques, especially within critical applications, is opened up. In
particular, we utilise the GWENDOLEN programming language [15], which is small, tailored for use with
our verification system, and essentially based on AgentSpeak.

1.2 Background: Formal Verification and Model Checking

By formal verification we mean carrying out a mathematical analysis in order to assess all the potential
behaviours within a system. The behavioural requirements we have of complex systems can be specified
using formulae from an appropriate formal logic. Importantly, the formal logic used can incorporate a wide
range of concepts matching the view of the system being described, for example time for dynamic/evolving
systems, probability for systems incorporating uncertainty, goals for autonomous systems, etc. This gives
very great flexibility in the descriptive language that can be used.

Given such a specification, we can check this against models/views of the system under consideration in
a number of ways. The most popular of these is model checking [10, 24], where the specification is checked
against all possible executions of the system; if there are a finite number of such executions, then this
check can often be carried out automatically. Indeed, the verification, via model checking, of both hardware
systems (such as chip designs) and software systems (such as device drivers) has been very successful [1, 2],
and has led to the recent application of verification techniques to autonomous agents [5, 6, 29, 39].

1.3 Background: AJPF — Model-Checking Agent Programs

We have been developing techniques for verifying multi-agent systems over a number of years [4, 5, 6]. The
agents involved are rational (and, so, are capable of “intelligent” autonomous behaviour) and are represented
in a high-level language describing their beliefs, intentions, etc. In particular, we have previously looked at
the verification of BDI languages [17], comprising both homogeneous and heterogeneous multi-agent sys-
tems [18]. In order to carry out formal verification, formal descriptions of both the system being considered
and the properties to be verified are required. Producing formal descriptions for multi-agent systems is well
understood, with the BDI approach to rational agency being particularly popular [32, 31]. Our approach,
based on model checking [11], is outlined in [16] and described in more detail in [4]; see Fig. 1 [4].

! Jason is a Java-based platform — http://jason.sf.net.

JPF

JPF JVM

AJPF Product Automata

Property written in
AIL Interpreter
Program written in P Property Automata AJPF Property

an agent ' Multi-Agent System Specification
programming Language

language

AJPF Property Listener

Figure 1: Outline of Approach.

A multi-agent program, originally programmed in some agent programming language and executed in
an interpreter based on the Agent Infrastructure Layer (AIL), is represented above. Each agent uses AIL data
structures to store its internal state comprising, for instance, a belief base, a plan library, a current intention,
and a set of intentions (as well as other temporary state information). They also use the specific interpreter
for the agent programming language built using AIL classes and methods.

The interpreter defines the reasoning cycle for the agent programming language which interacts with
the model checker, essentially notifying it when a new state is reached that is relevant for verification. This
allows the model checker, AJPF (Agent JPF), to create a Java product automata from the program and a
property defined in the AJPF property specification language.

The product automata runs in the JPF (Java PathFinder [37, 25]) virtual machine. This is a Java vir-
tual machine specially designed to maintain backtrack points and explore, for instance, all possible thread
scheduling options (that can affect the result of the verification) [37]. The JPF model checker is extensible
and configurable, which allows us to optimise its performance for AlL-based systems, for instance AJPF
has a specialised Property Listener which terminates execution of the product automata if it detects that the
property has been, and will remain, satisfied for the rest of the run.

1.4 Background: GWENDOLEN

Within this paper, we target one particular BDI language, namely GWENDOLEN [15]. Although this lan-
guage is simple, it is designed to exhibit many features common to BDI languages, and is specifically tailored
for use with AJPF. Agents are represented as sets of initial beliefs and goals together with a library of plans.
A multi-agent system is a set of agents together with an environment through which communication occurs
and in which actions are performed.

Plans are enabled when an agent has certain beliefs and goals and suggest a sequence of deeds to be

performed in order to attain a goal. Plans may also be triggered by events, such as changes in belief following
perception or the commitment to goals. We term such plans triggered plans whereas plans which depend
on an agent’s internal state alone are untriggered plans. Plans are therefore a triple of a triggering event (if
relevant) a guard (that is checked against the agent’s beliefs and goals) and a body of deeds to be performed.

