"X’ UNIVERSITY OF

& LIVERPOOL

Hyperset Approach to Semi-structured
Databases and the Experimental
Implementation of the Query Language Delta

Thesis submitted in accordance with the

requirements of the University of Liverpool

for the degree of Doctor in Philosophy by
Richard Molyneux

Thesis Supervisors: Dr. Vladimir Sazonov
Dr. Alexei Lisitsa

External examiner: Dr. Ulrich Berger
Internal examiner: Dr. Grant Malcolm

Department of Computer Science

The University of Liverpool
January, 2009

Abstract

This thesis presents practical suggestions towards thieeimgntation of the hyperset
approach to semi-structured databases and the associsgdlgnguage\ (Delta).
This work can be characterised as part of a top-down apprtmsemi-structured
databases, from theory to practice.

Over the last decade the rise of the World-Wide Web has leddetsuggestion
for a shift from structured relational databases to semiesired databases, which
can query distributed and heterogeneous data having uhixedigid structure in
contrast to ordinary relational databases. In princigie, World-Wide Web can be
considered as a large distributed semi-structured dagatlasre arbitrary hyperlinking
between Web pages can be interpreted as graph edges (igsgie synonym
‘Web-like’ for ‘semi-structured’ databases also calledeh&/DB). In fact, most
approaches to semi-structured databases are based os,grdreas the hyperset
approach presented here represents such graphs as systsehequations. This is
more than just a style of notation, but rather a style of tiwagd the corresponding
mathematical background leads to considerable diffesendth other approaches to
semi-structured databases. The hyperset approach to ateibades and to querying
them has clear semantics based on the well establishetidreafi set theory and logic,
and, in particular, on non-well-founded set theory becaasei-structured data allow
arbitrary graphs and hence cycles.

The main original part of this work consisted in implemeiatatof the hyperset
A-query language to semi-structured databases, includimged example queries. In
fact, the goal was to demonstrate the practical detailsisfapproach and language.
The required development of an extended, practical versidhe language based on
the existing theoretical version, and the correspondirggatpnal semantics. Here we
present detailed description of the most essential stefpedmplementation. Another
crucial problem for this approach was to demonstrate howetd oh reality with the
concept of the equality relation between (hyper)sets, ivisicomputationally realised

by the bisimulation relation. In fact, this expensive prhoe, especially in the case
of distributed semi-structured data, required some autthtitheoretical considerations
and practical suggestions for efficient implementation this end the “local/global”
strategy for computing the bisimulation relation over wdiitted semi-structured data
was developed and its efficiency was experimentally confirme

Finally, the XML-WDB format for representing any distrilmat WDB as system
of set equations was developed so that arbitrary XML elemeah participate and,
hence, queried by thA-language.

The query system with the syntax of the language and seveal@e queries from
this thesis is available online at

http://www.csc.liv.ac.uk/ ~molyneux/t/

Keywords:Semi-structured, Web-like, distributed databases, egtsy bisimulation,
guery languagé\ (Delta)

Dedication

This thesis is dedicated to my loving grandparents.

Acknowledgement

The research presented in this thesis was undertaken atefbarihent of Computer
Science under the supervision of Dr. Vladimir Sazonov andADexei Lisitsa.

This work was inspired by the research of my primary supenvidr. Viadimir
Sazonov, his encouragement and dedication was invaluallevieloping those ideas
presented here. Additionally, | am grateful to the help amgp®rt given by Dr. Alexei
Lisitsa and Prof. Michael Fisher. This work was made possilyl the scholarship
awarded to me by the Department of Computer Science.

| wish to thank my parents whose love and support has beernotiveétion of
all my achievements. Also, to my brothers and sister forrteacouragement and
support.

Contents

1 Introduction

| Hyperset approach to querying Web-like databases

2 Semi-structured or Web-like databases

2.1

2.2
2.3

2.4

Set theoretic view of structured and semi-structurgd da.
2.1.1 Structuredrelationaldata
2.1.2 Relaxation of structural restrictions on relatiodiata
2.1.3 Semi-structureddata
2.1.4 Syntactical and conceptual setnesting
Hyperset theoretic view of semi-structured data
GraphorWeb-likeview
2.3.1 Graph representation of systems of set equations ..
2.3.2 Graphs or systems of set equations as Web-like dambas.
2.3.3 DistributedWDB
Hyperset data considered abstractly
2.4.1 Bisimulation — preliminary considerations
242 RedundanciesinWDB
2.4.3 Bisimulation invariance L L.
2.4.4 Anti-Foundation Axiom Lo

3 Query languageA

3.1
3.2

3.3

Thesyntax e e
Intuitive denotational semantics L.
3.2.1 Boolean valued expressionsAformulas
3.2.2 Setvalued expressionsA-terms
Operational semantics
3.3.1 Examplesofreduction

3.4 Implemented\-query languageo
3.4.1 Querieswithdeclarations.
3.4.2 Library

3.5 ExampleA-queries
3.5.1 Example of anon-well-typed query
3.5.2 Example of valid and executable query
3.5.3 Restructuringquery e e
3.5.4 Horizontal transitive closure
3.5.5 Dealing with proper hypersets
3.5.6 Query optimisation by removing redundancies

3.6 Imitating path expressions 0a..

3.7 Linearordering query e e e e e

Bisimulation

4.1 Hyperset equality and the problem of efficiency
4.1.1 Bisimulationrelation

4.2 Computing bisimulationoverWDB

4.2.1 Implemented algorithm for computing bisimulationeowistributed
WDB

Local/global approach to optimise bisimulation and querying

The Oracle

5.1 Computing bisimulation with the help ofthe Oracle
5.2 Imitating the Oracle for testing purposescov oo ot ..
5.3 Empirical testing of the trivialOracle

Local/global bisimulation
6.1 Defining the ordinary bisimulation relatienn
6.2 Defining the local upper approximatiz;wfF of
6.3 Defining the local lower approximatiea” of ~
6.4 Using local approximations to aid computation of thebgldisimulation
6.4.1 Granularityofsites
6.4.2 Local approximations giving rise to global bisimidatfacts
6.4.3 Practical algorithm for computation of local approations

viii

7 The Oracle based on the idea of local/global bisimulation B

7.1 Description of the bisimulation engine (implementatiaf a more realistic
Oracle) e 87
7.1.1 Strategies e e 88
7.1.2 Exploiting local approximations to aid in the comjiata of bisimulation 88
7.2 Empirical testing of the bisimulation engine 89
7.2.1 Determining the benefit of background work by the hidation
engine on query performance oL 89
7.2.2 Determining the benefit of exploiting local approxifoas by the
bisimulation engine on query performance 92
7.2.3 Determining the benefits of background work by thentigation
engine exploiting local approximations 95
7.3 Overallconclusion 98
7.3.1 Claimsandlimitations Q9
[l Implementation issues 101
8 A Query Execution 105
8.1 Implementation ofA-query execution by reduction process 105
8.1.1 Separationconstruct 106
8.1.2 Quantification. 710
8.1.3 Recursive separation 107
8.1.4 Decoration 109
8.1.5 Transitiveclosure 114
8.2 Representation of queryoutput 115
9 A Query Syntax 117
9.1 Parsing (well-formed queries) 117
9.1.1 Implemented\-language grammar 117
9.1.2 BNFforking 118
9.1.3 Queryparsing e e 121
9.1.4 Parsingambiguities L L 123
9.1.5 Grammar classification 124
9.2 Contextual analysis (well-typed queries)125
9.2.1 Aimofcontextualanalysis 125
9.2.2 Some useful definitions L. 126
9.2.3 Bottom-up contextual analysisindetail129

iX

9.2.4 Extension of contextual analysis to support libsarie 136

10 XML Representation of Web-like Databases (XML-WDB Forma) 137
10.1 Represention of WDB by graph or setequations 137
10.2 Practical representation of WDBas XML139

10.2.1 XML-WDB documentformat n4
10.2.2 Distributed WDB 214
10.2.3 Transformation rules from XML to systems of set eigunst 144
10.2.4 XML schema for XML-WDB format a4

IV Evaluation 151

11 Comparative analysis 153
11.1 Preliminary comparison e 153
11.2 SETL . . . o e 154
11.3 UnQL e 156
114 LOore . . . o 157
115 Strudel e 581
11.6 G-LOQ o o e e e e 158
11.7 Tree (XML) model approaches 159

12 Conclusion and future outlook 161
12.1 Hyperset approach to semi-structured databases 161
12.2 Novelcontributions 163

12.2.1 Implementation of the hyperset approach to semétsired databases . 163
12.2.2 Local/global approach towards efficient implemeoitaof bisimulation 164

12.2.3 Further optimisation 165

12.3 Comparisons with other approaches 165
12.4 Furtherwork 651

A Appendix 169
A.1 Implemented BNF grammar df-query language 169
A.2 Example XML-WDBfiles 87

A.3 Predefined library queries e 177

Bibliography 181

Chapter 1

Introduction

Before the emergence of the database culture in the latesl@8ta processing involved the
ad hoc manipulation of data on tape or disk. The complexitgefeloping and managing
such systems inspired new research into the principlestafatganisation. Three models were
suggested during the late 1960’s and early 1970's: i) thearghical model [72], i) the network
model [70] proposed by the Data Base Task Group, and iii) Gaéthtional model [16].

The hierarchical and network models are closely relateddambtion ofobject-orientation
as is argued in [73] and are, in fact, based on the idea of pigjentity, i.e. an object whose
meaning is determined not only by records of values of itsl$i€br attributes) but also by a
pointer or address of this object within files or memory. Nibiat, two objects are identical
if they have the same address or pointer, whereas two okjeetequivalent if they share
the same fields. Link§} — T3 denoting many-to-one relationships between record types
constitute a graph in the case of the network model, and atf@censisting of trees) in the
case of the hierarchical model. Physically, each such goapfee edge is represented by real
relationships between OIDs of records of tyggsandTs.

On the other hand, the great success of Codd’s relationaélnatiich can be considered
as a value-oriented approach, was based on taking the mugarfiental concepts of logic
and set theory as its foundation. Thus, any relation is a fseiptes, with each tuple also
being representédoy a set of a special kind (a set of attribute labelled valuéis)act, this
approach assumes an abstract view on data values wherenteptof object identity is not
needed. (Note that the concept of object identity may plagl@ in implementation but not
in the abstract model itself.) The relational model washfeirtextended by object-orientation
during the early 1990's [32], thus again absorbing the ideabfect identity and additionally
allowing complex data values with possibly nested strgcturd the idea of abstract data type
with encapsulated methods.

Yunder our interpretation

2 Chapter 1. Introduction

However, object-relational databases are still restlitie an imposed relational schema,
that is they have a rigid structure. Note that complex, mesteuctures considered in this
approach are somewhat related with the idea of semi-stedttdatabases discussed in this
thesis, but the latter approach does not assume in geneigidastructure. Moreover, the
hyperset approach to semi-structured databases pregartted thesis is crucially based on
the value-oriented rather than the object-oriented view

From relations to semi-structured or Web-like data

From the second half of the 1990s a new idea of semi-struttdagabases emerged (see [1]
as a general reference). In the age of the Internet and thiel\Wdde Web (WWW), allowing
accessibility of remote and heterogeneous databaseslti®mnal paradigm has become too
narrow and restrictive. Indeed, the structure of the data the WWW is typically non-fixed
or non-uniform. The idea of graph representation of dataimtasduced with the interpretation
of graph edges like hyperlinks on the Web. Due to this anasogy graph-like semi-structured
databases can also be reasonably called Web-like datafveBd3) [41].

An important example of the graph approach (in its pure foisrthe system Lore [46]
and the corresponding query language Lorel [2], which aersi graph vertices as object
identities (OIDs) with equality between vertices undesst@as essentially literal coincidence
of OIDs irrespectively of their information content (praged by outgoing edges according to
our hyperset approach). In fact, this is typical for most isstmuctured database approaches
[2, 8, 13, 14, 15, 18, 19, 22, 26, 27, 31, 33, 46, 51], excephéncase of the query language
UnQL [11] (as discussed briefly below).

On the other hand, because of this idea of browsing by “piatithe informational content
(data value) of a graph vertex, considering such graphslynasea binary (or ternary, if taking
labels on edges into account) relation is not fully adeqirathis context. Thus, we view the
notion of semi-structured data as more than just a relati@t,is more than just a graph where
vertices are (uniquely presented by) object identitieguinhyperset theoretic approach, which
is value-oriented, it becomes more appropriate to conghizse target vertices of outgoing
edges from any given vertex as children or even aslementf v with v understood as a
setof its elements. It is the latter view on graph vertices whichkes it value oriented. In
fact, similar terminology is used in Extensible Markup Laage (XML), which is a widely
adopted approach to semi-structured data. However, thuslysa superficial similarity with
the set theoretic approach. XML only allows to syntacticaépresent semi-structured data
whereas treating such data as sets requires an additimehbleabstraction (supported by an
appropriate technique such as some set theoretic quenydgeywhich is more than just using
the rudiments of set theoretic terminology.

3

XML documents, in fact, represent ordered tree structuegd chther than arbitrary graph
structured data, however, using the attribuis and ref allows one to imitate in XML
arbitrary graphs as well. Considering the ordering of datAML documents as an essential
feature is related mainly with numerous software implemmgons which are deliberately
sensitive to the order of such data. But, XML documents cao bé treated as unordered, as
we do in this thesis. Note that XML plays only an auxiliarya@h our approach as a particular
way of representing semi-structured data (XML-WDB forma@ur main terminology and
abstract data model is based on (hyper)set theory.

The graph model and set theoretic model

The interpretation of graph vertices as sets of their “chitd leads us again to a set theoretic
idea of representation of data, semi-structured data, gofag generalisation of the relational
(value-oriented) approach. It is also worth noting thathie foundations of mathematics the
previous century was marked by the triumph of the set thioegtproach for representing
mathematical data as well as the style of mathematical kggyand reasoning. Mathematical
logicians also developed generalised computability thewer abstract sets (of sets of sets,
etc.) in the form of admissible set theory [6]. In computeiesce, the set theoretic
programming language SETL [62, 63] was created, quite abyurfor the case of finite
sets only. Also some theoretical considerations on conbflitfaand query languages over
hereditarily finite sets were done in [20, 21, 43, 56, 57, 50, With the perspective of
a generalised set-theoretically presented databases actirsémi-structured — even before
the term “semi-structured databases” had arisen. Morgdkerset theoretic approach is
closely related with a special version of the graph approsicen graphs are considered up
to bisimulation (see below).

The first mathematical result relating both the set and geqguinoaches was Mostowski's
Collapsing Lemma, allowing the interpretation of graphtieess as sets of sets corresponding
to children of these vertices. This, however, worked priypanly for well-founded graphs and
sets (which in the finite case, especially interesting féaldase applications, means the absence
of cycles). But arbitrary graphs with cycles can also belamsded” into sets (interrelated by
the membership relation) in the more general non-well-flmahset theory also called hyperset
theory [3, 5]. Here, for example the s@t = {Q} consisting of itself is quite natural and
meaningful, and corresponds to the simplest graph @le

These two trends, from abstract set theory to more concrapghgnodel of semi-structured
data (which is closer to implementation), and vice versaewalled in [61] top-down and
bottom-up approaches. They meet most closely in the work wQLlUquery language [11]
which is devoted to a specific graph model approach to senmtsred data considered up to

4 Chapter 1. Introduction

bisimulation. The latter concept is also the key one in theke/¢41, 43, 56, 57, 61] (serving
as the theoretical background for this thesis) for intdmpgegraph vertices as a system of
(hyper)sets belonging one to another according to the gedgls. Nevertheless, [11] is still
rather a graph approach than hyperset one according to duakphowever related to, but
not a genuine set theoretical way in which [11] treats grgphe Section 11.3 and [61]). The
main difference is that graphs considered in [11] have mieltiinput” and “output” vertices,
whereas graphs as considered in our hyperset approach higvena “input” corresponding
to the set itself (and possibly one “output” correspondioghe empty set if it is contained
in the transitive closure of this set). In fact, working withese “inputs” and “outputs”
(used for appending one graph to another, etc.) is condgptagher graph-theoretical than
set-theoretical.

Hyperset approach to semi-structured or Web-like databasg

As discussed above, the hyperset approach to semi-sedctlatabases interprets graph
structured data as abstract hypersets. Moreover, for thgopes of implementation, such
graphs are represented as systems of set equation§2e-g{2} for the graph@. In fact,
arbitrary finite graphs can be rewritten into systems of ggetagons and vice versa, where
graph vertices (or object identities) represent set narvkseover, elements of sets in these
set equations should be labelled according to labellingaybly edges, and, in fact, these labels
are the carriers of atomic information in the hyperset agginato semi-structured databases.
Furthermore, graph structure or, respectively, set-aitmesting organises such atomic data,
just like relational tables in the relational or nestedtietaal approaches. The notion of equality
between sets can be represented in graph terms by the kasionuielation on vertices or set
names whose idea consists, roughly speaking, in (reclysigaoring the order and repetition.
Thus, any two graph vertices or set names denote the samietisey iare bisimilar, that is
contain the same (recursively, up to bisimulation) elemelnt fact, the bisimulation relation is
very important in our approach being a fundamental concegérlying hyperset theory.

Hyperset query languageA

The associatedh-query language is based on set theory and predicate laging bn extension
of the basic or rudimentary operations [30, 39] — tuee fragment of A. The set theoretic
operators of theA-language, like in the relational calculus, have clear amdl-understood
semantics. In fact, the expressive power/®f(the core fragment plus transitive closure,
decoration and recursion set theoretic operations) wasrsio [57] and [43, 58] to capture
all polynomial time computable operations over hereditafinite sets and, respectively,
hypersets. Also, another version of the language was shovi#0Oi 42] to capture exactly

5

all LogSpace computable operations over hereditarilydigéts (without cycles). Therefore, in
principle, theA-query language can be reasonably considered as compiafitigiable and
worthy of implementation.

Some earlier preliminary work on the implementation of thayuery language to WDB
was done earlier by Yuri Serdyuk in [66], as well as in sometical attempt towards a new
implementation based on multiple distributed agents waykiooperately over the Internet [35]
(taking into account the earlier theoretical work [60]). Ma@ecently the implementation work
leading to this thesis was done in [49]. However, the latigslementation was insufficiently
perfect. This antecedent work subsequently inspired tbpgsal for further research and the
development of a sufficiently detailed implementationf thathe point of the work done here.
Note that some details of the implementation describedwere published in [50].

Implementation of the hyperset approach

The goal of this work was to demonstrate how the hypersetoagprto semi-structured or
Web-like databases could be implemented, with the aim ofguting this approach in a
practical rather than theoretical context and making ieasible to a more practically oriented
audience. In particular, the practical characteristic hi$ work assumes representation of
hyperset data as files distributed over the World-Wide Wetb thie implementation of the
hyperset query languagA allowing queries over such distributed data. Importanthe
implemented language should preserve the original higi,léeclarative characteand retain
its set theoretic style. Further, this approach should destnate the power of the set theoretic
style of thought towards semi-structured databases. Nwtethe query system (which is
implemented in Java) and the example queries describedkithiisis can be found at

http://www.csc.liv.ac.uk/ ~molyneux/t/

Efficiency issues

Another goal consisted in the subsequent investigatiorhebretical considerations arising
from this experimental implementation, specifically thelgem of efficient implementation
of the equality or the bisimulation relation — which crubjalinderlies this hyperset theoretic
approach. Moreover, our proposed solution was restrictedaking the bisimulation relation
efficient only in context of distributed WDB which may reqeiinumerous and particularly
expensive downloads of files from the World-Wide Web. Howgtres work does not consider
the problem of efficiency in the non-distributed case, egfigdaking into account the previous

2Recall that, for example, Prolog initially intended to begital, declarative programming language, eventually
has both declarative and imperative features. This mixdtideologies was the result of making this language more
efficient.

6 Chapter 1. Introduction

works on efficient bisimulation algorithms that, on the othand, do not consider distribution
[24, 25]. Note that, many other aspects of efficiency of thpl@mentation (such as indexing,
hashing and other physical data organisation techniqusdg well as various other questions
which should be resolved for creating a sufficiently remlidatabase management system were
inevitably postponed here. In fact, the primary aim of thiskwvas the correct and meaningful
implementation of a non-trivial and user friendly versidrttee A-language.

Organisation of the thesis

Details of the implementation are rather technical, thusakes sense to firstly explain the
intuitive (or high level) meaning of the hyperset approasti demonstrate example queries of
the implemented\-query language. Secondly, technical details of the implaation appear
towards the end of the thesis detailing the lower level aspetour approach. Note that,
the material presented in this thesis follows an intuitieeception of this approach towards
semi-structured databases rather than a strict logicaraigmcy.

The thesis is organised into four parts:

Part I, “Hyperset approach to querying Web-like databgsgsles an overview of the
implemented hyperset approach to semi-structured or Weldhtabases and the associated
query language), including worked example queries. The point of this patbisntroduce
this approach on an intuitive level before discussing thhri&al details of implementation.

Part 11, “Local/global approach to optimise bisimulatiomdaquerying”, is concerned with
the problem of efficient implementation of the equality ailviulation relation. Here two joint
strategies were suggested for resolving this problem: pJémentation of an Internet service
for resolving bisimulation questions, and ii) the compigtatof bisimulation approximations
on fragments of distributed Web-like databases to aid tinepctation of global bisimulation.
The viability of these suggestions as solutions is supddsteempirical testing.

Part 1ll, “Implementation issues”, presents the techndethils of the implementation of
the hyperset approach towards semi-structured or Wehdbitabases. We start by detailing
guery execution (which we feel is potentially more impottfm readers) followed with query
parsing and contextual analysis, although query execigjon fact, formally dependent on the
latter syntactical considerations. Finally, XML repretsgion of WDB systems of set equation
has a quite isolated role in our approach and is presentda &ntd of this technical material,
but this discussion is actually quite self-contained andlzaread independently of the rest of
this thesis.

Part IV, “Evaluation”, concludes with comparative anadysiith other known approaches
towards semi-structured databases, and finishes with sotneefprospects and closing
remarks.

8

Chapter 1. Introduction

Part |

Hyperset approach to querying
Web-like databases

Chapter 2

Semi-structured or Web-like databases

The termsemi-structured datdenotes data which has a characteristically unfixed or rgpa-r
structure, thus semi-structured data is considered agfisaless” or “self-describinghaving

no complete structural description or schema [1]. Howeygically semi-structured data is
similar to structured data e.g. relational data (as desdriielow) but without strictly imposed
structure. More specifically our approach to semi-striettutatabases is based on (hyper)set
theory [3, 5].

2.1 Settheoretic view of structured and semi-structured d&a

2.1.1 Structured relational data

Structured data has a fixed and rigid structure such asoedtilata [17] described by relational
schemaR(A1, A, ..., Ay), WhereR is relation name andd; areattributes(constrained by the
domainD;). In the relational model, relations are naturally repnéseé as tables with attributes
as named columns of a table. For example, $itied relation shown in Figure 2.1 has the
attributesforename , surname , DOB(date of birth) andlepartment

Stud:

forename ‘swﬂame ‘DOB ‘ department

Jack
Sarah

30/6/1986
27/11/1988

DeptChemistry
DeptBiology

Jones
Smith

Figure 2.1: Relational table of students.

The consideration of semi-structured data as “self-defg? is somewhat misleading as it might be wrongly
thought to suggest clear semantic description of such datarticular, when considering the graph representation
of semi-structured data, labels have only an informal nrgadependant on subjective interpretation of language,
e.g. the imprecise term “location” could have many inteigiens — address, map coordinates, URI, anatomical,
etc.

11

12 Chapter 2. Semi-structured or Web-like databases

The relational approach is essentially based on set thasmyell as on logic. For example, the
Stud relation (above) can be represented as set of studplas(rows or records),

Stud = { stl, st2, ... }
or, better, as
Stud = { student:stl, student:st2, ... }

where each student tuple is represented as a set of lab#diedcavalues, with labels being
attribute namesandattribute valuesas atomic values (strings of symbols between quotation
marks to distinguish them from set names and attribute ngmes

stl = { forename:"Jack", surname:"Jones",
DOB:"30/6/1986", department:"DeptChemistry" }

st2 = { forename:"Sarah", surname:"Smith",
DOB:"27/11/1988", department:"DeptBiology" }.

Let us consider the relational databas@v as the following set of (labelled) relations,

Univ = { departments:Dept, students:Stud, lecturers:Lect ,
modules:Mod, courses:Course, ... }.

The relationdDept , Lect , ModandCourse will not be further described, they are plausible
example relations, lik&tud , that could belong to a University database. Here the lajoels
attributes)departments , students , lecturers , etc., give an informal description of
what the setPept , Stud , Lect , etc., are about. These sets could be denoted differently,
say asD, S, L, etc. Thus, strictly speaking the denotation of sets do¢secessarily carry
informational content. Hence the important role of labeltriputes e.g.forename) and
atomic values (e.g'Jack"), which are the proper carriers of basic information.

2.1.2 Relaxation of structural restrictions on relationaldata

Relational data with the given schemRdA;, As, ..., A,,) has a rigid structure with mandatory
attributesA; for associated tuple components. It is also known of the mgereeral approaches
to nestedrelational databases [52, 54, 71] where attribute valuakldme relations. Say, in the
above example we could reconsideeptChemistry as a set (instead of an atomic value)
by omitting the quotation marks aroufeptChemistry and adding the corresponding set
equation further detailing the chemistry department:

DeptChemistry = { name:"Department_of_Chemistry",
lecturers:ChemLect,
modules:ChemMod,

Y

2.1. Settheoretic view of structured and semi-structuggdd 13

Moreover, we could relax the requirement on students tuplésve a value for each attribute
forename , surname , age anddepartment . For example, the DOB of a student could be
absent by some reason, but some other information coulddsempt;, such as

email:"jones@liv.ac.uk"
or,

sex:"male".

Thus, relaxation of traditional structural restrictions relational databases leads naturally to
semi-structured databases, in fact, to the set theorgtimaph where such data are considered
asarbitrary set of (labelled) sets of sets, etc., to any depth, repreddmnt set equations like
above.

2.1.3 Semi-structured data

For simplicity, we consider semi-structured data as systefflat set equations where a set
equation consists of set namgeequated to a bracket expressiBp(s) like those considered in
the above example. In vector form this can be summarised as

5 = B(5).

Flat bracket expressiofi; : s;,,...,l, : s;,} is thought of as a set of labelled elements. In the
flat (non-nested form) only set namesfrom the list of all set names = sy, so, ..., 5,,, May
participate as elements. LabéJscan be considered as analogous to attributes in the redtion
approach, however, element labelling is optional with teadlt label being the empty label

(or null) which can be considered as invisible, such as the abserabeifing in theStud

set above. Formally our general approach does not condidi@icavalues such aslack"
"Jones" |, etc., from the example above. However, any atomic valuébeaimulated as a set
consisting of one labelled empty set [41, 57, 61], such as

"Jack" = {Jack’{}}.
Strictly speaking, we should use single quotation markatoels (often omitted for simplicity)

and double quotation marks for atomic values. Of course, avestill use the denotation for
atomic data liké'Jack" , but it should be understood as above.

2.1.4 Syntactical and conceptual set nesting

In the case where nesting is allowed (like the participatibd} in the above definition of
atomic values, and also in more complicated cases) any sgt sfiacan be substituted with
the corresponding nested bracket expres#pnand vice versa. For example, tBéud set

14 Chapter 2. Semi-structured or Web-like databases

eguation could be rewritten with the nested right-hand &de adding thetudent attribute)
as follows,

Stud = {
student:{ forename:"Jack", surname:"Jones",
DOB:"30/6/1986", department:"DeptChemistry" },

student:{ forename:"Sarah", surname:"Smith",
DOB:"27/11/1988", department:"DeptBiology" }

}.

Here the nesting of data inside tBeud set equation proves useful in avoiding the introduction
of new set names, and thus eliminatisiy andst2 . Moveover, this demonstrates that set
names in set equations play an auxiliary role, and can eveeduolly renamed in an analogous
way to renaming variables in any ordinary algebraic equatiorhus the real information of
such semi-structured data is carried by labels and setgiemesting. More generally, we
could allow (and, in fact, will consider later) arbitrarystieg in the right-hand sides of set
equationss = B(5). This can be evidently “unnested” or “flattened” by introohgs new
(fresh) set names and appropriate set equations. So, arictien for non-nested systems of
set equations (i.e. with non-nested right-hand sides) iseasential, but can simplify some
considerations.

In fact, the notion of non-nested or flat system of set eqoatis only syntactical and,
conceptually, flat systems of set equations allow arbitreasting with the participation of set
names (corresponding to set equation) as elements

2.2 Hyperset theoretic view of semi-structured data

In the above approach to semi-structured data via systeset efjuations = B(5) there was,
in fact, no restriction on the form of these equations. Thiasving not only arbitrarily nested,
but also cycling data like in the simplest example of a sesistimg of itself

Q= {Q}.

Mathematically, such kind of sets are considered as ndlitivaal, although they have already
been deeply investigated hyperset theoryas represented in the books [3, 5]. From the point
of view of semi-structured data there is nothing strangauthssets. Imagine that we have a
relational table where some cells can represent otheiaeéttables, etc. Such nesting can be
implemented so that “clicking” on such a cell leads to theegponding nested relational table
shown instead of the original table. There is no technicalaorceptual problem to have such

2.3. Graph or Web-like view 15

a situation that after several such “clicks” we will arrivad to the original table we started
“clicking” with — like in the World-Wide Web by successivelitking” we can possibly return
to the Web page we started with. Moreover, from the infororeti or database point of view
this can be quite meaningful.

For example, let us consider the University database whenedlly the student sstl has
the chemistry department deeptChemistry as the member, and (possibly many) students
are members of thEhemStud set of enrolled chemistry students, as described by muytuall
recursive set definitions,

stl = { forename:"Jack", surname:"Jones",
DOB:"30/6/1986", department:DeptChemistry }

DeptChemistry = { ..., enrolled:ChemStud, ... }

ChemStud = { student:stl, ... }

with ChemStud a subset of the s&tud of all university students. Any set (nameg)can be
defined by referring to other set (names) as elements, etthaseventually we could possibly
come to the original set; — thus, arbitrary cycling is allowed.

There is more to say about the hyperset approach to sersitgied data on the conceptual
level, in particular, on the concept of equality betweers gpbssibly denoted by different
set hames) but we will postpone this discussion to Sectidnl2. On the current very
preliminary level of consideration sets are thought simasysyntactical bracket expressions,
or as represented by formal systems of set equations. Invfacheed an abstract concept of
hypersets amongst which we could find a (unigue) solutiomyaa/en system of set equations.

2.3 Graph or Web-like view

2.3.1 Graph representation of systems of set equations

Representation of semi-structured databases by systeset efjuations presents a clear and
mathematically well-understodaonceptual view of semi-structured data as (hyper)sets. Bu
it also makes sense to consider visualisation of systemetoéguations by the equivalent
representation as (finite) labelled directed graphs. Ity flais important for all considerations
of this work that any given system of set equations can beideresl as a labelled directed
graph.

2taking into account Section 2.4

16 Chapter 2. Semi-structured or Web-like databases

departments courses

@ lecturers modules
department @ students @

@ student student student
@ forename forename @

enrolled

@ department department
Y ept-
modules chz:::;ry @ @
"Jack" "Sarah"
lecturers DOB surname surname DOB
@ @ @ @
"30/6/1986" "Jones" "Smith" "27/11/1988"

Figure 2.2: Semi-structured databaseiv represented as directed graph.

In fact, most approaches to semi-structured databasesallypiconsider them as labelled
directed graphs, that is, semi-structured data is modeBdéinite) directed grap&y’ = (N, F)
with L-labelled edges, wherg is an infinite set of possible label§, (I-, ..., etc., and the
empty labeld), N is a finite set of nodess(, so, .. ., etc.), andE is a finite set of edges with
each edge; LY s; being formally an ordered triple of the forfs;, s;, ;). For example, the
University database considered in Section 2.1 has thespmneling representation by directed
graph shown in Figure 2.2.

The membership of labelled elemédnbel : s5 to the sets; (label : so € s1) corresponds

to the labelled edge; tabel s9 (and vice versa), where set hamgsserve as (the unique

names of) graph nodes. In general, each set equatiea {/; : s;,,...,l, : s;,} from the
system generates a fork of labelled edggsl—1> Siqy -5 Si I, s;, outgoing froms;, as

depicted in Figure 2.3. Allthose forks generated from egetyequation give the corresponding
representation as graph. Vice versa, any graph with labeltiges is evidently visualising
a system of set equations, with one equation for each nodeaseach node is thought as
a (hypenr)set. Thus, graphs and (formal) systems of set ieqgaare essentially equivalent
concepts.

2.3.2 Graphs or systems of set equations as Web-like dataless

The World-Wide Web (WWW) can, in principle, be consideredaakarge semi-structured
database, consisting of an arbitrarily organised colbectf hyperlinked HTML documents.
Each HTML document has a corresponding URL (WWW address),cantains textual data

2.3. Graph or Web-like view 17

Figure 2.3: Forking of labelled edges generated by the settems;, = {l;:s;,,...,0n i, }-

with markup tags denoting visualisation and hyperlink infation. The following fragment of
HTML code is an example of a hyperlink,

University of Liverpoo I
what in our symbolism of labelled elements can be repredeage
University of Liverpool : http://www.liv.ac.uk/
and visually (in Web browser) this hyperlink would appeatdiskable” fragment of text

University of Liverpool

with the URL hidden. Hiding of URLSs corresponds to the ideantitmed above that set names
(names of graph nodes) actually do not matter from the pdiwieas of the proper information.
Only labels on edges or the “clickable” links (and other t&xtl visual content) on Web pages
carry information, plus, of course, the graphical struetufrhat is, URLSs play a different role
than proper information in the WWW. In Figure 2.4 we consioiewsing between hyperlinked
HTML documents by “clicking” on such links. It is evident frothis example that hyperlinked
HTML documents can express arbitrary relationships, fangse the cycle when browsing by
“clicking” on the links,Departments , Medicine , University of Liverpool ,and
SO on.

Thus, any hyperlink can be denoted by the labelled adggel“ﬁi url;, suggesting the

intuitive understanding of hyperlinking as arbitrary |dée directed graph. Therefore, systems
of set equations or equivalently labelled direct graphs, lsa more generally named by the
analogyWeb-like Database@VDB) [19, 41, 60, 61]. Furthermore, our approach also aersi
WDB as Web-like with distribution over the Internet (in a d#n manner to hyperlinks),
however, it is intended to be smaller, simpler and betteamiggd than the WWW. Such
WDB graphs can, in principle, be quite arbitrary but in regplications it is assumed to be

18 Chapter 2. Semi-structured or Web-like databases

governed by some organisation or company, and possiblylinated to be arbitrarily extended
by anybody in the world (like typical databases). AdditibyyaVDB (or semi-structured data)
can also have a schema restricting the shape of the WDB, butegessarily so rigid like in
the case of relational databases, see for example [9, 41 HoWever, we will not go further
into these detalils.

University of
Liverpool

Graduate school Departments

Medicint/ x:omputer Science

[
e
A

Figure 2.4: Browsing of hyperlinked HTML documents on theugnsity of Liverpool website.

2.3.3 Distributed WDB

Any WDB represented as a system of set equations 5(5) can be quite big, and naturally
divided into subsystems of set equations. Each subsystemsponds to a XML-WDB file
(see Chapter 10 for details of the XML-WDB representatioojtaining only some of the
equations (desirably closely interrelated by a subjectanatMoreover, these files could be
distributed between various servers over the world, likevHiTiles on the World-Wide Web.
It may happen that set equations defined in some WDB file mahiewset names defined by
equations in other (non-local) WDB files.

Furthermore, when considering the real application of Whdrithution proves useful in
the creation and management of (potentally large) databaseh as the plausible distribution
of the University WDB. Let us consider that in the case of theversity WDB, set equations
might be distributed between many WDB files, let us say by depnt. Therefore, the

WDB file http://www.liv.ac.uk/ChemistryDepartment.xml could contain the
following subsystem of set equations

3This is still not very realistic situation to assume thatfileChemistryDepartment.xml contains all set

2.3. Graph or Web-like view 19

DeptChemistry = { ..., enrolled:ChemStud, ... }
ChemStud = { student:stl, ... }

Likewise, the WDB filehttp://www.liv.ac.uk/BiologyDepartment.xml could
contain the subsystem of set equations:

DeptBiology = { ..., enrolled:BiolStud, ... }
BiolStud = { student:st2, ... }

Moreover, there could also be the WDB fitudents.xml containing the set equations
stl = {...} andst2 = {...} . Thus, the set namestl , st2 , etc. participating,
respectively, inChemistryDepartment.xml and BiologyDepartment.xml would
now be described as sets in another file. In this case, wedhookider the full versions of the
simple set namestl , st2 , etc., described imttp://www.liv.ac.uk/Students.

xml , as discussed below.

2.3.3.1 Full versus simple set names

Taking into account the above example, any given set namddsbe considered asfall set
name consisting of WDB file URL andimple set naméwith the simple set name described
within the WDB file). For example, in the distributed UnivitysWDB considered above, the
full set name of the biology studest2 would be

http://www.liv.ac.uk/Students.xml#st2

with the WDB file URL and simple set name delimited #ysymbol. However, in practice

it suffices to use simple set names in the left-hand side oégeations, and also for those
occurrences of set names appearing in the right-hand sislet efjuation definitions if they are
defined in the same WDB file. In particular, the author of a WD@&dan freely use any simple
set name (as such or as part of full set names) without theedarfiglashes with simple names
participating in the other WDB files.

However, there is one subtle point: if a simple set naete name occurs twice in some
WDB file, once as a simple set name and again as part of a fullasakurl#set_name
(with url referring to some different WDB file). Then in the latter céiseefers to another
file where the corresponding equation is defined, even if teent file already contains the
equationset_name = {...} . Thus, these two occurrences are actually different seeaam
because their corresponding full set names are indeedatiffeOf course, each set name must
be defined either in the same or some other WDB file. Otherwiseonsidered as syntactical
error. Thus, it is necessary to download some WDB files whd2ed hppear in full set names
of the given file to confirm the existence of defining equatiohthe referenced set names.

equations related with this department (on students, lexgpetc.). These set equations should be further divided
into natural fragments (WDB files).

