
A Survey on Temporal Logics

Savas Konur

Department of Computer Science
University of Liverpool

October 2008

CONTENTS 2

Contents

1 Introduction 4

2 Temporal Ontologies 5

2.1 Choice between Branching Time and Linear Time 5

2.2 Choice between Time Instants and Intervals 6

2.3 Choice between Propositional and First-order 8

2.4 Choice between Discrete and Dense . 8

2.5 Choice between Past and Future . 9

3 Propositional Temporal Logics 9

4 First-Order Temporal Logics 12

4.1 Undecidable Fragments of QTL . 14

4.2 Decidable Fragments of QTL . 15

5 Branching Time and Partial Order Temporal Logics 16

5.1 Branching Time Temporal Logics . 16

5.1.1 Computational Tree Logic (CTL) 16

5.1.2 Full Computational Tree Logic (CTL*) 18

5.1.3 Full Computational Tree Logic with Past (PCTL*) 19

5.1.4 Expressiveness of Branching Temporal Logics 20

5.2 Partial Order Temporal Logics . 20

5.2.1 POTL . 21

5.2.2 Expressiveness of Partial Order Temporal Logics 22

6 Interval Temporal Logics 23

6.1 More Into Intervals . 23

6.2 Propositional Interval Temporal Logics . 24

6.2.1 The Logic HS . 24

6.2.2 The Logic BE . 27

6.2.3 The Logic D . 27

CONTENTS 3

6.2.4 Propositional Neighbourhood Logic 28

6.2.5 The Logic CDT . 29

6.2.6 The Logic PITL . 30

6.3 First-Order Interval Temporal Logics . 31

6.3.1 The Logic ITL . 32

6.3.2 The Logic NL . 33

6.3.3 Duration Calculus . 34

6.4 Temporal Logics for Events and States . 36

7 Conclusion 39

1 INTRODUCTION 4

Abstract

This paper surveys main and recent developments on temporal logics in a broad
sense by presenting various formal systems dealing with various time structures, and
discussing important features, such as (un)decidability results, expressiveness and ax-
iomatization systems.

1 Introduction

The study of time spans a variety of different disciples, such as physics, philosophy, lit-
erature, computer science, etc. Time has been one of the most paradoxical concepts of
philosophy throughout history. A satisfactory definition of time has not been presented
since ancient times. Each definition has covered some aspects of time, while excluding
others. Plato defined it as the ‘moving image of eternity’, and Aristo described it as ‘the
number of motion with respect to earlier and later’ (see [Whi72]). In order to establish a
common language for time, the concept of time has been studied in various disciplines.

Temporal logic focuses on propositions whose truth values depend on time. Temporal
propositions typically contain some reference to time conditions, while classical logic deals
with timeless propositions. As classical logic formulas can characterize static states and
properties, temporal logic formulas can describe sequences of state changes and properties
of behaviors, and, hence, can span a wide range of problems in various fields with a richer
notation.

A temporal logic basically results from an extension of a classical propositional or predicate
logic with temporal quantifiers introducing temporal modalities. Due to its temporal quan-
tifiers temporal logic is a convenient and appropriate means to reason with time-related
propositions. Indeed, classical logic can also handle temporal properties, but the formu-
las tend to be complicated since points of time have to be explicitly represented in the
underlying universe.

Temporal logic has been an important subject of philosophy. Even some of the ancient
philosophizers used some form of temporal logic. During the middle ages logicians resumed
and refined the ancient approaches. In modern times, the interest in symbolic logic grew
during the first half of the 20th century, and after some delay new modal and temporal
logic approaches occurred. First publications date back to the 1940’s.

Although various aspects of time and logic have been studied by many scientists, an up-
to date comprehensive analysis of logic of time does not exist in the literature. Some
important historical surveys, like [OH95], have been presented; but these do not include
recent developments in the field. Several formal approaches can be found in the literature
([CH04, GMS04]) but these mainly concentrate on specific formal systems over specific
structures of time; therefore, they do not contain a broad analysis. The aim of this paper is

2 TEMPORAL ONTOLOGIES 5

to outline main and recent developments in the field in a broad sense by presenting various
formal systems dealing with various time structures, and discussing important features,
such as (un)decidability results, expressiveness and axiomatization systems.

The paper is organized as follows: In Section 2 we introduce various ontological issues
which are the common criteria to distinguish among logic systems. In Section 3, 4, 5 and
6 we discuss propositional temporal logics, first order temporal logics, branching time and
partial order temporal logics, and interval temporal logics, respectively. Section 7 contains
some concluding remarks.

2 Temporal Ontologies

Temporal logic systems can be classified along various dimensions: linear versus branching;
propositional versus first-order; finite versus infinite; discrete versus continuous, etc. The
most common criteria distinguishing temporal logics are given below (see [Lam80, Mos83,
Pnu85, LPZ85, HS86, BKP86, HS91, Eme95, Ven98, LP00]):

2.1 Choice between Branching Time and Linear Time

In a temporal logic the structure of time can be either linear or branching. Mathematically,
a strict partial ordering is called linear if any two distinct points satisfy the condition:
∀x, y : x < y ∨ x = y ∨ x > y. In linear temporal logics there is only one possible future
for each time instant. In case of branching time has a treelike nature as described in the
previous section. That is, any particular time instant has one linear past, but many futures.
A temporal logic is called linear time logic if the structure of time is linear, and branching
time logic if the underlying semantics of the structure of time is branching. In a linear time
logic temporal modalities describe events along a single time line. In contrast, modalities
allow quantification over possible futures in branching time logic systems. In both linear
and branching time temporal logic systems different logics are obtained by varying the
language of the logic. Expressive power changes by constructing the syntax of the logic
system from different sets of temporal operators.