GWENDOLEN agents also distinguish two sorts of goals. Achievement goals make statements about
beliefs the agent wishes to hold. They remain goals until the agent gains an appropriate belief. Perform
goals simply state a sequence of deeds to be performed and cease to be a goal as soon as that sequence
is complete. When an agent takes an action it executes code specific to that action in the environment.
Typically this code alters the set of propositions that are perceptable by agents. It may also cause messages
to be added to an agent’s inbox. Agents go through a specific perception phase when they check their
beliefs against the environment’s percepts and modify them accordingly. At this point agents also handle
the messages currently in their inbox.

We use the syntax 1 m to indicate the action of sending a message. Gwendolen agents maintain beliefs
about the messages they have sent and received so the syntax T¢ m is also used in plan guards as is | m to
indicate that a message has been received.

2 Case Study — Bidding and Coalitions in Simple Auctions

The basic case study we will describe, program and verify is initially very simple. In the sections below we
will describe the basic scenario, and then describe more sophisticated variants each becoming increasingly
realistic.

2.1 Basic Auction Scenario

The basic idea is simple. A number of agents (in the diagram below, three) make bids of some value to an
auctioneer agent. The auctioneer agent then awards the contract to the highest bidder and announces this.
This cycle can then repeat, if necessary (note that, in our verified scenarios, the bidding process does not
cycle).

Auctioneer
bid_1 bid_3

Announce

Announce
Winner

Winner

The GWENDOLEN code for the four agent (one auctioneer agent and three bidding agents) is given below.
Here, all agents believe what they are told. Agent agl, who takes the role of the auctioneer, essentially

records bids from the other agents and, when bids have been received from the other 3 agents (ag2, ag3,
and ag4) notifies the agents of the winner. (Note that we have simplified this to assume that bids are either
100, 150, or 200, with the agent bidding 200 winning — we will describe changes to this later.) The bidding
agents (ag2, ag3, and ag4) are essentially the same. Each has a (perform) goal to make a bid (!,bid), and
one plan to achieve this. This plan just allows each agent to make a bid of either 100, 150, or 200.

AGENT: agl

Plans:
+4%tell(B): T <- +B
+bid(Z,A) : bid(X;,ag2) Abid(X>,ag3) Abid(X3,ag4) Abid(200,A;) <— 147 tell(win)

AGENT: ag2
Initial Beliefs: my_name(ag2)
Initial Goals: +!,bid

Plans:
48 tell(B): T <- +B
+1,bid : my_name(Name) A -1 tell(bid(100,Name)) <— 19’ tell(bid(100,Name))

AGENT: ag3
Initial Beliefs: my_name(ag3)
Initial Goals: +!,bid

Plans:
1A tell(B): T <- +B
+1,bid : my_name(Name) A —19 tell(bid (200, Name)) <- 198! tell(bid(200,Name))

AGENT: ag4
Initial Beliefs: my_name(ag4)

Initial Goals: +!,bid

Plans:
48 tell(B): T <- +B
+1,bid : my_name(Name) A —19! tell(bid(150,Name)) <— 19’ tell(bid(150,Name))

The verification carried out on this basic scenario and reported in Section 3 concerns scaled versions of this

scenario:

Announce

bid_1 Winner

Announce
Winner,

Three Agent:

Auctioneer

bid_1 bid_3

Announce

Announce
Winner,

Four Agent:

Announce
Winner

Auctioneer

Announce
Winner

Agent 4

’Announce
Winner

Five Agent:

2.2 Auction Coalition Scenario

The above basic scenario was next extended to include the possibility of coalitions [34, 27]. In our model,
a coalition is when several agents collaborate by pooling their bid resources in order to win the auction. For
example, if three agents x,y,z bid 100, 150 and 200 respectively, then z ought to win every time. However,
if x and y form a coalition, their collective bid of 250 will be enough to win the auction.