20 Chapter 2. Semi-structured or Web-like databases

2.4 Hyperset data considered abstractly

The notion of WDB as a system of set equations presents al@l Eyntactical understanding
of semi-structured data. However, conceptually (and séosdly) WDB is understood as
consisting ofabstracthypersets (like relational database consists of abstedations). The
hyperset approach considers WDB as an arbitrary finite systeset equations, each set
eguation consisting of set name equated to correspondauixdirexpression. But the intended
meaning of such a syntactical expression is a set of labele&adentsnot an ordered sequence.
Therefore according to this (hyper)set theoretic appraasdhring and repetition of elements in
a bracket expression should be completely ignored. Thagrisying ordering and repetitions
has some botbperationalandconceptuakonsequences.

This can possibly lead to equality between different set emm and s; denoted as
s; = s; and meaning that; ands; denote the same abstract hyperset, or strictly denoted as
s; ~ s; (to avoid possible misunderstandingspf= s; as the assertion that these set names are
identical, and to stress on the particularly important milthis concept of equality). In facty
is the well known concept in the context of graphs caldsimulation relationbetween graph
nodes or, in our case, between set names [3, 5, 61]. As thefdiés relation is crucial for
the hyperset approach to semi-structured databases pihrisaeh is therefore more than pure
graph theoretic, as considered in the approaches to samitged databases as graphs e.g. in
[1, 2,11, 18, 19, 36, 46] or as XML tree-like data e.g. in [23]. Note that, however, [11] is
also heavily based on the bisimulation relation, it is rathgraph than a hyperset approach as
was argued in [61].

2.4.1 Bisimulation — preliminary considerations

In general, the bisimulation relation between set namespfgnodes) of a WDB, i.e. a system
of set equations, and the corresponding recursive algarighbased on the idea that any two
sets are equal if for each (labelled) element of the first lsettet exists an equal (bisimilar)

element in the second set (and vice versa). Bisimilar setesaare said to denote the
same abstract (hyper)set. The bisimulation relation wéllfbrther described in Chapter 4,
with formal theoretical definition, and practical consat#ns for its implementation. We

consider that this hyperset approach to WDB is worth impleting as it suggests a clear and
mathematically well-understood view on querying such ssimictured data.

A WDB is calledstrongly extensiondl3] or non-redundant, if different set names (nodes)
are non-bisimilar i.e. denote different hypersets. In theecof strongly extensional WDB,
equality between set names (nodes) trivially becomes théasltjcal identity relationship.
Otherwise, even the simplest queries like= y or x € y can be quite expensive to evaluate,

2.4. Hyperset data considered abstractly 21

especially in the case of distributed WDB. Therefore, weotkewart 11 to some approach of
dealing with this problem practically.

2.4.1.1 Example

Consider the set equations below, where trivialle 2’ holds because our (hyper)set approach
ignores the ordering and repetition of elements:

v ={y,z}
v ={z,y,z2}.
However, set names (or graph nodes) may be equal (bisiffiilagome “deeper” reason than

for x andz’ above. Let us consider the above example extended witheber&ive) definitions
of the sets;, y andy’:

z={}
y={z}
y ={='}.

The setsy and 3’ both contain one element of syntactically differing set rang and z’
respectively), thus suggesting thatandy’ might not be equal. However, the bisimulation
relation defines two sets as equal if for each element of teedat there exists an equal (or
bisimilar) element in the second set, and vice versa. In #se above we already know that
x ~ 7’ holds, and according to this informal definition of bisintida all of the elements aof
are bisimilar to the elements gf, and vice versa. Therefore we can deduce that, in fasty’
holds.

Let us now consider the strongly extensional version of Hyistem of set equations
obtained by eliminating the redundant set nameandy’, and omitting repetitions. Thus,
after “collapsing” the bisimilar nodeg' to z andy’ to y, and omitting element repetitions, the
resulting system of set equations is

T = {yvz}
y = {z}
z={}.

Thus, the elimination of redundancies (in the above systeseibequations) is visualised by
Figure 2.5.

22 Chapter 2. Semi-structured or Web-like databases

(a) Redundant version, with red dashed edges (b) Non-redundant (strongly exten-
relating bisimilar nodes (or sets) sional) version

Figure 2.5: Graphical representation of a trivial WDB (drresponding set equations above).

2.4.2 Redundancies in WDB

The above example, although artificial, demonstrates tisiniarity between set names
introduces redundancies into WDB. However, the crucialstaoe in implementing the
hyperset approach to WDB is whether the bisimulation retafx) can be computed in any
reasonable and practical way. Some possible approacheseavelare outlined below.

In principle, the occurrence of bisimilar nodes in a re&is¥DB (i.e. redundancies)
should be infrequent. Therefore, such rare redundanciesbeaeliminated by supporting
WDB in a strongly extensionastate, with redundancies detected or even eliminatednihgta
as soon as they might potentially appear. Trivially, aftémimating redundancies equality
between sets (i.e. bisimulation relation between set namgisph nodes) becomes the identity
relation. However, eliminating redundancies is more espenthan only detecting them
i.e. just computing bisimulation relation on the WDB. Thssipporting WDB in strongly
extensional form may be reasonable option when WDB is ngelar

WDB should not be assumed to be just another version of WW#élyrextensible by
anybody in the world. That is, an appropriate discipline a@iking with WDB could make
the problem of bisimulation practically resolvable. Letnasv consider several ways by which
redundancies can appear.

2.4.2.1 Redundancies arising during query execution

Execution of queries leads to the temporary extension WibBhe original WDB (as detailed
later in Section 3.3), with the addition of new set names atdeguations locally. Such
extensions WDBmay potentially give rise to new redundancies, so that éguslibqueries
applied to these newly generated sets becomes non-triNaik that the set names in original
WDB do not refer to new ones in WBBthus WDB remains self-contained. Therefore, the

2.4. Hyperset data considered abstractly 23

new bisimulation relations’) on WDB' restricted to those set names in WDB coincides with
the identity relation on WDB. Moreover, the algorithm of guexecution could be amended
in such a way that as soon as new (auxiliary) set names areagedé€likeres in Section 3.3)
any possible redundancies will be eliminated immediatélghould also be taken into account
that the extensions WDRarising during query execution have several specific tyaed,are
sufficiently simple and small, thus making the process oécteig/eliminating redundancies
easier, see also [40, 42], but we will not go into the detagiseh

2.4.2.2 Redundancies which can appear during a local update

Local updates of WDB files are more problematic because qguely non-bisimilar nodes

outside this file may become bisimilar due to possible lints faths) to the local nodes
with changed/added meaning. The appropriate (more effitem the standard) strategy of
detecting/removing all such redundancies is not so stifaigiard and needs to be developed
yet. However, taking into account the locality of changdss task does not seem to be
unrealistic.

2.4.2.3 Deliberate redundancies

Deliberate redundancies in WDB can also appear with the sames mirroring in WWW.
But, if there is a requirement to officially registered suchraring in the WDB, then such
deliberate redundancies should most plausibly be deditiwia quite feasible way.

2.4.2.4 Local versus global bisimulation

Unlike the other considerations above, we will consider ‘theal/global” approach and its
implementation for supporting bisimulation relation on Win background time) in more
detail (see Part Il). Now we present only some general inctity comments on this idea.

Assume that all WDB nodes are divided into claséggsaccording to their sites (WDB
servers) or even files. There is a quite natural definitiorocél (i.e. computed locally) lower
and upper approximations-{ , zi) to the global bisimulation relatior() on the whole WDB:

n1%£n2:>n1%’rl2:>n1%in2

These approximations can help to compute and to permansmgigort global bisimulation
in a distributed way in background time. Moreover, we cowduirelocal independence
(L = =%, and hence= ~| L) and additionallylocal non-redundancy~? = ~& = =£).

24 Chapter 2. Semi-structured or Web-like databases

2.4.3 Bisimulation invariance

The hyperset approach assumes considering WDB (graphstensy of set equations) up to
bisimulation. Therefore, itis an important requirememtdet theoretic operations and relations
to bebisimulation invariant that is to preserve the bisimulation relation. Although fubly
proven here, it can be shown [58] that all definable querigfithe hyperset\-query languade
(see Chapter 3) are bisimulation invariant:

T~y=—q(z)~q(y) (forsetvalued queries)

T ~y=—q(Z) < q(y) (for boolean queries).
For example, in the case of the set theoretic operation unéohave:
1~y &z =y = (1 Ur2) = (Y1 Uy2).

This actually means that we work with (abstract) hypersatiser than just with graph nodes
or set names, however the operational semantics of thedgegu is based on the syntactical
manipulations of set equations [61]. The point is that theatics of the languaga respects
bisimulation and completely agrees with the hyperset thErs].

In particular, z; U x4 is defined as a new set name, sgywith corresponding new set
equationu = {...,...}, where the first "..” is the content of the right-hand side of the
equationz; = {...} from the given WDB, and similarly for the second *” and the equation
xo = {...}. The uniony; U y, is computed in the same way from set equationg/foandy;
giving rise to new set name;/, and the corresponding set equatidn= {...,...}. Then the
conclusion of the above bisimulation invariance conditionu actually means, ~ «/, and
can evidentially be shown.

Note that the membership relatiane y for two sets (considering the unlabelled case for
simplicity) is defined to be true if the set equation fpinvolves some set name, where
y={...,2',...} and, moreovery ~ z’. Additionally, it can be shown that the membership
relation is also bisimulation invariant:

iRy &TIRYy = 1 ET2 = Y1 €Y

For all other constructs of th&-language the operational semantics maybe more complicate
however, it follows that they also agree with this intuiti{abstract) set theoretical meaning.
The syntax and semantics of tle-query language will be further detailed in Sections 3.1
and 3.2, with some further indications of the operationahastics in terms of set equations

“The operational meaning d-queries are defined graph theoretically or in terms of seagons.

2.4. Hyperset data considered abstractly 25

detailed in Section 3.3.

2.4.4 Anti-Foundation Axiom

Finally, we do not go into full mathematical details on hygets, however, we could assert
the following form of Anti-Foundation Axiom (AFA) [3, 5], which holds in the universe of
abstract (in our case finite) hypersets:

Any system of set equations= B(3) has a unique abstract hyperset solution for
set nameg making these equations true.

Therefore, set names of any WDB (as system of set equatiensfel quite concrete, uniquely
defined abstract hypersets. In this sense each set naméf(quary) serves as a set constant
(relative to the given WDB) denoting a unique hyperset. Nlo#, theA-language also has set
variables which can be quantified unlike constants.

Strictly speaking all of this makes precise mathematicass@nly in context of Chapter 4,
which further details the bisimulation relation (with sommditional mathematical considera-
tions) beyond the general informal description of bisiniolarelation so far.

26 Chapter 2. Semi-structured or Web-like databases

Chapter 3

Query languageA

3.1 The syntax

There has already been much theoretical considerationsamne(versions of) thé& (Delta)
query language to hyperset/WDB databases [40, 41, 43, 37, Téfe two main syntactical
categories oA are:

e A-termsrepresenting set valued operations over hypersetqgleries and
o A-formulasrepresenting truth valued operatiofi®¢lean querigs

Note that the denotatioh bears partly from the well-known clags, of bounded formulas
introduced by Levy, although\, as defined here, denotes a wider language. It is based on
the basic or rudimentaryset theoretic languages of Gandy [30] and Jensen [39]. Mergo
inclusion of set theoretic operators: transitive clostr€) recursion Rec) and, for the case

of hypersets, decoratio®éc) (the latter due to Forti and Honsell [29] and Aczel [3]) calb

to define inA exactly all polynomial time computable operations overdrgpts represented as
WDB, thus demonstrating and characterising theoretidgtlyich expressive power (assuming
that a linear order on labels is given) [43, 56, 57, 58]. Therajors ofA are defined as follows:

(A-term) ::= (set variable or constank(| {l1 : a1,...,ln,an}| Ua|TC(a)|
{l:t(z,))|l:x€a& p(x,)}|Recpfl:x€al|p(xlp)}|Dec(a,bd)
(Aformula) = a =b|l = o |l <lo|li Rlz|l:acblo&v]oViy|—p]
Vi:z € ap(x,l)|3:z € ap(xl)

The intuitive set theoretic semantics of the majority of #gove constructs should be
well-understood by anyone with the minimal mathematicakigeound in set theory and logic.
In the above constructs we denotgb, . . . as (set valued)\-terms;z, y, z, . . . as set variables;

27

28 Chapter 3. Query language

l,1; as label values or variables (depending on the contéext)(z,) is anyl-labelled A-term

t possibly involving the label variableand the set variable; and,) as (boolean valued)
A-formulas. Note that labelg participating in theA-term {l; : a1,...,l, : a,} need not
be unique, that is, multiple occurrences of labels are a@thwThis means that we consider
arbitrary sets of labelled elements rather than recordsples of a relational table whetg
serve as nhames of fields (columns).

The binding label and set variablést, p of quantifiers, collect, and recursion constructs
should not appear free in the bounding tergdenoting a finite set). Otherwise, these operators
may become unbounded and thus, in general, non-computBbleexample, let us consider
the universal quantifiev! : = € {...,l: z,...}.¢(z,l) which becomes unbounded due to
the quantified variables: x participating in the bounding terfy..,l : z,...}. In fact, as
l:xzed{ .. l:x,...}is always true the above quantified formula proves to be atpnt to
unbounded onevl:x.p(z,1).

3.2 Intuitive denotational semantics

Any A-query without free variables has either: i) (hyper)setigah the case ofA-terms, or

ii) boolean value in the case &-formulas. Those participating set variables or set consta
represent abstract hypersets (and thus correspond torsetsria WDB), whereas participating
label variables or label constants represent label vat@sgsponding to strings of symbols).

The intuitive meaning oA-queries is described by tleenotational semanticghat is what
any expression denotes For the purposes of implementatiax-queries are also described
by means of theioperationalor computational semantics (see Section 3.3) which must be
coherent with our intuitive denotational semantics. Heeawill also rely on intuition, without
presenting any precise argument. In fact, the requiredreale will be pretty much evident.
So, we can concentrate on examples of queries and impletioenéspects.

3.2.1 Boolean valued expressions -A-formulas

Equality (=) and thealphabetic ordering <) between labels is understood standardly. In the
theoreticalA-language the relatioR over labels is any easily computable relation over labels,
however, in the implemented-language described in this thesis we consilexs any of the
following substringrelations

There is a deep mathematical theory of denotational seosaotiprogramming languages based on Domain
Theory [65, 68] (also see the contemporary reference [2Blepresent denotational values of a programming
language expressions. The langu@gewvhere all computations evaluating queries are finite, dmésequire this
theory which is based on the idea of potentially infinite catagions (embodied in the so called “undefined”
elementl). Anyway, it makes sense to use the term denotational séreamtithough we will describe this
semantics on a very intuitive level by reference to the “diothef sets and hypersets.

3.2. Intuitive denotational semantics 29

ll Zlglll :lgl*ll* Zlg

where the wildcard represents any string of symbols. In principle we couldudel into the
language more relations over labels, but in the implemiemtdhere are only and substring
relations, and the user currently has no way to define moraifpré relations over labels.
It should be noted that equality betweénterms,a = b or, for technical reasons, ~ b,

is understood as the equality of abstract hypersets dermytdbese terms and, as such, is
computed by the bisimulation algorithm discussed in ChagteThat is, when we discuss
hypersets abstractly, we use But when considering bisimulation algorithm to determine
whether two set names or graph nodes denote the same albsipacset, we use:. In the
implemented version of the language we have ealyhich, of course, involves calling the
bisimulation algorithm, but this is hidden from the user wtierefore can think on hypersets
abstractly. Moreover, bisimulation is implicitly involdeén the (computational) meaning of the
membershipelation according to the equivalence

lra€eb < dm:zecb(m=l&zr~a)

informally having the meaning: find an outgoiidabelled edge frond which leads to some
nodex bisimilar to a. But, thinking abstractly] : a € b says simply that: is ani-labelled
element ofb.

Thelogical operatorg&, Vv, —) have the usual meaning from propositional logic and can be
used to form logical sentences frafnformulas. Universal quantificatiorcan be understood
in terms of conjunction:

Vi:x € a.p(x,l) — /\ o(xi,1;)

li:zi€a

andexistential quantificatiomn terms of disjunction:

Az € a.p(x,l) — \/ (i, ;)

li:xi€a

assuming that, = {l; : x1,...,l, : z,}. Itis evident from this definition that quantification
occurs over those elements of the set denoted lhich satisfy the formulap. That is,
guantification is bounded by (elements of) the gewith the A formula ¢ being called the
scope of the quantifier.

30 Chapter 3. Query language

Note that when a quantified formula participates as a suhftaraf a bigger formula or of a
term the technical problem arises where exactly this (sulv)la is finished, that is what is the
scope of the quantifier. In the implementAdlanguage (Appendix A.1) there is a discipline of
using parentheses to find unambiguously the scope of quastifioth intuitively and by the
implemented parser (and contextual analysis algorithray, i

Vi:zeca.(p& &)

the scope of the quantifier is the whole expression in thenplaeses. But the general informal
rule is: the scope of any quantifier is as small as possibleekample, in

M:z€a.p & & x)

the multiple conjunctions requires some compulsory exgparentheses (exactly as shown),
and then the scope of the quantifier is eitheexcluding+ andy) or some initial part of
o, if syntactically meaningful at all. We will not give the foral definition which is usually
widely known and intuitively evident. For the precise ddfon of the scope of quantifiers,
declarations, etc. the reader should, first, inspect thevaat part of theA-language syntax
in Appendix A.1 and, most importantly, read the Section :Zontextual analysis which, in
fact, served as a rigorous conceptual guidance for us taeimgt the language correctly.

3.2.2 Set valued expressions -A-terms

The set constarempty se(f)) denotes the set} having no elements. In general, set values
are represented symbolically by either: set constantssesitbles orA-terms. Furthermore,
“literal” set values can be introduced with tlemumerationexpression{l; : ai,...,l, : a,}
which can create new sets, possibly with nesting if sap@re also enumeration expressions,
howevera; may also be arbitranA-terms.

The collection operation{l : t(x,l) | I : = € a & ¢(x,l)} denotes the set of labelled
elementd : ¢(z, 1) with ¢(z, 1) a A-term depending on the set and label variablasdx, where
[: x ranges over the set for which the A-formula ¢(z, 1) holds. We can also consider the
more special case of collection called theparationoperation{l : z € a | ¢(x,1)} which
denotes the set of labelled elemehts in a for which ¢(z,) holds.

The (unary)union operation| J a is understood as the (multiple) ordinary union over the
elements of.. Let us assume = {l;:aq,...,l,:a,} then

Ua:alu...Uan

3.2. Intuitive denotational semantics 31

with the ordinary union used in the right-hand side of equalin particular, this also shows
that the ordinary union is definable by means of the unaryruaitd enumeration operators.
This is only the simplest example of expressibility/in As we mentioned, this language has,
in fact, very high expressive power exactly correspondmgadlynomial time computability
over hereditarily-finite hypersets

The transitive closureTC(a) denotes the set of (labelled) elements of elements, of
elements ot including « itself. This can also be written (not fully formally, say,alto. ..
present) as:

l:x €TC(a) <= lix€axp€...€xyp=0aV
(=0&zx=aqa)

with z; some intermediate elements in the membership chain, edaigigg to the next:;
with some label; whose value is not important. In particular, welet a € TC(a).

The above core constructs of thelanguage extended with the two additional constructs
recursion and decoration (introduced below) define all pofgial time computable operations
and relations over hypersets (represented as WDB); seedbis@formulations in [41, 43, 57].

3.2.2.1 Recursion operation

The recursionoperatorRec p.{l: = € a | ¢(x,l,p)} defines a subset of the set denoted
by (the A-term) a, obtained as the result of stabilising (due to finitenesa)ahe inflating
sequence of subsets oflefined iteratively as:

p0:@
P1 = Do U {lw €a | @(x,l,po)}
pp=prU{l:z€alo(rlp)}

per1 =prU{l:z €al ol pr)}

Evidently, all) = pg C p; C ... are subsets af. Asa is finite, pr = pr11 = pryo,... for
somek, and this stabilised value, denoted aboverass taken as the value of the recursion
operator.

2Any hyperset set is hereditarily-finite if and only if it cams a finite number of elements, and these elements
are also hereditarily-finite hypersets, etc. Moreoves reiquired that the transitive closure of this hypersetse al
finite.

32 Chapter 3. Query language

3.2.2.2 Decoration operation

Recall that in Chapter 2 graph nodes were shown to denotel}sgts, and vice versa, arbitrary
hereditarily-finite hyperset can be represented in this way

Now, we shall consider finite graphs in set theoretic termsaditionally, this is done
by defining a graph as a set of ordered pairs where orderesdl pggiresent graph edges, for
example(a, b) denoting the edge — b. Here (the arbitrary sets) andb, play the role of
the source and target vertices of the edge~» b. Thus, any set of ordered pairs can be
treated as a graph. Formally such ordered pairs are repeelsan the sets containing two
elements labelled by st and snd respectively, such a§fst : a, snd : b}. That is, we define
(a,by = {fst:a,snd:b}. Any labelled ordered palir: {fst:a, snd:b} represents a labelled
edgen Lbn general, we can consider absolutely arbitrary hyperastrepresenting a graph.
Indeed, we can take into account only those elementsvafich happen to be ordered pairs,
and ignore the other non-pair elements. This will make theratpon of decoration defined
below applicable to the arbitrary hypergetvhat is convenient. Otherwise the formulation of
the language\ would be more complicated. Also, the arbitrary sehay either participate as
an element of the ordered pairsgfi.e. serving as g-vertex, or, otherwise, it is considered as
an isolated vertex of the graph In this sense each seterves as g-vertex.

Definition 1. The abstract set theoretiecoration operatoDec(g, v) = d takes two arbitrary
input setsy andv where the former represents a graph as a set of ordered guadrshe latter
represents some vertexof this graph. It outputs a new (hyper)sétcorresponding to the
v-rooted graphy according to the first paragraph of this section.

Note that decoration is the only operatordnwhich allows for the construction of cyclic
hypersets, like? = {Q}, from the ordinary “uncycled” sets (of sets of sets,...) ofté
depth. For example, consider thrévial cyclic graphg defined by the following system of set
equations,

g={{fst:a,snd:a} }
a={}

The result of applying decoration to the graphnd the participating vertexwould be,
0 ={Q}

where) denotes the resulDec(g,a). Indeed this leads to the construction of the cyclic
membership represented by the unigeedgea — a. In fact, here the Anti-Foundation Axiom

3.3. Operational semantics 33

from Section 2.4.4 guarantees tliats a unique hyperset denoted bgc(g, a) (and the same
for arbitraryg anda).

This operator can also be reasonably calledpla® performance operatdi6l] because
its input(s) can be considered as a graphical plan for thetngstion of a hyperset with the
output being the resulting abstract hyperset. Imaginewahave a plan of a Web site (i.e.
of a system of hyperlinked Web pages) and fhat is a tool (or query) which automatically
creates all the required Web pages. See also Section 3@ 3rfore involved example of using
the decoration operation for defining a restructuring query

3.3 Operational semantics

Consider any set or boolean queryvhich involves no free variables and whose participating
set hames (constants) are taken from the given WDB systerat afggiations. Resolving
consists in the following two macro steps:

e Extending this system by new equatiores = ¢ with res a fresh (i.e. unused in WDB)
set or boolean name, and

e Simplifying the extended system:
WDBj = WDB + (res = q)

until it will contain only flat bracket expressions as thehtifpand sides of the equations
or the truth valuesrue or false(if the left-hand side is boolean name).

After simplification is complete, these set equations wilhi@in no complex set or boolean
queries (likeg above). In fact, the resulting version WRB of WDB will consist (alongside
the old equations of the original WDB) of new set equatiorsn(iset names equated to flat
bracket expressions) and boolean equations (boolean requated to boolean valugsje or
falsg. This process of computation xtensiorand simplificationwas described in [61] as
reduction steps

WDBy> WDB; 1> ... 1> WDByes

whereW D By is the initial state o/’ D B extended by the equatiores = ¢, andW D B,.., is
the final step of reduction consisting of only flat set equegimcluding the flattened version of
set equatiomres = ¢ (or boolean equation, if is aA-formula). Each reduction step represents
simplification by applying rewrite rules which transfornt sguations involving complicated

34 Chapter 3. Query language

A expressions into simpler, semantically equivalent, éqnat Note that the rewrite rules
described here are based on those in [61] but extended talibldd case as considered in this
thesis. In general, rewrite steps are denoted bystleymbol which means “transforms to”.
Firstly, let us assume participation of the set namgs r in the rewrite rules below, which
correspond to the set equations

S = {ll :817 ceey la:sa}7

p= {ml ‘P1y e mb:pb}v

r={ni:ry, ..., ne:re}

existing either in the initiallW’ DB or in the current reductioiV DB;. The operational
semantics for thé\ operators (except for recursion, decoration, transitieswre, bisimulation
and label relation operators) are described as the reducties

res =t(resy,...,resq,),
resy =1y,

res =t(ty,...,tq) >
res, =tg.

res = {l:s,m:p,...,n:r}—no further reduction required onegp.. .., r, are set names
res=sUpU...Ur>res={l1:51,..,la:Sa, M1:D1yees Mp:Dhy - vy N Ty ey e iTe)
res:Usbres:slu...Usa,
res = TC(p) — operational semantics described in Section 8.1.5
res={l:xep|ol,x)}>res={my:piy,...,mi, pi,}

wherem;; :p;, are all thosen; :p; € p for whichres; = p(m;, p;) > res; = true,
res ={t(l,z) | l:x € p& @(l,x)} > res = {t(mi; :piy), ..., (M4, :pi,)}

wherem;; :p;, are all thosen; :p; € p for whichres; = p(m;, p;) > res; = true,
res=Recp.ql:z €a|p(l,z p)} —operational semantics described in Section 8.1.3
res = Dec(a, b) — operational semantics described in Section 8.1.4
res=VYi:x €p.p(l,x)>res=p(mi,p1) & ... & p(mn,pn),
res=3l:x e€p.p(l,r)>res=p(mi,p1) V...V o(mmy,pn),

res = true & true > res = true,

3.3. Operational semantics 35

res = false & ¢ > res = false,

res = p & falser> res = false,

res =@V >res=-(-p &),

res = —falser> res = true,

res = —true > res = false,
res=l:sep>res=3Im:zxe€p.(s=z&l=m),

res = x = y > x &~ y — operational semantics described in Section 4.2.1

res = | R m — operational semantics described in Section 3.2.1

The implementation ofA-query execution is based on this process of reduction ¢fcethe
A-terms: recursion, decoration, transitive closure dbscrin Section 8.1.3, Section 8.1.4 and
Section 8.1.5 respectively; and theformulas: set equality (bisimulation) and label relation
operators described in Section 4.2.1 and Section 3.2.&ctsgely.

3.3.1 Examples of reduction

The above process of computation ®ductionis quite natural as shown in the following
examples.

3.3.1.1 Example elimination of complicated subterms

Let us consider the reduction of the query= | g1 containing the complex subquegy. In

general, any complicated tertt, ..., ¢,) can be simplified by invoking the splitting rule
which transforms the equatiotes = ¢(t1,. . ., t,) to the resultant equations
res = t(resy,...,resy)
res; =t
res, =ty

Therefore, the complicated querys = | ¢1 can be split into two subqueriesgs = | Jres;
andres; = ¢1 whereres; is a new set name.

36 Chapter 3. Query language

3.3.1.2 Example reduction of union

In the case of our union query having the particular fares (J{l:s,m:p,n:r} wheres, p,r
represent set names, it follows that the equatien= ¢ is reduced by the following steps:

1. Split the complicated equatiors = | J{l:s, m:p,n:r} resulting in the equations:

res = U resy

resy = {l:s,m:p,n:r}

wheres, p, r are set names, and hence do not require further splitting.

2. Reduce unary uniores = | J res; to multiple union resulting in the equation:
res=sUpUr

with the unary union reduced to multiple unions over the eets of the setes; (the
set names, p,).

3. Reduce multiple uniomes = s U p U r to the bracket expression resulting in the
equation:

res = {l1:51,...., i 185, M1ip1, ., My ipj, NUITL, ML)

assuming that the current extension of the original WDBaalyecontains the simplified
equationss = {l1:s1,...,0;:8;}, p = {m1:p1,...,mj:p;} andg = {n1:q1, ..., ng : 71 }.
Here multiple union over the setsp, r is reduced to the bracket expression containing
the elements of these sets.

In general, most of thé operators can be resolved using the above reduction rubepefor
recursion, decoration, transitive closure, bisimulatod label relation operators. In fact, there
is no common framework for describing the operational sditsafor all theA operators, with
the latter exceptions described as lower-level algoritim@hapters 4 and 8.

The main conclusion is that after reduction we will have theationres = {...} of the
required form whose right-hand side should involve no cacaptd terms or formulas, only set
names either from the original WDB or new set names introduttging reduction (likeres
above) together with the corresponding equations of theired| form. Thus, execution of a
query extends the original WDB to WDR (simplification of WDR, above). This extension
with the set namees as an “entrance point” to the result of the query can be censilas a
temporary one until we need this result.

3.4. Implemented\-query language 37

In principle, we could also considempdate queriesvhich would change the original WDB
(not only extend it as above), but this is beyond the scophisftork.

3.4 ImplementedA-query language

The implementedA-query language can express all operations definable inrigmal (as
described above). For the purpose of writing queries thegrar of this language is expressed
as BNF (see Appendix A.1) which the reader should take intwsickeration whilst reading
the current section. (See Chapter 8 for technical detaiteeofmplementation of thé\-query
language.) Note that, not every computable set theoretratipn is definable within the
A-language but everything which is polynomial time compléafand generic; cf. [41]) is
already definable in the original language.

Additional features (not present in the theoretical varsibthe language) have also been
included in the implemented language making the language practically convenient, but
not increasing its theoretical expressive power. Thesgiads, however important practically,
are just “syntactic sugaring” of the above theoretical ioeref A.

3.4.1 Queries with declarations

Like in many programming languages allowing procedure atatbbns and calls we also
introduce in the languag& query declarations and calls. Thus, a query once declamd ca
be invoked as many times as we want by using its name with uanfiarameters. Besides
queries, we allow also constant declarations. Each deidarhas its own scope especially
delimited (unlike quantifiers) by the keywords andendlet where the declared queries or
constants can be used (called). For example, let us show tibset name$ (which can be
quite long and unmanageable) can be declared and then usetl @mstants. The following
query declares the set const&ibDB as an abbreviation of the corresponding full set name:

set query
let set constant BibDB be
http://www.csc.liv.ac.uk/"molyneux/t/BibDB.xml#BibD B
in QUERY(BibDB)
endlet;

Here QUERYdenotes any subquery (according to the syntax in Appendly which may
involve (possibly many times) the set const&ibDB declared once in thet declaration

3Recall that full set name consists of XML-WDB file URL exteddsy simple set name (delimited by
symbol).

38 Chapter 3. Query language

at the beginning of the whole query. However in genégl declarations of constants and
queries can appear at any depth of a query.

Let us now consider the more useful case of the query deidargétBooks , which in
the following example gives the set of all books in the bigtephy database illustrated by the
graph in Figure 3.1 in Section 3.5 below. We first declare thergigetBooks with one set
variable argumeninput and then call it with the argument val@bDB :

set query
let set constant BibDB be
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xmI#B ibDB,
set query getBooks (set input) be
separate {
pub-type:pub in input
where pub-type='book’
}
in call getBooks(BibDB)
endlet;

Here the keywordtall means that we invoke the set quaygtBooks defined above. In
general, any query can be declared once and invoked many, tingegetBooks(BibDB1)
getBooks(BibDB2) , etc., each time with variousparameters> which may be either
any<delta-term> or<label> according to the BNF. Those relevant parts of the BNF for

this set query are as follows,

<delta-term with declarations> ::=
"let" <declarations> "in" <delta-term> "endlet"

<set constant declaration> ::=
"set constant" <set constant> ("be"|'=") <delta-term>

<set query declaration> ::=
"set query" <set query name> "(" <variables> ")"
("be"|"=") <delta-term>

<set query call> ::=
"call" <set query name> "(" <parameters> ")"

In general, there are alsdabel constant declaration> and<boolean query
declaration> syntactical categories. Note that in the syntactic categdelta-term
with declarations> the keywordn evidently does not play the role of the membership
relation such as in the case of the other contexts ofAHanguage. Recursive calls are not

3.4. Implemented\-query language 39

allowed in query declarations, that is the declared quergenar constant should not occur

in the scope of the declaration. Ferecursion> (see the syntax in Appendix A.1) we

have the special construct recursive separation alreatyiséed above and illustrated below
in Section 3.5.4.

3.4.2 Library

The library allows to create query or constant declaratiodgependent of a query. Library
commands allow creation and modification of user definedigsi@nd constants. Predefined
and also user defined queries and constants can then be igsethlled, (globally) in any
query. For example, the following library command adds #tecenstansome-book for the
appropriate full set name to the library:

library add set constant some_book =
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xml#b 1;

where the identifiesome-book may now participate in any subsequent queries in the current
query sessich Queries and constants can be modified or redeclared byniaguthe library

add command. For example, the set constamine_book (above) could be redeclared as
follows:

library add set constant some_book =
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xml#b 2;

Predefined and user defirtelibrary queries/constants can be listed, in brief withd full
declarations, with the command,

library list;
with result of this command (including predefined queriesstants) being,

Library command is well-formed and well-typed, but not
executable

Warning, library command successful but no query executed.

Warning, in the case of duplicate declaration names those
declarations at the bottom of the list have precedence.

List of library declaration(s):

4Query session is the period of time between opening the gsgstem (for running queries and library
commands) and closing it. When query system is restartdgl, build in query and constant declarations (see
the current list in the Appendix A.3) can be used.

Sadded in the current query session

40 Chapter 3. Query language

set query Pair (set x,set y),

boolean query isPair (set p),

set query First (set p),

set query Second (set p),

set query CartProduct (set x,set vy),

set query Square (set z),

set query LabelledPairs (set v),

set query Nodes (set),

set query Children (set x,set @),

set query Regroup (set g),

set query CanGraph (set x),

set query Can (set x),

set query TCPure (set x),

set query HorizontalTC (set g),

set query TC_along label (label |,set z),
set query SuccessorPairs (set L),
boolean query Precedes5 (set R,label I,;set x,label m,set y) ,
set query StrictLinOrder_on_TC (set 2z),
set constant some_book,

set constant some_book

The order of query/constant declarations depends on ther andwhich the corresponding
library add commands were executed. Note that, the duplicate dedasathamed
some_book is the result of running above thigrary add commands, and those
declarations appearing at the bottom of the list have peswl over those at the top of the
list. Thus, the set constarbme_book appearing globally in any query would, in fact, have
the redeclared set nantétp://www.csc.liv.ac.uk/ ~molyneux/t/BibDB-f1.

xml#b2 . However, there is one subtle point: if a queris declared in the library which calls
another library query; (or constant), theg will invoke the latest declaration @f; preceding
this declaration of even ifq; is redeclared again after Note that the modification or deletion
of user defined declarations is not yet implemented, butniteadone easily.

Also, the full declarations of user defined and predefinedigsieonstants can be listed
with the command,

library list verbose;
with the result being,

Library command is well-formed and well-typed, but not
executable

Warning, library command successful but no query executed.

3.4. Implemented\-query language 41

List of library declaration(s):

set query Pair (set x,set y) be
{ 'fst’x, 'sndy },

boolean query isPair (set p) be (
exists I: x in p . (
[="fst’
and
forall m:z in p . (m=fst’ => z=x)
)
and
exists Ly in p . (
I="snd’
and
forall m:z in p .(m="snd’ => z=y)

set constant some_book be
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xml#b 1

set constant some_book be
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xml#b 2

Here the list of queries/constants follows as above, bdudicg the full declaration for all
other default library declarations (omitted here for bigvisee the full listing of predefined
library declarations in Appendix A.3). Those relevant paof the BNF for the library
commands are as follows:

<library commands> ::= "add" <declarations> |
"list" ["verbose"]

Note that, only the predefined library declarations will eémin the library after finishing the
query session. In principle the ability to work with seveibataries (as well as user defined
libraries) should also be implemented. The queHa#g , isPair ,First , Second will be
formally explained belowCartProduct , Square andHorizontalTC in Section 3.5.4;
LabelledPairs ,CanGraph andCanin Section 3.5.6T7C_along _label in Section 3.6;
SuccessorPairs ,Precedes5 , TCPure, StrictLinOrder .on_TCin Section 3.7 and
Appendix A.3; whereadlodes, Children andRegroup in Section 8.1.4.1.

42 Chapter 3. Query language

3.4.2.1 The queriedRai r,i sPai r,Fi rst and Second

Thus, let us now define several auxiliary queries dealing) witlered pairs. According to the
syntax in Appendix A.1 query declarations have the generahf

set query ¢(z) = t(x),

boolean query q(z) = (7).

Hereq is either set or boolean query name, respectively, withygparameters defined by the
list z of participating set or label variables.

3.4.2.1.1 Pair: Ourfirst query defines the operation creating an ordered pair
set query Pair(set x,set y) = {'fstx,’snd:y}

where'fstt and’snd’ are label values helping to distinguish the first elemefrom the
second element of the ordered pair, witlt,y as set variables denoting any (hyper)sets. Recall
that the order of elements in a set is ignored, playing na mlg, labels of elements such as
fst andsnd add the required structure.

3.4.2.1.2 i sPair: Now we consider the boolean valued quetRair(p) which given
a setp says whether it is an ordered ppi{'fst’:x,’snd":y} for some setx andy:

boolean query
isPair(set p) =
(exists I:x in p .
(I="fst’ and forall m:z in p . (m="fst’ implies z = x))
and
exists Ly in p .
(I=’snd’ and forall m:z in p . (m='snd’ implies z = vy))

)

Note that the equalitieg=x andz=y in this query are actually based on the bisimulation
relation. It follows thatisPair(p) can hold even if the set equatiqgr{...} contains
syntactically more than two elements between braces. #gsired that there exists only one
element inp labelled by'fst'” and one labelled bisnd’ only up to bisimulation.