A simple coalition scenario was implemented in GWENDOLEN with 4 agents: one auctioneer, and three
bidders. Two of the bidders bid straight away, but one of the agents attempts to form a coalition by commu-
nicating with one of the other bidders. The contacted bidder agrees to form the coalition, and informs the
coalition former of its bidding amount. The coalition instigator then combines its own bidding amount with
that of its coalition partner, and submits this bid to the auctioneer. Then, having received all of the bids, the
auctioneer announces the winner. Below, Agent 2 instigates the coalition:

Auctioneer

bid_3

Announce
Announce

Winner,

‘ combine?

The GWENDOLEN code for the four agent (one auctioneer agent, ag1l, and three bidding agents (ag2, ag3,
and ag4) coalition scenario is given below.

Winner

AGENT: agl

Plans:
+]4%tell(B): T <- +B
+bid(Z,A) : bid(X;,ag2) Nbid(X2,ag3) Abid(X3,ag4) Abid(250,A;) <— 147 tell(win)

AGENT: ag2
Initial Beliefs: my_name(ag2)
Initial Goals: +!,coalition

Plans:
|A%tell(B): T <- +B
+1,bid : my_name(Name) A —19 tell(bid(250,Name)) <- 198 tell(bid(250, Name))
+1,coalition : my_name(Ag) N —19* tell(coalition(Ag)) <- 1% tell(coalition(Ag))
+agree(A,X): T <- +\,bid

AGENT: ag3
Initial Beliefs: my_name(ag3)
Initial Goals: +!,bid

Plans:
A8 tell(B): T <- +B
+1,bid : my_name(Name) A —19 tell(bid(200,Name)) <— 19’ tell(bid(200,Name))

AGENT: ag4
Initial Beliefs: my_name(ag4)
Initial Goals: +!,bid

Plans:
A tell(B): T <- +B
+1,bid : my_name(Name) A =198 tell(bid(150,Name)) <— 19! tell(bid(150,Name))
+coalition(A) : my_name(Name) \ =14 tell(agree(Name, 150)) <— 14 tell(agree(Name, 150))

7

The main difference in this scenario, as compared with our earlier one, is that one agent, ag2, has a goal to
form a coalition (!,coalition; we will see later that such goals need not be injected initially). Agent ag2 then
contacts ag4 and proposes a coalition. If ag4 agrees then ag2 can now bid a winning 250 (i.e. 100+ 150).
Clearly, we would like to verify that this approach does, indeed, lead to ag2 winning the auction. This is
one of the properties we verify in Section 3.

2.3 Auction Coalition Scenario Variant

A further variant on the auction coalition scenario was implemented. In this case, a round of bidding takes
place in which all agents bid. Then, after an agent discovers that it has lost the auction, it sends a message
to another agent (not the winner) to form a coalition. Then, the agents bid again.

Below, we provide the code for one agent in this scenario (the auctioneer). We do not expect the reader
to follow this in detail, but present it to show that the agent programs verified can become quite complex.
In what follows +1ock is a GWENDOLEN key word that forces the interpreter to continue processing that
intention, to the exclusion of others, until it is unlocked (with —lock). *B is a GWENDOLEN command
that “suspends” that intention (i.e. excludes it from further processing) until B is believed, and win(Ag,Am)
is an action which posts information about the current winner to the environment, and c_winner(Ag;,Am,,)
records the current winner within the plan rules.

AGENT: agl
Initial Beliefs: my_name(agl)
Rules: allbids : —bid_processed(ag2) A bid_processed(ag3) A bid_processed(ag4)

Plans:
142 bid(Ag,Am;) : bid(Ag,Amy) <— —bid(Ag,Amy);+bid(Ag,Am;)
148 bid(Ag,Am;) : —bid(Ag,Amy) <— +bid(Ag,Am;)
+bid(Ag,Am) : c_winner(Agy,Am,,) ANAm,, < Am Aallbids <- +lock;
—c_winner(Agy,Amy,);
+ann_winner,
~+c_winner(Ag,Am);
win(Ag,Am);
—lock
+bid_processed(Ag) : c_winner(Ag,,,Am,,) A allbids \ ann_winner <— +lock;
+ann_winner;
win(Agi,Amy);
—lock
+bid(Ag,Am) : —c_winner(Ag,,,Am,,) <— +c_winner(Ag,Am);+bid_processed(Ag)
+bid(Ag,Am) : c_winner(Ag,,,Am,,) NAm,, < Am A\ —allbids <- +1lock;
+c_winner(Ag,Am);
+bid_processed(Ag);
—c_winner(Ag1,Am,);
—lock
+bid(Ag,Am) : c_winner(Agy,Am,,) NAm < Amy, A —allbids <— + bid_processed(Ag)

2.4 Coalition Trust Scenario

This auction scenario is similar to that described in Section 2.2, except the coalition forming agent now has
a belief about which other agent(s) it can trust, i.e., the other agents with which it would prefer to form a

coalition. This trust aspect is static, that is, the coalition-forming agent starts the auction with belief(s) about
which agents it can trust, and these do not change during the auction.

The GWENDOLEN code for the five agent (one auctioneer agent, agl, and four bidding agents, ag2,
ag3, ag4, and ag5) coalition trust scenario is given below. As we can see, agent ag2 ‘trusts’ ag4 and so,
even though both ag4 and ag5 offer coalitions, ag2 will only work with ag4.

AGENT: agl

Plans:
+4%tell(B): T <- +B
bid(X1,ag2) A bid(X>,ag3) A bid(X3,ag4) 1982 tell(win(A));
+bid(Z,A) : | A(bid(Z,A) > bid(X1,ag2)) A (bid(Z,A) > bid(Xy,ag3)) | <- | 19 tell(win(A));
A(bid(Z,A) > bid(X1,ag4)) 1984 tell(win(A))

AGENT: ag2
Initial Beliefs: my_name(ag2), trust(ag4)
Initial Goals: +!,bid

Plans:
|A%tell(B): T <- +B
+1,bid : my_name(Name) A —19 tell(bid(150,Name)) <- 198 tell(bid(150, Name))

, | my_name(Name) N\ —win(Name) Ntrust(Ag) 1Ag ..
+win(A) : A1 tell(coalition(Name)) <= 148 tell(coalition(Name))
+agree(A,X): T <- 1% tell(bid(300,ag2))

AGENT: ag3
Initial Beliefs: my_name(ag3)
Initial Goals: +!,bid

Plans:
1A tell(B): T <- +B
+1,bid : my_name(Name) A —19 tell(bid (200, Name)) <- 198" tell(bid(200, Name))

AGENT: ag4
Initial Beliefs: my_name(ag4)
Initial Goals: +!,bid

Plans:
A8 tell(B): T <- +B
+1,bid : my_name(Name) A —19 tell(bid(150,Name)) <- 198! tell(bid(150, Name))
+coalition(A) : my_name(Name) A 14 tell(agree(Name, 150)) <— 14 tell(agree(Name, 150))

AGENT: ag5
Initial Beliefs: my_name(ag5)
Initial Goals: +!,bid

Plans:
A% tell(B): T <- +B
+1,bid : my_name(Name) A —19 tell(bid(150,Name)) <- 198 tell(bid(150, Name))
+coalition(A) : my_name(Name) A —14 tell(agree(Name, 150)) <- 14 tell(agree(Name, 150))

2.5 Dynamic Trust Scenario

This final auction scenario builds upon the previous one. Here, if the coalition-forming agent loses the
auction, it tries to form a coalition with an agent it trusts. Then, if its coalition is successful in winning the
auction, it stops. However, if its coalition is unsuccessful then it no longer believes that it can trust the other
agent in the coalition, and will try to form another coalition with another agent it trusts (except the winner).