3.4.2.1.3 First and Second: Let us also define the set valued operatifirst(p)
andSecond(p) giving the first and the second elements of any pair

set query First(set p) =
union separate {:x in p where I="fst' }

3.4. Implemented\-query language 43

set query Second(set p) =
union separate {l:x in p where I="snd’ }

Note that the union operation is necessary here. Indeedymasg that the input is an
ordered paip = {fst:u,’'snd":v} , then we would get without union just singleton
sets{'fst’ . u} and{'snd’ : v} , respectively, generated by the separation operator
whereas we need their elementandv, respectively. Therefore, we need to use the general
set theoretic identity

U{l:u}:u

whereu is any set. Of course, in the case of arbitrary set impséparation will not necessary
generate a singleton set. Anywagirst(p) andSecond(p) will give some set values so
that these operations are always defined.

3.4.2.2 Implementation of the library

Although general implementation issues will be postpoiileBart |1, we can easily comment
here how implementation of the library can be reduced to émemallet-endlet construct
of the language. Thus, let us assume that the library cantalist of declarations

di,da,...,dy

already added by thedd command. Then any quegycan use these declarations and thus can
contain constants and query names which are not declargdit must be declared above in
the library. In fact, any such query

set query ¢; or boolean query g;
is automatically transformed by the implemented queryesystespectively, to the query
set/boolean query let di,ds,...,d, in ¢ endlet; (3.1)

Then this query is checked to be well-formed and well-typed then executed as it is
discussed formally in Chapters 9 and 8. This way also thelpmolof dependency between
library declarationsi;, ds, ..., d,,, whose order may be esserftiais resolved automatically.
Also query declarations when added to the library are autioally checked simply by

®A declarationd; can depend only od; with j < i. Even ifd; calls a constant or query name declaredipy
with ¢ < k, appropriate (rightmosy; with j < ¢ should be really found and used. But this does not require any
special or additional care for the library declarationséhese the contextual analysis algorithm in Section 9.2 will
guarantee this automatically under translation (3.1).

44 Chapter 3. Query languagk

transforming them to the usual query

set query let dy,ds,...,d, in {} endlet;

where the trivial version of = {} is used. Well-formedness and well-typedness of the latter
query is considered, by definition, as well-formedness aalitypedness of the declarations
in the library.

3.5 ExampleA-queries

Let us consider the following example queries based on thiébraphic WDB presented in
[50] and similar to the example in [1]. This WDB is distribdtésplit into two fragments) as
illustrated by the colouring of the graph in Figure 3.1. E&elgment is given by a subsystem
of set equations represented practically as an XML-WDB fitm(Chapter 10 for the technical
details of the XML-WDB representation). These files can bengixed in the Appendix A.2.

refers-to

"Smith" "Databases"

Figure 3.1: Example distributed WDB of a small bibliograpdatabase, distributed into two
fragments.

Let us consider the corresponding subsystems of set eqgeatapresented practically as
XML-WDB files. Note that, full set names are denoted as thecatenation of URL#, and
simple set name; however, the URL and the delimitean be omitted for local set names. The
subsystem of set equations represented by the XML-WDBhtfilp://www.csc.liv.

ac.uk/ ~molyneux/t/BibDB-f1.xml is as follows:

3.5. ExampleA-queries 45

BibDB = {
'book’:b1,
'book’:b2,
'paper’:http://www.csc.liv.ac.uk/"molyneux/t/BibDB- f2.xml#p1l,
'paper’:http://www.csc.liv.ac.uk/"molyneux/t/BibDB- f2.xml#p2,
'paper’:http://www.csc.liv.ac.uk/"molyneux/t/BibDB- f2.xml#p3
}

bl = {
'refers-to’:http://www.csc.liv.ac.uk/"molyneux/t/Bi bDB-f2.xml#b2,
'refers-to’:pl

}

b2 = {
"author’:"Jones",
title’:"Databases"

}

The XML-WDB file http://www.csc.liv.ac.uk/ ~molyneux/t/BibDB-f2.xml
represents the subsystem

pl = {
'refers-to’:p2
}

p2 = {

"author’:"Smith",
‘title’:"Databases",
'refers-to’:p3

}

p3 = {
"author’:"Jones",
title’:"Databases"

}

Recall that single quotation marks are used to denote lahgls asauthor’ , whereas
double quotation marks denote atomic values which arestlgtispeaking, special singleton
sets, e.g"Jones" meang’'Jones’:{}}

46 Chapter 3. Query language

3.5.1 Example of a non-well-typed query

In our first example the query is non-well-typed because deatifiersBibDB andb2 are
formally undeclared within the following query, althoughtuitively corresponding to some
graph nodes. The intended informal meaning of the querygbdind all publications which
refer to the boolb2.

set query collect {

pub-type:pub

where pub-type:pub in BibDB

and exists 'refers-to:ref in pub . ref=b2
¥

The result of running this query is the error messages:

Query is well-formed, but not well-typed
Error at character 76,

occurrence of identifier name BibDB not declared:
set query collect { pub-type:pub
where pub-type:pub in BibDB <-------

and exists 'refers-to:ref in pub .
Error at character 127,

occurrence of identifier name b2 not declared:
and exists 'refers-to:ref in pub .
ref=b2 <-------

%

Here well-typed would intuitively mean that all identifiers and their typestor label,
etc.) in the query are appropriately described by dectawati quantifiers, etc., and used in
other places of the query accordingly. But unfortunatey éhror messages show that it is not
the case. The corrected version of this query is present8ddtion 3.5.2, where the identifiers
BibDB andb2 are appropriately related to the WDB considered. We will paych more
attention to well-typedness of queries in Chapter 9 whichighly important for the correct
implementation ofA.

3.5.2 Example of valid and executable query

After correction of the above query we have:

3.5. ExampleA-queries 47

set query
let set constant BibDB be
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xml#B ibDB,
set constant b2 be
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xml#b 2

in collect { pub-type:pub
where pub-type:pub in BibDB
and exists 'refers-to:ref in pub . ref=b2

}

endlet;

Evidently the result of this query contains the book (which refers tob2) and, not so
obviously, the papep2 which refers top3, the latter being formally bisimilar tb2 with
the samditle andauthor elements. The result of the modified query is,

Query is well-formed, well-typed and executable

Result = {
'paper’:http://www.csc.liv.ac.uk/"molyneux/t/BibDB- f2.xml#p2,
'book’:http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f 1.xml#b1
}

Finished in: 398 ms

This result might seem strange, but formally it is correélirtg into account our hyperset
theoretic approach to WDB. The question here is to the desigh of this bibliographic
database who overlooked that essentially shenepublication is presented in the database
both as a book and as a paper. If these are really differericptibns then they should be
represented in the database accordingly (as discussed ootisiderations below). Note that
the incoming edges labelled ook or paper do not count when determining bisimilarity
of the nodesp3 andb2 — only outgoing edges play a role. Such fundamental flaws can
be introduced accidentally when possibly many users cidiatebuted WDB. Evidently, this
WDB was poorly designed, therefore, better understandfrtheostructural design of WDB
would make this process less error-prone. Anyway, even wiéh (traditional) relational
approach database design is a crucial step.

3.5.2.1 Query semantics versus WDB design

If we really want to include only references to the bdak (without redesigning this WDB),
then it might seem that the solution is to replace the equadit=b2 by the formula

(ref=b2 and ’book’:ref in BibDB)

48 Chapter 3. Query language

in the above query. However, this would not really help beean any casp3=b2 (these set
names / graph nodes are bisimilar) in the above WDB. Equefitfhyper)sets is defined by
their elements, elements of elements, etc., i.e. by outgeilyes, and not by incoming edges.
So, after formally removing redundancies (say, omit{i3g we should have one joint nod
with two incoming edge8ibDB 2% 12 andBibDB P b2 (besides two more incoming
refers-to edges fronb1 andp2 and the evident two outgoing edges). This is probably not
what the designer(s) of this distributed WDB had in mind. ¥ay, we will continue using this
example as a good and simple illustration of the (hyperyssiretic approach. In principle, we
could imagine that the creators of this WDB really wantedaeehpublications classified both
as a book and a paper. This is not a contradiction, as anythipgssible in semi-structured
data. In fact, the problem is only to decide what we really iard whether this intuition is

reflected correctly by the given WDB design.

This example emphasises the real meaning of set theoreSos/pure graph approaches
to semi-structured databases, and the role of removinghdesheies on the level of the design.
The right approach here should be based on a well-choseplaiec for example:

(i) Reconstructhis database by replacing labelsok andpaper by publication and
adding outgoing edges from each publication showintyjge (‘book’ or’paper’ ;
see Figure 3.2), or alternatively

(i) Enforce some WDBschemaduring the design of WDB e.qg. requiring that there is only
onebook or paper edge fromBibDB leading to any given publication considered up
to bisimulation.

Here the term “up to bisimulation” means that if two childrehBibDB are bisimilar then
they, in fact, have identical labelling. But it is not our gbare to go into details of such kind
of discipline and consider WDB schemas. In any case, we dimuprecise and accurate with
the design of WDB, and in formulating both formal and inttetiversions of our queries. The
mathematical ground of hyperset theory is quite solid afiicgent for that.

The main point is that any formal query has a unigue (up tarhikition) answer — in
fact, either a hyperset or boolean value — and all the queresisimulation invariantand can
be computed in polynomial time (with respect to the size of ByDVice versa, any P-time
computable and bisimulation invariant (and also “gengdd’, 57]) query is definable iA. In
fact, this also means that the langualyéhas full P-time computable power aéstructuring
not only simple retrieval of already existing elements ie tWDB. For example the query

"Strictly speaking, Figure 3.2 reflects this idea only p#ytibecause it is devoted to illustrate a related but
formally different example of restructuring query in thelanguage. It still has a publication which is charactetise
as both book and a paper, however, this is more noticeabtaltyd reducing accidental user error.

3.5. ExampleA-queries 49

restructuring thdibDB database as is essentially described in (i) above could ittervin A
using the plan performance operaec.

3.5.3 Restructuring query

The ability to define queries arbitrarily restructuring agiyen data is the most essential
requirement of any database query language. Here we wilidenone simple example which
could hopefully convince the reader thathas a very strong restructuring power.

Firstly, let us recall the informal meaning of the followingeful query declarations in
the default library (with the formal meaning fully describm Section 3.4.2.1) and introduce
semi-formally one more quei@anGraph to be formally defined in Section 3.5.6:

e Pair(x,y) — denoting the ordered pait, y), in fact the two element set of the form
{fst’:x,’snd":y} allowing to distinguish between the first and second element
e First(p) —first element op if p is an ordered pair.

e Second(p) - second element gfif p is an ordered pair.

e CanGraph(x) —denoting the set of labelled pairs (u, v) wherel:v € w holds in the
transitive closurd C(x).

Then the required restructuring query (described infolyrial(i) above) is defined as follows:

set query
let set constant BibDB =
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xmI#B ibDB,
set constant restructuredBibDB be
(U collect{
null’:if (L="paper’ or L='book’)
then { ’publication’:X,
‘type’:call Pair(call Second(X),{L:{}}),
L:call Pair({L:{}}, {}) }
else {L:X}
fi
where L:X in call CanGraph(BibDB)
}
)
in

decorate (restructuredBibDB, BibDB)
endlet;

50 Chapter 3. Query language

HereCanGraph(BibDB) is essentially the bibliography graph in Figure 3.1, butespnted

in the traditional set theoretic way as the set of labellelbmd pairs, each denoted in the query
asL:X with L the label ancK the ordered pair in question. The required restructurirtgims

of ordered pairs consists in relabelling of labblsok’ and’paper’ as’publication’ ,

and creating additional leaf edges with the publicatioretigidone essentially by the following
fragment

null:if (L="paper’ or L="book’)
then { ’publication’:X,
‘type’:call Pair(call Second(X),{L:{}}),
L:call Pair({L:{}}, {})
}
else {L:X}
fi

generating appropriate sets of labelled ordered pairsn These sefsarecollect ed, and
taking the union gives rise to the required restructuredsktbelled ordered pairs denoted as
restructuredBibDB . But abstractly, we need a hyperset rather than this graget(af
pairs). Thus, finally, the decoration operation appliedn® graphrestructuredBibDB

and the vertexBibDB generates the required abstract hyperset (as describegharal in
Section 3.2.2.2). The result of this query is,

Query is well-formed, well-typed and executable

Result = {
‘publication’:res?2,
"publication’:res0,
‘publication’:res1,
"publication’:{

‘type’:"book",
'refers-to’:res1,
'refers-to’:res2

resO = {
'type’:"paper",
"author’:"Smith",
‘title’:"Databases",
refers-to’:resl

8where the value of the lab&lull’ is not important

3.5. ExampleA-queries 51

resl = {
‘type’:"paper”,
'type’:"book",
'author’:"Jones",
'title’:"Databases"

res2 = {

‘type’:"paper”,
'refers-to’:resO

Finished in: 1646 ms (query execution is 1643 ms, and
postprocessing time is 3 ms)

As we discussed formerly, atomic values, strictly speakihgnote corresponding singleton
sets, for exampléSmith" | denoteq’Smith’:{}} . The (new) set name®s0 , resl
andres2 correspond, respectively, to the “restructured” pubims p2’ , p3'/b2’ and
pl’ . Note that, the query system replaces some set hames ongtitehaind side by the
corresponding bracket expression where suitable, thgoedsenting the result in a “nested”
form. For example the publicatidml’ is implicitly nested in thdResult set equation.

This result can be more conveniently visualised by FiguPewdth the set nam&esult
replaced byBibDB' , and new set names replaced by corresponding hames rete|dre
restructured publications (as was discussed above).

"Book"
refers-to

refers-to

refers-to refers-to

"Paper"

"Jones" "Databases"

author title

"Smith" "Paper" "Databases"

Figure 3.2: The result of the restructuring query.

Note that the publicatiop3'/b2’ ° has both the typbook andpaper , and that this unusual

9denoted by the new set names1 (see query result above)

52 Chapter 3. Query language

feature is the result of the initial designBibDB and not a failure of the above query. Anyway,
in principle this graph suggests a potentially better (Emmantically error prone) design for
the bibliography database.

3.5.4 Horizontal transitive closure

Let us now consider the query which can generate the “hatbtransitive closur® of any
graphg (a set of ordered pairs). Consider the trivial example graptpresented as the nodes
a,b, c with edges(a, b) and (b, c¢) depicted by solid black edges in Figure 8.3The result of
applying horizontal transitive closure to the graplis shown by the original edges (in solid
black) and the additional edges, c), (a,a), (b,b) and{(c, ¢) highlighted in Figure 3.3 as red
dashed edges.

Figure 3.3: The result of “horizontal” transitive closungpdied to the abstract graph

The result is also a graph denotedgésvhich extendsy by new ordered pairsg(C ¢*) such
that for each edgér, y) € ¢g* there exists a path fromto y belonging to the original grapi
and vice versa. This can be recursively defined as follows:

(r,y) € g" <= z=yVIz.((z,2) € g" N{(z,y) € 9)
or as
g ={{z,y) €lgl |z =yVIz€lgl.({z,2) € g N (z,y) € 9)} (3.2)

where|g| is the set of allg-nodes. It is assumed that is the least set of pairs satisfying
the above equivalence. This operation could prove usefabbementing “vertical” transitive
closureTC(x) in the original A-language, whose result is the set of elements of elemdants, e
for any given set: (including x itself).

This should not be mixed with the set theoretic meaning of/theerm operator transitive closufeC which
can be understood intuitively as “vertical” transitive slwe, that iSTC(z) represents the set of (labelled) elements
of element of elements, etc. af (including = itself) as defined in Section 3.2.2. The point is that it isicafly
convenient to think of elements of a set as lyinglerthis set — henceertical view.

we should not mix this graph, which is only a visual repreation of aset of ordered pairswith any other
graphs depicted before and having rather a visual reprsembf asystem of set equations

3.5. ExampleA-queries 53

Thus, let us implemeny* (denoted below aslorizontalTC(g)) in the following
straightforward way based on the above formula (3.2). Ilirtdt us add to the library the
set query declaratioNodes(g) (formally described in Section 8.1.4.1), denoted aboviglas
and extracting from the set of ordered pajrthe set of elements participating in these ordered
pairs.

Nodes:

set query Nodes (set g) =
union separate { m : p in g | call isPair (p) }

We will also need the ordinary and very important (not only é®fining the horizontal
transitive closure) set theoretic operations of

Cart Product and Squar e:

set query CartProduct(set X,set Y) =
U collect {'null:collect {'null’:call Pair(x,y)
where Ly in Y
}

where m:x in X

}

set query Square(set X) = call CartProduct(X,X)

Finally, the set querjHorizontalTC(g) can be easily defined using the recursion operator
as follows.

Hori zont al TC:

set query HorizontalTC(set g) be
recursion p {
'null’:pair in call Square(call Nodes(g)) where (
call First(pair)=call Second(pair)
or
exists m:z in call Nodes(g) . (
'null’:call Pair(call First(pair),z) in p
and
'null:call Pair(z,call Second(pair)) in g

}

Let us now executelorizontalTC applied to the graply (see above),

54 Chapter 3. Query languagk

set query
let set constant g be {
null:.call Pair("a","b"),
null:call Pair("b","c")
in
call HorizontalTC(g)

endlet;

and see that the result is as expected, although with mamgitieps which witness that the
implementation is currently not optimal. However, all tlepetitions in the query result can be
easily eliminated byanonisation(to be discussed in Section 3.5.6 below). First note that the
canonisation set query declaratidbah) is already added to the default library

set query Can(set x) be decorate(call CanGraph(x),x)
and that the above query can be rewritten ushiag as follows:

set query
let set constant g be {
null:call Pair("a","b"),
null’:.call Pair("b","c")

in
call Can(call HorizontalTC(g))
endlet;

Now, by running the amended query, we see that all repesiti@mve been eliminated.

3.5.5 Dealing with proper hypersets

The hyperset theoretic approach to WDB can represent ang geei-structured databases
possibly involving arbitrary cycles (see Chapter 2). Foareple let us consider the WDB
graph in Figure 3.4 with the cycle between the verticesdb (edgess — b andb — a).

odRo
© (&

Figure 3.4: WDB graph with cycle.

3.5. ExampleA-queries 55

It is easy to see that ~ b andc ~ d are the only positive bisimulation facts, and hencnd
b, and alsa- andd actually denote the same hypersets (the latter two debot€he strongly
extensional version of this WDB with all redundancies reetbis shown in Figure 3.5.

Figure 3.5: Strongly extensional version of the WDB in FigyGr4.

Let us show how to define id the hyperset denoted by the vertexlt can be done with the
help of decoration operation as follows:

set query let
set constant g = {
‘null’:call Pair("a","b"), 'null:call Pair("b","a"),
null’:call Pair("a","c"), 'null:call Pair("a","d"),
'null’:call Pair("b","d")

in
decorate (g, "a")
endlet;

The result of this query exactly corresponds to the graphgarg 3.4:

Query is well-formed, well-typed and executable

Result = {
null’:{
'null:Result,
'null’:{}
2
null’:{},
null’:{}

Finished in: 20 ms (query execution is 20 ms, and
postprocessing time is 0 ms)

56 Chapter 3. Query language

In the next section we will show how the strongly extensioredult (corresponding to

Figure 3.5) can be obtained. In fact, without using deconraiti would be impossible to define

this cyclic setResult corresponding to the vertax Further, let us consider the query to
compute equality (bisimulation) between the sets dendtiegrertices: andb as

boolean query let
set constant g = {
null’:call Pair("a","b"), 'null:call Pair("b","a"),
null’:call Pair("a","c"), 'null:call Pair("a","d"),
'null’:.call Pair("b","d")

in
decorate (g, "a") = decorate (g, "b")
endlet;

where the evident resultue of this query corresponds to the intuitive observation,tirat
fact,"a" and"b" denote bisimilar graph-nodes.

3.5.6 Query optimisation by removing redundancies

The following example demonstrates the general task of vergagedundancies by a particular
set quenyCan (for “canonisation”) on the above graph in Figure 3.4 (int®et3.5.5). Here we
use our knowleddg@ on the implementation of the decoration operation (seei@e8t1.4) to
remove the redundancies in the original graph (see thet gfdbke set query above) by applying
the decoration operator to the canonical form of this grasha(set of pairs representing graph
edges) and the participating vertex

First, let us define the set query declaration

Label | edPai rs:

set query LabelledPairs (set v) be
collect {
I:{ 'fst:v , 'sndu }
where liu in v

}

with the result ofLabelledPairs(v) being the set of labelled paiis: (v, u) denoting
labelled edges A corresponding to the set membersHips in the setv. This set query
declaration participates in another important librarycgedry

2This solution may not be so intuitively evident yet to thosens who are unfamiliar with the set theoretic
meaning of decoration and the detailshafw this operation was implemented (see Section 8.1.4). Butingn
gueries withCan can nevertheless clearly demonstrate its usefulness.

3.5. ExampleA-queries 57

CanG aph:

set query CanGraph(set x) be
union
collect {
null:call LabelledPairs (v)
where m:v in TC(x)

}

whose output is the set of labelled pairs (u,v) corresponding to those labelled elements
[: v € u with u ranging over the elements of transitive closti@(z). Here'null’ is

a label whose value is not important. Indeed, tilon operation unifies the labelled pairs
from LabelledPairs(v) . The third library query we need is the set qué&an(set Xx)
(invoking CanGraph above) which takes any setand returns the same abstractsgbut in

its strongly extensional form.

Can:

set query Can(set x) be
decorate (call CanGraph(x), X)

In fact, we should always ha@an(x)=x becaus€anGraph(x) is evidently the canonical
graph whose nodg represents the sat itself, and, in this sense, the set quéan does
nothing. It follows also thaCan anddecorate are essentially inverse operations. Thus,
Can changes nothing in the abstract set theoretical sense. (Rutodapplying decoration to
getCan(x) and taking into account both strong extensionalityCainGraph(x) and the
way decoration used inCan is implemented in Section 8.1.4, the resulting system of set
eqguations generated I3an(x) is always non-redundant (strongly extensional).

Therefore the result dan(a) for the example in Figure 3.4 consists of one set equation
for the noden /b of the graph shown in Figure 3.5. Indeed, running the query:

set query let
set constant g = {
‘null’:call Pair("a","b"), 'null:call Pair("b","a"),
null’:call Pair("a","c"), 'null:call Pair("a","d"),
'null’:call Pair("b","d")
in
call Can (decorate (g, "a"))

endlet;

gives the result:

58 Chapter 3. Query language

Query is well-formed, well-typed and executable

Result = {
'null’:Result,
null:{}

Finished in: 35 ms (query execution is 35 ms, and
postprocessing time is 0 ms)

with the setResult denotinga/b. From the abstract hyperset view this is exactly the same
result as without usin@an, but represented in a better, non-redundant way.

Note thatCan can be used for the more general purpose of query optimisétiot only
for optimisation of query results by removing redundancie©f course, usingCan(t)
instead oft will require some time to comput€C(t) and then decoration (which in fact
requires computation of many bisimulation facts). But tlemdfit is thatCan(t) will be
represented without any redundancies at all, in contrasetgeet which could contain a large
number of equal elements due to possible redundancies asdvituld be much smaller after
eliminating them. Then, for exampl8quare(t) (the Cartesian product ¢f) would also be
represented without any unnecessary repetitions, angtassbly much smaller. In particular,
if we want to have recursion over th8quare (like in the case of recursive definition of
HorizontalTC), it would be computed much more efficiently, also with sexaiumber of
iteration steps, assumir@an(t) instead ot .

In principle, we could extend the language by addiibgral equality eq(x,y) for set
names (object identities). This, of course, would changeskt theoretic character of the
language as queries using such equality will not necegdagibisimulation invariant. But if
we would use this equality only over the elements of setsested a€an(t) , then this
can work as an additional optimisation. In principle, theryusystem could recognise the
expression€an(t) and automatically replace bisimulation over this set kréit equality.

Finally, note that the above optimisation was given for tberent implementation of the
A-language so that users can exploit canonisation to omigume queries. In principle, this
optimisation could be build into the implementation, sotttey possible redundancies are
removed during query execution. In fact, the query systehilevexecuting a query, supports
a list of currently known positive bisimulation facts (se@apter 4) which can be used in
background time to remove at least some redundancies iqsatiens stored in local memory.

3.6. Imitating path expressions 59

3.6 Imitating path expressions

The ability to select nodes of a WDB graph to arbitrary deth lbe elegantly achieved using
path expressions. As shown in [61], the action of a rich addigmth expressions is definable in
the originalA, itself having no path expressions at all, with the helfpGfandRec. In spite of
this fact, an important goal for the future work is to implarhthe extension oA by such user
friendly path expressions like in the following example g (for simplicity only involving
set constants for full set names from the bibliographic WDB)

set query
separate {
pub-type:x in BibDB
where exists path <bl>refers-to * <x>refers-to<b2> .
‘author’:"Smith" in x

The result of this query would be:

Result = {
paper:p2

Quantification goes over paths frobl to b2 having an appropriate intermediate set (or
node for a publicationk which is required to have the elemeathor:"Smith" , but it
appears that there does not exists such an explicit pathertheless, the required path does
exist, as shown in Figure 3.6 by the dashed edges labsiifeds-to leading frombl

to p3, wherep3 is equal (bisimilar) tob2 (p3 ~ b2) as we already know. In strongly
extensional graphs (where there are no bisimilar nodeb)@airessions would be understood
quite straightforwardly. Our hyperset approach leads o #ind of complications, but this is
the compromise for having a natural language with clear séiosaand strong (also precisely
characterised) expressive power.

Note that the result of the above query would be the emptyf sle¢ iKleene star#” was
removed from the path expression. Indeed, there are no pilrsgth two from bl to b2, even
up to bisimulation.

13The keywordpath is added to aid reading.

60 Chapter 3. Query language

refers-to

refe rs-to_ 1

- -
- author

"Smith" "Databases"

Figure 3.6: Visualisation of the path expressidml>refers-to * <x>refers-to<b2>
applied to the bibliographic WDB.

The action of the path expressieibl>refers-to * <x>refers-to<bh2> can, in fact,
be “rewritten” into A (in its present form) by the following steps. Firstly, catesi the
subexpressiorx>refers-to<b2> denoting a path from the candidate publicatiorio
b2 labelled by'refers-to’ . This can be expressed as theformula:

refers-to’:b2 in x

where b2 is set constant anck is set variable. Secondly, the subpath expression
<bl>refers-to *<x> denotes set of candidate publicationsvhich can be reached from
bl by navigating zero or moreefers-to labelled edges. Thus, let us include in the
library the general set query which will give the set of gragoldes (of a graph representing a
hypersetz) reachable by navigating zero or mdrdabelled edges.

TCal ong | abel :

set query TC_along_label(label I, set z) be
recursion p { kix in TC(z)

where (
(x=z and k='null’)
or
(k=l and exists miy in p . Ix iny)
)
h
Herep is a recursion set variable to representing theTseIC_along_label(l,z) of

nodes lying on potentially all the-labelled paths outgoing frorn. All elements ofT are
| -labelled, except possibly. If l:z isin z thenl:z will be added toT. But in any case
'null’:z will appear inT at the first stage of iteration. Hence the query call

3.6. Imitating path expressions 61

TC_along_label('refers-to’, bl)
represents the path expressidnml>refers-to * <x> where'refers-to’ is label value
andbl is set constant.

Finally the path expressiorgbl>refers-to * <x>refers-to<b2> , understood as
the set of allx lying on the paths matching this path expression, is expteas:

set query
separate {
n:xx in call TC along_label(’refers-to’, bl)
where ’refers-to:b2 in xx
h

Now, the fragment

exists path <bl>refers-to * <x>refers-to<b2> .
‘author’:"Smith" in x

of our path expression query can be rewritten as

exists m:y in separate
{n:xx in call TC_along_label(refers-to’,b1)
where ’refers-to:b2 in xx
}.

(x=y and ’author:"Smith" in x)
so that we can insert it in the full query

set query
let
set constant BibDB =
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xmI#B ibDB,
set constant bl =
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xml#b 1,
set constant b2 =
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xml#b 2
in
separate {
pub-type:x in BibDB
where
exists m:y in separate {
n:xx in call TC_along_label(refers-to’,b1)
where ’refers-to:b2 in xx
1.

(x=y and ’author’:"Smith" in x)

endlet;

62 Chapter 3. Query language

and run it to see the required result:

Query is well-formed, well-typed and executable

Result = {
‘paper’:http://www.csc.liv.ac.uk/"molyneux/t/BibDB- f2.xml#p2

Finished in: 5766 ms (query execution is 5764 ms, and
postprocessing time is 2 ms)

Despite this example of successfully imitating path exgimess it would be more useful to also
include path expressions directly within the implemeptatianguage. Although much more
general path expressions can be imitated\bgueries in the current version [61], this imitation
can be quite complicated in general and is not a particukffigient way of implementing and
executing queries with path expressions. Anyway,Aianguage, as it is implemented now,
is very expressive.

3.7 Linear ordering query

The query example considered in this section has mainlyrétieal interest, although it might
be useful in practice. The point is that we can defin\itinear ordering on the transitive
closure of any hyperset by using the lexicographical lireedering we have on labels. In fact,
the resulting linear ordering on hypersets is itself, in@sse lexicographical. Having defined
linear ordering, we can further define any (“generic” polynal-time) computable operation
over hypersets by simulating any given Turing Machine (asvshin descriptive complexity
theory [34, 37, 55, 74]). This is the key point of the main tesu[57] (for well-founded sets)
and in [58, 41, 43] (for hypersets) on the expressive powek abinciding with polynomial
time computability over (hyper)sets. (We omit precise folation which is more subtle in the
case of hypersets having labelled elements; see [57, 41]).

Let us consider the set query declaratiStrictLinOrder_on_TC(set z) (and
other associated declarations) which can be found in AggeAd3!4. In fact, the rather
complicated quenstrictLinOrder_on_TC serves as additional witness demonstrating
that everything is implemented correctly, and to check Wwietind where any optimisation
of the implementation is required. Note tttrictLinOrder_on_TC invokesCan and
without this canonisation the transitive closure

TCPure(BibDB)

M1t is based on formula (22) and Theorem 2 in [43]. We leavefthishe reader to realise how this query below
is related with this formula and why it gives a strict lineadering (see [43]).

3.7. Linear ordering query 63

participating in the query below (according to Appendix Aw®uld have too many repetitions,
and, henceSquare would have even more repetitions so that the recursion irsé¢hguery

StrictLinOrder_on_TC over thisSquare would take many hours. Now let us run
set query
let
set constant BibDB =
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xml#B ibDB
in

call SuccessorPairs(
call StrictLinOrder_on_TC(BibDB)
)

endlet;

Note thatSuccessorPairs (defined in Appendix A.3) makes the result more concise. We
see that our databa®ibDB becomes linear ordered (with corresponding simple set same
from the bibliographic database substituted in the placaesf set nhames generated by the
query system):

Query is well-formed, well-typed and executable

Result = {
null’:{fst’:{}, 'snd’:"Databases"},
null:{'fst’:"Databases",’snd’:"Jones"},
null:{'fst’:"Jones", 'snd’:"Smith"},
"null’:{'fst’:"Smith", 'snd’:BibDB},
null:{'fst":BibDB, 'snd’:pl},
null:{'fst’:p1, 'snd’:b1},
null":{'fst’:b1, 'snd’:b2/p3},
null’:{'fst:b2/p3, 'snd’:p2}

}

p2 = {author:"Smith" 'title’:."Databases", refers-to ":b2/p3}

b2/p3 = {'author’:"Jones" title’:"Databases"}

pl = {refers-to’:p2}

bl = {refers-to':b2/p3,refers-to’:p1}

BibDB = {'paper’:pl,’paper:p2,’paper:b2/p3,’book’:b 1,
'book’:b2/p3}

Finished in: 270500 ms (T 4 minutes and 30 seconds)

The correspondence of set names with those nodes in theigrRgure 3.1 is explicitly shown
in the above result. Thus, the resulting linear orderinghenttansitive closure @ibDB is:

{}, "Databases", "Jones", "Smith", BibDB, pl, bl, b2/p3, p2

64 Chapter 3. Query language

Here it is important that recursion BtrictLinOrder_on_TC does not use bisimulation
for comparison iteration steps (see Chapter 4). This diyc@ptimises recursion, and
in particular the queryStrictLinOrder_on_TC which also usesCan in its library

declaration. Without the first optimisations this query Vdbtake about 30 minutes, and
without also usingCan even hours. Of course, several minutes for such a small asgawith
TC(BibDB) containing 9 sets) is also quite long, and thus the quergesy#anplementation
needs to be further optimised. But the query is rather caratgd (see Appendix A.3), and
recursion actually usedl = 92 steps of iteration iCan is involved. This means in the average
about 3.3 seconds per iteration step.

Chapter 4

Bisimulation

Before discussing the theoretical and practical issua®usunding bisimulation, let us recall
some relevant details of the hyperset approach to WDB. Adqusly described in Chapter 2
WDB is represented as a system of set equations b(z) wherez is a list of set names
r1,..., 2, andb(z) is the corresponding list of bracket expressions (for sicitg) “flat” ones).
Visually equivalent representation can be done in the foftatmelled directed graph, where
labelled edges; labe] x; correspond to the set membershipgel : z; € z; meaning that the
equation forz; has the forme; = {...,label : z;,...}. In this case we also cafl; a child

of x;. Note that, our usage of the membership symklgs relation between set names or
graph nodes is non-traditional but very close to the traditi set theoretic membership relation
between abstract (hyper)sets. Of course this analogy ysingrortant for us and it is indeed
highly natural, hence we decided not to introduce a new kirdembership symbol here. For
the purposes of our description below labels can be ignasdnclusion of labels will not
affect the nature of our discussion. We will also apply tlesitive closure operatdrC(z)

to a set name:. The essential point is that in this contd€(z) is understood as a set of set
names (or graph nodes) rather than of abstract sets denptedde names. Again, we do not
bother with introducing a new denotation for sutG.

4.1 Hyperset equality and the problem of efficiency

One of the key points of our approach is the interpretatiow®B-graph nodes as set names
x1,...,x, Where different nodes; and x; can, in principle, denote the same (hyper)set,
x; = x;. This notion of equality between nodes is defined by the hiktion relation denoted
also asx; ~ x; (to emphasise that set names can be syntactically diffebetdenote the
same set) which can be computed by the appropriate recursivparison of child nodes or
set names. Thus, in outline, to check bisimulation of twoasogte need to check bisimulation
between some children, grandchildren, and so on, of thegiedes, i.e. many nodes could be

65

66 Chapter 4. Bisimulation

involved. If the WDB is distributed amongst many WDB files asthote sites, downloading
the relevant WDB files might be necessary in this process alhthke significant time. There
is also the analogous problem with the related transitivswre operatorT(C) whose efficient
implementation in the distributed case requires additiooasiderations not discussed here.
So, in practice the equality relation for hypersets seertradgtable, although theoretically it
takes polynomial time with respect to the size of WDB. Nevweldss, we consider that the
hyperset approach to WDB based on bisimulation relationdgiwimplementing because it
suggests a very clear and mathematically well-understad en semi-structured data and the
querying of such data. Thus, the crucial question is whetteeproblem of bisimulation can be
resolved in any reasonable and practical way. Some posgipiaches and strategies related
with the possible distributed nature of WDB and showing thatsituation is manageable in
principle are outlined below.

Although for the general database perspective we shouldidengraphs with labels on
edges and hypersets with labelled elements, the majoribgio€onsiderations in this chapter
will be devoted to the pure case without any labels. Extensiothe labelled case is quite
straightforward and is not explicitly considered, excepDiefinition 2 (b). Of course, our
implementation of bisimulation relation considers theclida case.

4.1.1 Bisimulation relation

Equality between set names (or graph nodes) of any WDB igrdated by bisimulation
relation defined according to [3] (see also [48, 53]).

Definition 2. (a) Bisimulation relation~ (or ~wpg) on a WDB without labels (the pure case)
is the largest one such that for all set nameg the following implication holds:

rry=Vr cxdy cyl@' ~y) &Vy €y € x(a’ =v). (4.1)
(b) In the general labelled case, it should satisfy the ioapion

rry=Vi:d'exIm:y eyll=mra =y)&
Vm:y ey’ ex(l=mnrx =v). 4.2)

It is well-known that the largest such relation does exisdeked, the clas® of relationsR
satisfying any of the above formulas (in placegfis evidently closed under taking unions, so
the union of all of them is the required largest eaeln fact, for~ the implication=- above
can be replaced by«—=- . Moreover, the clas® evidently contains the identity relatica
and is closed under taking compositioRs S and inverse relation®!. It follows that the
largest such relatior is reflexive, transitive and symmetric, that is, an equivederelation.

4.2. Computing bisimulation over WDB 67

The bisimulation relation is completely coherent with hyge theory as it is fully described in
the books of Aczel [3], and Barwise and Moss [5] for the purgecand this fact extends easily
to the labelled case. It is by this reason that the bisimutatelation~ between set names can
be considered as equality relatierbetween corresponding abstract hypersets. So, we will not
go into further general theoretical details concerninghisgmulation relation (except for the
concept of local bisimulation in Chapter 6 below), paying thain attention to implementation
aspects.

4.2 Computing bisimulation over WDB

Bisimulation relation is computed in our implementationrbgursively deriving bisimulation
facts. Both positives£) and negativest) bisimulation facts can be derived with the following
rules:

vy — Vo' exdy eyla' =) &Yy € yIr € x(a’ =v). (4.3)

ry:— 3 eavy eyla #y) VI ey € x(a’ £v). (4.4)

In principle, using the rule (4.3) for deriving positive fads unnecessary. They will be
obtained, anyway, at the moment of stabilisation in thevdéion process by using only (4.4)
(see below). Derivation of bisimulation facts using theabaules (4.3 and 4.4) occur after
initial facts have been derived. The rules for deriving éhimtial facts are partial cases of the
main rules (4.3 and 4.4):

rry:—(r=0&y=0) (4.5)
xy:—(r=0&y#0)Vy=0&z#0) (4.6)
TR 4.7)

After the derivation of initial facts, rules 4.3 and 4.4 cam tecursively applied. Since it is
known that bisimulation is an equivalence relation, thédofeing transitivity and symmetry
rules can be used alongside the above rules:

Tz —rRy&y~z (4.8)

TRY:— YR (4.9)

All these rules should be applied until stabilisation, ttage when no more new= y orz % y
facts can be derived by the above rules. Evidentially, Bsaition is inevitable because there
are only finitely many set names in the original WDB, i.e. ia tlorresponding system of set
eqguations. All remaining non-resolved bisimulation qises (x % y) can now be concluded
as resolved positively as~ y.