AGENT: agl

Plans:
+4%tell(B): T <- +B
bid(X1,ag2) A bid(X>,ag3) A bid(X3,ag4) 1982 tell(win(A));
+bid(Z,A) : | A(bid(Z,A) > bid(X1,ag2)) A (bid(Z,A) > bid(Xy,ag3)) | <- | 19 tell(win(A));
A(bid(Z,A) > bid(X1,ag4)) 1984 tell(win(A))

AGENT: ag2
Initial Beliefs: my_name(ag2), trust(ag4d), trust(ag5)
Initial Goals: +!,bid

Plans:
A2 tell(B): T <- +B
+1,bid : my_name(Name) A —19! tell(bid(150,Name)) <— 19’ tell(bid(150,Name))
. | my_name(Name) N\ —win(Name) Ntrust(Ag) 148 tell(coalition(Ag));
Fwin(4) { A= formed_coalition(Ag') A =148 tell(coalition(Name)) } h +formed_coalition(Ag)
148 tell(coalition(Ag));
} <- + formed_coalition(Ag);
—trust(Ag')

my_name(Name) A —win(Name) N trust(Ag)
Aformed_coalition(Ag") A 148 tell(coalition(Name))

+agree(A,X): T <— 19! tell(bid(300,ag2))
AGENT: ag3
Initial Beliefs: my_name(ag3)
Initial Goals: +!,bid

+win(A) : {

Plans:
A8 tell(B): T <- +B
+1,bid : my_name(Name) A —14 tell(bid(200,Name)) <- 198" tell(bid(200,Name))
AGENT: ag4
Initial Beliefs: my_name(ag4)
Initial Goals: +!,bid
Plans:
A8 tell(B): T <- +B
+1,bid : my_name(Name) A -1 tell(bid(150,Name)) <— 19! tell(bid(150,Name))
+coalition(A) : my_name(Name) \ =14 tell(agree(Name, 150)) <— 14 tell(agree(Name, 150))
AGENT: ag5
Initial Beliefs: my_name(ag5)
Initial Goals: +!,bid
Plans:
A% tell(B): T <- +B
+1,bid : my_name(Name) A —19 tell(bid(150,Name)) <- 198 tell(bid(150, Name))
+coalition(A) : my_name(Name) A —14 tell(agree(Name, 150)) <- 14 tell(agree(Name, 150))

10

3 Verification

We now discuss the results of verifying our various auction scenarios. In particular we will discuss the
property that was verified for each scenario and provide some time, state space and memory statistics for
the verification attempt. Our use of AJPF, optimised as it is to the agent scenario and the AIL, considerably
reduces the state space compared to the state space that would be searched by JPF alone. However, it should
be noted that although the state space is smaller, the transitions between states often require considerable
computation in the JPF JVM. This virtual machine is not optimised for speed. This accounts for the relatively
large time taken per state that is shown by our figures compared to many model checkers (see Section 4 for
comment on efficiency).

3.1 Properties of the Basic Scenario (from Section 2.1)

The following property was verified:
OB(ag;,win)

where ag; is the agent with the highest bid, ‘B’ is the belief operator, and ‘{’ means “at some time in
the future”. In other words, the agent with the highest bid will eventually believe it has won. This sce-
nario was tackled with 3, 4 and 5 agents, with the following statistics (here, timings are given in the form
hours:minutes:seconds).

1 auctioneer | 1 auctioneer | 1 auctioneer

2 bidders 3 bidders 4 bidders
Elapsed Time 0:00:55 0:06:58 1:06:01
Size of State Space 44 265 1706
Max Memory 17MB 19MB 20MB

3.2 Properties of the Auction Coalition Scenario (from Section 2.2)

In this scenario, we verified the property
OB(aj,win)

where a; is the coalition-forming agent. Recall that here, two agents who could not win on their own form
a coalition; the verification shows that they are, indeed, successful.

1 auctioneer
3 bidders; 1 coalition

1 auctioneer
4 bidders; 1 coalition

Elapsed Time 0:06:35 1:54:04
Size of State Space 575 4571
Max Memory 21MB 22MB

3.3 Properties of the Auction Coalition Scenario Variant (from Section 2.3)

Recall that, in this scenario, the coalition formation was not “hard-wired” from the start. Agents bid and,
when they find they have lost, might then attempt to form a coalition for the next auction. We have tackled a
number of variants of this, both in terms of the number of bidding agents (3 or 4), the number of coalitions
that can be formed amongst the bidders (1 or 2), and the property verified. In particular we verified both
properties involving time and belief (as previously) and time and goals.

11

Belief Property.

The property verified here was
OB(a,win)

where gy, is the agent that forms the winning coalition.

1 auctioneer | 1 auctioneer | 1 auctioneer | 1 auctioneer

3 bidders 3 bidders 4 bidders 4 bidders
1 coalition 2 coalitions 1 coalition 2 coalitions
Elapsed Time 0:06:48 0:13:26 0:53:15 2:17:17
Size of State Space 429 903 2496 6728
Max Memory 22MB 24MB 23MB 25MB

Goal Property.
The property verified was
OG(ay, coalition)

where a; was the (last) coalition forming agent. Here, ‘G’ is the ‘goal’ operator. In verifying this, we are
not checking that the agent necessarily achieved any win, but that it (at some point in its execution) adopted
the goal to form a coalition.

1 auctioneer | 1 auctioneer | 1 auctioneer | 1 auctioneer

3 bidders 3 bidders 4 bidders 4 bidders
1 coalition 2 coalitions 1 coalition 2 coalitions
Elapsed Time 0:04:43 0:07:40 0:40:34 0:58:08
Size of State Space 234 469 1452 2780
Max Memory 20MB 22MB 21MB 23MB

3.4 Coalition Trust Scenario (from Section 2.4)

We now turn to the scenarios involving trust. In this scenario, the agent would only form a coalition with
a trusted agent, and its idea of trust was prescribed initially. Four agents were used in the first example: an
auctioneer, and three bidding agents a;,a», a3 with bids 100, 200 and 150. The property verified was

OB(ay,win)

where a; forms a coalition with a3 after losing the auction to a;. The results were:

Elapsed Time 0:03:18
Size of State Space 297
Max Memory 20MB

In the second example, five agents were used: an auctioneer, and four bidding agents a;,a;,as,as with bids
100, 200, 150 and 150. The property verified was

OB(ay,win)

where a; forms a coalition with one of the trusted agents, a4 and as, after losing the auction to a;. The
results were:

12

Elapsed Time 0:25:37
Size of State Space 2065
Max Memory 22MB

3.5 Dynamic Trust Scenario (from Section 2.5)

Finally, we have the dynamic trust scenario, where an agent loses trust in another if they fail in a coalition
together. Five agents were used: an auctioneer, and four bidding agents ay,a,,a3, a4 with bids 100, 200, 25
and 150. The property verified was

OB(ar,win)

where a; forms a coalition with one of the trusted agents after losing the auction to a,. If it chooses aq4 first,
it wins and stops. If it chooses as first, it loses the auction and distrusts that agent, trying subsequently with
ay. It then wins the auction. The results were:

Elapsed Time 0:20:30
Size of State Space 2065
Max Memory 22MB

4 Concluding Remarks

In this paper we have discussed the verification by model-checking of agent-based auction software. We
have focussed on a series of scenarios of increasing complexity in order to demonstrate that, although the
complexity of the model checking task increases with the complexity of the scenario it is nevertheless
a realistic proposition to model-check the properties of interesting multi-agent implementations within a
reasonable time. For example, as we reach the situation where agents form coalitions together, based on
a dynamic notion of trust, in order to compete with other agents, then we are not far from realistic agent
systems.

Clearly, for bigger scenarios improved efficiency will be required (and, indeed, this is something we
are actively working on), but the examples implemented and verified in this paper show that non-trivial
market-based multi-agent systems can be automatically verified.