68 Chapter 4. Bisimulation

4.2.1 Implemented algorithm for computing bisimulation ower distributed WDB

The deeply recursive nature of the bisimulation algoritheerss to suggest that it maybe
necessary to effectively compute the transitive closutb@two set names participating in any
bisimulation question. For example in the case of the bikitian question: < v, Stabilisation

is sufficient to establish only for the facts between set rim&C(z) andTC(y). In general,

it may happen that the full transitive closures will be imedd. However, in an optimistic
approach, derivation rules (described in Section 4.2) negiplied to the partial transitive
closures, with a “progressive” transitive closures cormaduds necessitated by the derivation
rules to facilitate the resolution of a bisimulation questi

Bisimulation algorithm Bis(x, y):
’
START with resolving the bisimulation questionz ~ y.
1. Create two (initially empty) lists Q and and Eq. @ will consist of bisimulation
?
guestionsu ~ v or their possible answers, aritly of (downloaded) set equations.

Note: During the computation, some bisimulation questim?s v from the list@ can
be resolved — replaced by either~ v (positive) oru % v (negative) facts. Thereby
@ will contain both non-resolved questions, and positive egative facts. The process
will continue until@Q will stabiliset.

2. Initialise populating @ by inserting the bisimulation questionx Z Y.

3. Acquire set equationscorresponding to those set names involved in all non-resolv
bisimulation questions i) by downloading appropriate WDB files containing these
equations. That is, for the questimn; v in @, download the uniquely defined WDB
files (by full set names, v) containing equations = {...} andv = {...} (if they have
not been downloaded yet).

Add these equation into the (originally empty) list of set eguad Fq (acquired from
the WDB).

Extend @ by all new bisimulation questions (more precisely, thoseyest included in
@ neither as questions nor as positive or negative answaetrall feet names participating
in Q plus set names in the right hand side of the (downloaded)gsgtti®ons fromFyq.

Note: Not all the downloaded equations (from the downloaded files) likely
participate inEq and in the generation of transitive closuf€(z) UTC(y) for the initial
questionz 9 y, and in this case they may be ignored when generating newigugs

!In the case of using the Oracle, as described later in Ch&ptee questions already asked to the Oracle should
be appropriately labelled to avoid asking them again.

4.2. Computing bisimulation over WDB 69

(to be added Q). But they could probably be useful in future computationd eould
save time on downloading if some equations to be downloadegrescribed by the
current stage have been already downloaded earlier. Thilgloavnloaded equations
(in fact, WDB files) should be saved in a cache of WDB (in menfonpossible future
use. Therefore, before making the quite expensive stepwofldading a WDB file the
system should check whether it has already been downloddes WDB cache should
be initialised when beginning general query execution agseduby both the general
guery evaluation procedure and algorithm described hereef@luating bisimulation
(or equality) subqueries 9 .

Similarly to the cache of WDB, the current versiong)adnd £'q should not be discarded
from the memory till the end of executing a given query, inugl the subquery: < Y
considered in the current algorithm, because some othémhiation questions might
be involved which could be easily answered with already knQvand Eq.

4. Iteratively apply derivation rules (4.3) and (4.4) (thereby resolving some questions in
Q) until the initial bisimulation question: ~ y becomes a resolved fact or, otherwise,
until exhaustion by using the currently downloaded (prépaicomplete) listEq of set
equations.

Note: Some enumerated @ questions could still remain unresolved.

5. Recursive jump:

2

(a) Is the initial bisimulation question = ~ y now a resolved fact inQ?
Yes— The original bisimulation question has now been resolead ©f algorithm).

No — Move to step 5b to continue trying to resolve initial bisiation question
and other non-resolved questionsin

(b) Are there set namesu participating in non-resolved questions in@ for which
set equationsu = {...} have not yet been downloaded?

Yes— Then move to step 3 by which further facts may be derived tdmeeelevant
set equations have been downloaded.

No — Then the full transitive closur@C(z) U TC(y) of the initial bisimulation
questionz % y has been completed, therefore there are no further passibiio
derive/resolve new facts, and stabilisation of the(Jstas been achieved. Postulate
all non-resolved bisimulation questions tage facts. In particular, the original

70 Chapter 4. Bisimulation

? "
bisimulation question: ~ y has now been resolved positively as~ y (end of
algorithm).

END with the bisimulation question x =~ y resolved positivelyz = y or negatively

T % y.

The essential point of the above algorithm for computingniigation is that downloading
of WDB files is done in a “lazy” way — only when no derivation stes possible. This
strategy is chosen because downloading WDB files is the mastnsive process of the
general implemented bisimulation algorithm. Thereforly @amthe worst case downloading all
the necessary set equations (generating the full traesitivsure of the original bisimulation
guestion) will be necessary. Usually this should save aflotr@ and memory.

Part |l

Local/global approach to optimise
bisimulation and querying

71

Chapter 5

The Oracle

5.1 Computing bisimulation with the help of the Oracle

The concept of the Oracle for Web-like databases is somesitmifar to that of an Internet
search engine, such as Google, where the Oracle will attemnptovide bisimulation facts
to the A-query system when requested and thereby to facilitate abierecomputation of set
equality. Furthermore, the Oracle should work in backgdbtime independently (as well as
by requests from th&-query system) to derive bisimulation facts.

We assume that to the bisimulation questjomr'; y the Oracle should give one of three
answers'Yes”, “No” or “Unknown”?!. In the latter caséUnknown” should consequently be
replaced by the Oracle (after resolving the question itsetibably resulting in some delay)
with either“Yes” or “No” . The answersYes” or “No” must be correct. In fact, asking the
Oracle is a way to resolve bisimulation questions, justéigplying derivation rules. However,
itis likely that the Oracle only provides a partial bisimtida relation (depending on the current
state of its work) because of possible updates to WDB fordireg Oracle to redo at least
some of its work and the time required to compute bisimutati@hus, those bisimulation
questions answerétUnknown” should invoke an initial attempt by the query system to resol
the question locally, hence downloading WDB files with theeeequations corresponding to
the set names participating in the question(s), etc., dmialgorithm of Section 4.2.1 above. If
during the process of local computation the Oracle willaepl'Unknown” by “Yes” or “No”
then this local attempt to resolve the bisimulation questidl be automatically halted due to
replacing this question by its answer, however, downloadf&B files may prove to be useful
in future derivation steps of other possible bisimulatieestions and should not be discarded
from the local cache.

!More precisely, to know which question is answered, fullvems should be given:#* ~ y”", “z % 3" or
,

“:E % yn.

73

74 Chapter 5. The Oracle

For example, let us consider the Oracle attempting to ressobisimulation question posed
by the A-query system as shown below:

A-query system: x < y (is the set name bisimilar to the set namg?).

Oracle: “Unknown” (based on the current state of knowledge of the Oracle).

The Oracle works towards resolving various bisimulatiorsiions, in particulaz: ~ Y.
500ms later...

Oracle: “No” (x % y holds).

5.2 Imitating the Oracle for testing purposes

As the first attempt, an Oracle which is able to answer bisatiah questions can be simulated
with a single file containing a list of bisimulation facts tvithe state§Yes” or “No” . Further,
those bisimulation questions initially answeredldsknown” can be also simulated as delayed
answers ofYes” and“No” by associating each bisimulation fact with number of nelisnds
delay.

For the purposes of our preliminary implementation thadti®racle (simulated as a file
instead of a special Internet server) was implemented asMh {e2. The trivial Oracle
(XML file) contains all the necessary information to simaldhe behaviour of the Oracle:
bisimulation facts corresponding to all possible bisintiolaquestions. Also, to simulate those
guestions initially answeretlUnknown” by the Oracle (such as in the example above) each
bisimulation fact has an associated delay time. These XMis filre generated by one of the
programs belonging to our suite of tools from a given WDB iolsa way that altYes”/“No”
facts presented there are automatically true, that is thienblation relation is computed by
this program and presented as an XML file. Furthermore,raryidelay times (useful for the
purposes of testing) are added manually to those XML filegegead by this program.

Each bisimulation fact (in the trivial Oracle) is represshtas an XML tag with
set_name s, bisimulationvalue anddelay times as mandatory attributes. For example,
let us consider the bisimulation fagt% = with no delay time represented in the trivial Oracle
as,

<facts set _name="y">
<fact set_name="z" value="no" delay="0" />
</facts>

2which should not be mixed with XML-WDB files used to represseit equations

5.2. Imitating the Oracle for testing purposes 75

where bisimulation facts are grouped, insidfacts> and<fact> tags, according to those
set name patrticipating in the WDB. The grouping of facts igatudre of the implementation
used to generate these XML files. Let us consider the triviac@ for the bibliographic WDB
(considered in Section 3.5) represented as the XML file:

<oracle>
<facts set_name="http://www.csc.liv.ac.uk/"molyneux/ t/BibDB-f1.xml#BibDB">
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f1.xml#b1" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f1.xml#b2" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#pl" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#p2" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#p3" value="no"/>
</facts>
<facts set_name="http://www.csc.liv.ac.uk/"molyneux/ t/BibDB-f1.xml#b1">
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f1.xml#b2" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#pl" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#p2" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#p3" value="no"/>
</facts>
<facts set_name="http://www.csc.liv.ac.uk/"molyneux/ t/BibDB-f1.xml#bh2">
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#pl1" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#p2" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#p3" value="yes"/>
</facts>
<facts set_name="http://www.csc.liv.ac.uk/"molyneux/ t/BibDB-f2.xml#p1">
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#p2" value="no"/>
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#p3" value="no"/>
</facts>
<facts set_name="http://www.csc.liv.ac.uk/"molyneux/ t/BibDB-f2.xml#p2">
<fact delay="0"
set_name="http://www.csc.liv.ac.uk/"molyneux/t/BibD B-f2.xml#p3" value="no"/>
</facts>
<facts set_name="http://www.csc.liv.ac.uk/"molyneux/ t/BibDB-f2.xml#p3">
</facts>
</oracle>

Note that only one valueyes" appears above as it is already known concerning our
bibliography database that only the set nafm2sandp3 are bisimilar. Information encoded
within the such an XML file simulates the responses of the [@race. the responses
to bisimulation questions. These responses, i.e. the edkdiisimulation facts (possibly
delayed with the immediate temporary ansidgnknown”) may assist the regular bisimulation
algorithm. To simulate the Oracle, the bisimulation altfori in Section 4.2.1 should be

76 Chapter 5. The Oracle

extended replacing step 3 as follows:

3. Acquiring set equationsu = {...} andv = {...} corresponding to all those unresolved
guestions, % v in @ should now begin with asking the Oracle all these questiahich
have not already been asked), and the necessary downlaadd &hillow only in the case
where the Oracle answers withnknown”.

Note: According to Footnote 1 (on page 73), the answénknown”, in fact, means
that the Oracle returns back to the query system the queéﬁoé v”, and similarly
for the answersYes” and“No” in which case the full answerst“~ 3" and “ x % y”,
respectively, should be returned. Otherwise, becauselaysighe system will not know
how to treat‘Yes”, “No” and“Unknown”.

Evidentially, whilst resolving bisimulation questionsétmodified version of) Step 2 will pose
many bisimulation question to the Oracle, which will be aesvd either “Yes”{ =~ v) or “No”

(u % v) possibly with delays. In fact, the behaviour of the moditiégimulation algorithm can
be characterised as follows, depending on the Oracle’®onsss:

e Bisimulation questions 9 v) to the Oracle directly answered“Yes” (u = v) or
“No” (u # v): In this case, the answer from the Oracle should immediaggiace the
unresolved question i, and the maodified bisimulation algorithm will resume its wor
resolving other non-resolved bisimulation questions figm

e Bisimulation questions % v) to the Oracle initially answered “Unknown” (u < V).
In this case, the modified bisimulation algorithm will, ircfaresume its work resolving
U ~ v and other non-resolved bisimulation questions fr@mThus, the question will
either be resolved locally or the Oracle will replace itsveas‘Unknown” (u % v) by
either“Yes” (u ~ v) or “NoO” (u % v) possibly with some delay.

Note that, if the Oracle answers the question positively egatively before being
resolved locally then this answer should replace the questi) and the modified

bisimulation algorithm should continue its work (takingdaraccount the newly resolved
guestion — it does not matter in which way the question islvesiop by the Oracle or by
the query system)

Note that, step 2 in the present modified form plays a cruolal in performance: resolution
of bisimulation questions by the Oracle will save costly divading of WDB files.

3A question answeretlUnknown” does not require asking the Oracle again. In general, Otasla special
Internet server) should remember all questions and reghyetappropriate client accordingly when the answer will
be ready.

5.3. Empirical testing of the trivial Oracle 77

5.3 Empirical testing of the trivial Oracle

In principle, with the help of the Oracle thogequeries which involve set equality (bisimula-
tion) should be executed quicker. The aim of the followingp@inal testing is to measure the
improvement in query performance with the help of the Oracdeddition to demonstrating
the effects of delayed answers to bisimulation questidrssé initially answeretinknown”)
by the Oraclé"

The distributed bibliographic WDB considered in Sectiob &ee Figure 3.1) is frag-
mented into two XML-WDB files, thus making computation ofibisilation more dependent
on the time taken to download these files. The following eXangpery (already considered
in Section 3.5.2) involves set equality to determine whiabljgations belonging t@ibDB
refer to the publication (possibly bisimilar tb2. The requirement to compute bisimulation
across the distributed bibliographic WDB makes this singXample particularly suitable for
empirical testing of the Oracle:

set query
let set constant BibDB be
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f1.xmI#B ibDB,
set constant b2 be
http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f2.xml#b 2

in collect { pub-type:pub
where pub-type:pub in BibDB
and exists 'refers-to:ref in pub . ref=b2

}

endlet;

The execution time of this example query under various éxpartal conditions can be seen
in the Table 5.1. The results suggest a marked improvemeuerfiormance with help of the
Oracle, and only a slight improvement in performance wherQbacle returns an answer after
delay 50ms or 75ms. However, when the Oracle provided algmeityed answerX 100ms)
query execution occurs with no real help by the Oracle, asiiilation is computed locally
without any real help from the Oracle. Thus, under this citstance, query execution time
increases, and the optimal approach appears to be quemtiexewithout invoking the Oracle.
This result may be explained by the numerous (and seemingjlg)f bisimulation questions
posed to the Oracle (all of which are answefddknown” and never improved) which provide
no real help.

4Even more optimal would be to postpone local resolution sfmbillation questions in favour of some other
independent subqueries of the given query with the hopethieaDracle will give a definite answer before starting
local resolution. There are many ways to optimise our imgletation, but we can consider only a limited range of
such possibilities.

78 Chapter 5. The Oracle

In summary, these results were based on experiments withitla Oracle (simulated as
an XML file instead of an Internet server). Additionally, teeample WDB is too small and,
crucially, only distributed into two fragments. In printg@p invoking the help of the Oracle
should improve query performance considerably when the Vi8istributed into a large
number of fragments.

Strategy Query execution time [ms]
Bisimulation algorithm without invoking the Oracle | 588
with help of the Oracle (no delay time per question) | 390
with help of the Oracle (50ms delay time per question)500
with help of the Oracle (75ms delay time per questions00
with help of the Oracle (100ms delay time per questip08
with help of the Oracle (125ms delay time per questip08

Table 5.1: Experimental results showing query executiaretims] corresponding to each
strategy for computing bisimulation.

In a more realistic situation, the Oracle should be impleiegms an Internet service (called
the bisimulation engine) for large distributed WDB, worgiim background time to derive all
possible bisimulation facts on the current state of WDB. @bal of the bisimulation engine
consists in answering bisimulation questicmé y from the A-query system (possibly with a
delay’). The Oracle should be based on the bisimulation algoritestidbed in Section 4.2.1
and, additionally, on the idea of local/global bisimulaticonsidered in Chapter 6. We will
consider implementation (still rather an imitation) of tBeacle in Chapter 7 and some further
advanced experiments.

? . .
5In principle, the Oracle, when asked the questios y, could change its regular behaviour, and try to resolve
such questions (with appropriate strategy of prioritypirone or more querying clients.

Chapter 6

Local/global bisimulation

Let a proper sét. C SName®f “local” vertices (set names) in a graph WDB (a system of
set equations) be given, wheBNamesds the set of all WDB vertices (set names). Let us
also denote by’ D L the set of all set names participating in the set equationsdoh set
name inL both from left and right-hand sides. Considering the grapla &/DB distributed
among manites L plays the role of (local) set names defined by set equatios@nite (local)
WDB files of one of these sites. Thdr \ L consists of non-local set names which, however,
participate in the local WDB files, have defining equationstimer (possibly remote) sites of
the given WDB. Non-local (full) set names can be recognisethbir URLs as different from
the URL of the given site. Set names (or vertices) frbhtan be reasonably called “almost
local”.

We will considerderivation rulesof the formzRy : — ... R... for three relations over
SNames
~L C~cC % or rather, their negationss’ C % C %L
= = —+ ’ ’ + = = —

defined on the whole WDB graph (however, we will be mainly iested in the behaviour of
~L andz%r on L). We will usually omit the superscrigt when it is clear from the context. In
particular, this chapter deals mainly with oheso no ambiguity can arise.

6.1 Defining the ordinary bisimulation relation =~

Recall the derivation rule defining:
ry:— 3’ eavy eyla #y) VI ey € x(a’ £v). (6.1)

If v % v is underivable for some vertices/set names then we assume ~ v to be true

'L # () andL # SNames

79

80 Chapter 6. Local/global bisimulation

(indistinguishable sets are considered equal), and signilaother cases below. Equivalently,
% is the least relation satisfying (6.1), and its positivesi@n=: is the largest relation satisfying

rry=Vr cxdy cyla’ ~y) &Vy €y € x(a’ =v). (6.2)
The relationr is calledbisimulationrelation which is also known to be an equivalence relation
on the whole graph. Below are defined its upper and lowertivedad to L) approximations
~4 and~_.
- - - - NL ~
6.2 Defining the local upper approximation~Y of ~
Let us define the relatiog, C SName$by derivation rule

v y:—z,ye L& 32 eavy ey(@’ % y)Vv..] (6.3)

Here and below .“..” represents the evident symmetrical disjunct (or conjuncthus the
premise (i.e. the right-hand side) of (6.3) iseatriction of that of (6.1). It follows by induction
on the length of derivation of thg , -facts that,

#r C, ~Cry (6.4)
r#ry=>x,y€L (6.5)
rdLVygL=x=~,1y. (6.6)

As L # SNamesthe set of all vertices, it follows from (6.6) that, can be an equivalence
relation on the whole graptnlyif it is trivial, making all vertices equivalent. But we wiahow
below that it is an equivalence relation locally, that islan

Let us also consider another, “more local” version of the (@l.3)
rH¥y:—zye L& P cavy ey, e L&' % y) V..] (6.7)

It defines the same relatich, because in both cases (6.5) holds implying that the righttha
side of (6.7) is equivalent to the right-hand side of (6.3heRdvantage of (6.3) is its formal
simplicity whereas that of (6.7) is its “local” computatadrmeaning. From the point of view
of distributed WDB withL one of its local sets of vertices/set names (correspondimmgé of
the sites of the distributed WDB), we can derivet y for local z, y via (6.7) by looking at
the content of local WDB files only. Indeed, participating ILiR(full set names)’ € = and
y' € y, although likely non-local names (L' \ L), occur in the locally stored WDB files with
local URLsz andy € L. However, despite the possibility that andy’ can be in general

6.3. Defining the local lower approximatiea” of ~ 81

non-local, we will need to use in (6.7) the facts of the kirid¢, 3’ derived on the previous
steps for locak’, v’ € L only. Therefore,

Note 1(Local computability ofz %). For deriving the facts: %, y for x,y € L by means
of the rule (6.3) or (6.7) we will need to use the previousigwael factse’ %, v for set names
2’y from L only, and additionally we will need to use set names from &mnsdtZ’ (available,

in fact, also locally§. In this sense, the derivation of all facts¢_ y for x,y € L can be done
locally and does not require downloading of any external WHB3. (In particular, facts of the
formz 5, y or x ~, y for set names: or y in L'\ L present no interest in such derivations.)

The upper approximatior: (on the whole WDB graph) can be equivalently characterised
as the largest relation satisfying any of the following (eglent) implications for all graph
verticesz, y:

v~ y=x€LVyg LV exIy eyla =, y) & ..]
r~ y&aye L= Vo' eady eyl = y) & ..] (6.8)

The set of relation®? C SName%satisfying (6.8), in place of_, evidently: (i) contains the
identity relation= and is closed undg(ii) unions (thus the largest, does exist), andiii)
taking inverse.

Evidently, any ordinary (global) bisimulation relatidd C SNames (that is, a relation
satisfying (6.2)) satisfies (6.8) as welFor anyR C L? the converse also holds: i satisfies
(6.8) then it is actually a global bisimulation relation daR C =). It is easy to check th4iv)
relationsk C L? satisfying (6.8) are closed under compositions.

It follows from (i) and (iii) that~_ is reflexive and symmetric. Ovdr, the relation~_
(that is the restriction~ [L) is also transitive due t@v). Therefore,~, is anequivalence
relation. (In general, as we noticed abowve,. cannot be equivalence relation on the whole
graph, due to (6.6).) Moreover, amyZ L is = to all vertices (including itself).

6.3 Defining the local lower approximation~’ of ~

Consider the derivation rule for the relatigh. C SName&

x#_y 11— (r,yé¢L&z#y)V@elL&ygL)V(yeL&axg L)V
[[32’ € vy e y(a' #_y)Vv..].

2This is the case when = () but there exists according to (6.7) ahin z which can be possibly i’ \ L (or
similarly for z = (). Wheny = (then, of course, there are no suitable witnegses y for whichz’ %, ¢ hold.
Therefore, only the existence of somein = plays a role here.

3This imples (6.4) again because; is the largest relation satisfying (6.8).

82 Chapter 6. Local/global bisimulation

The following is an equivalent simplified rule:

vy — (@gLlvygL)&a#yV
[x € avy e y(2' #_ y)Vv..] (6.9)

which can also be equivalently replaced by two rules:

x#_y — (x¢LVydL)&x+#y—"apriori knowledge’ (6.10)
vy — I eavy eyl # y)v.... (6.11)

Thus, in contrast to (6.3), this isralaxation or, anextensiorof the rule (6.1) for£. It follows
that

#C R (R Cm),

x ~_ z for all r € SNames— reflexivity.

The former is trivial, and the latter means that:_ z is not derivable. (Indeed; %_ z can be
derivable only ifz’ %_ 2’ is derivable for some’ € x on an earlier stage; thus, there cannot
exists a first such derivable fact.) It is also evident that

anyx ¢ Lis #%_ to all vertices different fronx,

r~_y&r#y= (r,y €L).

The latter means that_ (which is an equivalence relation &Namesnd hence oil as it is
shown below) is non-trivial only on the local set names. Agtike for %, we can conclude
from the above considerations that,

Note 2 (Local computability ofr #_ y). We can compute the restriction gf on L locally:

to derivex #_ y for z,y € L with x # y (taking into account reflexivity of_) by (6.9) we
need to use only’,y' € L' (by 2’ € x andy’ € y) and already derived facts’ %_ ' for

2,y € L,z # vy, as well as the facts’ #%_ ¢/ for ' ory/ € L'\ L, 2’ # 3/ following from
the “a priori knowledge” (6.10).

The lower approximation:_ can be equivalently characterised as the largest relatiisfigng
r~_y=(ryelVe=y) &V ecaxdy eyl ~_y)& ...).

Evidently, = (substituted fora_) satisfies this implication. Relation® satisfying this
implication are also closed under unions and taking invarsecompositions. It follows that
~_ is reflexive, symmetric and transitive, and therefore@guivalence relation over the whole

6.4. Using local approximations to aid computation of thebgl bisimulation 83

WDB graph and therefor®n its local partL.

Finally, we summarise that both upper and lower approxtnmat'rui and ~* to ~
restricted toL are computable “locally”. Each of them is defined in a triviedy outside
of L, and the computation requires only knowledge at most o theart of the graph. In fact,
only edges fronl to L’ are needed, everything being available locally.

6.4 Using local approximations to aid computation of the glbal
bisimulation

The point of previous considerations of this chapter wag tigen any setl. of “local” set
names (or WDB graph vertices), we defined two (IocaL)capproximationswi and~’ to

the global bisimulation relatior:. Now, assume that the sBName®f all set names (nodes)
of a WDB is disjointly divided into a family of local sets;, for each “local” sitei € I (so that
SNamess the disjoint uniorSNames= | J,.; L;). Then we have many local approximations
~%* and~"" to the global bisimulation relatior. As we discussed above, these relations can
be easily computed locally by each sitasing the derivation algorithms described in Notes 1
and 2, respectively.

Now the problem is how to compute the global bisimulatiomtieh ~ with the help of many
its local approximation&fj’ and~"i in all sitesi.

6.4.1 Granularity of sites

However, for simplicity of implementation and testing tHeoge idea (and also because it is
more problematic to create many sites with their serverswilleredefine the scope of to

a smaller granularity. Instead of takindo be a site, consisting of many WDB files, we will
consider that eachitself is a name of a single WDB filide;. More precisely; is considered as
the URL of any such a file. This will not change the main ideamflementation of the Oracle
on the basis of using local information for eachThat is, we reconsider our understanding of
the term local — from beingpcal to a siteto local to a filé* — as shown in Figure 6.1. Then
L; is just the set of all (full versions of) set names defined mfi{left-hand sides of all set
equations in this file). Evidently, so defined sétsare disjoint and cover the claS&Name®f

all (full) set names from the WDB considered. Recall thé;t and~" are formally defined
on the whole WDB (not only ord;). Their restrictions td.; are also equivalence relations
(on L;) denoted, for brevity and when it is clear from the contebeoaszfg and~".

“Moreover, this idea of locality to files (described below &tall) belonging to each such a sités useful for
computingi-th site’s local upper and lower approximations of bisintiolaas an intermediate step. Then thése
approximations could be used in implementation of the dl@acle. That is, the idea of locality can be fruitfully

84 Chapter 6. Local/global bisimulation

WDB file, ., =~ / \
\ ~t <t ’

4 .
== WDB file,

N

7 WDB file,
1
l

WDB flle;

WDB file, WDB file ,
~ ,\ -~ - /
Site, Site, - -
(a) Local to files (b) Local to sites

Figure 6.1: Summary of a distributed WDB showing the diffex® between interpretation of
local as: local to a file, or local to a site.

The relationswf; and~% should be automatically computed, saved as file and maedais
the current local approximations for each WDB fildn principle a suitable tool is necessary
for editting (and maintaining) WDB, which would save a WDRefiland thereby generate the
approximation relations:ﬁ" and~"i (file) automatically.

6.4.2 Local approximations giving rise to global bisimulaton facts
We know that these approximations satisfy,

L

| ﬂ
ﬂ

or, equivalently,

It evidently follows that,

e each positive local fact of the form~"¢ y is a positive fact about, i.e. gives rise to
the factz ~ y, and

e each negative local fact of the forzmaéfﬁ' y is a negative fact about;, i.e. gives rise to
the factz % y.

Let~ (without subscriptst or —) denote the set of positive and negative facts for set names
in L; on the global bisimulation relatiow obtained by these two clauses. This set of facts

is called thelocal simple approximation sdb =~ for the file (or site);. Let thelocal Oracle

LO; just answerYes” (“z =~ y"), “No” (“z % y”) or “Unknown” to questionst % y for

x,y € L; according tox’i,

used on various levels of granularity to optimise perforogaof the bisimulation engine (the Oracle).

6.4. Using local approximations to aid computation of thebgl bisimulation 85

In the case of considered as a site (rather than a file) thign; can have delays when
answering'Yes” (“z ~ y”) or “No” (“z % y") becauseLO; should rather compute’ itself
and find out i’ answers to the questions asked which takes time. Bilis ifinderstood just
as a file saved together with all the necessary informatiolocal approximations at the time
of its creation therL.O; can submit the required answer and, additionally, all theiofacts it
knows at once (to save time on possible future communicgtion

Therefore, a centralised Internet server (for the givetridiged WDB) working as the
(global) Oracle oBisimulation Enginewhich derives positive and negative @nd#) global
bisimulation facts can do this by the algorithm of Sectio®.4. in addition to asking (when
required) various local Oraclds0; concerning=’:. That is, the algorithm from Section 4.2.1
extended to exploit local simple approximation$: should, in the case of the questimn?w Y
in Q with z,y € L; from the same site/WDB fil¢®, additionally ask the oracl&O; whether
it already knows the answer (as described in the above twas)te If the answer is known,
the algorithm should just use it. Otherwise [i©); does not know the answer oty do not
belong to ond; —that is, they are “remote” one from another), the globalo@rahould work
as described in Section 4.2.1 by downloading set equatioaking derivation steps, etc. Thus,
local approximations serve as auxiliary local Oradlgs; helping the global Oracle.

6.4.3 Practical algorithm for computation of local approximations

The derivations rules for computing local approximatiodesgcribed above by rules 6.3, 6.9
together with Notes 1, 2) can be implemented in a very simiay to the practical algorithm for
computing the global bisimulation described in Section G&en a WDB file; as the input, the
algorithm will generatepproximation files# and:°4 containing local approximationsf;’,
~Li and, respectively, local simple approximation s€t (all three approximations restricted
to L;). The derivation rules (6.3, 6.9) were formulated to corephe relations<’ and~":
over all set names (both local and non-local). Accordingatel 1, 2 on local computability of
local approximations the computation of restricted reladi can be also restricted to local set
names inL; (or to slightly wider setL’). Additionally, the two clauses in Section 6.4.2 should
be used.

Unlike the practical algorithm for computing global bisilations, the computation of local
approximations=i, ~"i, and~" (creation of approximation fileis' andi*4) should be done
after creating (and saving) WDB filéstherefore this operation does not require much attention
towards optimisation.

Sz,y € L; can be trivially checked by comparing the full set naraeg with the URL

86 Chapter 6. Local/global bisimulation

Local simple approximation filesy4, are represented as XML files (quite similar to those
of the imitated Oracle; see Section 5.2) containing glolisilrulation facts derived locally
on the fragment (=~¢). Each approximation fact is represented as an (XNidt tag
with boolean local approximation value and set name as ntandattributesvalue and
set_name . These approximation facts are grouped (indigets tag) corresponding to
all local set names i;®.

For example, let us consider the simple approximationifif corresponding to the local
simple approximation set’:, for one particular fragment of the bibliographic WDB (see
Section 3.5nttp://www.csc.liv.ac.uk/ ~molyneux/t/BibDB-f1.xml

<simple-approximation>

<facts set_name="http://www.csc.liv.ac.uk/"molyneux/ t/BibDB-f1.xml#BibDB">
<fact set_name="http://www.csc.liv.ac.uk/"molyneux/t /BibDB-f1.xml#b1" value="no"/>
<fact set_name="http://www.csc.liv.ac.uk/"molyneux/t /BibDB-f1.xml#b2" value="no"/>
</facts>
<facts set_name="http://www.csc.liv.ac.uk/"molyneux/ t/BibDB-f1.xml#b1">
<fact set_name="http://www.csc.liv.ac.uk/"molyneux/t /BibDB-f1.xml#b2" value="no"/>
</facts>
<facts set_name="http://www.csc.liv.ac.uk/"molyneux/ t/BibDB-f1.xml#h2">

</facts>

</simple-approximation>

Note that all “no” values above correspond to negative hittion facts £) resulting
from the computation of the local simple approximation sét, wherei is the WDB file
mentioned above. Simple approximation files are predigtabmed based on the name of the
corresponding WDB fileé by concatenating the stringapproximation " to the end of the
WDB file name, for example the WDB file namBibDB-f1.xml " will have corresponding
simple approximation file with the nam&ibDB-f1.approximation.xml ”

5This is quite similar to the previous implemented tool togyerte the (trivial) Oracle XML files.

Chapter 7

The Oracle based on the idea of
local/global bisimulation

7.1 Description of the bisimulation engine (implementatia of a
more realistic Oracle)

Empirical evidence from the implementation of the imita@chcle in Section 5.3 concluded
that a centralised service providing answers to bisimaatijuestion would increase query
performance (for those queries exploiting set equality)his tservice could be named
bisimulation engineThe goal of such bisimulation engine would be:

Answer bisimulation queries — Answers bisimulation questions communicating via
standardised protocol (as discussed in Section 5.1).

e Compute bisimulation — Derive bisimulation facts in background time, and striataty
prioritise bisimulation questions posed by thequery system by temporary changing
the fashion of the background time work in favour of resalvihese questiofs

e Exploit local approximations — Exploit those local approximations corresponding to
WDB files to assist in the computation of bisimulation.

e Maintain cache of set equations- The Oracle (just like thé\-query system) should
maintain a cache of the downloaded set equations in the quewteps. These set
equations may later prove useful in deriving new bisimalatiacts with saving time
on downloading of already known equations.

Although due to limitations of time, the current implemeita is more basic and does not adopt this strategy
of prioritising. (See more in Section 7.1.1.

87

88 Chapter 7. The Oracle based on the idea of local/global bisition

7.1.1 Strategies

In principle, the bisimulation engine should give strategrioritisation to resolving those
bisimulation questions posed by clients — favouring retsmiuof these bisimulation questions
over background tasks (resolving all other bisimulatioesjions). Moreover, it is reasonable
to make the query system adopt a “lazy” strategy while wayldn a queryy. This strategy
consists of sending bisimulation subqueriesyab the Oracle but not attempting to resolve
them in the case of the Oracle’s answer “Unknown” (accordmghe standard algorithm).
Instead of such attempts, the query system could try tovesather subqueries of the given
query ¢ until the resolution of the bisimulation question sent te fBracle is absolutely
necessary. The hope is that before this moment the bisiimwlangine will have already
given a definite answer.

However these useful features have not yet been implemehtale current version, we
have only a simplified imitation of bisimulation engine wihi@solves all possible bisimulation
questions for the given WDB in some predefined standard evidbout any prioritisation and
answers these questions in a definite way when it has dehea@g¢uired information. Thus the
Oracle, while doing its main job in background time, shouityaemember all the pairs (client,
question) for questions asked by clients and send the deéingwer to the corresponding client
when it is ready.

7.1.2 Exploiting local approximations to aid in the computdion of bisimulation

For implementation of the Oracle we use again the algoritbncdmputing the bisimulation
relation, as described in Section 4.2.1. But, this algorithill be extended to exploit local
approximations by adding an additional step after acquiset equations (step 3). This
additional step (step 3’) is detailed below:

3. Acquire local approximations by (i) downloading the local approximation set“:
(consisting of some positive and negative bisimulatiorisfaepresented as the simple
approximations fileé*4 (cf. Section 6.4.3) for each WDB fileretrieved during step 3,
and (ii) adding all the positive and negative bisimulatiaaté fromi4 to the listQ
of questions and answers (replacing those questiofsvirhich were thereby answered
positively or negatively).

Additionally, while computing global bisimulation by exjling local approximations, the
Oracle should always be ready to receive questimn?s v from various, possibly remote
A-query systems and answer them immediately that the resyieti unknown (if it is so)
and, when the result will become known eitherwas: v or u % v, sending it back to the
corresponding\-query system.

7.2. Empirical testing of the bisimulation engine 89

7.2 Empirical testing of the bisimulation engine

Preliminary results from testing of the simulated Oracles(dibed in Section 5.3) indicated
that, in principle, an Internet Service providing answersbisimulation questions would
decrease query execution time for those queries involvielgesgjuality. However, these
preliminary tests were idealised situations and did notcries the relationship between
background work by the bisimulation engine and query paréorce. (In fact, the simulated
Oracle did not work in background time, and only some intetfiate result was represented.)
Additionally, advantages of exploiting local approxinuais should be demonstrated.

Let us consider empirical testing of the bisimulation eleddy measuring the performance
of the query client executing (with the help of the bisimigatengine) set equality queries of
the formz % y wherex, y belong to a some suitable large WDB. To simplify our consitlens
on measuring efficiency and to demonstrate some desirafdetefve will consider rather
artificial examples of WDB. As for WDB size, we will try to deteine a threshold where
the execution time becomes either unrealistically longuffigently reasonable. Note that,
labels are ignored with just one (identical) label on allpyreedges, as labels typically
allow the bisimulation algorithm (see Section 4.2.1) tondemore negative facts and, thus,
possibly terminating too early (before the transitive alesof both set names involved in any
bisimulation question will be fully explored).

7.2.1 Determining the benefit of background work by the bisinulation engine
on query performance

The aim of this experiment is to demonstrate the relatignbletween query execution tinte
by the query system, and background work by the bisimulatiogine. Background work by
the bisimulation engine is simulated by delay tilesummarised briefly as follows:

1. The bisimulation engine should begin working with the lgafaresolving all possible
guestionsu < v for arbitrary set names of a given WDB. For the sake of the exy@nt,
it should work uninterrupted (without being posed any goestby the query client) for
the delay timei.

2. The query client should start executing the test querge y after the delay timel
has expired, attempting resolution of the test questiod (assibly other bisimulation
guestions which may arise during this process) with the bktpe bisimulation engine.
The bisimulation engine should continue its work, but nownomunicating with the
query client.

90 Chapter 7. The Oracle based on the idea of local/global bisition

Thus, the query execution timiéd) by the query client (working with the bisimulation engine
starting from the delay timd) depends onl, and it is this dependence which we want to
investigate experimentally. Evidently(d) should be a decreasing function: the later the client
starts its work after the bisimulation engine, the more helgan provide, and the smaller
should be the client’s working timgd). Note that this is still an idealised experiment, in
practice, there could be many query clients communicatiity the bisimulation engine at
arbitrary times.

Note 3. It should be noted that the current implementation of theehsgt languagé\ does
not use yet any bisimulation engine. These experiments iwvgremented separately and only
to demonstrate some potential strategies for more effigigpliementation of the most crucial
concept of bisimulation relation underlying the hypersairaach.