References

[1] T. Ball and S. K. Rajamani. The SLAM Toolkit. In Proc. 13th International Conference on Computer
Aided Verification (CAV), volume 2102 of LNCS, pages 260-264. Springer, 2001.

[2] S. Berezin, E. M. Clarke, A. Biere, and Y. Zhu. Verification of Out-Of-Order Processor Designs
Using Model Checking and a Light-Weight Completion Function. Formal Methods in System Design,
20(2):159-186, 2002.

[3] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-Agent Programming:
Languages, Platforms and Applications. Number 15 in Multiagent Systems, Artificial Societies, and
Simulated Organizations. Springer-Verlag, 2005.

[4] R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher. Automated Verification of Multi-Agent Pro-
grams. In Proc. 23rd Int. Conf. Automated Software Engineering (ASE), 2008.

13

[5] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Model Checking Rational Agents. IEEE
Intelligent Systems, 19(5):46-52, September/October 2004.

[6] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying Multi-Agent Programs by Model
Checking. J. Autonomous Agents and Multi-Agent Systems, 12(2):239-256, 2006.

[7] C. Boutilier, Y. Shoham, and M. P. Wellman. Economic Principles of Multi-Agent Systems. Artif.
Intell., 94(1-2):1-6, 1997.

[8] J. Bredin, D. Kotz, D. Rus, R. T. Maheswaran, C. Imer, and T. Basar. Computational Markets to Reg-
ulate Mobile-Agent Systems. J. Autonomous Agents and Multi-Agent Systems, 6(3):235-263, 2003.

[9] W. Clancey, M. Sierhuis, C. Kaskiris, and R. van Hoof. Advantages of Brahms for Specifying and
Implementing a Multiagent Human-Robotic Exploration System. In Proc. 16th Int. Conf. Florida
Artificial Intelligence Research Society Conference (FLAIRS), pages 7-11. AAAI Press, 2003.

[10] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Dec. 1999.

[11] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications. ACM Trans. Prog. Lang. Syst., 8(2):244-263, 1986.

[12] J. Collins, P. Faratin, S. Parsons, J. A. Rodriguez-Aguilar, N. M. Sadeh, O. Shehory, and E. Sklar,
editors. Agent-Mediated Electronic Commerce and Trading Agent Design and Analysis (AMEC/TADA)
— Selected and Revised Papers from AAMAS workshops, volume 13 of LNBIP. Springer, 2009.

[13] J. M. Corera, 1. Laresgoiti, and N. R. Jennings. Using Archon, Part 2: Electricity Transportation
Management. IEEE Expert, 11(6):71-79, 1996.

[14] R. K. Dash, P. Vytelingum, A. Rogers, E. David, and N. R. Jennings. Market-Based Task Alloca-
tion Mechanisms for Limited-Capacity Suppliers. IEEE Trans. Systems, Man, and Cybernetics (A),
37(3):391-405, 2007.

[15] L. A. Dennis and B. Farwer. Gwendolen: A BDI Language for Verifiable Agents. In Logic and the
Simulation of Interaction and Reasoning, AISB, 2008.

[16] L. A. Dennis, B. Farwer, R. H. Bordini, and M. Fisher. A Flexible Framework for Verifying Agent
Programs. In Proc. 7th Int. Conf. Autonomous Agents and Multiagent Systems (AAMAS). ACM Press,
2008. (Short paper).

[17] L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and M. Wooldridge. A Common Semantic Basis for
BDI Languages. In Proc. 5th Int. Workshop on Programming Multiagent Systems (ProMAS), volume
4908 of LNAI, pages 124—139. Springer, 2008.

[18] L. A. Dennis and M. Fisher. Programming Verifiable Heterogeneous Agent Systems. In Proc. 6th Int.
Workshop on Programming in Multi-Agent Systems (ProMAS), 2008.

[19] 1. Doghri. Formal verification of WAHS: an autonomous and wireless P2P auction handling system.
In Proc. 8th Int. Conf. New Technologies in Distributed Systems (NOTERE), pages 1-10. ACM Press,
2008.