In this experiment, the example WDB consists of 51 set narstgtaited over 10 WDB
files, connected in chains as shown by the schematical grapigure 7.1. To increase the
difficulty of computing bisimulation a copy WDB’ of this WDB & made, changing only the
URL part of full set names. Thus, the experiment is done ovB\BM WDB'. Bisimulation
between corresponding set names in WDB and WDB'’ under thisitistance is intuitively
trivial (the answer being always “true”). However, it is amatrivial task when calculated by
our algorithm which has no advance knowledge that WDB and Wib8essentially identical
(isomorphic).

Further, our experimental procedure here was the measuotarhexecution time (d) by
? . .
the query client executing the test query~ x’ wherex, 2’ are corresponding set names in
WDB and, its isomorphic copy, WDB'.

T--d-c-_lL_--F--1"wDBiile?2

Figure 7.1: Schematical WDB graph divided into WDB files agvah by the red dashed ovals.

7.2. Empirical testing of the bisimulation engine 91

7.2.1.1 Experiment results

On examination of the results graph in Figure 7.2 the trendecguggests an exponential
decay relationship between partial work of the bisimulatengine and query performance.
Moreover, this qualitative assessment by inspection ofgtiag@h is confirmed by examining
the experimental values in Table 7.1, which demonstratettida approximately halves a
increases by steps of 2500ms.

Therefore, query performance benefits considerably evemwie bisimulation engine has
been working (in the background) for relatively short pds@f time (say, 5 seconds or more),
with an exponential decreasetifil) asd increases. However, for sufficiently small delay time
d, query performance suffers, as the bisimulation enginevarss‘Unknown” to nearly all
posed bisimulation questions. Thus, in this case, the hisition engine provides no real help,
and the query client is forced to start resolving the bisatiah question itself. This suggests
that in this circumstance that local computation of bisiatioh by the query system without
invoking the help of the bisimulation engine would be mofecefnt, as shown by the threshold
on the graph (dashed horizontal line). In fact, here queegeation timet(d) with the help of
the bisimulation engine is smaller than without the helphefbisimulation engine when delay
d is > 2000ms.

35000 T T T T T
1

30000 .
2 \
g \
— 25000 "\ .
=
= \
o 20000 PN 1
E \ Execution time without the bisimulation engine 19780ms,
= ‘ or approximately 20 seconds
= 15000 | \ -
Qo
-: \
5 10000 | \]
v/ bN
M \\

5000 &\ 4

Y
0 1 I\§g~+—d—# y— e
0 5000 10000 15000 20000 25000

Delay time d [ms]

Figure 7.2: Graph of experimental results (cf. Table 7.bwglshowing the dependence of
query execution timé(d) [ms] on delay timei [ms]

92 Chapter 7. The Oracle based on the idea of local/global bisition

Delay timed [ms] | Execution timet(d) [ms]
0 31050
2500 16300
5000 7930
7500 4090
10000 2040
12500 1380
15000 770
17500 320
20000 10
22500 10
25000 10

Table 7.1: Experimental results showing dependence ofygereecution timet(d) [ms] on
delay timed [ms]

7.2.2 Determining the benefit of exploiting local approximéions by the bisimu-
lation engine on query performance

It seems plausible to expect that, in practice, each WDBdi@@roup of closely related WDB
files) should be sufficiently self-contained and have fewdito the external files — relatively
small dependence on the “external world”. Therefore, weaikhexpect that the set of locally
derived bisimulation facts should be sufficiently largee(tihajority of questions: 2 y for

local set names should be resolved locally based:@rand ~L), and, hence, helpful for the

work of bisimulation engine and improving its performance.

— -
— -~

7 \
[\
\ 7
ST —

T T T WDBfilel

Figure 7.3: Schematical WDB graph consisting of one WDB fieslaown by the red dashed
oval.

Taking this into account, our alternative example WDB fatiteg consists of one WDB file
containing a variable numberof set names (our experimental parameter as described below
connected in one chain, as shown by the schematical grapgure7.3. Also, like the previous
experiment, a copy WDB’ of this WDB was made, changing only BRL part of full set
name. Likewise, the experimental queries to follow are &W&B + WDB’, that is over two

7.2. Empirical testing of the bisimulation engine 93

files. This example represents an extreme, idealised case gdth of these two files is fully
self-contained, i.e. has no links to the “external world’s ¥e wrote above, in more realistic
situations we should rather expect a relatively small nurobsuch external links.

Recall that each of the WDB and WDB' files has a correspondigllapproximations
file, as described in Section 6.4.3, containing, respdgtil@cal sets~ and~~" of (positive
and negative) bisimulation facts which now will be avaitalbly demand to the bisimulation
engine (as well as to the query system) which should coredieimprove the performance.
Thus, for our self-contained WDB file 1 (and similarly witls idluplicate) the set of local set
names isl, = {z1,...,x,} and the corresponding local facts” and#" obtained from the
local approximations;zi and~" trivially coincide with those global bisimulation factsand
restricted to the set of namés

The aim of the experiment is to determine the relationshipvéen the size of WDB (input
size based on the parametgrand query performance time comparing the three stratefijes
with the help of the bisimulation engine not exploiting Ibapproximations{ii) with the help
of the bisimulation engine, exploiting local approximaiso and(iii) without the help of the
bisimulation engin& Similarly to the previous experiment we measure querygperance for
the test queryr; % x) wherex,x) are corresponding set names of the example WDB and
its copy WDB'. But now there isi0 delay timebetween the client and the bisimulation engine
starting work. Delay timel = 0 is the “worst case” for the bisimulation engine, as proved by
the previous experiment. (The case of variablfor a fixedn will be considered in another

experiment later.)

7.2.2.1 Experiment results

The graph in Figure 7.4 suggests a sufficiently close totitread between query performance
and WDB size when the bisimulation engine exploits localrapimations. Moreover, this
looks almost like a horizontal line, and query executiomsepractically viable{ 41 seconds
for n = 70; see Table 7.2). On the other hand, with help of the bisinaraéngine not
exploiting local approximations, as well as without helptié bisimulation engine at all,
query performance with sufficiently large WDB (= 70) becomes intractable (more than
one hour). In fact query performance improves at a threskeotel of approximatelyn = 27
(see Table 7.2) with the bisimulation engine exploitingalogpproximations, with significant
improvement in query performance for largercompared to the bisimulation engine not
exploiting local approximations or without using bisimiite engine at all.

2That is, without the help of the bisimulation engine the gusient running the test query is forced to compute
bisimulation itself.

94 Chapter 7. The Oracle based on the idea of local/global bisition

Moreover, the absence of hyperlinks to other WDB files in oxaneple WDB gives
local approximations facts that coincide with those globiimulation facts restricted to
the set names i, or L. Thus, computing bisimulation requires fewer derivatidaps,
dramatically decreasing the time required to compute hikition. Furthermore, these results
suggest that local approximations are more useful when th&8W divided into larger almost
self-contained fragments. The latter is definitely the caken local is understood dscal
to a site However, in the latter case, local approximationsstaould take some time to
compute at each site. This situation is somewhat differemhfsaving a WDB file with its
local approximation set”. Thus more experimentation is required.

8000000 T T T T T
(~133 minutes)
—A— with the bisimilation engine, not exploiting local approximations
-+ without the bisimulation engine -~
—_ =@ with the bisimilation engine, exploiting local approximations /
E 6000000 [/]
Aal (100 minutes) /
: /4
g=! /
= 4000000 | / <
9 (~66 minutes) / .
=
5} v -
o) / .
< »
m 2000000 /. b
(~33 minutes) / ‘."
s
"
“ﬁ -----
HA— & & aA—-ETA o o o
20 30 40 50 60 70

Number n of set names in the main branch

Figure 7.4: Graph of experimental results (cf. Table 7.2Wwglshowing the relationship
between query execution time [ms] and size of WDB (based empdnameten) — comparing
the three strategies towards computing bisimulation

It might seem unexpectedly, but is actually quite natural the results of this experiment
also demonstrate that query performance is worse with tipedfi¢he bisimulation engine not
exploiting local approximations compared to without théphef the bisimulation engine. In
fact, this experiment was conducted with no delay tithe-(0), and we should recall the results
of the experiments in Section 7.2.1 where a sufficiently buahaly times decreased query
performance with the help of the bisimulation engine (ngtleiting local approximations)
due to the additional expense of communication with tharhition engine.

7.2. Empirical testing of the bisimulation engine 95

Note that the WDB considered in this and the following expenits was artificially created
to make computation of bisimulation more difficult. In re@uations, in particular where
labels are used, it should be possible to derive non-biaiityil of vertices without the need to
go so deeply. However, only realistic application of thequery language can fully show its
efficiency and where it should be improved.

Query execution time (ms)
Number of | with bisimulation without bisimulation| with bisimulation
set names | engine exploiting engine engine not exploiting
n local approximations local approximations
15 3422 1015 1340
20 4360 1781 2428
25 5500 3422 4585
30 7015 7781 10368
35 8547 19766 26309
40 10375 48422 64400
50 20063 746187 ¢ 13 mins) | 989750 ¢ 16 mins)
60 27516 2113375 £ 35 mins) | 2810800 & 47 mins)
70 40983 5069797 & 84 mins) | 6742890 {& 112 mins)

Table 7.2: Experimental results showing query executiome tims] against WDB size (based
on the parametet) — comparing the three strategies towards computing bisition.

7.2.3 Determining the benefits of background work by the bigshulation engine
exploiting local approximations

Now let us consider the realistic case where the bisimulatiogine is working in background
time, comparing both strategies of working by the bisiniataengine:(i) with exploitation of
local approximations, an@i) without exploitation of local approximations. We shall atithe
same method of testing as previously in Section 7.2.1 wélatim to determine the relationship
between query execution time against partial backgrourtt3my the bisimulation engine for
both strategies.

The example WDB used in this experiment is based on notiossritbed in Section 7.2.2
that WDB files (or groups of WDB files) should be relativelyfsmintained with few external
links. Thus, here the experimental WDB consists of one ()MaiBB file with hyperlinks to
two other (auxiliary) WDB files, describing 61 set names itattoas shown by the schematical
graph in Figure 7.5. Note that, like those previous expentsien Section 7.2.1 and 7.2.2, the
following experimental queries are over WDB and its idesdtmopy WDB'.

3Recall that, in Section 7.2.1 the experimental parametdaydimed, simulated partial background work by
the bisimulation engine.

96 Chapter 7. The Oracle based on the idea of local/global bisition

The aim of this experiment is to measure query execution t{aeby the query client with
the help of the bisimulation engine for the test query?a z' wherexz, 2’ are corresponding
“root” set names of the example WDB and its copy WDB’. Our ekpental parameter is the
delay timed, as detailed in the previous experiment Section 7.2.1.

Figure 7.5: Schematical WDB graph divided into three WDBsf& shown by the red dashed
ovals.

7.2.3.1 Experiment results

The results of the experiment in Table 7.3 extend previogslt® in Section 7.2.2 which
suggested that exploitation of local approximation by th&nfulation engine increases
query performance. However, comparing the influence ofigddpackground work by the
bisimulation engine, for both strategies of working, is gshat difficult due to the difference
in magnitude between the results (see Figure 7.6a). Indaptoitation of local approximations
(by the bisimulation engine) reduces query execution tirmmfminutes to seconds, and hours
to minutes.

Note that in the case of exploitation of local approximasiothe process of derivation
is precedeti by acquiring these approximations. The additional plot atadin Figure 7.6b
shows threshold level, whehis small, that background work by the bisimulation enginesdo
not improve query performance whilst (the initial requiréoical approximations are being
downloaded, as shown by the brown arrow in Figure 7.6b. Eurtbre, when exploiting local
approximations, a sufficiently large number of locally ded bisimulation facts (on the stage
of creating WDB files) actually means in this example thatdeweal derivation steps are
required.

“Downloading approximation files can occur at any stage whésolving some bisimulation question.

7.2. Empirical testing of the bisimulation engine 97

Execution time t(d) [ms]

1400000
(723 mins, 20 secs =& with the bisimulation engine, not exploiting approximations
1200000 =@ with the bisimulation engine, exploiting approximations
(20 mins) *
1000000 (A~~~ T T T T T T T T
(~16 mins, 40 secs), \ Execution time without the bisimulation engine 1007016ms,
or approximately 16 minutes, 47 seconds
800000 H
(~13 mins, 20 secs)
600000 -+
(10 mins) \
4000001 \
(~6 mins, 40 secs) \
200000 H \
(~3 mins, 20 secs)
~ ~
O -.. T T \‘s |- = T ‘ T & T &—
0 200000 400000 600000 800000 1000000 1200000 1400000

Delay time d [ms]

(a) Comparison between bisimulation engines with and witleaploiting local approximations

Execution time t(d) [ms]

Figure 7.6: Graphs of experimental results demonstratirggrélationship between query
execution time [ms] and background work by the bisimulatogine simulated by delay time

d [ms]

12000 py
10000 -+
8000 -
6000 -
4000 -

2000 -

0

— ®
8000 10000

—0
12000

2000 4000 6000

Delay time d [ms]

(b) Bisimulation engine exploiting local approximations

1600000

98 Chapter 7. The Oracle based on the idea of local/global bisition

7.3 Overall conclusion

In summary, here two strategies were suggested towardsovingr the performance of
queries involving set equality (bisimulation), these tetgées are:(i) implementation of an
Internet service, bisimulation engine, answering bisatiah questions; angli) exploitation
of local approximations (by the bisimulation engine) toilftate the quicker computation of
bisimulation. It was shown empirically that for an artificéDB that both strategies, and most
dramatically(ii), improved query performance. In fact, the latter strateggnanstrates that
querying of a medium sized example WDB could become prdlsticeable.

Note that other recent research into the efficient compmrtadf the bisimulation relation
was not considered here, for example the bisimulation ahgordescribed by Dovier et al
[24] (which was intended to optimise the theoretical semietured query language G-log
[19]). However, the point of the approach presented heretovdemonstrate some strategies
for computing bisimulation in the case of distributed sestnisctured data, unlike that by
Dovier et al which did not consider distribution. There wad anough time to consider all
possibilities for optimisation, and here we concentratethose most novel and appropriate to
our approach.

Query execution time with help of the
bisimulation engine(d) (ms)
Delay timed [ms] exploiting local | not exploiting local
approximations | approximations
0 11546 1340250 £ 22 mins, 20 secs
2500 11550 1315269 ¢ 21 mins, 55 secs
5000 180 1290715 £ 21 mins, 31 secs
7500 28 1266620 & 21 mins, 7 secs)
10000 10 1243000 £ 20 mins, 43 secs
12500 10 1219769 £ 20 mins, 20 secs
15000 10 1197025 & 19 mins, 57 secs
20000 10 1152728 £ 19 mins, 13 secs
40000 10 1000520 & 17 mins)
70000 10 790760 ¢ 13 mins)
100000 10 630772 ¢ 11 mins)
500000 ¢ 8 mins) 10 28765
1000000 & 17 mins) | 10 118
1250000 & 21 mins) | 10 10
1500000 £5 mins) 10 10

Table 7.3: Experimental results showing query executiometi(d) [ms] against partial
background work by the bisimulation engine simulated byagéimed [ms] — comparing both
strategies towards computing bisimulation, with and withexploiting local approximations.

7.3. Overall conclusion 99

7.3.1 Claims and limitations

The main conclusion from the above experiments is thatpath bisimulation (crucial to the
hyperset approach to WDB and tle-query language) presents some difficulty in efficient
and realistic implementation, this problem appears to Belvable in principle. Moreover,
this assertion is somewhat supported by the empiricalngpstf artificial WDB examples
described in Sections 7.2.1-7.2.3. In particular, thesficeal WDB were chosen to simulate
some specific worst case structural features of WDB similariphysicists conducting some
very specific experiments allowing to understand the mostdmental laws of the nature
instead of dealing with something complicated as in the liml On the other hand, those
artificial WDB example presented here are intrinsicallyited by their small sizzand have
restricted structural featurésand, in principle, further comprehensive tests shoulddreedo
further characterise the usefulness of those practicetesfies towards computing bisimulation
suggested here. Also, empirical testing of some partiagialrworld WDB of sufficiently big
size is important, but in this case a lot of further work skidog done on optimisation of query
execution which was outside of the scope of this work but mescfurther investigation. We
only considered one essential aspect of efficiency for theentiversion of the query system
related with the idea of local/global bisimulation. Howgva principle, the experiments done
here suggest that these strategies show potential andfaréhnir investigation.

What has been demonstrated here is probably insufficienatfidi-fledged implementation
because in real-world circumstances using thequery language could be much more
complicated. Anyway, only further work and practical expemtation can reveal problems
with the current implementation, which is, of course, ndiyfperfect. However, it shows that
the hyperset approach to databases looks promising andvdedarther not only theoretical
but also practical considerations — and this was actualiynmmain goal, as well as the goal to
create a working implementation available to a wider rarfgesers to realise practically what
is the hyperset approach to WDB or semistructured databases

Swith the largest WDB considered here involving only 70 sehas
Swhich should involve not only nested chains but also nesesidtructures

100 Chapter 7. The Oracle based on the idea of local/global bisition

Part Il

Implementation issues

101

Overview of Part Il

In this part we discuss the most essential issues of implengethe A-query language: (i)
query execution (Chapter 8), (ii) syntactical aspects (B#e0), and (iii) XML representation
of WDB (Chapter 10). These chapters can be read (almostpémdiently, however, logically
their order should be the inverse. The chosen order ratfiectethe importance of the material
for the reader, who probably should be more interested irptheeiples of query execution
than in the very technical details of implementation of thetax (in particular related with the
subtle points of well-formed vs. well-typed queries). Burh the point of view of the actual
implementation (including execution of queries) such agtital aspects were very crucial
and, in fact, such technical details serve as a guarantég¢hinavhole implementation was
done correctly. Indeed, the content of Chapter 9 arose toconee the problems of ensuring
well-formed/well-typed queries encountered during thst fattempt at implementation [49].
Finally, Chapter 10 details the XML representation of WDBd&as quite a separate role.
We think and work exclusively in terms of hypersets and seaggns, and any WDB could
be represented adequately and straightforwardly in ther ldrm. However, we have chosen
XML form (XML-WDB format) as a representation of set equatoto make our approach
potentially more closely related to the existing practi€esing XML for semistructured data.
The reader should choose the level of details he/she nemudsiiis chapter for understanding
examples of XML-WDB files we use when runnidg-queries.

103

104

Chapter 8

A Query Execution

8.1 Implementation of A-query execution by reduction process

How to execute any\-query was explained mostly in Section 3.3 as operationalasdics
(based on the general abstract mathematical approachilaebdén [61]) and continued in
Section 4.2 on computing bisimulation. Here we will finalibe operational semantics by
considering the clauses omitted in Section 3.3 in the styeerolose to that of implementation.
Recall that in this approach, ady-term orA-formula queryg should be equated, respectively,
to a new set or boolean names. Then this equationes = ¢ is reduced (in the context of all
set equations of WDB) to an equatioas = V,

res=qp>res=1V, (8.1)
whereV is, respectively, either a

e set value — flat bracket expressi¢h : vi,...,1, : v,} wherev; are set names arig
label values, or

e boolean value #ue or false

Note that this process of reduction can extend the origineB/My the auxiliary set equations
v; = {...} defining those set names participating in’ which were not the original set
names in the WDB, and, possibly, many others participatingguations fow;, and so on.
Thus, strictly speaking, the reducibility statement (&#)y partially reflects this process of
reduction as the whole WDB extended by the equatien= ¢ can be involved. In the case
of distributed WDB, over which some quegyshould be executed, this process of reduction
also tacitly assumes downloading the (remote) WDB files withse required set equations
participating in this process.

105

106 Chapter 8 A Query Execution

Implementation of theA-language should evidently follow the operational sentanth [61]
or in Section 3.3. In this chapter, we will give implemeraatidetails on four important
A-language constructs: separation, quantification, remrdecoration and transitive closure.
Equality (bisimulation) was already discussed in detathdd cases are sufficiently evident or
do not add much to the operational semantics and by thismeasocomitted.

8.1.1 Separation construct

In the case of those queries which involve complex subgsierisv equations will be created
during the evaluation of the subquery (which was conceptuadderstood as the “splitting”
rule; cf. Section 3.3).

Consider the reduction process fisrterm separatél:x € ¢ | p(l,z)}:
res={l:xet|p(l,x)}>res={li:z1,....0ln: Tpn}

wheret is a set name with a flat set equatios= {l; : z1,...,l,, : z,,} In the current version
of WDB (possibly extended locally by the query system). lalitg ¢ could be a complicated
A-term, but we may assume that the “splitting” rule from Sat8.3 has already been applied
so that we have here just a set name. In féact, z1,...,1, : z, should be a sublist of
ly: 21,y It x, Separated by the formula(l, x) — for simplicity of denotation some initial
sublist (so that < m). Note that/, z are label and set variables wheréas:; are label values
and set names participating in the current extended ved§i?¢DB. (See also thé -language
syntax in Appendix A.1 on set names, and label and set vasgbT he process of reduction is
the quite evident iterative procedure,

Separation algorithm:

START with the current version of WDB and the separation term

{lizet|pl,x)}
wheret is set name, and WDB contains flat set equation= {l1:x1, ..., {1 T }.

1. Extend current version of WDB by the equationes = {l:xz € T' | ¢(l, z)} whereres
iS a new set name.

2. Create the new (temporary) set equationres = {} (empty set) for the same set
nameres. (After populating the right-hand side by labelled set nanthis equation
will replace the above.)

3. lterate over the labelled elementd; : x; of t wheret = {l1:x1, ..., l; 1T }-

8.1. Implementation of\-query execution by reduction process 107

(a) Call the corresponding reduction procedure forak®rmulay(l;, z;),
res; = o(lj, x;) >res;=...,

for new set nameses; resulting in the boolean equationgs; = true or
res; = falsel

Doesres = ¢(l;, x;) > res; = true?

Yes— Amend the equation fores = {...} initiated in the step 2 ases = {...,I;:
x;} by adding the labelled elemeht: x;. Move back to step 3 (iterate over next
labelled element, if one exists).

No — Move back to step 3 (iterate over next labelled elementéf exists).

END with the (simplified) set equationres = {ly : z1, ..., 1, : x,,} (with res a subset
of t).

8.1.2 Quantification

Consider, for example, the reduction process for the giiesfiormuladl: z € t.¢(l,) where

t is (for simplicity) a set name with a flat set equatios {l; : 1, ..., L, : zp, } (for l;, z; label
values and set names, like above). It starts by replacingdbaded existential quantifier with
the disjunction:

res=3l:x € t.p(l,zr)>res = p(li,z1) V... VoI, Trm) >
By invoking the “splitting” rule it assumes the recursivéoptocesses
res; = o(lj,x;) > ...

(with new boolean names:s;) leading to truth values fares; from which an appropriate truth
value forres can evidently be obtained.

8.1.3 Recursive separation

Consider the recursion query:

!As theA-language is bounded (quantifiers and other variable bincimstructs are bounded by appropriately
restricting the range of variables explicitly required e tlanguage syntax) any such reduction process will
inevitably halt (in fact, in polynomial time). In the curriecase eithetrue or falsewill be obtained.

108 Chapter 8 A Query Execution

Rec p{ll’ €t ‘ gO(I',l,p)}

where, as abové,is considered as set name with a flat set equatien{l; : x1, ..., Ly, : 2}
for [;, z; label values and set names. To execute it, we should staddiggthe set equation
to the WDB with the new set names,

res =Recpfl:xz €t|p(x,l,p)}.

The set namees denoting the result of the recursion query should represenbset of where
only some ofl; : z; will participate. It is computed iteratively as an incrempsequence;, of
subsets of:

po =1{} (empty set)
pr=poU{l:z €t|p(xl,p)}>p1 =P
pp=prU{l:zet|p(xlp)}>p =P

This sequence of equations with new set namesgin fact, intermediate results) should be
generated iteratively, with each new set equation gerwrafter the previous one. Each of
these complicated equations is reduced essentially bg tisshabove process of reduction for
the ordinary separation construct giving rise to a subkaif t. As these subsets are inflating,
andt is finite, this process should be halted whgn= P; . (stabilisation). Note that checking
equality between these sets does not require the computattinisimulation as each iterative
setpy, is an “explicit” subsets of (elements of the bracket expressiBpare exactly, i.e. not up
to bisimulation, some af; : x; from the right-hand side of the equation fQr Now, simplify
the initial equationres = Rec p.{...} by replacing it withres = Pj:

res=Recp{l:z et|p(x,l,p)}>res=PF.

Note that the subprocesses of the above process

resik = (i, li,pr) > . ..

(wherep can be quite complicated formula involving complicatedtsuins) may introduce

8.1. Implementation of\-query execution by reduction process 109

new set names with their corresponding set equations. Ofsepuhey should also be
considered as the part of the result of this computation ¢as ss they are contained in the
transitive closure ofes). Thus, it has been demonstrated how to resolvettterm recursive
separation.

8.1.4 Decoration

Although the decoration operator can be explained suffiigieasily on the intuitive level (see
[3] and Section 3.2.2.2), its implementation should be dmaréicularly carefully and precisely.
To resolve the query

Dec(g, v)
over a WDB withg andv arbitrary set names, i.e. to simplify the equation
res = Dec(g,v) > res = {...},

let us firstly consider some auxiliary queries which desdovée included as library query

declarations and, most importantly, add an intermediateegtual level of abstraction in the

description of the operational semantics for the decanatjgerator.

8.1.4.1 Auxiliary (library) queries useful for computing decoration

Let us now define several auxiliary queries dealing with @spntation of graphs as sets of

ordered pairs.

8.1.4.1.1 Nodes: Now, consider a set nangewith the fla? WDB-equation

with I:p any labelled set name appearing in the right-hand side twtan be a name of an
ordered pair or just of an arbitrary set). The (abstractyalketesFirst(p) andSecond(p)
are calledy-nodes so that

First(p) —— Second(p)

serves as ap-edge and therefore the (absolutely arbitrary) geplays the role of ayraph
Alternatively, we could ignore thogein g which are not ordered pairs — the approach adopted

2Recall that the query system considers WDB as a flat systegt efisations, and all set equations it eventually
produces are also flat. (Only at the very last step of outmittie query result will the system produce set equations
with reasonably nested right-hand sides.)

3Recall thatFirst(p) andSecond(p) are library queries defined in Section 3.4.2.1.3 and AppeAd.

110 Chapter 8A Query Execution

below. Note that different set names may denote the samig®&rticular, the samg-node,
so that we will need to choose canonigahode names in the algorithm considered below.

The set ofg-nodes can be formally defined ik as library query declaration

set query Nodes (set g) =
union separate { m : p in g | call isPair (p) }

The setNodes(g) (the union of two element sefsin g) contains exactly alj-nodes, but,
strictly speaking, each-node in this set (being an element of somia g) has a labelst or
snd and possibly appears twice, under both of these labels. HHowihis feature (which could
be corrected by replacing these labels by the neutral “ehtaitel null) will play no role in
the following considerations. On the other hand, presgriiis information on the nodes in
Nodes(g) might be useful in other examples of using this query detitara

8.1.4.1.2 Chi |l dren: We also need the concept gfchildren of a nodex in a graphg (as

a set of ordered pairs), which is essentially the set of @tjaing edges from: in g. This can
be defined set theoretically by the following library quepclration (with three occurrences
of thecall keyword omitted to simplify reading):

set query Children(set x,set g)=
collect {l:Second(p)
where I:p in g
and (isPair(p) and First(p)=x)
}

Evidently, if the setx is not the value ofFirst(p) for some pairp as required in this
declaration therChildren(x,g)={} (the empty set).

8.1.4.1.3 Regroup: Letus now define the set valued library operatiegroup(g) that
can reorganise (without losing any essential informatamy graphg into something closely
similar to the system of set equations represented by thjghgr(For simplicity we again omit
all call keywords.) Pay attention to the use of the latn@l which can be considered here
as the “empty” label (some label is formally necessary atiogrto the BNF of the language):

set query Regroup(set g)=
collect {'null':Pair(x, Children(x,q))
where m:x in Nodes(g)

}

Informally, each paiPair(x,Children(x,g)) collected inRegroup(g) is considered
asabstractlyrepresenting a set equation, where:

8.1. Implementation of\-query execution by reduction process 111

o first elemenix of the pair (understood as the abstract set denoted Ipjays the role of
a node ofg or of an abstract set name — the left-hand side of the inteadedtion, and

e second element, s&hildren(x,qg) , plays the role of the right-hand side of this
equation — the evident bracket expression enumeratingatieiéd elementggtnodes)
of this set.

It is crucial here that the set of ordered pdiegroup(g) is functionalin the sense that
for each (abstract sex) there exist at most one (abstract) fgaair(x,c) in Regroup(g)
with the first elemenk (and withc uniquely defined bk asc=Children(x,qg)). In fact,
Regroup(g) defines abstractly the correct system of set equations wdeaie abstract set
name (a set ilNodes(g)) has exactly one (abstract) equation with this name as thhded
side. The operatioRegroup(g) will make it easier extracting frorg the required system
of set equations, described in the main algorithm for coingudecoration operation below.

8.1.4.1.4 Anassumption. Now, let us assume that the fragment of fiidanguage without
decoration operation has already been implement&tien we can make calls to the above
library queries applied to appropriate set name argumengdiven WDB, such as the set
nameg (representing a set of ordered pairs) in the Badgroup(g) . The latter call will be
used in the implementation of decoration operator in the seation.

As usually, when executed by the query system, these lilmpgrations generate new

set names and set equations and add them to the WDB. In particansidering set names
generated by the query system, the resuRefijroup(g) is, informally, a set of ordered pairs

of the form{’fst":x,’snd":Children_x} wherex andChildren_x (denoted as
in the algorithm below) are now set narfieMoreover, according to the natural implementation
of the declaration for the quefyhildren(x,g) , the right-hand side of the equation for each

set nameChildren_x
Children_x = { ..., Ly, ... },

contains labelled set names (in fagtnode names)y for all (labelled) g-children of the
g-node named by. Note that the algorithm described in the next section dperaith these
g-node names.

8.1.4.2 Algorithm for computing decoration

We will show how the decoration operatiatecorate(g,v) can be implemented over a
given WDB (withg andv any set names from the WDB) exploiting the above library guer

“In further detail, when executing the quéRggroup(g) ,anew set name and set equatior=Regroup(g)
are generated. Then, the implemented reduction proge$sexecuting this query will give rise to a flat
equationr={..., 'nulle, ... } with each set name in the right-hand side having the equation
e={"fst":x,’snd":Children —X}.

112 Chapter 8A Query Execution

declarations. This can be done as follows:

START with the current version of WDB and the term Dec(g,v) for a given set
namesg and v.

1. Extend current version of WDB by the equationres = Dec(g, v) whereres is a new
set name.

2. Regroup g and canoniseg-node names

(&) Call the queryRegroup(g) . This amounts to simplifying the extended system
of set equations WDB +£Regroup(g)) for r a new set name, which results
in some new (auxiliary) set names and flat set equationsydirgy the flattened

versionr={..., 'null:e, ...} of r=Regroup(g) , and, for eache
inr,
e={"fst’:x,’snd’:c} c={..., Ly, mz, ..}

(b) Canonisagy-node names:

i. Extractg-node namegall x,y, z, ...)from the result in (2a),

ii. Compare which of them, considered as sets, are equaleeetthemselves
(bisimilar as set names, represent the same absjraote).

iii. For eachg-node nama find its canonical representati@an_u as the firstin
the lexicographical ordag-node name bisimilar ta. (Thus,u is bisimilar to
Can_u. Note thatCan_u is not a new set name — just one of those extracted
in the step 2(b)i.)

iv. In the resulting set equations in (2a)
e={fst":x,’snd’.c} ,c={..., Ly, mz, ..}

(for eache in r) replaceg-node names andy,.. ., respectively, byCan_x
andCan_y,. .., thereby transforming these equations to
e={"fst":.Can_x,’snd’.c} , ¢c={.., l.Can_y, m:Can_z,..} ,

(The original versions of these equations should be deleted

v. If for another pair of such equations (fer inr),
e'={fst:Can_x',’snd’.c’} ,c'={..., I"Can_y’, ..} ,
set name£an_x andCan_x' in e ande’ , respectively, coincide then omit
one of these pairs (does not matter which), and repeat thik nm such
coincidence of canonical node names will exist.

vi. Eliminate possible repetitions of labelled canonicatia namesCan_y in
eachc (which can arise, e.g. due to replacements in (2(b)iv):@an_y

8.1. Implementation of\-query execution by reduction process 113

can literally coincide with some:Can_z in c for differentg-node nameg
andz).

From now on, thes€an_u serve asanonicalg-node namesOnly these node
names will be used below as uniguely represengfpdes.

3. Does a canonicaf-node name bisimilar tov exist? Find a canonicafj-node nameav
bisimilar to set name (or just coinciding withv if v is itself a canonicaf)-node name).
Two answers are possible:

No - The required canonica-node namev bisimilar tov does not exist (and thus
can be treated as naming an isolagedode):

(@) Simplify the equatiorres = decorate(g,v) tores = {} (empty set).
Then move td&END of the algorithm.

Yes - The required canonicaj-node namev does exist (and thug can be treated as
naming a propeg-node):

(a) Generate new set equations for duplicated canogiceide names:

i. For each set nam&which is a canonicafj-node name create a new duplicate
set namédupl_s (in particular,Dupl_w , Dupl_Can_x , etc.).

ii. Forthe equations
e={"fst:Can_x,’snd’:c} ,c={...,:.Can_y,m:Can_z,...} :
obtained in (2(b)iv, 2(b)v, 2(b)vi) for eadh in r , extend further the current
extension of WDB by new set equations:
Dupl_Can_x = {..., l:Dupl_Can_y, m:Dupl_Can_z, ...} ,
thereby constructing a system of set equations for duplicéimes whose
graph is isomorphic to the abstract graph

In particular, this will add to the WDB the equation Oupl_w :

Dupl.w = W

with the right-hand side a bracket expressiddefined as described above (and
involving only duplicated canonicg-node names).

(b) Simplify the equationres=decorate(g,v) by replacing it with the (flat)
equation

res = W.

(End of algorithm.)

END with the (simplified) set equationres = {i; : z1, ..., 1, : x,,} (and the associated
equations for set names in\ etc.).

114 Chapter 8A Query Execution

In the case of the queryes = Dec(G, V') whereG andV are A-terms and not just set names
(as above), the “splitting” rule should be invoked first, ahiwill result in three equations

g = G,v =V andres = Dec(g,v) for the new set nameg andv. Then these equation

should be simplified, in particular, by using the above atbar for the decoration.

8.1.5 Transitive closure

Let us now consider implementation of the transitive clesaperationTC(a), wherea is
considered as a set name with the flat equadiea {l; : z1, ..., L, : . } for [;, z; label values
and set names, as the following (recursive) algorithm:

START with the current version of WDB and the transitive closure term TC(a)
where a is set name, and WDB contains flat set equation = {l;:x1, ..., Iy : T }-

1. Extend current version of WDB by the equatiorres = TC(a) whereres is a new set
name.

2. Replace the original set equation-es = TC(a) by the new (temporary) set equation
res = {'null’ : a} (singleton set) for the same set nams. (This will be further
populated below.)

3. Find the first labelled elementm : z of res = {...,m: z,...} such that: Z res.
(Elements for whickx C res should be marked and put at the end of the current bracket
expression forres so that they will not be considered again and again. For effay,
the bracket expression fees can be organised as a directed “loop” structure with some
point of entrance. Each time whenC res holds at the entrance point then this point
in the loop will be marked and the entrance point shifted trbxt one to repeat the
inclusion test.)

If it does not exist (the currently observed element and hdhee:a are marked), go to
the END.

Else replace the current equatiofas = {...,m: z,...} with them : z found (at the
current entrance point) by

res={...,m:z,...} U(z\res)

(inserting elements of \ res in the loop immediately aftem : z, then markingn : z as
now z C res for the extendedes and shifting the entrance point from: z to the next
point of so extended loop — the first elementiR res).

(Computingz \ res can evidently also use the loop structurerek with marking
ignored.)

8.2. Representation of query output 115

Repeat 3

END with the set equation forres.

Note that in facTC(a) = J{{a},a,Ua,JUa,...}.

8.2 Representation of query output

Recall that the implemented query system works internalth WVDB represented as) a flat
system of set equations, and produces query results indhfefin. The resulting set equations
also use internally generated (local) set names having renmanics. It appears that some
nesting in the outputted equations might be desirable wivichld simultaneously eliminate

some internal set names by substituting them with brackatessions. This substitution can
be repeated giving rise to possibly deeply nested resultsisi@er, for example the result of
therestructuring quenfrom Section 3.5.3 obtained after some such automatic isutisbs:

Query is well-formed, well-typed and executable

Result = {
'publication’:res2,
'publication’:res0,
'publication’:res1,
"publication’:{

‘type’:"Book",
'refers-to’:resl,
'refers-to’:res2

resO = {
'type’:"Paper",
"author’:"Smith",
'title’:"Databases",
'refers-to’:resl

resl = {
‘type’:"Paper",
'type’:"Book",
'author’:"Jones",
'title’:"Databases"

116 Chapter 8A Query Execution

res2 = {
'type’:"Paper",
'refers-to’:resO

Finished in: 1866 ms (query execution is 1864 ms, and
postprocessing time is 2 ms)

Comment(s):
Double quotation denotes atomic values like "atom" represe nting
singleton sets "atom" = {atom’{}}, etc.

Note that, in this example further substitutions could bedento eliminate even those few
local namesesO , resl , res2 , so that there would be just one deeply nested equation
result={...} . However, this would be a rather inconvenient form as setesatn be
substituted occur several times, and identical subexpres€ould be repeated many times
making the query result difficult to grasp. Thus, the systeakes such suitable nesting to
avoid multiple substitutions in the whole system of equaio Additionally, nested bracket
expressions likgPaper:{}} which imitate atomic values in our approach are replaced,
quite naturally, by'Paper" . Note that in the later case there may be multiple subsgiitsti
and replacements of the same expression. Similarly, seesdon the empty set are always
replaced by{} . In this way query results become sufficiently readable. tlizam the case

of cycles substitutions could be infinitely repeated. Toiduhis, the system should only
substitute those set namass; with the corresponding bracket expressiondf; ¢ TC(res;)
holds (in addition to the other rules for substitutions ajowlso, the computation of transitive
closure should be restricted to those new set names reséitim the execution of the query,
thus, in principle, this can be done quickly on only localrsmines.