14

[20] M. Fisher, R. Bordini, B. Hirsch, and P. Torroni. Computational Logics and Agents: A Roadmap of
Current Technologies and Future Trends. Computational Intelligence, 23(1):61-91, 2007.

[21] L. Fortnow, J. Riedl, and T. Sandholm, editors. Proc. 9th ACM Conference on Electronic Commerce
(EC). ACM, 2008.

[22] M. A. Gibney, N. R. Jennings, N. J. Vriend, and J.-M. Griffiths. Market-Based Call Routing in
Telecommunications Networks Using Adaptive Pricing and Real Bidding. In Proc. 3rd Int. Work-

shop on Intelligent Agents for Telecommunication Applications (IATA), volume 1699 of LNCS, pages
46-61. Springer, 1999.

[23] N. Haque, N. R. Jennings, and L. Moreau. Resource Allocation in Communication Networks using
Market-Based Agents. Knowl.-Based Syst., 18(4-5):163-170, 2005.

[24] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cam-
bridge University Press, 2004. (2nd Edition).

[25] Java PathFinder. http://javapathfinder.sourceforge.net.

[26] P. Klemperer. Auctions: Theory and Practice. Princeton University Press, Princeton,
USA, 2004. See also http://www.nuff.ox.ac.uk/users/klemperer/VirtualBook/
VBCrevisedv2.asp.

[27] H. Konishi and D. Ray. Coalition Formation as a Dynamic Process. Journal of Economic Theory,
110(1):1 — 41, 2003.

[28] N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote Agent: To Boldly Go Where No Al
System Has Gone Before. Artificial Intelligence, 103(1-2):5-48, 1998.

[29] F. Raimondi and A. Lomuscio. Automatic Verification of Multi-agent Systems by Model Checking via
Ordered Binary Decision Diagrams. J. Applied Logic, 5(2):235-251, 2007.

[30] A. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In Proc. 7th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW), volume
1038 of LNCS, pages 42-55. Springer, 1996.

[31] A.S.Rao and M. Georgeff. BDI Agents: From Theory to Practice. In Proc. Ist Int. Conf. Multi-Agent
Systems (ICMAS), 1995.

[32] A. S. Rao and M. P. Georgeff. Modeling Agents within a BDI-Architecture. In Proc. Int. Conf.
Principles of Knowledge Representation and Reasoning (KR). Morgan Kaufmann, 1991.

[33] D. M. Reeves, M. P. Wellman, J. K. MacKie-Mason, and A. Osepayshvili. Exploring Bidding Strate-
gies for Market-Based Scheduling. Decision Support Systems, 39(1):67-85, 2005.

[34] T. Sandholm and V. R. Lesser. Coalitions Among Computationally Bounded Agents. Artificial Intelli-
gence, 94(1-2):99-137, 1997.

[35] M. Sierhuis. Multiagent Modeling and Simulation in Human-Robot Mission Operations. 2006
(http://ic.arc.nasa.gov/ic/publications).

15

[36] W. Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders. J. Finance, 16(1):8-37,
1961.

[37] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model Checking Programs. Automated
Software Engineering, 10(2):203-232, 2003.

[38] W. E. Walsh and M. P. Wellman. A Market Protocol for Decentralized Task Allocation. In Proc. 3rd
Int. Conf. Multiagent Systems (ICMAS), pages 325-332. IEEE Computer Society, 1998.

[39] C. D. Walton. Verifiable Agent Dialogues. J. Applied Logic, 5(2):197-213, 2007.

[40] M. Wooldridge, T. Agotnes, P. E. Dunne, and W. van der Hoek. Logic for Automated Mechanism
Design - A Progress Report. In Proc. 22nd National Conference on Artificial Intelligence (AAAI),
pages 9—. AAAI Press, 2007.

[41] M. Wooldridge and A. Rao, editors. Foundations of Rational Agency. Kluwer Academic Publishers,
1999.

16