However, any such postprocessing of the query result caretimies lead to unnatural
looking output, for example in the above query result theredme undesirable extra nesting
for one of the publications. In other cases (such as showingyh as a set of ordered pairs)
such nesting appears more reasonable. Also atomic valdesxalicitly shown empty sefs
are very natural. Of course it would be better if the user @@hioose the preferred form, or
the result could be optionally visualised as a graph.

Chapter 9

A Query Syntax

9.1 Parsing (well-formed queries)

9.1.1 ImplementedA-language grammar

The syntax of the implemented language was discussed int€h3apwith the full syntax
appearing in Appendix A.1. The implemented language isritest asExtended Backus-Naur
form (EBNF or, shortened, BNF), defined as a set of productiorsywéth each production
describing one syntactical category represented as aanonifial. For example, the production
rule

<query> :=
"boolean query" <delta-formula> | "set query" <delta-term >

defines the<query> syntactical category (also callewn-termina) by stipulating in general
that a terminal can be substituted by a sequenderafinalssuch as'boolean query"

and other non-terminals such «delta-formula> . Here the symbdl allows to describe
alternative productions. (There are also other ways in thE B> describe more complicated
alternations in production rules.) Continuing such sutins by using production rules for
<delta-formula> , etc., a sequence consisting only of terminals can be adztaiRurther,
as terminals are strings of symbols, the final concatenddiafso a string of symbols which,
properly speaking, is calledell-formed query provided it was generated starting from the
non-terminal<query> . (Quite similarly we can consider well-formettlta formulas delta
terms etc.) Thus, the BNF defines how to construct any quenhinin fact, eachA-query,

if well-formed, generates a parse tree (by using BNF-foiksussed below) which should be
subsequently checked for well-typedness (see Section 9.2)

117

118 Chapter 9A Query Syntax

9.1.2 BNF forking

Firstly a general note on the BNF grammar. Each productitefram the BNF (except some
auxiliary ones which can be eliminated as we will see bel@am)lze represented as one, several,
or even infinitely many alternativierks F1,F2,... each having the same label (syntactical
category or non-terminal) on the root of the fork. For exaamghe rule

<A> = <C> | <D><E>

splits into two rules

<A> = <C>

<D><E>,

<A>

evidently corresponding to two forks with the branchingréegwo and three, whose roots are
labelled by<A> and leafs labelled, respectively, aB>, <C> and, <D>, <E>. Let us
analogously consider the production rule

<set constant declaration> ::= "set constant" <set constan t>
("be"|"=") <delta term>

which generates two unique forks depending on whethe't or"=" is used — each fork has
a branching degree of four.

Thus whole BNF grammar can then be represented as a set othlfarks. In fact, the
parse tree of a query is constructed of such forks. HowewtralhBNF production rules are
so simple and literally split into forks as will be discusdsow.

9.1.2.1 Recursion by Kleene operators

Recursive BNF rules using repetition by the Kleene star dusl (¢ and+) operators generates
an infinite set of forksx represents zero or more repetitions, antepresents one or more
repetitions. For example the following rule representscueace of declarations:

<declarations> ::= <declaration> ("," <declaration>) *

Each fork has a root labelled bsdeclarations> and any number of leaves labelled by
<declaration> ,separated by the terminal leaves labelled,by . Evidently, the branching
of these forks have an arbitrary odd degree because of tlaeadep'," considered formally
as a leaf. Analogously the following syntactic categoriesaiso considered:

<variables>, <parameters>, <multiple union>, <conjuncti on>
<disjunction>, <quasi-implication>, <labelled terms>

9.1. Parsing (well-formed queries) 119

9.1.2.2 Identifier forks

There is further simplification to the BNF forks and to parsees by eliminating the
“intermediate” <identifier> category playing rather an auxiliary role. Thus, we will
replace corresponding production rules by those genegratfmitely many simple (one child)
forks:

<boolean query name> := ((A-Z) | (a-z) | (0-9) | "_" | "")+
<set query name> := ((A-Z2) | (a-z) | (0-9) | " " | """)+
<label variable> = ((A-Z) | (a-z) | (0-9) | " | "")+

<label constant> = ((A-2) | (a-z) | (0-9) | " " | "")+

<set variable> = ((A-Z) | (a-z) | (0-9) | "_" | "")+

<set constant> = ((A-Z) | (a-z) | (0-9) | "_" | "")+

There are infinitely many of such identifier forks becausedtae infinitely many sequences
of alphanumeric character§ust those characters participating in the identifier §nriwhich
can serve as a leaf label of a fork for each of the above sycghciategories.

Root nodes of these forks of the corresponding nodes in & piaas are calleddentifier
Nodes(IN). In general, every occurrence efidentifier> in the right-hand sides of
production rules in BNF is replaced by:

((A-2) | (@2) | (0-9) | "_" | ")+

There is, however, restrictions on these alphanumeringstrithey should not coincide with
keywords ofA language.

9.1.2.3 Set name forks

Let us recall the production rules related wfthil set namegepresented by the syntactical
category <set name> . This important category, including some additional aery
productions, appears as follows:

<set name> ;= <URI> "#" <simple set name>
<URI> = (<web prefix> | <local prefix>) <file path>
<web prefix> = "http://" <host> "/" ["™ <identifier> "/]

<local prefix> ::= "file://" ((A-Z) | (a-z)) "/

<host> ::= <identifier> ["." <host>]

120 Chapter 9A Query Syntax

<file path> ::= <identifier> ("/* <file path> | <extension>)
<extension> := "xml”

<simple set name> := <identifier>

<identifier> = ((A-2) | (a-z) | (0-9) | "_" | "")+

Here all the syntactical categories, besidest name> , play an auxiliary role. Therefore,
by composing them, all these production rules will prodwee kind of one child forks for set

names
<set name> = “http//... " "#' ((A-Z) | (az) | (0-9) | "" | ")
or
<set name> := “file://... " "#' ((A-2) | (@z) | (0-9) | " " | ")
Here"http://..." and"file://..." represent any string of symbols allowed by the

<URI> production rule. Therefore, the production releet name> generates an infinite
number of (one child) forks with the roetset name> and the leaf a string of characters as
defined in the above productions.

We will not consider other cases of defining BNF forks relymgthe readers’ intuition
which should be based on the above examples. Assertiongdi¥Bthe next section should
summarise and give more understanding on the way which BN fire defined.

9.1.2.4 Assertions on BNF forks

After defining the set of forks of the BNF, we can make the fellgy assertions.

Assertion 1. Only Identifier Nodes (IN) can have just one child leaf labelby a sequence of
alphanumeric characters.

Proof. Inspection of the whole BNF (and the definitions above) shuat bnly IN can have
just one child leaf labelled by a sequence of alphanumeacachers. O

Note thatcset name> forks, although one child, have leafs containing non-afpinaeric
characters:" ,"/" and"#" .

Assertion 2. In fact, parsing of any given query generates a correspandjmery parse tree
constructed from these forks connected in the evident weng itlis assumed that all keywords
like "forall”, "let”, etc are included in the parse tree as teninals (except they are not allowed
to be leafs of identifier forks).

9.1. Parsing (well-formed queries) 121

Assertion 3(Uniqueness of fork9. Two different forks can have coinciding leaf labels (in the
natural order) only if each of them is an identifier fork (sdmae). That is, if one of the two
forks F1 and F2 is not an identifier fork and both forks havegshme leaves then (their roots
coincide and) F1 = F2. Or equivalently, the syntactic catggaf any fork, except for identifier
forks, can be determined according to the syntactic categaf its children.

Proof. We should check all possible cases. Assuming that two fotkarel F2 have the same
leaves and one of them has the root labelled not as identifiky $how that F1 = F2.

Example:If F1 or F2 has the rootquantified formula> then both have the same first
leaf e.g. <forall> (or <exists>). Then, according to the BNF, another fork must also
have the rookquantified formula> and therefore F1 = F2, as required.

Example:If F1 or F2 has the rootforall> then both have the same first Ie&brall”
and the leafin" (or"<-"). Inspection of all BNF forks shows that any fork containimgth
these leafs must have the redbrall> . Therefore F1 = F2.

Example: If F1 or F2 has the rookunion> then both have the same first |amion"
(or"U") and second leafdelta-term> . Inspection of all BNF forks shows that any fork
containing both these leafs must have the ragtion> . Therefore F1 = F2.

All other cases follow as above. O

Note 4. Despite this Assertion which means a kind of unambiguity afspng (actually only
a conditional and partial unambiguity) we will see in Sectthl.4 that parsing according to
the BNF of A is actually quite ambiguous. This means that the same quemhave parse
trees of the same form, but with different labelling of notgsyntactical categories. Later we
will consider contextual analysis algorithm dealing wighihg which will resolve this kind of
ambiguity.

9.1.3 Query parsing

The parser for the BNF syntax of the language Delta can ebsilynplemented which can
transform any query into parse tree. The process of parsinvolves matching of BNF
production rules (represented rather in the form of forkiénée above) starting at the root
production rule foxtop level command> until all possibilities are exhausted. The output
of parsing the query is the query parse treg.

This assertion will be used in the syntactical categoryméng algorithm in Section 9.2.3.2

122 Chapter 9A Query Syntax

During the process of parsing, successful matching of prdolurules creates new nodes in
the parse tree connected by fork edges from the previous eadept for the root production
rule which itself has no parent node. Successful matchintemhinals creates new nodes
labelled by the sequence of matched characters.

9.1.3.1 Example query parse tree

Let us consider the simple example of query

boolean query
let label constant I='Robert’
in I=’"Rob *’

endlet;

and the corresponding query parse tree,

<top level command>

AN

<query>

.

boolean query <delta-formula>

l

<delta-formula with declarations>

S/ N N

let <declarations> in <delta-formula> endlet

/ \

<label constant declaration> <atomic formula>
— 7/ I\ \
label constant <label constant> = <label value> <equality>
| /1) |
I ' Robert ' <label equality>
/ 1\
<label> = <wildcard label>

l I\

<label constant> ' Rob * '

l

Figure 9.1: Example parse tree

Strictly speaking, some parts of this parse tree are omfttedrevity. Say, according to
Section 9.1.2.1, betweerdeclarations> and<label constant declaration>
we should have a tree nodeleclaration>

9.1. Parsing (well-formed queries) 123

9.1.3.2 Aims of query parsing

Well-formedness of any query is determined according torthes of the BNF grammar.

However, when all possibilities for matching productionme ansuccessfully exhausted in
any attempt to construct a parse tree then the query is amsichs non-well-formed with

appropriate error messages outputted.

Moreover, to further aid contextual analysis (see Secti@h the parser should output, in
addition to the parse tree of the query, the list of all Id&tiNodes (see Section 9.1.2.2) in the
parse tree labelled by:

<boolean query name>, <set query name>, <label variable>,
<label constant>, <set variable>, <set constant>.

9.1.4 Parsing ambiguities

The syntax of the implementefi-language (expressed as BNF) is intended for any user to
understand the constructs 4f, and how to write validA-queries — well-formed and well-
typed. However, the implemented parser alone cannot gigsramell-typedness of queries.
Note that, well-typedness is checked by the contextualyaisaalgorithms described later in
Section 9.2.

The problem is that the grammar of our implemenfethnguage is ambiguous concerning
types as we briefly commented this in Note 4 above. Thus, fliedyof identifiers, say as label
constant or variable, or set constant or variable, etcgtisally decided from the context. For
example, let us consider the equality query:

boolean query a=b;

Parsing of this query could realise two unique parse trebsyrevthe statement=b represents
either<label equality> or <set equality> . Thus, the syntactical category of this
statement depends wholly on the interpretation of the iflert a and b as either, label
constants or variables, or set constants or variablessctgely. The parse tree presented above
in Figure 9.1 is also not unique one because the syntactegeost<label constant>
under<label> could be formally replaced according to syntax<igbel variable> ,
however, intuitively contradicting the label constantldeationlet label constant |

Furthermore, let us even strengthen the above example,

boolean query let
label constant |='"Robert’,
label constant m='John’

124 Chapter 9A Query Syntax

in
I=m endlet;

where the statemettm intuitively represents the syntactic categetgbel equality>
because according to the context the identifieesxdmare label constants. However, the BNF
formally allows that<label equality> could be replaced witkset equality> and

| andmare are taken asdelta-term> s, independently of the declarations thaandmare
both label constants. Even the following query can be folymarsed, i.e. is well-formed,

boolean query let
label constant |='"Robert’,
set constant m={}
in
I=m endlet;

despite being evidently non-well-typed by equating labithset.

Therefore, the syntax (expressed as BNF) alone is insuffi@@d requires guessing
which rule to apply to make the parse tree (and to guarantaetkie parsed query is)
well-typed. Therefore, such guesses by the parser shoutdlimequently checked, to ensure
no contradictions with the actual typing of identifiers. Mover, the syntactic categories of
all nodes, not just IN, should be checked and possibly redafaecording to the grammar)
without changing the structure of the parse tree. Such ramaim done by thecontextual
analysis algorithm detailed in Section 9.2, whose role is to ensure query typltdness and
eliminate potential ambiguities, as above.

9.1.5 Grammar classification

Note that the syntax oi-query language, fully presented as BNF in Appendix A.1, lban
classified asontext-free grammaaccording to Chomsky’s definitions of formal languages.
Taking the definition from the textbook about parsing [73] paoduction rules of a context
free grammar have the form:

A— 7

where A represents a unique non-terminal, angepresents an ordered list of terminals and/or
non-terminals (possibly empty). Context free grammarstawse where each non-termindl
can be transformed by a production rule into correspondingthout any additional criteria
of context. Our grammar satisfies this property and theeef@mnot grasp contexts which
are necessary for correct typing of queries. Thus, an atditicontextual analysis algorithm
working jointly with the parser is required which we disciursshe following section.

9.2. Contextual analysis (well-typed queries) 125

9.2 Contextual analysis (well-typed queries)

9.2.1 Aim of contextual analysis

The aim of contextual analysis is to determine whether eidawtifier occurrencen a query

q is declared, thereby having type, and whether the whole query is welety(all types are
coherent). Each identifier occurrence should be appratyiggped as eitherset constanor
variable, label constanbr variable or query nameof some typé. Note that query names can
have more complicated types than variables or constants,

(typer, types, ..., type, — type) (9.1)

where each participatingype; is eithersetor label, andtype after the arrow is eithesetor
booleari. Eachtype; is the expected type afth parameter of the query nameandn is the
required number of parameters — according to the declarafighis query name. From this
type it should be already clear that the identifjés a (set or boolean) query name, how many
arguments it has, and the typing of each argument.

Furthermore, an identifier occurrence is considered detldrit is contained within the
scope of an appropriate identifier declaration, and welétyif both the identifier occurrence
and identifier declaration have the same types. Moreoveguery to be well-typed, coherence
of typing (for equalities, as in the examples above, mentljgrstatements and query calls)
should be additionally required.

9.2.1.1 Strategies for computing contextual analysis

In principle there are two possible algorithms for perfarghcontextual analysis of any query
g, both algorithms are named after the way in which they wadkptarse tree of:

e Top-down contextual analysis- The parse tree is walked in breadth first manner starting
at the root node, creating a list of the identifier declarati¢called the context) which is
used to check that all other identifier occurrences are dlasd well-typed according to
these declarations.

2 An identifier occurrence in some expressiofinot necessary a full-fledged querycan be a fragment of
a queryq) which is non-declared inside can also be calleffee in e, whereas those correctly declared inside
e identifier occurrences are calletbsed Therefore the terms “declared” and “closed”, and “nonkaled” and
“free”, have the same meaning. (This agreement on termiyak) however, non-traditional in the particular case
of (set or label) constants for which it is more habitual te tise terms “declared” or “non-declared” instead of
“closed” or “free”.) We assume that each full-fledged quemust be closed in this sense (all its identifiers must
be declared inside).

3To simplify terminology, we considevariable or constantor query nameas typing information of some
identifier, alongside the proper typsstor label or booleanor the complex type (9.1).

“Note that, we formally have no queries or query nameA iaf the typelabel. However, label values can be
represented in the same way as atomic values, i.e. as singlets of the forr{l : 0}.

126 Chapter 9A Query Syntax

e Bottom-up contextual analysis— Walking of the parse tree starts from any identifier
occurrence leaf® ascending up the corresponding branch of the parse treehseafor
an identifier declaration which declarés The existence of a corresponding identifier
declaration indicates that the identifier occurrence idaded. Moreover, the real types
of all suchi can be extracted from the corresponding declarations amgpaaed with
syntactical categories of these nodes the parse tree. In the case of coherence, the
parse tree and hence the query is considesdtityped Otherwise, syntactical categories
of the parse tree nodes could be possibly corrected by (@nbtbitom-up procedure
of) renaming syntactical categories of some non-leaf ndijethe iterative algorithm
described below in Section 9.2.3. If such a renaming is ssfak— giving rise to a
correct parse tree according to both the BNF and the typlveg the resulting version of
tree and the original query are also consideseti-typed otherwisenon-well-typed

9.2.2 Some useful definitions

Definition 1 (Identifier Node) Identifier NodeqIN) were introduced in Section 9.1.2.2, as
those nodes in the parse tree labelled by one of the follosymgactic categories:

<boolean query name>, <set query name>, <label variable>,
<label constant>, <set variable>, <set constant>.

Additionally, let us definddentifier Node Nam@NN) as string of symboils labelling the unique
child (in fact, a leaf called above @pof the corresponding IN fork in the parse tree.

Definition 2 (Binder Node) Binder (or binding) Node$BN) are those nodes in the parse tree
labelled by one of the following syntactic categories:

<delta-term with declarations>, <delta-formula with decl arations>,
<collect>, <separate>, <recursion>, <quantified formula >,
Binder nodes can have appropriate declarations Iket..." , "forall..." ,
"exists..." , etc., as described in Definition 3, and thereby loignd identifier occurrences
(or IN).

Definition 3 (Identifier Declaration Node)Following from Definition 2 those declarations
belonging to BN are callewientifier declarations nodes (IDN) of a B&hd defined as follows.

e For BNs<delta-formula with declarations> with "let" declaration(s),
and<delta-term with declarations> with "let” declaration(s) the IDNs
are:

SFor example, the second leaf labelled by the identifiarFig. 9.1 above

8In Fig. 9.1 above the corresponding node would<delta-formula with declarations> having
the declaration of the label constantinder it. Note that quantifiers and other quantifier-likestaucts, called
binders (see Section 9.2.2), are also considered as i@ewt#clarations.

9.2. Contextual analysis (well-typed queries) 127

— <set constant declaration> grandchild of<declarations> ,

— <label constant declaration> grandchild of<declarations> ,
— <set query declaration> grandchild of<declarations> ,and
— <boolean query declaration> grandchild of<declarations>

e For BNs<separate> and<collect> the IDNs are:

— <label variable> grandchild of<variable pair> , and

— <set variable> grandchild of<variable pair>
e For BN<recursion> the IDNs are:

— <set variable> child of <recursion>
— <label variable> grandchild of<variable pair> , and

— <set variable> grandchild of<variable pair>
e For BN <quantified formula> the IDNs are:

— <label variable> grandchild of<variable pair> , and

— <set variable> grandchild of<variable pair>

For example, Figure 9.2 depicts a fragment of a query paes twhere the root node
<separate> is a BN and the corresponding IDN nodes (described abovepedaund by
walking the paths from theseparate> node,

<variable pair> — <variable pair label> — <label variable>

<variable pair> — <variable pair set> — <set variable>

All other cases follow as the above. Note that there may beyrtiaNs of a given BN. Any
IDN declares one or more identifiers (IN) each of which hasiéime as a string of symbols
(the leaf under IN).

Definition 4 (Bounding Term or Formula or Label Value Node)

(a) Following from Definition 2, theboundingterm or formula or label value nodes
(BTFLVN) of a BN

<collect>

<separate>

<recursion>

<quantified formula>

<delta-term with declarations>
<delta-formula with declarations>

128 Chapter 9A Query Syntax

is defined, respectively, as

— aunigue<delta-term> child of:

x <collect> or<separate> or<recursion> or

x <forall> child of <quantified formula> or

x <exists> child of <quantified formula> or

* any<set constant declaration> grandchild of
<delta-term with declarations> or
<delta-formula with declarations> or

x any<set query declaration> grandchild of
<delta-term with declarations> or
<delta-formula with declarations> ,or

— aunique<label value> child of:

x any<label constant declaration> grandchild of
<delta-term with declarations> or
<delta-formula with declarations> or

— aunique<delta-formula> child of:

x any<boolean query declaration> child of

<delta-term with declarations> or

<delta-formula with declarations>

(b) Each BTFLVN of a BN restricts the range of the value of sdN® (variables, constants
or query names) which BN bindsind which we also catbounded or restricted IN(s) by
the BTFLVN. These INs are defined as follows:

— In the case of BNs<collect> , <separate> , <recursion> and
<quantified formula> , the bounded INs are respectively
<label variable> and<set variable> grandchildren okvariable
pair>

— Additionally, in the case of BN<recursion> one more bounded IN is its
immediate<set variable> child.

— In the case of BNs <delta-formula with declarations> or
<delta-term with declarations> ,the bounded IN is either the declared

"Which was briefly hinted in the Definition 2

8Moreover, the IN bounded by BTFLVN should not be free in theBVN (i.e., if present in the BTFLVN, it
should be declared inside this BTFLVN) as we will discusstas one of the conditions to be checked by contextual
analysis algorithm. This is the reason why we need Defindion

9.2. Contextual analysis (well-typed queries) 129

<set constant> or <label constant> , Or <set query name> , or
<boolean query name>

For example, Figure 9.2 depicts the query parse tree foramessiore (fragment of a query),
where the root noderecursion> is a BN and the corresponding BTFLVN and the bounded
INs can be found by walking the paths,

<recursion> — <delta-term> (BTFLVN)
<recursion> — <set variable> (IN)

<recursion> — <variable pair> —
<variable pair label> — <label variable> (IN)

<recursion> — <variable pair> —
<variable pair term> — <set variable> (IN)

whereas<label variable> () and <set variable> (x) are INs bounded by this
<delta-term> (BTFLVN). Additional (recursion)<set variable> (r) is IN also
bounded bydelta-term> (BTFLVN).

<recursion>

— 7/ 1 N N\ T

<set variable> separate { <variable pair> in <delta-term> where <delta-formula> }

1 /LN

r <variable pair label> : <variable pair term>

l |

<label variable> <set variable>

l |

| X

Figure 9.2: Fragment of a query parse tree

9.2.3 Bottom-up contextual analysis in detall

As stated in the brief description in Section 9.2.1, contakanalysis should check that the
given well-formed query (according to the parser) is alsti-typed. To this end, the bottom-
up contextual analysis algorithm, first of all, iterativedgarches for the nearest identifier
declaration for each identifier occurrence, i.e. each INhm parse tree. We assume that
before starting contextual analysis the parser generailes af all INs (not those INs of
the declarations in IDNs) along with their currently chosgping (immediately seen from
syntactical categories of these INs, seset variable> , etc.) during the parsing process.
The parser outputs this list if the query is well-formed.

130 Chapter 9A Query Syntax

9.2.3.1 Identifier declaration search (IDS) algorithm

Single iteration of the search for the nearest identifieladation of an IN is determined by
the Identifier Declaration SearclfIDS) algorithm. The inputs to this algorithm is amy
(query parse tree) and some INgh The output of the IDS algorithm is the ordered triple
< BN,IDN,IN > (if the required one exists at all) consisting of: BN (BingliNode), IDN
(Identifier Declaration Node) and the given IN.

Note that, IDN contains typing information of the declaratntifier (including the
information whether it is a constant or variable, or a quesyna — also a kind of typing
information). In fact, the IDN is recoverable from BN and IN the parse tree, however, it
is convenient to have IDN included in the triple obtainedimigithis process.

Identifier Search Algorithm IDS(qt, IN):
START with a given IN belonging to gt.
1. Make this node (IN) the current node

2. Ascend from the current nodetraversing up ¢t to its unique parent node, making this
node thecurrent node

3. Is the current nodea BN?
No — Move to step 4.

Yes— lterate from right to left through IDNs of the BN, searchiiog the firsP suitable
candidate identifier declaration whose declared identlies the same name (INN)
as the given IN. If a suitable candidate IDN exists then costthe ordered triple
< BN,IDN,IN > (end of algorithm)ptherwisemove to step 4.

4. Is the current nodethe root node ofqt?

Yes — No suitable candidate identifier declaration could be fhuend therefore, the
IN is non-declared. Output ordered triplte NULL, NULL,IN > (end of algorithm).
No — Continue searching for a suitable identifier declaratipmioving to step 2.

END with the ordered triple < BN,IDN,IN > if a suitable identifier declaration
exists, otherwise with< NULL, NULL,IN >.

°Formally, it is not forbidden that the same identifier namelddoe multiply declared even in the same binder,
but only the right most one is that which binds the IN consédesind which assigns a type to IN.

9.2. Contextual analysis (well-typed queries) 131

The IDS algorithm should iteratively generate the triplegalove for all INs (actually, for those
identifier occurrences not in a declaration) of the giverspdreegt. If all these are non-null
triples then the query is considered aslosed(yet possibly not well-typed). Thus, any closed
queryq has all INs declared with preliminary typing according te tteclarations (IDN) from
the corresponding triples. For non-closed query an errasage should be generated by the
implementation saying that the query has non-declaredifaa. Moreover, any closed query
g and its parse tregl are considered also well-typed if all identifiers have cehetyping both

in respect to their corresponding declarations and syingatategories of the parse tree
More precisely, this means that:

1. Syntactical categories of IN (e.gset variable> or<boolean query name>
etc.) should be the same as declared in IDN (in corresporidig), and

2. Types of participating parameters in query calls shogtéawith types discovered from
IDNs declaring corresponding query names.

If these two clauses do hold then in other nodes the BNF isatiports correct typing
and/or syntactical categories (such<aet equality> vs. <label equality> , etc.).
Otherwise, an appropriate renaming of syntactical categaf the nodes igt should be tried
(as detailed in the next section), based on the initial glactirrecting only the discrepancies in
the clauses (1) and (2), with the aim to recover well-typedioa of gt and conclude that the
queryq is well-typed If such a renaming is impossible, theiis considered ason-well-typed

9.2.3.2 Syntactic category renaming (SCR) algorithm

It is required that renaming should lead to a correct paese tThis means that treyntactic
category renamingSCR) algorithm,

e takes a parse tree with some already correctly renamed faaes as INs, by removing
the discrepancies mentioned above, and may be some othes asdve will see below)
and formally marked as “correct”, and

¢ if necessary, attempts to rename other nodes ensurindhthptitse tree remains faithful
to the A-language BNF syntax (well-formed).

Thus, theinput is a given parse tregt with some (non-leaf) labelalready relabelled® and
additionally marked as “correct”, with the output beingheit (i) parse tree with all other

ONote that, INs are formally non-leaf nodes, although nedgity to leafs. As we will see below in
Section 9.2.3.3, not only INs should be initially relabdlie the input parse tree. These may be also query call
<parameters> which, unlike INs, may be far away from leaves in the parse.tre

132 Chapter 9A Query Syntax

nodes successfully relabelled ié well-formed), or (i) an error state/{ is inconsistent with
the A-language syntax, even after further relabelling).

The procedure of relabelling starts from the leafs of the@#ee, and, while going bottom-
up along the tree relabels according to thdanguage BNF syntax (if necessary) those nodes
which have not already been relabelled. Newly relabelledesaare additionally marked as
“correct”, and visited nodes are marked also as “seen” asritbesl formally below. At each
stage of the computation some nodes are already markeddprtiéedure as “correct”, and
only a nodeN can be relabelled and then also marked as “correct” and *selich, (i) has
not yet marked as “seen” (although probably marked as “ctiri®/ the input marking), and
(i) all its children, Children(N), have already marked as both “seen” and “correct”.

Syntactical renaming algorithm SC R(qt):
START with parse tree qt.

1. Initially mark some nodes as “seen” and “correct”. Mark all leaf nodes, INs, IDNs
and<set name> nodes both as “seen” and “correty’

Note: Syntactic categories of “correct” nodes will not be renarbgadhis algorithm.
Furthermore<set nhame> nodes should not be renamed (and thus, these are initial
marked as “correct”) as they evidently have unambiguous $gpand definitely require

no renaming.

2. Find any node suitable for correcting. Find nodeN, which is not marked as “seen”,
and whose all children are marked both as “correct” and "ségiming rise to a fork
N — Children(N) in gt). Does the requiredV exist ingt?

No — Therefore, by induction, all nodes in the tree are alreadyked as “correct”,
(end of algorithm).

Yes - Check and (if necessary, and possible) rename accordiBiNEothe syntactical
category ofN:

(a) Find a suitable fork F'in the BNF that matches the children of N. Find a fork
F from the BNF whose leaves match witthildren(N). As N is not an identifier
node, it follows from Assertion 3 from Section 9.1.2 thatrthean exists only one
such forkF, if any.

n fact, as we discussed above, INs and query<gadirameters> are already marked as correct in the input
parse tregt.

9.2. Contextual analysis (well-typed queries) 133

If the required forkF’ does not exist in the BNF, output error message “query is
not well-typed” indicating the statement in the quergorresponding to the node
N which “cannot be properly typed”, and halt (end of algori)hm

Otherwiseg, if I exists, move to step 2b or 2c depending on wheftidgs already
marked as “correct” or not.

Note: The term ‘matching’ means that the branching degree shauddsame and
the matching children nodes (in the natural order) havedheedabels. The labels
of N and the root ofF" are not required to coincide for matching to be successful.

(b) N is not marked as “correct” - relabel syntactical category é¥ exactly as the
root of I/, mark V as “correct” and “seen”, and move to step 2.

(c) Nis marked as “correct” - if the label of the root of" coincideswith the label on
N then markN also as “seen” and move to step 2.
However, if the label of the root af differsfrom the label onV, generate the error
message “query is not well-typed; conflicts with the expeéstgntax” and indicate
which syntactic category nhame (and corresponding placdédnquery) requires
renaming. (End of algorithm.)

END with either correctly relabelled parse tree, or an approriate error state.

The successful result of this algorithm would give us a fullagntee that the resulting
relabelled tree is still the correct parse tree of the giveerg which is therefore well-formed.
Most importantly?, it will also guarantee that the query is well-typed: parse tabelling is
fully coherent, both with the typing and all other detailgdigclarations of identifiers (such as
to be a constant or variable or query name).

9.2.3.3 Contextual analysis algorithm

The complete algorithm for bottom-up contextual analysissists of the following (macro)
steps. The input is any query parse tggand the list of INs (both obtained from the parser).
The output being either: (i) correctly relabelled queryseatree { is well-typed), or (i) an
error message(is non-well-typed).

Contextual analysis algorithm C A(gt, the list of INs):

START with the list of INs of the query parse tree gt.

1. Find suitable candidate declaration (BN and IDN) for each icentifier occurrence
(each IN). That is, iterate over the given list of INs calling IDS algbrm for each IN

12als0, taking into account appropriate renaming of syntattcategories of query caparameters>
considered below

134 Chapter 9A Query Syntax

(see Section 9.2.3.1). The result of these identifier datitar searches is the list of
declaration triples for all INs.

For those INs for which the algorithm IDS outputs NULL, NULL,IN > the
corresponding error messages “identifier non-declaredtlshbe outputted concerning
all such identifier occurrences in the quergnd additionally that the “query is not well
typed”.

If IDS outputted NULL triple for some IN then end of algorithrotherwise move to
step 2.

2. Relabel syntactical categories of some parse tree nodes amting to step 1.

(a) Relabel syntactical categories of identifier occurrencesLabels of nodes (i.e.

(b)

syntactical categories) generated by the parser contaiprtdiminary information
on the typing (assigned by the parser and possible contiraglithe actual type).
The real typing of any IN and, in fact, the real syntacticalegaries (the node
labels) of the INs can be correctly determined using the IBdifthe declaration
triple of IN. The parse tree labelling for these INs shouldupéeated accordingly
(may be vacuously if the given IN, in fact, does not need updatccording to the
IDN) with marking these nodes as “correct”. This can be daraghtforwardly for

all INs (in particular for query names to be discussed beld@hus after relabelling,
all INs will be actually marked as “correct”.

Relabel syntactical categories of query call parametetS. In the case of INs
which are query names in query calls some additional rergqufisome (possibly)
non-IN nodes (query parameters) is required as descrided.be

If we have a query calf(t1, ..., t,,) with the query name of the type

(typer, typea, ..., type, — type)
obtained from the appropriate IDN by the algorithm IDS (wehall participating

type; aresetor label, and the type after arrow &etor boolear) then we should:

i. Check whethern = n; if not, the query is not well-typed, and the algorithm
should halt with an appropriate error message.

8In some cases similar to query parameters the parser alsslymes some typing. For example, in
the membership statemeht: a € b the syntactical categories @fa,b must be, respectivelyslabel>

<delta-term>

and<delta-term> |, according to the BNF. In the case of equality= b, the expressions

a andb must be of the same type according to BNF, although the clafitge is ambiguous as shown by those
examples in Section 9.1.4. But, the case of query call paemneequires our special attention in the currently
described algorithm.

9.2. Contextual analysis (well-typed queries) 135

ii. If m = n, rename (possibly vacuously) syntactical categories cdrpater
nodest; (<delta-term> or<label>) according to the typeipe; (setor
label), and mark them as “correct”.

3. Relabel syntactical categories of all other parse tree node Apply SCR algorithm
(Section 9.2.3.2) to the resulting partially relabelledsgatree. Thereby other nodes of
the parse tree will also be potentially renamed.

(a) Were all other nodes successfully renamed?
Yes- If the SCR algorithm renamed and marked all nodes as “ctrtben move
to Step 4 to check for additional requirement (that queryraperly “bounded”).
No - Parsing agreeing with typing is impossible, and appropreror messages
from SCR algorithm should be outputted. End of algorithm.

4. Additional requirements on bounding terms or formulas (BTFLVNS)

(@) Check that (the names of) bounded identifiers (INs) of. <separ at e>,
<recursi on><col |l ect > <delta-fornula with decl arati ons>,
<delta-termwi th decl arations>, and <quantified fornul a>
have no non-declared occurrences inside the bounding ternr dormula
(BTFLVN).

For convenient implementation of this clause we assumdiaddily that the parser
also generates for each bounding term or formula (BTFLVI)ghb-list of INs
(from the list of all INs generated by the parser) lyimgder BTFLVN in ¢t'4. In
other words, these are some of the identifiers occurringdmtreryq. This can be
represented as lists (for each BTFLVN) of the form:

< BTFLVN,INy,...,IN;, > .

Using the list of these INunder the given BTFLVN and the declaration triples
of the form< BN,IDN,IN > generated by the IDS algorithm, it should be
checked that each |Nrom the above list whose name coincides with the name of
some bounded IN by the given BTFLVN (see Definition 4 (b)) isldeed in this
BTFLVN. The latter means that such an IN has its own bindindenBN (from

the appropriate unigue triple), and this BN lies under oncigies with the given
BTFLVN. This should hold for each BTFLVN igt. Otherwise contextual analysis
should be aborted with corresponding error message.

M1f BTFLVN is LVN — a label value node — then this list is, of caer;, empty.

136

Chapter 9A Query Syntax

(b)

(©

(d)

In particular, in the case or recursion, we should checktiieatecursion binding set
variable, as well as variables from the binding variable, g not occur free in the
bounding term. Also, each query name should not occur fréleeiefining term

or formula, and set constant should not occur free (noraded) in the defining

term, etc. However, in the case of set constants and quergsam need to add
the following additional requirements.

Check that for each<set constant declaration> the defining
<delta-term> has all of its set or labelariables declared within this term.
That s, intuitively,<delta-term> defining a set constant should have a constant
value. However, constants and query names inside<thédta-term> may be
declared in the query outside this term.

To do this, use the list of INs ofariableslying under the nodedelta-term>

of <set constant declaration> and the identifier declaration triples of
the form< BN,IDN,IN > generated by the above IDS algorithm, and check
that each BN of such a variable IN lies in tkelelta-term> node subtree.
Otherwise, such a variable IN of tkalelta-term> is considered as free, and
the contextual analysis should be aborted with the corrafipg error message.

Check that for each <set query declaration> the defining
<delta-term> has all its set or labelariablesdeclared (quantified, etc.) either
inside this term or in the given<set query declaration> as

<variables> parameters of the declared query. Constants, and queryshame
inside this<delta-term> may be declared in the query outside this term. Quite
similarly check for eackboolean query declaration> and correspond-

ing <delta-formula>

The remaining check thatlabel constant declaration> uses closed
<label value> is evidently vacuous, as actually there is nothing to check.

END with a correctly relabelled and well-typed and properly bounded parse tree
(“query is well-formed and well-typed”), or a partially rel abelled parse tree plus
additional error messages (“query is well-formed but not wd-typed”, etc.).

9.2.4 Extension of contextual analysis to support librarie

That the library declarations are well-formed and wellggigan be checked by reducing these
declarations to the ordinary queries, as it was shown ini@et4.2.2, and applying parsing
and contextual analysis algorithm described above to thdtieg query.

Chapter 10

XML Representation of Web-like
Databases (XML-WDB Format)

10.1 Represention of WDB by graph or set equations

As we discussed in Chapter 2 the (hyper)set theoretic appid®, 41, 43, 56, 57, 61] to WDB
is based on the concept of hereditary finite sets or, morergiyndyperset theory [3, 5]. Such
semi-structured data is represented as abstract setdgaffsets, etc.) with the possibility for
membership relation to form cycles.

husband

Figure 10.1: Example WDB representing a fictitious family

For visualisation purposes hyperset databases are rafrdsegraphs(see Figure 10.1) where
nodes correspond to set names and labelled edges to meiplretation. When considering
implementation (and also intuitively from the set thearefiew) it is far more appropriate to
represent WDB asystem of set equationEach set equation consists adet namesquated to
abracket expressigriabelled elementsf such sets may be either atomic values, nested bracket
expressions, or set names (described in some other ecg)attenr example, system @ét set

137

138 Chapter 10. XML Representation of Web-like Databases (XWDB Format)

equations corresponding to the WDB graph in Figure 10.1daxkfollows:

bob = { name:"Bob", wife:alice }
alice = { name:"Alice", husband:bob, pet:sam }
sam = { name:"Sam", species:"cat" }

or, equivalently, with thenestingallowed:

bob = { name:"Bob", wife:alice }
alice = { name:"Alice", husband:bob,
pet:{name:"Sam", species:"cat"} }

In particular, this demonstrates that the specific form ¢ihsenes (e.gbob, alice , sam)
however helpful intuitively are formally not important. @ can always be renamed (say by
numbered “object identities” e.g&23, etc.) or substituted as above. In general, the role of
set names in any system of set equations depends on itopoditiose set names occurrences
on the left-hand side of set equation (simple set names) laoecalleddefinedset names,
whereas, all other set name occurrences are cadfetencedset names. Each referenced set
name should be defined somewhere in the system, and only once.

The implemented query system considers WDB as systems afeflagquations (without
any nesting). As described below, WDB is represented malttias a system of XML files
each containing a fragment of the whole system of set equatib the WDB, which proves
convenient. From the perspective of any database destitpednformational content of WDB
is carried by:

e Labels on WDB-graph edges emmame, wife , husband , etc.
e Atomic data (see Note 5) on leaves €'Bob" , "Alice" , etc.

e Graph structure or, respectively, set-element nesting.

Note 5(Atomic data) Atomic data is, in fact, treated as singleton sets congjgifra labelled
empty set or, equivalently, as labels on additional leaksdg the WDB graph. For example,
the atomic valuéBob" from the above example is formally represented as

{Bob:{}}

or, respectively, as the labelled edge with the target neilegla leaf,

Bob

Oo—>»0

10.2. Practical representation of WDB as XML 139

For example, taking into account the above descriptiongctineesponding system of (almost)
flat set equations (with atomic values simulated as labeliegdty sets) representing the WDB
graph depicted in Figure 10.1 should actually be:

bob = { name:bob_name, wife:alice }

bob_name = { Bob:{} }

alice = { name:alice_name, husband:bob, pet:sam }
alice_name = { Alice:{} }

sam = { name:sam_name, species:cat_name }
sam_name = { Sam:{} }

cat name = { cat{} }

To completely flatten this system we need to further repldcaested occurrences df ,
say, by the set namempty and add one more equati@mpty = {} . Of course, nesting
is a reasonable notion, and atomic values are more usedfffiérom the external point of
view. Thus, these concepts are included in the XML represient of WDB considered below,
although the query system internally uses only completalysét equatiors

10.2 Practical representation of WDB as XML

Although set equations represent WDB in the most natural iatuitive way, directly
suggesting that such data are hypersets, it makes sendateothés approach to the popular
XML representation of semi-structured data and use apjatepexisting techniques. Thus,
numerous and independently existing XML data can be trelayeour approach, making its
application considerably wider.

Extensible Markup Language (XML) is popular model for omtkr(typically) tree-like
semi-structured data. The portability, scaleability am t(but extendable to graph) structure
of XML has given rise to its wide spread useage. As such, systf set equations, possibly
allowing deep nesting, although very intuitively appeglicould be represented practically
as XML documents also based on the idea of representatioesting data. However, the
primary goal of our approach is not the implementation of Xhlierying, as much research
and practical work has already been devoted to the la@&uce[7], Lore [33], Quilt [14]
XML-GL [13], andXML-QL [23]; as well as the W3C standardSLT[15], XPath[22], and
XQuery[8] (based on Quilt).

'Note that WDB may (briefly) involve complicated equationacts asres = ¢ wheregq is an arbitrarily
complicated term or formula, during the execution of guegeor after invoking the “splitting” rule during
reduction. But, this extended system is, in fact, reducethéoflat form, and it is technically more convenient
to work with other given WDB equations if they are presentethe flat form.

140 Chapter 10. XML Representation of Web-like Databases (XWDB Format)

The main idea of the proposed XML-WDB format is to represeridB\systems of set
equations as XML documents of a special form, and the mo&néat step consists in
recursively replacing any labelled bracket expression

label : {...}
by the XML element:
<label>...</label>

Additionally, XML-WDB documents require:(i) the special root elementset:eqns>
which denotes system of set equations, éijdthe nested elementsset:eqn> denoting
particular set equations. Defined set names participatalass/of theset:id attribute of
<set:eqn> tags, and referenced set names as values o$aheef attribute (and also
set:href attribute discussed later) of any other tags. Note thattated above, XML
representerderedtree-like semi-structured data, however, our set-thaoagiproach to WDB
ignores order. Thus, such XML documents are treated by quoaph ignoring the order (and
possible repetition) of elements.

Let us consider the system of set equations (with nestingvell) in Section 10.1 (depicted
visually in Figure 10.1) and its representation as an XMLwtoent in XML-WDB file 1. The
names of the special elemente(legns andset:eqn) and special attributesét:id
set:ref and set:href) should appeal to the readers’ intuition that the XML-WDB
document below corresponds to the above system of set egsati

XML-WDB file 1 Family database (cf. Figure 10.1).

<?xml version="1.0"?>
<set:eqns xmins:set="http://www.csc.liv.ac.uk/"molyn eux/XML-WDB">

<set:eqn set:id="bob">
<name>Bob</name>
<wife set:ref="alice" />
</set:eqn>

<set:eqn set:id="alice">
<name>Alice</name>
<husband set:ref="bob" />
<pet>
<name>Sam</name><species>cat</species>
</pet>
</set:eqn>

</set.eqns>

10.2. Practical representation of WDB as XML 141

Recall that atomic data such aame:"Bob" is interpreted amame:{Bob:{}} , and
should therefore be translated imame><Bob></Bob></name> or, equivalently, into
<name><Bob/></name> . This might seem to contradict XML-WDB file 1 where rather
<name>Bob</name> is used, but the inverse translation in Section 10.2.3 (Rulshows
that the empty elementBob></Bob> or <Bob/> is treated equivalently as text deBab.
Here it appears as text data for the readers’ convenience.

10.2.1 XML-WDB document format

In general, an arbitrary XML-WDB document is defined as foko

Definition 5 (XML-WDB; see also Section 10.2.4 for the corresponding Xi&thema)
A well-formed and valid XML-WDB file is an XML document with & root element
<set:eqns> containing possibly severalset.eqn> sub-elements. The&set.eqns>
element should contain no attributes, whereas, the elegsmiteqn> should contain the
requiredset:id attribute only. The value of the attribuset:id should have a unique value
(across the whole document) called thedined set nam&nd can only be be a string of symbols
which is anysimple set namgaccording to the syntactical categorgimple set name>

in the BNF). The elementsset:eqns> , <set:eqn> , and the attributeset:id are not
allowed to appear anywhere else in the document. The eleqsatteqn> can contain
possibly several arbitrary XML sub-elements. The attélsget:ref andset:href can
appear (at any depth) in those arbitrary elements urdet.:eqn> . The values of the
attributesset:ref ~ andset:href are calledreferenced set nameand must correspond
to some existinget:id value in the same XML-WDB document in the casesef:ref
orset:iid value in some other XML-WDB document in the caseset:href . To this end,
the value of the attributset:href should befull set namgas discussed in Section 10.2.2;
cf. the syntactical categorset name> in the BNF) consisting of an (XML-WDB file) URL
and simple set name defined in that file (delimited by #).

Everything else allowed by XML standard, what is not for@ddyy the above restrictions, is
permitted in the XML-WDB format.

Note 6. The important feature of this definition is that XML-WDB daunents can contain
quite arbitrary XML elements undetset:eqn> , thus allowing to include arbitrary XML
data with any nesting, any text data and any attrisufesceptset:id , and with restrictions

on values ofset:ref andset:href |, as described above) into our hyperset approach to
WDB. However, the order and repetitions of data will be ernt for our approach, and the
usual XML attributes (except the attributest:ref andset:href ~ which have a special
role, as described above) will be treated rather as tagdwg@mmit no further nesting.

2In general, arbitrary attributes are treated by the RuleQection 10.2.3 below.

142 Chapter 10. XML Representation of Web-like Databases (XWDB Format)

10.2.2 Distributed WDB

Any WDB system of set equations may be divided into severbbgstems (as XML-WDB
files) with the possibility for the set namegarticipating in one subsystem (XML-WDB file)
to be defined by set equatioss= {...} either in the same or in some other subsystems
(XML-WDB files). Thus, strictly speaking, we should alwaysnsider the corresponding full
versions of set hames defined in set equations of distribitBd, even when a simple set
name is used for simplicity. That is, each simple set namerdog as a value o$et:id

or setiref attributes within an WDB-XML file should be understood asl fegt hame
obtained from the URL of this file by concatenating it with 8imple name using to delimite
these parts. Moreover, this technique allows to avoid enithéd simple set name clashes
without cooperation or collaboration between the authdrslistributed WDB-XML files.
(Unfortunately, unintended clashes for using the samd fabéelifferent intuitive meanings is
still possible, however, this is not formal contradictionaur approach. Here the well-known
idea of namespaces in XML could be used.)

Figure 10.2: Example distributed WDB representing two tfimtis families, divided into two
fragments represented as white and grey nodes

Defined set names appearing in some XML-WDB file can partieipa referenced set names
in the same or other XML-WDB files. Those set names defineddiséme XML-WDB file are
referenced as simple set name values of the attréetteef , whereas, set names defined in
some other XML-WDB file are referenced as full set name vabi¢ke attributeset:href
It is required that each full set name should refer to an iejsKML-WDB file and the set
equation within that file for the simple set name part (attert symbol).

Let us now consider an example of distributed WDB, reprasgrivo families (visualised
in Figure 10.2) and the corresponding XML-WDB filfsmnily1.xml andfamily2.xml
(XML files 2 and 3) appearing below. Both simple and full seimesa participate as

referenced set names in this example distributed WDB. Famgie, take the labelled element
daughter:emma represented in XML-WDB fildamilyl.xml as

<daughter set:rref="emma" />

10.2. Practical representation of WDB as XML 143

where the attributset:ref refers to simple set nanenmadefined within the same file. As
an illustration of distribution, consider the labelledrantfriend:mark represented as

<friend set:href="...family2.xml#mark" />

where the attributset:href refers to set nammark defined in the filfamily2.xml
Note that, the URL in this example has shorted for the sakergilgity.

XML-WDB file 2 Family database fragment (cf. grey nodes Figure 10.2):Iydmximl|

<?xml version="1.0"?>
<set:eqns xmins:set="http://www.csc.liv.ac.uk/"molyn eux/XML-WDB">

<set:eqn set:id="bob">
<daughter set:ref="emma" />
</set.eqn>

<set:eqn set:id="alice">
<daughter set:ref="emma" />
</set:eqn>

<set:eqn setiid="emma">
<friend set:href="...family2.xml#mark" />
</set:eqn>

</set:eqns>

XML-WDB file 3 Family database fragment (cf. white nodes Figure 10.2)il§@xml

<?xml version="1.0"?>
<set:eqns xmins:set="http://www.csc.liv.ac.uk/"molyn eux/XML-WDB">

<set:eqn set:id="paul">
<son set:rref="mark" />
</set:eqn>

<set:egn set:id="amy">
<son set:rref="mark" />
</set:eqn>

<set.eqn set:id="mark">
<friend set:href="...familyl.xml#emma" />
</set:eqn>

</set:eqns>

144 Chapter 10. XML Representation of Web-like Databases (XWDB Format)

The analogy of WDB with the WWW and, in particular possiblstdbuted character of WDB
does not imply it is necessarily so huge and unorganisedead/tWW. It could be distributed
between several sites, and supported by specialised WDBrsesf some departments of an
organisation owning this WDB and maintaining some specifiecture of this WDB.

Thus, WDB might, in fact, be much more structured than the W\WeWever, the general
approach imposes no restrictions. Therefore, the condeMB schemeor typing relation
between hypersets or graphs (much more flexible than fordlagional databases and based
on the notion of bisimulation or “one-way” simulation) rtlésed to some typing relation on
labels/atomic values can be considered for such datab@sés,[57, 69]. Here we will not go
into details of this important topic as our main concern & straightforward implementation
of querying WDB which does not take into account any such Wbiemas.

10.2.3 Transformation rules from XML to systems of set equabns

Let us show how any XML-WDB document, as described above, lmartreated as a
system of set equations by using the following simple tramsétions (applicable, in fact,
to arbitrary XML documents, but giving the desired systemset equations only for the
XML-WDB documents). There are however currently some i@g&tns on XML-WDB in
these transformation rules which can easily be relaxedefample attributes having many
valuesattr="valuel value2 ..." are not taken into account.

10.2.3.1 Elimination of attributes and text data

The first two transformation rules, applied recursively|l wliminate attributes and atomic
(text) data from arbitrary XML element by treating them agsta

Rule 1 (Attribute elimination, except attributeset:id , set:ref andset:href).

XML tags which have attributes,

<tag attr="value" other-attributes>
some-content
</tag>

transform to

<tag other-attributes>
<attr>value</attr>
some-content
</tag>

10.2. Practical representation of WDB as XML 145

whereattr s restricted to be any attribute name except the distihguisttributeset:id
set:ref andset:href belonging to theset namespace which will be considered later.
Additionally, some-content means arbitrary XML content of an XML element.

In the case of empty element with attributes,

<tag attr="value" other-attributes />

transformation quite analogously gives the similar result

<tag other-attributes>
<attr>value</attr>
</tag>

This rule is applied until all attributes, except thoseilatiies beglonging to theet namespace
(setiid ,setrref andset:href), are eliminated. This way attributes are actually treated
as tags.

Rule 2 (Atomic data elimination).

Text data with no white spaces
any-text-data
transforms to the empty XML element
<any-text-data/>
In the case of text data containing white characters (spaaesage-returns, tabs),

any text data

all white characters are ignored, and the result is the spording sequence of the empty
elements,

<any/><text/><data/>

As our set theoretic approach ignores order and repetitjongontrast with the ordinary

XML approach) this, in fact, means that a sentence (any tatd)ds considered rather as
an unordered set of words. This way text data are actualbtddeas tags. (An another
alternative would be to replace all white characters by théetscore symbol, thus giving
rise to<any_text_data/> , like above.)

Iterated application of rules 1 and 2 eliminates all atortegt] data and attributes except those
attributes belonging to theet namespaceset:.id , setiref andset:href).

146 Chapter 10. XML Representation of Web-like Databases (XWDB Format)

10.2.3.2 Elimination of tags

The remaining rules below allow transformation of XML elamtsewith (simple) attributes and
text data eliminated by the above rules into bracket exfmesgpossibly involving set names),
and into set equations if there are taggt:eqns and set:eqn occurring as described
in Definition 5. In the intermediate steps, the expressiandformed will be in the mixed
language.

Rule 3 (Tag elimination, except the taget.:eqns andset:egn).

For arbitrary XML tags, exceet:eqns andset:eqn , which have no attributes,

<tag>
some-content
</tag>

transforms into
tag:{some-content}.

Those possibly remaining tags in sub-elementssoime-content will be eliminated
recursively by application of transformation rules 3 and@uite analogously for the case
of the empty element,

<tag/>

transforms to
tag:{}

Rule 4 (Elimination of tags withset:ref ~ andset:href attributes).
<tag set:ref="set-name" />

transforms to the sequence
tag :set-name

Recall that other attributes were already eliminated byeRul Furthermore, according to
the definition of well-formed XML document an attribute nammeist only appear once in
any tag, howevesset:ref andset:href ~ may participate together in any tag. The above
elimination is considered as typical if only the attribgtt:ref orset:href occurs.

Additionally, we must consider the following more genetadyever unlikely case when some
content is present:

<tag setrref="set-namel" set:href="set-name2">
some-content
</tag>

10.2. Practical representation of WDB as XML 147

transforms to

tag:set-namel,
tag:set-name2,
tag:{some-content}.

However, to be consistent with the first version of Rule 4dfme-content is empty, then
(as an exception) the result should not contain the labelleshenttag:{}

The above rules hold also for the case of the attrigatehref , or when botlset:ref
and set:href ~ are present within a tag. Note that after applying Rule 4, difference
between these two attributes is not taken into account irrg¢ing the result. Recall that
set:ref refers to a simple set name, wheresat:href refers to a full set name which
is actually an URL together with simple set name (see SediibR.2). Such syntax explicitly
differentiating between simple and full set names is comm@nfor implementation. After
applying this rule this feature will disappear, but the @lifince between the shapes of simple
and full set names will remain, so that nothing essentidllveillost.

Rule 5 (Elimination of tagsset:eqn andset:eqns).

<set:eqgn set:id="simple-set-name">some-content</set: egn>
is replaced by the equation,

simple-set-name = {some-content}

and,

<?xml ... >
<set:egns>some-content</set:eqns>

is replaced by
some-content

that is, by system of set equations (in the case of a well-€dridML-WDB document; cf.
Definition 5 above).

Note that, all the above rules can be applied in arbitrargrgading to a unique system of
set equations.

148 Chapter 10. XML Representation of Web-like Databases (XWDB Format)

10.2.4 XML schema for XML-WDB format

A well-formed and valid XML-WDB document must conform to D#fion 5. As our general
goal is implementation, let us also present the XML schifatthe end of this section) which
corresponds to this definition almost completely (as XMLesubs are, in fact, insufficiently
expressible).

First of all, the schema requires that all the declared ef¢segins andeqn, and attributes
id , ref andhref are qualified under the namespdttp://www.csc.liv.ac.uk/
~ molyneux/XML-WDB . In practice the author of any XML-WDB document can declais t
namespace as the mnemosét 4 and useset:eqns instead of juseqgns , etc. to emphasise
these special elements/attributes are subject to thegbiths schema.

The root elemengégns of an XML-WDB document is declared in the schema as having the

complex typesystem_of set _equations , as follows,
<xsd:element name="eqns" type="system_of set equation s"/>.
The complex typeystem_of set_equations is defined as

<xsd:complexType name="system_of set equations">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eqn" type="set_equation"/>
</xsd:sequence>
</xsd:complexType>

where an arbitrary numbee>(0) of set equations can participate in any XML represented
system of set equations. Note that, by definition oalyn subelements can participate under
anegns element. Hereggn elements represent set equations by the given complex type
set_equation ,which is defined by two elements:

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:any namespace="##any" processContents="lax"/>
</xsd:sequence>

<xsd:attribute form="qualified"
name="id"
type="xsd:ID"
use="required"/>

Thus, anyeqgn element must contain the required attribide, and may contain arbitrary
XML sub-elements. Note that, by definition, only one atttéhuid , must appear iregn

3also available ahittp://www.csc.liv.ac.uk/ ~molyneux/XML-WDB/schema/xml-wdb.xsd
“In fact, the namespachttp://www.csc.liv.ac.uk/ ~molyneux/XML-WDB could be declared
by any chosen mnemonic, let us say

10.2. Practical representation of WDB as XML 149

elements. The corresponding value of fide attribute must be unique over the entire
XML-WDB document according the typesd:ID . However, the schema only ensures the
well-formedness wittlax processing of arbitrary XML sub-elements, and thereforesdwot
check that such elements are XML-WDB valid according to D&fin 5. In particular this
schema says nothing abowf andhref attributes and how they can be used. Thus, our
implementation additionally ensures the following:

e The elementggns andeqn and attributedd qualified under théttp://www.csc.
liv.ac.uk/ ~molyneux/XML-WDB/ namespace can not participate in arbitrary
XML sub-elements.

e The attributeref must have simple set hame value, defined byidheattribute in the
same XML-WDB file. Furthermore, the attribubeef must have full set name value
whose simple set name part is defined in some other well-fd@ane valid XML-WDB
file.

Thus, any well-formed XML document is considered as valid XMWDB document if it can
be successfully validated against the above schema andromto these additional rules.
However, ourA language query implementation deals directly with systefreet equations,
therefore it is necessary to rewrite from valid XML-WDB filego systems of set equations,
by treating them with the rules from Section 10.2.3. Thelisgdransformation from systems
of set equations to XML-WDB format is also implemented.

150 Chapter 10. XML Representation of Web-like Databases (XWDB Format)

XML schema 1 XML-WDB file schema: xml-wdb.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSch ema"
targetNamespace="http://www.csc.liv.ac.uk/"molyneux /XML-WDB"
xmlns="http://www.csc.liv.ac.uk/"molyneux/XML-WDB"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:complexType name="system_of set equations">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eqn" type="set_equation"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="set equation">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:any namespace="##any" processContents="lax"/>

</xsd:sequence>

<xsd:attribute form="qualified" name="id"
type="xsd:ID" use="required"/>

</xsd:complexType>
<xsd:element name="eqns" type="system_of set equation s"/>

</xsd:schema>

Part IV

Evaluation

151

Chapter 11

Comparative analysis

11.1 Preliminary comparison

There have been many proposed approaches for modellinguamging semi-structured data.
Many of these approaches are based on the graph model, vasdiebome the prevalent model
for representation of semi-structured data. For examipéegtaphical Object Exchange Model
(OEM) [51] was used in the integration of heterogeneousrinfdion sources in Tsimmis [31]
and the semi-structured query language Lorel [2, 46]. Maggathere has been some trend
toward the XML document model, which is essentially the grapdel restricted to ordered
trees, but arbitrary graphs can be imitated by using thébatésid andref to define links
between tree branches. In fact, Lore (implementation oLdrel language) was later migrated
to XML [33].

The most natural and intuitive way of querying graphs emgdbin most approaches is
path navigation by using path expressions. However, pgitesgions are evidently sufficiently
complicated syntactical means to achieve expressive piovegreries. This is practically very
reasonable and means path expressions are a strong té¢baic&ut, on a logical level (in
the wide sense of this word) such complicated things areyawansidered as definable in
terms of some other more fundamental concepts. Thus, indgiom of mathematics such
fundamental concepts are set, membership relation, logi@antifiers, etc. allowing to express
all other concepts, constructions and proofs in mathematid (theoretical) computer science.
In a sense, the graph approach to semi-structured datdbakesatural logically fundamental
concepts, and in these circumstances path expressions)@veleéd as the main tool for
achieving expressive power. On the other hand, the setdtie@pproach to semi-structured
databases presented in this thesis does not require patrssixms to achieve high expressive

!pesides the related classical operation of transitivauctosf a set and a general recursion operator — classical
inductive definitions

153

154 Chapter 11. Comparative analysis

power which in fact captures exactly all “generic” polynairtime computable operations over
hypersets [41, 43, 56, 57]. Therefore, the language can m&dared theoretically as having
in this sense no “gaps”. But, from the point of view of praaticsability and efficiency of
implementation, path expressions should be eventuallyded in our implementation of the
A-language although not increasing its expressive power[@).

From the traditional theoretical point of view polynomiahe computability of queries in
A (which is usually theoretically considered as “feasiblenpatability”) allows to consider
A as computationally viable. However, in a practical sensecannot insist on this usage of
the term “feasible” because polynomials can be of high degmed with huge coefficients.
Also, this makes less sense in the context of those most sigenomputational steps
assuming downloading numerous files from the World-Wide Wehus, we rather consider
this characteristic not as a witness of efficiency\lbut as a good witness of expressive power
of the language. Anyway, when comparing this approach wtlers, it can be considered as
top-down from theory to practice. In particular, this exptaagain our attitude to not include
path expressions in the main conceptual version oftHanguage, being a definable concept,
and considering them only as technical “conservative” msitan, although very important
practically.

Recall that hypersets representing WDB can be visualisgdaghs, and thus, in principle,
our approach can treat graph structured data from otheoagpipes, but assuming that the order
and repetition of such data does not matter. As the latteotsalwvays the case, the precise
comparison with other approaches is not so straightforw@imtilarly, our implementation can
query arbitrary XML elements, rewriting from XML-WDB to signs of set equations and
ignoring order. Although the aim of the project was not XMLeqying, this accomplishment
extends possible applicability of our implementation.

Now, after these preliminary general comments, let us densieveral known approaches
to semi-structured databases and to set theoretic progragnm

11.2 SETL

An important practical predecessor of our work is the sebric programming language
SETL [62, 63, 64] which deals with hereditarily-finite wétlunded sets (without cycles) and
tuples. (Note that tuples or, more generally, recdrds: z1,...,a, : x,] can be trivially
treated in our approach as sét§ : x1,...,a, : ©,} in which all labelsa; are different.) This
general purpose programming language exploits the nofiset@s fundamental data structure
with its set theoretic style of constructs like collectianA. It is, however, an imperative
language using such traditional operators as the assigroperator, loops, etc. For example,
let us consider the SETL program:

11.2. SETL 155

A = {1,2,3,4,5};
B={xxinA]|]x>31}
print(B);

where the statement on the second line reminds us af\tlerm collect. In fact, the result of
executing this SETL program is the output seBopfvhich is, in fact, defined as those numbers
X belonging to the seh such that the number is greater than or equal to three, as follows:

{3,4,5}.

Furthermore, in SETL, equality between sets is understeddeep” set equality implemented
as the following (recursive) procedure taken from [62]:

proc equal(S1,S2);
if # S2 /= # S1
then return false;

else
(forall x in S1)
if x notin S2 then return false;
end if;
end forall loop;
return true; -- S1 and S2 are equal
end if;
end proc;

That is, the two setS1 andS2 are equal if they have the same cardinality and each element
x of the setS1 participates as a member in the §&. In fact, this equality procedure will
be called recursively for each membership testin (where, like in our casey € y <~

2/ € y.Equal (z,2')). Hence,S1 andS2 are equal if their elements are equal and their
elements are also equal, and so on. This is similar to bisitioul equivalence which is
an important concept in our hyperset theoretic approacte uBe of cardinality operata#
either witnesses that hereditarily-finite sets are repitesein SETL implementation in strongly
extensional form and, anyway, assumes further recursiefoequality. In contrast to SETL,
the implementedA language is actually a declarative query language to stodtared or
Web-like databases and, as such, is not intended to be arsalivanguage. The degree of
universality ofA is characterised by its expressive power equivalent torqmohjal time. Also,
SETL does not have any construct similar to the decorati@ratpr within theA-language
which allows for restructuring, but its universal charasieould allow to define decoration for
acyclic graphs. In contrast to SETL, the main characterig@ture ofA is the extension of
the ideas of descriptive complexity theory [37, 38, 55, 1Hu@lly considered in connection
with the relational approach to databases) from finite igdat structures to hereditarily-finite
(hyper)sets and, thereby, to semistructured databases.

156 Chapter 11. Comparative analysis

The most recent development on the SETL language was therimapitation described
in [4], which introduced Internet programming using sosketo the SETL language. In fact,
these latest considerations further support that SET Ltisa#lg a general purpose programming
language, and in this sense differs fraxnwhich is a query language.

11.3 UnQL

The UnQL query language [10, 11] is closest to our approadhiasased on bisimulation,
with its operators also being bisimulation invariant asuncase. However, despite considering
bisimulation, UnQL is based on the graph model, and the ¢pda@inot even mention hyperset
theory. UnQL can also be characterised as a bottom-up agpfoam graphs to something
reminding us of hypersets. Moreover, there is no operatortdeting equality between
graph vertices (neither literal nor based on bisimulatimn)he UnQL language. However,
bisimulation should be used in defining the semantics of patitessions (patterns in their
terminology) in the UnQL language, as shown in [61] and in example in Section 3.6,
ensuring that its operations really are bisimulation irart Much of the UnQL approach is
devoted to the rather complicated way in which they deal \gi#phs, which appears more
technical compared to the intuitive denotational and dpmral semantics of the hyperset
approach. In a sense, UnQL has defined only operational sesmaver graphs, which
is bisimulation invariant. No abstract concept like hygerand corresponding (hyper)set
theoretical style of thought is explicitly described. Maover, operational semantics of the
structural recursion operator is rather complicated bykwgr with multiple “input” and
“output” vertices considered as essential part of graphsetgueried by UnQL. Therefore,
semi-structured data represented in UnQL does not examtigspond to hypersets, although
it can be imitated by hypersets as shown in [61]. Also, the Ud&@hguage and related
language UnCal were shown in [61] to be embeddable withibut, as reasonably conjectured,
not vice versa. This embedding, although done in purely ls&bretic terms, is based on
the interpretation of arbitrary graphs as sets of orderdds.paThe bisimulation invariant
operations on graphs of UnQL are defined set theoreticalya®wperations on graphs rather
than as operations on abstract entities denoted by thepbgy(with multiple “inputs” and
“outputs”) considered up to simulation. In particular, thain structural recursion construct of
UnQL is definable inA by manipulating graphs using recursive separation andleded by
applying decoration operation to get a hyperset imitativegresult (with multiple “inputs” and
“outputs”). In fact, many of the operations in UnQL are basedvarious ways of appending
such kind of graphs (via “inputs” and “outputs”), includistructural recursion, all of which
may be considered as a special versions of the decoratioatopeHowever, the full version
of the powerful decoration operator (which is much simpled &gically more fundamental

11.4. Lore 157

than its particular versions mentioned) is neither considi@or definable in UnQL (according
to the conjecture in [61, page 813]).

11.4 Lore

Lore (Lightweight Object REpository) [46] is the implematibn of the Lorel query language
[2] based on the OEM graph model [51]. Lorel is an extentiothefObject Query Language
(OQL) [12] and, in fact, statements written in the Lorel ar@nslated to OQL. Moreover,
additional features of Lorel (such as path expressions, tape coercion) are syntactical
sugaring of OQL. The OEM model is similar to the data modetiisdJnQL, but unlike UnQL
and also our approach, does not consider graphs up to bagioml Therefore, bisimulation
invariance is not pursued in this approach, hence, in thysitigcrucially different from UnQL
andA. In the OEM model equality is between graph nodes (OlDs)rathan value equality
using bisimulation. Lorel also uses ordinary equality kesw sets of OIDs, which, however,
is not the “deep” set equality assumed by bisimulation. &fwee, Lorel would treat some of
our examples differently, and thus, only very informal angexficial comparison is possible,
unlike the comparison with UnQL. However, thelect operator of Lorel is very similar to
ourcollect construct, as illustrated in the following example Loreegu

SELECT pub
FROM pub in BibDB
WHERE pub.author = "Smith"

and the (strikingly similar) correspondiny-query,

set query collect {
'null’:pub
where pub-type:pub in BibDB
and author:"Smith" in pub

}

Note that only OIDs areselect ed in Lorel, whereas in\ (OIDs or) set names denote
(hyper)sets which are, in fact (on the level of abstract seits) collect ed. Note that,
OIDs in Lorel denote just themselves and nothing more. Loa@l not express restructuring
queries, unlikeA which can perform restructuring queries with the decoratiperation (at the
final stage). Thus, informally (as formal comparison is isgible due to the above differences
in data models — graphs vs. hypersets represented by grapted)(and also UnQL) can be
said to be also strictly embeddableAt. Finally, there is also no recursion operator (except
for Kleenes star in path expressions) and nothing similaetmoration operator (important for
deep restructuring).

2ignoring so called path variables which may potentiallydiéa exponential complexity and, for simplicity,
some less essential aspects like typing and coercion

158 Chapter 11. Comparative analysis

11.5 Strudel

Strudel is a Web site management system [26] for creatingMigbs from heterogeneous data
sources via the StruQL query language [27] (see also [1]palticular, thdink clause in
StruQL is able to do simple restructuring. In fact, Strudkdves to generate real Web sites in
a declarative way from a site graph (a graphical “plan” ofta)gihat encodes the Web site’s
structure. The latter feature resembles the decoratiostizart although outside of hyperset
approach. In Studel data is integrated from heterogenemuses by mediators which rewrite
from various data sources (such as XML files, bibtex files) étcStrudel data graphs. StruQL
queries over these data graphs, in fact, define the Web giigtgie creating Web pages and
hyperlinks between Web pages.

11.6 G-Log

G-Log [19] is another query language for semi-structured depresented as arbitrary labelled
graphs. However, unlike the other approaches considerrgbh.dael, UnQL, A) any query,
as well as data, in G-log is represented graphically as af sshematical red/green coloured
“rule” graphs. Querying in G-log (in general, updating) esbd on matching the query rule
graph with the “concrete” black coloured data graph. Thidcmag assumes one of three
possible kinds of bisimulation (in particular, isomorplimbedding) of the red part of the
rule with a subgraph of the black concrete data graph, amiyuke green part for updating
the concrete data graph. This procedure is essentiallydetarministic and, in fact, can be
executed in non-deterministic polynomial time (rathemtpalynomial time in the case df).
The expressive power of G-log in its present form, or its ptiéd extensions, is unclear, as
well as precise comparison with. Granted, both are based on bisimulation but in a somewhat
different way. The rule graphs of G-log can be described imesdogical form, but it is
unclear how to systematically relate this with the syntaxAofo have a better comparison.
In principle, extendingA by quantification over the subset of a sét, C ¢, 3z C ¢, together
with definability in A the necessary versions of bisimulation over graphs coulleniia
possible to imitate matching of a rule graph with a subgraipth® data graph. But, it seems
unclear whether there exists a natural unifying concepiaahework for both approaches.
Furthermore, G-log is an open ended language with some @fdés extension discussed in
[19]. In any case, we can conclude that UnQL and even Eared syntactically, as well as
in terms of operational semantics, much closetMdhan G-log. However, matching with a
subgraph is somewhat similar to the idea of path expressibish appear in both UnQL and
Lorel, the latter being imitated ii as illustrated in Section 3.6.

Signoring that Lorel does not consider bisimulation

11.7. Tree (XML) model approaches 159

11.7 Tree (XML) model approaches

The XML data model is based on ordered trees, whereas the apipeoaches to querying
semi-structured databases discussed so far deal witheaybifraphs. (However, as we already
mentioned, using attributeéd andref in XML allows imitate arbitrary graphs.) It might
seem that querying XML data is formally outside of the (hypet theoretic view as the XML
document model assumes a fixed order on the children of arg. i@ekpite this our approach
is able to query restricted XML documents (XML-WDB files whjchowever, can involve
arbitrary nested XML elements) interpreted as systemstaeations.

The following comparisons focus on three contemporary XMitadmodel approaches,
XSLT, XQuery and XPath, all of which were developed by W3Ckitag groups. In fact, these
languages are the successors to many other XML model agm®afor example, XQuery is
based on the Quilt query language [14]. However, for bremilycomparisons will be made
with these predecessors.

XSLT

XSLT (eXtensible Stylesheet Language transformation§] [& a rule based language for
transforming the structure of an XML document, that is, XSkEWrites an XML document
to another XML document with different structure. Thus, XStHoes allow convenient
manipulation of XML documents. XSLT rules are composed aikate rules whichmatch
attributes/elements using XPath-like expressions (dsedl below) and create new XML
elements/attributes or apply other template rules. Thile sif language and its operational
semantics is rather different from tle-query language. In particular XSLT is typically used
to visualise XML documents by transforming them into HTML b\gages.

XQuery

XQuery [8] is declarative query language for XML documerasd was derived from Quilt
[14], Lorel [2] (described above) and XML-QL [23]. XQuery; is fact, Turing complete and
thus can be considered as more than just a query languagésbuiraa sense, as a general
purpose programming language.

Path expressions (XPath)

XQuery and XSLT include XPath path expressions in its synt#ath is a language especially
created to express paths navigating over XML document taaess, in fact, XPath itself can
serve as a query language.

160 Chapter 11. Comparative analysis

Currently path expressions are not included in the impleéaetkrd\-query language,
however, they were shown to be definable in the original lagg61], and a simple example
demonstrating howA could be extended syntactically to have path expressiodshaw it
can define their meaning was shown in Section 3.6. Thus, ogukge is rich enough by
fundamental operators over sets so that, at least thealhgtigsath expressions are unnecessary.
Of course, practically they are very desirable and must bkided in A to make it more
practically convenient and user friendly. Moreover, patpressions, if implemented well,
would make execution time of queries better than querietsatmg path expressions in the
current version ofA.

In general, comparison @k with query languages for XML can be done only on a rather
superficial level. In fact, they do not share a common dataainaxald the levels of abstraction
are so different that more detailed comparison in genenalgés difficult. We can only repeat
that the closest approach to ours is UnQL where comparisande done in quite precise
mathematical formulations [61].

Chapter 12

Conclusion and future outlook

In this thesis we explored the experimental implementatibrthe hyperset approach to
semi-structured or Web-like databases and the query laegftaoriginally known only on
a pure theoretical level. The primary goal was to demorestrabrking practically with
the A-query language, and secondly, some considerations tewamd crucial aspect of
efficiency of such querying in the case of distributed WDBe Tdtter involves some theoretical
considerations in Chapter 6 and empirical testing in Secti@.

This chapter begins by reviewing the hyperset approach ro-seuctured databases in
the context of this thesis. In Section 12.2 we summarise thi@ mesults of our work which,
in brief, consist in (i) the implementation of the query laageA and (ii) development the
concept of local/global bisimulation and running expensedemonstrating its fruitfulness in
making query execution more efficient when equality (bidatian) is involved. Some further
simple optimisations used in our implementation are alscudised. Then we recapitulate
briefly in Section 12.3 comparisons 4f with other most close query languages. Finally, we
conclude in Section 12.4 with some closing discussion tda/aossible future extensions and
optimisations.

12.1 Hyperset approach to semi-structured databases

First of all, the hyperset approach to semi-structured do-We databases and their querying
was described in this thesis on the base of the earlier thealrevork done in [41, 57, 61].
This approach considers hypersets as the abstract datd foodDB where the concrete
representation of hypersets is given by systems of setiegsawhich can be saved either as
plain text files or as XML-WDB files. Likewise in relational @dases where the abstract
data model is relations, our approach focuses on abstraerdgts and strongly distinguishes
them from their concrete representations by set equatmr®(responding XML-WDB form).

161

162 Chapter 12. Conclusion and future outlook

Set theory is known to play an extraordinary foundationét io mathematics, and here we
wanted to demonstrate in a practical context that very gérset theoretic approach towards
semi-structured or Web-like databases is also quite redden

Systems of set equations can also be trivially represergegraphs where the latter, if
considered literally, lead to the more traditional appho&e semi-structured databases. To
visualise our considerations we also use graphs, but tlagyogplly an auxiliary role. Abstractly,
graph nodes as well as corresponding set names in set etgjatenote hypersets. In fact, it
is assumed that any user of our query system should mairhyorepure set theoretic style of
thought which is (mostly) simple and intuitiveOtherwise it would not be so widely accepted
both in the foundation of mathematics, and in everyday nma#tieal practice. As graphs or
corresponding systems of set equations can involve cytties,nodes or set names denote, in
general, hypersets. They differ from the ordinary concépiets in the fact that hypersets are
not necessary well-founded. Based on well-developed addratood hyperset theory [3, 5],
such sets pose no conceptual difficulty in our approach. @pmoach demonstrates on a
practical level that hypersets are no more difficult thanuseal concept of sets, and are quite
useful by allowing arbitrary semi-structured data to beespnted in a completely set theoretic
manner.

An additional feature of our data model is its distributedarettter, that is any system
of set equations representing a WDB is allowed to be didgthuwith set names used in
one (XML-WDB) file possibly described by set equations in ttkers files. This leads to
distinctions between simple set names described in the SEmnand full set names involving
also the URL of the file where this set name is described. Tbés dhot change the hyperset
approach but extends its possible applicability. On theottand, this distributed character
of a WDB poses an additional challenge on how to check piabtigvhether two set names
(possibly described in remote files) denote the same abstyaerset, i.e. whether two given
set names or graph nodes are bisimilar. However, the probfezomputing bisimulation in
the distributed case was shown here to be, in principle)valsie practically, as remarked later
in Section 12.2.2.

Respectively, thé\-query language considered here is set theoretic with thetdgon A
bearing from logic and set theory and traditionally empsiagi its bounded character. The
latter guarantees that all queriesAnare computable in finite, in fact, polynomial time with
respect to the the size of the input WDB. Moreover, it is knderhave expressive power
exactly corresponding to polynomial time (see [43, 57] aadipularly [41, 57] for precise
formulations of the labelled case considered here).

The most subtle concept in our approach is the decoratioratipe.

12.2. Novel contributions 163

12.2 Novel contributions

The main results of this work are the implementation of thepenget approach to
semi-structured databases and the query langagand, secondly, the local/global approach
towards efficient computation of bisimulation in the casdisfributed WDB.

12.2.1 Implementation of the hyperset approach to semi-stictured databases

The implemented version of the languafyds quite complex and even somewhat comparable
with practical programming languages. In fact, there wasenough time to create the most
optimal implementation. The general problem of efficiengyso difficult and involving so
many various aspects (see e.g. [32]) that it is mostly oetdié scope of this thesis (with one
exception which is most essential to our hyperset approsed;Section 12.2.2). Taking this
into account, the main criteria were correctness of theémgintation and its user friendliness
so that the language could be demonstrated to a more pthcticented, rather than just a
mathematically inclined, audience. As far as we see, théeimentation satisfies these criteria
based on our testing and also writing and running the workaneles in Sections 3.5-3.7.
This query system was also used by my supervisor, VladimioSev, as demonstration tool
for undergraduate students. This initial practical goathaf project lead to the successful
development of:

e Implementation of the A-query languageas a declarative language, based on those
theoretical constructs in the origin&l-language. Furthermore, for the convenience of
writing queries some important features were included aithplemented language,
such adibrary declarationsandquery declarationsvhich, although very useful as the
reader can see from the example queries, do not extend thietical expressive power
of the language.

e Algorithms for checking the validity of queries to ensure both well-formedness and
well-typedness. These algorithms add important low-ldegdils for our implementation
serving also as a sufficiently strong guarantee that the emehtation was done
correctly. The aim of thearsingalgorithm is to ensure well-formedness, according to
the BNF grammar in Appendix A.1; whereas the aim of¢hatextual analysialgorithm
is to ensure well-typedness (which required considerdiibete to develop).

The above syntactical considerations were highly impoftarimplementation, and much time
was dedication to ensuring these algorithms were descabédnplemented correctly. In fact,
the following developments strongly rely on these algonish

164 Chapter 12. Conclusion and future outlook

e Implementation of operational semantics ofA languageaccording to reduction rules
in [61] with some additional low-level descriptions for tlogeratorsrecursion
decoration andTCalso given here to aid implementation.

¢ XML representation of WDB by developing the XML-WDB format for systems of
set equations and implementing algorithms rewriting froMIXWDB documents into
systems of set equations, and vice versa. Currently we tatéps XML-WDB format
as the standard way of representing WDB. These files can le&l gav various sites
and hyperlinked via full set names as we discussed abovetharsd WDB can be
distributed (and queried) over the Internet. In fact, the XWDB format allows our
approach to treat arbitrary nested XML elements within a WIDige aim of this practical
representation of WDB as XML is the ability, in principle, qoiery any existing XML
data in our hyperset approach (assuming order and repetiticghese data play no
essential role).

12.2.2 Local/global approach towards efficient implementi@on of bisimulation

Bisimulation between WDB graph nodes or set names (i.e. venghey denote the same
hypersets) is a crucial concept for the whole hyperset agbrto WDB. The equality symbol
(=) in our language means, abstractly, the identity betwegetsgts. But, from the point
of view of implementation which deals with set names, rathan with abstract hypersets, the
equality operator£) means bisimulation which assumes sufficiently complitatmmputation.
Thus, if we want to remain faithful to this approach and seadllue this set theoretic style then
we should not only implement bisimulation, as it is desdtilie Chapter 4, but also work
towards optimising this expensive operation. It can bei@derly expensive in the case of
distributed WDB when computing bisimulation would assurogeptially downloading lots of
(possibly) remote WDB files, and we pay special attentioti® ¢hallenge.

The main idea of the local/global approach consists in camguhe (global) bisimulation
relation &) on the whole distributed WDB from many couples of local apgmation relations
(zi and~%) for each WDB site (or even for each WDB file), and that theelatelations
are easily derivable locally. This way the global task idribsted between the main agent
(Bisimulation Engine) and local agents (servers of WDB s3ite Furthermore, empirical
testing suggested that the exploitation of local approtiona in the computation of global
bisimulation relationa can considerably improve performance. Also, the idea that t
Bisimulation Engine is working in background time (simijato Google) to compute the global
bisimulation relation from local approximations was caldn this performance improving
strategy. Experiments described in Section 7.2 suggebtddbisimulation, although a very
challenging problem, especially in distributed case, isswhopeless practically as it might

12.3. Comparisons with other approaches 165

seem. In particular, taking such optimisations into actdba hyperset approach to WDB
seems also potentially feasible practically.

12.2.3 Further optimisation

The work done on local/global bisimulation was the main ofi our attempts to optimise
our implementation of the hyperset approach in the case gsifilllited WDB. Also, some
additional consideration was given on writing more effitigmeries in the current implemented
version ofA, such as the removal of redundancies by using the so calteshisation query
Can(x) . In fact, this query does not change its inpGBf(x)=x as abstract hypersets) but
transforms its representation into an equivalent stroegtgnsional (non-redundant) form. The
effect of usingCan in one particular example (in the query which linear orderg layperset,
Section 3.7) is quite impressive. Another general optitiigarelated with the recursion
operator (and also crucially improving execution time af timear ordering query mentioned
above) is based on the possibility of replacing bisimulatio compare the iteration steps by
simple comparison of participating set names only. Of ceulsther work on optimising the
implementation ofA (in comparison with writing optimal queries, for examplgkiting Can
above) remains to be done (see Section 12.4 below).

12.3 Comparisons with other approaches

After considering various approaches in Chapter 11 we hawed that the UnQL and Lorel
query languages are closest to our approach. However coradlgpi.e., in fact, from the point
of view of the hyperset approach, UnQL is the most closA td he implemented\-language
does notinclude yet path expressions typical for otheragmires. But, this language is already
a very expressive, and, in a sense, subsumes both the UnQithenchain features of) Lorel
languages.

12.4 Further work

In short, the primary goal of implementation and attemptgataols optimisation described in
this thesis can be considered as successful. Howeveropereht of the implementation and
the experiments was very time consuming, and there wasficisat time to implement all
potential ideas. Many useful features have yet to be imphéaake such as:

e Extending the implemented A-query language to make it more user friendly
with quantification over multiple variables. Also, similafor the case of collection,
separation and recursion constructs.

166 Chapter 12. Conclusion and future outlook

e Improving the library function , in particular to allow multiple or user defined libraries.

e Extending the implemented A-query language to include path expressionsvhich
are typically included in other approaches towards semigired databases and,
additionally, are very useful practically. In principleath expressions could be
implemented by rewriting them intd\-queries according to definitions in [61]. But,
straightforward implementation should be more efficient.

e Extending the implementedA-query language by update queries.

e More user friendly interface for inputting queries and WDB, as well as for outputting
query results. In particular, the graphical visualisatmihWDB and query results
(developing a special WDB browser, as well as an editor forBVis).

Additionally, suitable techniques should be developedcfeating WDB, taking into account
its hyperset theoretic character:

e Using WDB schemasn the context of hyperset approach to impose restrictiothen
structure of WDB, just like in the relational approach but necessarily so rigid. In
fact, enforcing structure makes queries easier to writd, additionally, can serve to
eliminate possible unintended redundancies in set equstihich could arise otherwise
due to poor WDB design.

Furthermore, although some suggestions towards efficiarrg made here, there remains
much work towards development of a practically efficient iempentation:

e Adapting known and developing new optimisation techniquessuch as indexing,
hashing and other data structures helping to implemenieaffisearching as described
in [73] to the case of semi-structured data. Redundancieseinequations arising
during computation should be regularly eliminated, thimadhg writing queries without
explicit using the canonisation query. In this case equbktween sets trivially becomes
the identity relation rather than the bisimulation relatioAlso, identical query calls
should be executed only once.

e Dealing with redundanciesin various circumstances by developing various techniques
and methodology e.g. related with redundancies (bisiitida) arising due to local
updates in a WDB file (answering questions such as: are redhgies possibly arising
in such local way easy to eliminate? under which conditiogis?), or due to mirroring
WDB sites, etc.

12.4. Furtherwork 167

e Further improvements on the bisimulation enginetransforming it from imitational to
a more realistic version (Web service) assuming severalddgranularity) of locality
(WDB-files, WDB-sites, the whole WDB) and extending the rarmd experiments with
this engine.

e Adopting known [24, 25] and developing new techniques for dgmisation of
bisimulation which, for example, may take advantage of WDB scheme (seeabo

There is great scope for further theoretical and practicakwIn summary, this could mean
developing a full-fledged WDB management system and also WEdgn techniques, and
other methodologies based on the hypeset approach. Ofesdbeshyperset approach could
be further evolved, e.g. it can be extended to also involaadsird datatypes like integers,
reals, strings as atomic data or label values with arithtaktind other operations over them
(completely lacking in the current version &), etc. Also, multi-hypersets [44], records,
lists, etc. could be allowed. Another version of thdanguage capturing LogSpace [40, 42]
(currently for well-founded sets only) could be either iemplented in its present form or, firstly,
theoretically extended to the case of hypersets. Anywaykiwg on the theoretical level in
various directions and simultaneously developing moretally oriented implementations,
like in this thesis, seems a fruitful style of research.

168 Chapter 12. Conclusion and future outlook

Appendix A

Appendix

A.1 Implemented BNF grammar of A-query language

The grammar of the implementefi-language is represented by the metasyntax notation
Extended Backus-Naur Form (EBNF) which allows for examplaéfine the repetition of
syntactical categories usingor + (unlike regular BNF which does not have these features).
For example, the EBNF production rule efleclarations> in Section A.1 defines an
infinite number of possible forks, with any number of leavaselled by<declaration>

each separated by the terminal leaf labelled,by .

The EBNF notation (used here to express fianguage grammar) defines production rules
as sequence of terminals (symbols) or non-terminals,

XXX - Terminal

<yyy> - Non-terminal

where production rules are constructed (from those tedshimanon-terminals) according to
the following rules,

Parentheseg) - Grouping
Vertical bar,| - Alternation
Square bracket§] - Optional

Kleene stars - Repeat 0 or more times
Kleene plus+ - Repeat 1 or more times

Top level commands

<top level command> ::=
("library" <library command> | <query> | "exit") ";"

169

170 Appendix

<query> :=
"boolean query" <delta-formula> | "set query" <delta-term >

Library commands

<library command> ::=
"add" <declarations> |
“list" ["verbose"]

Declarations

<declarations> ::= <declaration> ("," <declaration>) *

<declaration> ::=
<set constant declaration> | <label constant declaration>
<set query declaration> | <boolean query declaration>

<set constant declaration> ::=
"set constant” <set constant> ("be"|"=") <delta-term>

<label constant declaration> ::=
"label constant" <label constant> ("be"|"=") <label value >

<set query declaration> ::=
"set query" <set query name> "(" <variables> ")" ("be"|"="
<delta-term>

<boolean query declaration> ::=
"boolean query" <boolean query name> "(" <variables> ")"
("be"|"=") <delta-formula>

<variables> ::= <variable> ("," <variable>) *

<variable> ::= ("set" <set variable> | "label" <label varia ble>)
<parameters> := <parameter> ("," <parameter>) *

<parameter> := (<delta-term> | <label>)

<boolean query name> ::= <identifier>

<set query name> := <identifier>

A.1. Implemented BNF grammar df-query language

171

A-terms

<delta-term> ::= <set variable> |
<set constant> |
<set name> |
<atomic value> |
<enumerate> |
<union> |
"(" <multiple union> ")" |
<collect> |
<separate> |
<transitive closure>
<recursion> |
<decoration> |
<if-else term> |
<set query call> |
<delta-term with declarations>

<set name> := <URI> "#" <simple set name>

<atomic value> ;= "" <identifier> "™

<enumerate> = "{" <labelled terms> "}"

<union> ::= ("U" | "union") <delta-term>

<multiple union> :=

<delta-term> (("U" | "union") <delta-term>) *
<collect> ::=
"collect" "{" <labelled term> ("where" | "|") <variable pai

("in"|"<-") <delta-term> ["and" <delta-formula>] "}"

<separate> :=
"separate" "{" <variable pair> ("in"|"<-") <delta-term>
("where" | "|") <delta-formula> "}"

<transitive closure> ::=
("tc" | "TC" | "transitiveclosure") <delta-term>

<recursion> ::=
“recursion " <set variable> " {" <variable pair> (" in "| "<-"
<delta-term> ("where" | "|") <delta-formula> "}"

r>

172 Appendix

<decoration> = "decorate" "(" <delta-term> ", " <delta-t

<if-else term> ::= "if" <delta-formula> "then" <delta-ter
"else" <delta-term> "fi"

<set query call> ::= "call' <set query name> "(" <parameters

<delta-term with declarations> ::=

“let " <declarations> "in" <delta-term> " endlet"
<URI> ::= (<web prefix> | <local prefix>) <file path>
<web prefix> = "http://" <host> "/" ["™ <identifier> "/
<local prefix> = "file://" ((A-Z2) | (a-z)) "/"
<host> ::= <identifier> ["." <host>]
<file path> ::= <identifier> ("/" <file path> | <extension>
<extension> ::= " xml"
<simple set name> := <identifier>
A-formulas
<delta-formula> ::= <atomic formula> |

"(" <conjunction> ")" |

"(" <disjunction> ")" |

"(" <quasi-implication> ")" |
<quantified formula> |

<negated formula> |

<if-else formula> |
<delta-formula with declarations>

<atomic formula> ::=
<equality> | <label relationship> | <membership> |
<boolean query call> | "true" | "false"

<equality> ::= <set equality> | <label equality>

<set equality> := <delta-term> <delta-term>

<label equality> ::=

<label> "=" <wildcard label> | <wildcard label> "=" <label>

erm> n)u

m>

> ")

A.1. Implemented BNF grammar df-query language

173

<wildcard label> ::=

[* *"] (<label variable> | <label constant>) [" *" |
"t [+"] <identifier> [" L
<label relationship> ::= <label> "<" <label>

<label> ">" <label>
<label> "<=" <label>
<label> ">=" <label>

<membership> ::= <labelled term> ("in"|"<-") <delta-term >

<boolean query call> ::= "call* <boolean query name>
"(" <parameters> ")"

<if-else formula> ::= "if" <delta-formula> "then" <delta- formula>
"else" <delta-formula> "fi"

<delta-formula with declarations> ::=
"let" <declarations> "in" <delta-formula> "endlet"

<conjunction> ::= <delta-formula> ("and" <delta-formula >) x
<disjunction> ::= <delta-formula> ("or" <delta-formula>) *
<quasi-implication> ::= <delta-formula>

(<quasi-implication connective> <delta-formula>) *

<quasi-implication connective> ::=
ll<:|| | ll=>ll | Ilimpliesll | lliffll | |I<:>ll

<quantified formula> ::= <forall> <delta-formula> |
<exists> <delta-formula> |

<forall> ::=
"forall" <variable pair> ("in"|"<-") <delta-term> ["."]

<exists> =
"exists" <variable pair> ("in"|"<-") <delta-term> ["."]

<negated formula> := "not" <delta-formula>

174 Appendix

Variables, constants, literals etc.

<label> ::= <label variable> | <label value> | <label consta
<label variable> ::= <identifier>

<label constant> ::= <identifier>

<label value> := " <identifier> ""

<set variable> ::= <identifier>

<set constant> := <identifier>

<labelled terms> ::= <labelled term> ("" <labelled term>)
<labelled term> ::= <label> "" <delta-term>

<variable pair> ::= <variable pair label> ™" <variable pai
<variable pair label> ::= <label variable> | <label value>
<variable pair term> := <set variable>

<identifier> ::= ((A-2) | (az) | (0-9) | " " | ™")+

nt>

r term>

A.2. Example XML-WDB files 175

A.2 Example XML-WDB files

XML-WDB file 4 XML-WDB file http://www.csc.liv.ac.uk/"molyneux/t/BibB-f1.xml (cf.
Section 3.5).

<?xml version="1.0"?>

<set:egns
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"
xsi:noNamespaceSchemalocation=
"http://www.csc.liv.ac.uk/"molyneux/XML-WDB/schema/ xml-wdb.xsd"
xmins:set="http://www.csc.liv.ac.uk/"molyneux/XML-W DB">

<set:eqn set:id="BibDB">
<paper set:href=

"http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f2.xml# pl"/>
<paper set:href=

"http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f2.xml# p2"/>
<paper set:href=

"http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f2.xml# p3"/>

<book set:ref="b1"/>
<book set:ref="p2"/>
</set:eqn>

<set:eqn set:id="b1">

<refers-to set:ref="b2"/>

<refers-to set:href=

"http://www.csc.liv.ac.uk/"molyneux/t/BibDB-f2.xml# pl"/>
</set.eqn>

<set.eqn set:id="b2">
<author>Jones</author>
<title>Databases</title>
</set:eqn>

</set.eqns>

176 Appendix

XML-WDB file 5 XML-WDB file http://www.csc.liv.ac.uk/"molyneux/t/BibB-f2.xml (cf.
Section 3.5).

<?xml version="1.0"?>

<set:egns
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instanc e"
xsi:noNamespaceSchemalocation=
"http://lwww.csc.liv.ac.uk/"molyneux/XML-WDB/schema/ xml-wdb.xsd"
xmins:set="http://www.csc.liv.ac.uk/"molyneux/XML-W DB">

<set:eqn set:iid="pl1">
<refers-to set:ref="p2"/>
</set.eqn>

<set:egn set:iid="p2">
<author>Smith</author>

<title>Databases</title>
<refers-to set:ref="p3"/>
</set.eqn>

<set:egn set:id="p3">
<author>Jones</author>
<title>Databases</title>
</set:eqn>

</set:eqns>

A.3. Predefined library queries

177

A.3 Predefined library queries

set query Pair (set x,set y) be
{ 'fst’x, 'sndy },

boolean query isPair (set p) be (
exists I x in p . (

[=fst’

and

forall m:z in p . (m=fst’ => z=x)
)
and
exists Ly in p . (

I="snd’

and

forall m:z in p .(m='snd’ => z=y)
)

),

set query First (set p) be
union separate { I'x in p where I="fst’ },

set query Second (set p) be
union separate { I'x in p where I="snd’ },

set query CartProduct (set x,set y) be
union collect {
'null’:collect {
null:call Pair (xx, yy)
where lyy in vy
}

where m : xx in X

12

set query Square (set z) be
call CartProduct (z, z),

set query LabelledPairs (set v) be
collect { I:{ 'fst:v, 'sndu } where lu in v },

set query Nodes (set g) be

union separate { m:p in g where call isPair (p) },

178 Appendix

set query Children (set x,set g) be
collect {

l:.call Second (p)

where [p in g

and (
call isPair (p)
and
call First (p) = x

12

set query Regroup (set g) be
collect {
'null:call Pair (x, call Children (x , g))
where m : x in call Nodes (g)

2

set query CanGraph (set x) be
union collect {
null:call LabelledPairs (v)
where m:v in TC (x)

12

set query Can (set x) be
decorate (call CanGraph (x), x),

set query TCPure(set x) be
collect{ 'null:'v where I:'v in TC (x) },

set query HorizontalTC (set g) be
recursion p {
'null’:pair in call Square (call Nodes (g))
where (
call First (pair) = call Second (pair)
or
exists m:z in call Nodes (g) . (
'null’:call Pair (call First (pair), z) in p
and
'null’:call Pair (z, call Second (pair)) in g

A.3. Predefined library queries 179

set query TC_along_label (label l,set z) be
recursion p {
kxx in TC (z)
where (
(x=z and k = 'null’)
or
(k=l and exists miy in p . Ix iny)

12

set query SuccessorPairs (set L) be
separate {
I:pair in L
and not exists I:x in call Nodes(L) . (
'null:call Pair (call First (pair),x) in L
and
'null:call Pair (x, call Second (pair)) in L

)
3
boolean query Precedes5(set R,label I,set x,label m,set y) be (
I <m
or (
I=m
and
exists 'null:p in R . (
fst:x in p and ’'snd:y in p
)
)

180 Appendix

set query StrictLinOrder_on_TC (set z) be
recursion R {
null:p_xy in call Square(call Can(call TCPure(z)))
where (
(

not 'null:p_xy in R

and

not exists 'fst:xx in p_xy .

exists 'sndyy in p_xy .
exists 'nullzinv_p in R . (

fstyy in inv_p
and
'snd’:xx in inv_p
)
)
and

exists 'snd:yyy in p_xy .
exists lu:u in yyy . (
exists 'fst:xxx in p_xy .
forall Iviv in xxx . (
call Precedes5(R,lu,u, Iv,v)
or
call Precedes5(R,lv,v, lu,u)
)
and
forall fs:xy in p_xy .
forall w:w in xy . (
call Precedes5(R,lu,u, lw,w) =>
exists 'fst:xxxx in p_xy .
exists Ip:p in xxxx .
exists 'snd:yyyy in p_xy .
exists Ig:q in yyyy . (
not call Precedes5(R,lp,p, lw,w) and
not call Precedes5(R,lw,w, Ip,p) and
not call Precedes5(R,lq,q, lw,w) and
not call Precedes5(R,lw,w, 1q,q)

Bibliography

[1]

2]

3]

[4]

[5]

[6]
[7]

[8]

[9]

Serge Abiteboul, Peter Buneman, and Dan Suddata on the Web - From Relations
to Semi-structured Data and XMLMorgan Kaufmann Publishers, San Francisco, CA,
USA, 2000.

Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifieiowid, and Janet Lynn Wiener.
The Lorel query language for semistructured dataternational Journal on Digital
Libraries, 1(1):68-88, 1997.

Peter Aczel.Non-Well-Founded Set€SLI, Stanford, CA, USA, 1988.

David Bacon.SETL for Internet Data Processin@hD thesis, New York University, NY,
USA, 2000.

John Barwise and Lawrence Mos/icious circles: on the mathematics of non-well-
founded phenomen&enter for the Study of Language and Information, 1996.

Jon Barwise Admissible Sets and StructureSpringer, Berlin, Germany, 1975.

Véronigque Benzaken, Giuseppe Castagna, and AlairchrisCDuce: an XML-centric
general-purpose language. In Colin Runciman and Olin $hivlitors Proceedings of
the Eighth ACM SIGPLAN International Conference on Fun@ld®rogramming, ICFP
2003, Uppsala, Sweden, August 25-29, 2@@®)es 51-63. ACM, 2003.

Scott Boag, Donald Dean Chamberlin, Mary Fernandezni&a Florescu, Jonathan
Robie, and Jérdme Siméon. XQuery 1.0: An XML query lamgua W3C

recommendation, W3C, January 2007. http://www.w3.0rgZDR7/REC-xquery-

20070123/.

Peter Buneman, Susan Davidson, Mary Fernandez, andbaiu. Adding structure
to unstructured data. IKCDT '97: Proceedings of the 6th International Conferenee o
Database Theorpages 336—350, London, UK, 1997. Springer-Verlag.

181

182 Bibliography

[10] Peter Buneman, Susan Davidson, Gerd Hillebrand, anmd ®eciu. A query language
and optimization techniques for unstructured dataSIBMOD '96: Proceedings of the
1996 ACM SIGMOD international conference on Managementtd, pages 505-516,
Montreal, Quebec, Canada, 1996. ACM.

[11] Peter Buneman, Mary Fernandez, and Dan Suciu. UnQueayganguage and algebra
for semistructured data based on structural recursidre VLDB Journgl9(1):76-110,
2000.

[12] Roderick Geoffrey Galton Cattell and Tom Atwood, edito The Object Database
Standard: ODMG-93Series in Data Management Systems. Morgan Kaufmann, 1993.

[13] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Frate Stefano Paraboschi, and
Letizia Tanca. XML-GL: a graphical language for queryingdamstructuring XML
documentsComputer Networks31(11-16):1171-1187, 1999.

[14] Donald Dean Chamberlin, Jonathan Robie, and DanieleeBtu. Quilt: An XML query
language for heterogeneous data sources. In Dan Suciu atitiggloVossen, editors,
The World Wide Web and Databases: Third International Wuoks(WebDB 2000),
Dallas, Texas, USA, May 18-19, 2000, Selected Papetame 1997 of_ecture Notes in
Computer Scienggages 1-25. Springer-Verlag, 2001.

[15] James Clark. XSL transformations (XSLT) version 1.03®ecommendation, W3C,
November 1999. http://www.w3.0rg/TR/1999/REC-xs|t-22216.

[16] Edgar Frank Codd. A relational model of data for largearsdd data banks.
Communications of the ACM6(1):64-69, 1983.

[17] Thomas Connolly and Carolyn BeggDatabase Systems: A Practical Approach to
Design, Implementation and ManagemeAiddison-Wesley Publishing Company, third
edition, 2002.

[18] Mariano P. Consens and Alberto O. Mendelzon. Graphlaogisual formalism for real
life recursion. InProceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposi
on Principles of Database Systems, April 2-4, 1990, Nashviennessegages 404—
416. ACM Press, 1990.

[19] Agostino Cortesi, Agostino Dovier, Elisa Quintarglind Letizia Tanca. Operational and
abstract semantics of the query language G-Lbigeoretical Computer Scienc275(1-
2):521-560, 2002.

Bibliography 183

[20] Elias Dahlhaus and Johann Andreas Makowsky. The chafipeogramming primitives
for SETL-like programming languages. |BSOP 86, European Symposium on
Programming, Lecture Notes in Computer Science, pa8es 160-172. Springer, March
1986.

[21] Elias Dahlhaus and Johann Andreas Makowsky. Queryuages for hierarchic
databasesinformation and Computatiqri01:1-32, 1992.

[22] Steven DeRose and James Clark. XML path language (XRattsion 1.0. W3C
recommendation, W3C, November 1999. http://www.w3.0RJIP99/REC-Xxpath-
19991116.

[23] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alavy, and Dan Suciu. A query
language for XML.Computer Networks31(11-16):1155-1169, 1999.

[24] Agostino Dovier, Carla Piazza, and Alberto Policriti.An efficient algorithm for
computing bisimulation equivalenc&@heoretical Computer Sciencgl11(1-3):221-256,
2004.

[25] Jean-Claude Fernandez. An implementation of an efficdgorithm for bisimulation
equivalence Science of Computer Programmirig3(1):219-236, 1989.

[26] Mary Fernandez, Daniela Florescu, Jaewoo Kang, Alemyl.and Dan Suciu. Catching
the boat with strudel: experiences with a web-site managemsyestem. InNSIGMOD
'98: Proceedings of the 1998 ACM SIGMOD international comfee on Management
of data pages 414—-425, NY, USA, 1998. ACM.

[27] Mary Fernandez, Daniela Florescu, Alon Levy, and Dagi® A query language for a
web-site management systeBIGMOD Record26(3):4-11, 1997.

[28] Marcelo Pablo Fiore, Achim Jung, Eugenio Moggi, Pet&ié&arn, Jon Riecke, Giuseppe
Rosolini, and lan Stark. Domains and denotational sen&ntlcstory, accomplishments
and open problemdulletin of EATC$59:227-256, 1996.

[29] Marco Forti and Furio Honsell. Set theory with free coastion principles. Annali
Scuola Normale Superiore Pisa Classe di Sciedif#4):493-522, 1983.

[30] Robin Oliver Gandy. Set theoretic functions for eletaen syntax. Proceedings of
Symposia in Pure Mathematjck3(2):103-126, 1974.

[31] Hector Garcia-Molina, Yannis Papakonstantinou, &allQuass, Anand Rajaraman,
Yehoshua Sagiv, Jeffrey Ullman, Vasilis Vassalos, and ilienkVidom. The tsimmis

184 Bibliography

approach to mediation: data models and languagdesirnal of Intelligent Information
Systems8(2):117-132, 1997.

[32] Hector Garcia-Molina, Jeffrey David Ullman, and Jéaniwidom. Database Systems:
The Complete BookPrentice Hall Press, NJ, USA, 2008.

[33] Roy Goldman, Jason McHugh, and Jennifer Widom. Fromistenctured data to XML
Migrating the Lore data model and query language. In SophietGnd Tova Milo,
editors, Proceedings of the 2nd International Workshop on the Web Rathbases
(WebDB '99) pages 25-30, Philadelphia, PA, USA, June 1999.

[34] Yuri Gurevich. Algebras of feasible functions. In Proceedings of the 24th Annual
Symposium on Foundations of Computer Sciemmages 210-214. IEEE Computer
Society Press, 1983.

[35] Vadim Guzeyv, Vladimir Sazonov, and Yuri Serdyuk. Distited querying of web by using
dynamically created mobile agentsttp://www.csc.liv.ac.uk/ ~sazonov/
papers/distributed_querying_of web.pdf , 2002. Supported by an RDF
grant from The University of Liverpool.

[36] Marc Gyssens, Jan Paredaens, Jan Van den Bussche, dntfabi Gucht. A graph-
oriented object database moddEEE Transactions on Knowledge Data Engineering
6(4):572-586, August 1994.

[37] Neil Immerman. Relational queries computable in polyial time. InProceedings of
the Fourteenth Annual ACM Symposium on Theory of Compupages 147-152, San
Francisco, CA, USA, May 1982. ACM.

[38] Neil Immerman. Descriptive Complexity Texts in Computer Science. Springer-Verlag,
1999.

[39] Ronald Bjorn Jensen. The fine structure of the consbigcthierarchy. Annals of
Mathematics and Logjat.229-308, 1972.

[40] Alexander Leontjev and Vladimir SazonowA: Set-theoretic query language capturing
logspace Annals of Mathematics and Artificial Intelligenceg3(2-4):309-345, 2001.

[41] Alexei Lisitsa and Vladimir Sazonov. Bounded hypeithetory and web-like data bases.
In Proceedings of the Kurt Goedel Colloquium (KGC 1996lume 1234, pages 178—
188, 1997.

[42] Alexei Lisitsa and Vladimir Sazono\A-languages for sets and LOGSPACE computable
graph transformersTheoretical Computer Scienc&r5(1):183-222, 1997.

Bibliography 185

[43] Alexei Lisitsa and Vladimir Sazonov. Linear ordering graphs, anti-founded sets and
polynomial time computabilityTheoretical Computer Sciencg24(1-2):173-213, 1999.

[44] Alexei Lisitsa and Vladmir Sazonov. Bounded multi-keypet theory and polynomial
computability. Unpublished manuscript, 2007.

[45] Kenneth C. LoudenCompiler Construction: Principles and PracticeBWS Publishing
Company/International Thomson Publishing, Boston, MAAJ$997.

[46] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan 3uand Jennifer Widom.
Lore: A database management system for semistructured d&i&MOD Record
26(3):54-66, 1997.

[47] Brett McLaughlin and Justin Edelsonlava and XML O’Reilly Media, third edition,
2006.

[48] Robin Milner. A Calculus of Communicating Systemslume 92 ofLecture Notes in
Computer ScienceSpringer-Verlag, 1980.

[49] Richard Molyneux. Implementation of a hypergefanguage as query language to web-
like databases. Undergraduate dissertation, The UniyaxkLiverpool, May 2004.

[50] Richard Molyneux and Vladimir Sazonov. Hyperset/wide- databases and the
experimental implementation of the query language deltarreat state of affairs. In
ICSOFT 2007 Proceedings of the Second International Center on Software and Data
Technologiesvolume 3, pages 29-37. INSTICC, 2007.

[51] Yannis Papakonstantinou, Hector Garcia-Molina, amthifer Widom. Object exchange
across heterogeneous information sources. IfnProceedings of the Eleventh
International Conference on Data Engineerjmages 251-260, Taipei, Taiwan, 1995.

[52] Jan Paredaens, Paul De Bra, Marc Gyssens, and Dirk VahtGlihe structure of the
relational database modeBpringer-Verlag New York, Inc., New York, NY, USA, 1989.

[53] David Park. Concurrency and automata on infinite segaeninProceedings of the 5th
Gl-Conference on Theoretical Computer Sciengages 167-183, London, UK, 1981.
Springer-Verlag.

[54] Mark A. Roth, Herry F. Korth, and Abraham SilberscheExtended algebra and calculus
for nested relational databas@sCM Transactions on Database Syste(4):389-417,
1988.

[65] Vladimir Sazonov. Polynomial computability and resivity in finite domains.
Elektronische Informationsverarbeitung und Kyberneti&(7):319-323, 1980.

186 Bibliography

[56] Vladimir Sazonov. Bounded set theory, polynomial comability and A-programming.
In Lecture Notes in Computer Scieneelume 278, pages 391-397, 1987.

[57] Vladimir Sazonov. Hereditarily-finite sets, data kmaad polynomial-time computability.
Theoretical Computer Scienc&19(1):187-214, 1993.

[58] Vladimir Sazonov. A bounded set theory with anti-foatidn axiom and inductive
definability. In CSL '94:. Selected Papers from the 8th International Worksbo
Computer Science Logipages 527-541, London, UK, 1995. Springer-Verlag.

[59] Vladimir Sazonov. On bounded set theory. Ihwvited talk on the 10th International,
Congress on Logic, Methodology and Philosophy of Scierfelesence, August 1995,
in Volume I: Logic and Scientific Methpgages 85-103. Kluwer Academic Publishers,
1997.

[60] Vladimir Sazonov. Using agents for concurrent quegyof web-like databases via a
hyperset-theoretic approach. RSl '02: 4th International Andrei Ershov Memorial
Conference on Perspectives of System Informagiages 378-394, London, UK, 2001.
Springer-Verlag.

[61] Vladimir Sazonov. Querying hyperset / web-like dated® Logic Journal of the IGPL
14(5):785-814, 2006.

[62] J. T. Schwartz, Robert B. K. Dewar, E. Schonberg, and #hisky. Programming with
sets: an introduction to SETLTexts and Monographs in Computer Science. Springer-
Verlag New York, Inc., New York, NY, USA, 1986.

[63] Jacob T. Schwartz. Set theory as a language for progpagcifecation and programming.
Technical report, Courant Institute of Mathematical Sces; New York University, NY,
USA, 1970.

[64] Jacob T. Schwartz. On programming, an interim reporttensetl project. Technical
report, Courant Institute of Mathematical Sciences, NewkYdniversity, NY, USA,
1973.

[65] Dana Stewart Scott and Christopher Strachey. Towardathematical semantics for
computer languages. Proceedings Symposium on Computers and Autaraakame 21
of Microwave Institute Symposia Seri€olytechnic Institute of Brooklyn, 1971.

[66] Yuri Serdyuk. Delta-language implementatidmtp://www.botik.ru/ ~logic/
bst/delta_implementation.html , 1996. Supported by RBRF (project 96-01-
01717) and INTAS (project 93-0972).

Bibliography 187

[67] Simon St.Laurent and Michael FitzgeraldML pocket referenceO’Reilly Media, third
edition, 2005.

[68] Christopher Strachey. Fundamental concepts in progriaag languages. Lecture Notes,
International Summer School in Computer Programming, @bagen, August 1967.
Reprinted inHigher-Order and Symbolic Computatioh3(1-2), pp. 1-49, 2000.

[69] Dan Suciu. Typechecking for semistructured datddtabase Programming Languages,
8th International Workshop, DBPL 2001 Frascati, Italy, &spber 810, 2001 Revised
Papers volume 2397, pages 1-20, London, UK, 2002. Springer-gerla

[70] Robert Walker Taylor and Randall L. Frank. Codasyl eaage management systems.
ACM Computing Survey(1):67-103, 1976.

[71] Stan J. Thomas and Patrick C. Fischer. Nested reldtistnactures. Advances in
Computing Resear¢lt3:269-307, 1986.

[72] Dennis Tsichritzis and Frederick Horst Lochovsky. tdiehical data-base management:
A survey. ACM Computing. Survey(1):105-123, 1976.

[73] Jeffrey David Ullman.Principles of Database and Knowledge-Base Systewiame 1
of Principles of Computer Science Series, Bbmputer Science Press, Rockville, MD,
USA, 1988.

[74] Moshe Y. Vardi. The complexity of relational query lamges. InProceedings of
the Fourteenth Annual ACM Symposium on Theory of Compupiages 137-146, San
Francisco, CA, USA, 1982. ACM.

[75] Des Watson.High-Level Languages and their Compileraddison-Wesley Publishing
Company, 19809.

[76] Reinhard Wilhelm and Dieter MaurerCompiler Design Addison-Wesley Publishing
Company, 1995.