As we mentioned above the underlying structure of time in branching time is a tree-like
structure. A formal definition of tree can be found in [GHR94]. A tree is represented by a
tuple 〈T,<〉, where T is a set of time points and < is a binary ordering relation defined on
T . z ∈ T is called the root of a tree 〈T,<〉 iff for all x ∈ T , z ≤ x. A branch in a tree 〈T,<〉
is a linearly ordered subset σ of T satisfying that if x, z ∈ σ and x < y < z then y ∈ σ.
A history in tree 〈T,<〉 is a maximal linearly ordered subset of T . A tree must satisfy the
following conditions:

- 〈T,<〉 is irreflexive

2 TEMPORAL ONTOLOGIES 6

- 〈T,<〉 is transitive

- For all t, u, v ∈ T if u < t and v < t then u < v,u = v or u > v

- For all x, y ∈ T there is z ∈ T such that z < x and z < y

A tree is called as a discrete tree if it satisfies the following requirements:

- For all x ∈ T except the root, there is y < x such that for all z < x, z ≤ y

- For all x ∈ T there is a set of S of immediate successors of x such that for all y, z ∈ S,
neither y < z nor z < y such that for all z < x, there is y ∈ S such that y ≤ z (That is,
the set S of immediate successors of x is pairwise incomparable)

A discrete tree has branching factor at most σ if and only if each point has at most σ
successors.

Temporal logics with underlying branching time structure are fundamental to both com-
puter science and artificial intelligence. Particularly, they have been widely used in AI
applications. In planning systems agents formulate different plans and action strategies
according to different future world states. Branching time temporal logic is very useful to
model the reasoning of agents about the universe of possibilities in which branches represent
choices of actions or plans [McD82, RG93].

One of the important applications of branching time temporal logics is formalizing spec-
ifications and behaviour of systems. The usage of branching time in specification and
verification purposes was proposed in 80s [EC80, Lam80, Abr80]. The unified branching
time system UB was defined [BMP81]. Another simple branching time logic, CTL, was
introduced in [CE81]. CTL is advantageous in comparison to linear temporal logic, for
example, in model checking applications. Model checking with CTL has a linear complex-
ity; whereas model checking with linear temporal logic is of exponential complexity. One
criticism on CTL is that it is not sufficiently expressive. These first branching time logics
were Peircean in the sense that the truth of formulae was evaluated at points on branch-
ing structure [GHR94]. CTL* was introduced in [EH86]. It is an extension over CTL by
adding the properties of linear time temporal logic. CTL* is Ockhamist in the sense that
truth of formulae is evaluated at points on paths. PCTL*, an extension over CTL*, was
introduced in [LS94]. CTL and CTL* include only future time temporal connectives. In
contrast, PCTL* contains both past and future time temporal connectives. It should be
noted that adding past operators do not increase expressive power; but expressing some
properties become easier.

2.2 Choice between Time Instants and Intervals

Temporal ontology, in particular the choice between time instants and time intervals, has
been a primary concern in philosophy. Until the last decade most logicians worked on point-

2 TEMPORAL ONTOLOGIES 7

based temporal logics. Prior and Pnueli, who developed modal temporal logic in formal
philosophy and applied it to system specification and verification respectively, considered
time as discrete sequence of points. Formulas in dynamic logic were also interpreted over
time instants [Pra76]. The difficulties associated with modeling the refinement of a system
specification using a point-based temporal logic are widely recognized as an important
problem [FM94].

The interval-based scheme has turned out provide us with a richer representation formalism
than the point-based approach. Especially in AI applications the notion of interval is
necessary to represent continuous processes and to make temporal statements which are
based on intervals.

The concept of time intervals was first studied by Walker [Wal47]. Walker considered a
non-empty set of intervals, which is ordered by a partial ordering relation. However, his
work does not cover aspects of temporal logic in a general sense. In [Ham71] interval
ontology was analyzed philosophically. In [Hum79] an interval tense logic which is based
on sub-interval relations was introduced. Dowty emphasized that human language and
reasoning have an interval-based semantics rather than point-based one, and he worked on
interval-based temporal languages [Dow79]. Similar works in natural languages, such as
axiomatic systems for interval-based temporal logics, persistency, homogeneity, were done
by [Kam79, Rop80, Bur82, vB83]. In philosophical logic Simons and Galton proposed
the requirement of intervals with reference to conceptual structures in natural language
[Gal84, Sim87]. Interval-based temporal logics have played an important role in reasoning
in artificial intelligence. Some important research has been done within this field by Allen
[All83, All84, AH85, AH89, AF94]. This work mainly includes thirteen interval relations,
known as Allen’s relations, axiomatization and representation of interval structures, and
interval-based theory of actions and events. Ladkin worked on completeness theorem and
satisfiability algorithms for Allen’s logic [Lad87]. Galton pursued a further study on Allen’s
works [Gal90]. Interval based-logics have been applied to other fields in computer science.
In [Par78, Pra79, HPS83] some work on process logic can be found. In process logic intervals
represent pieces of information. Another important work was the development of interval
temporal logic, and its application to design of hardware components [Mos83, HMM83].
ITL had an important impact in temporal logic studies. Various variations have been
proposed so far. In particular, Duration Calculus was developed in order to design real-
time system specifications formally. Duration Calculus is an extension of interval temporal
logic with a calculus to specify and reason about properties of state durations. It uses
real numbers to model time, and Boolean-valued functions over time to model states of
real-time systems. Some of the articles published in order are [CHR91, HC92, CHS93,
CHR93, CX94, Han94, CHX95, HC97, CH98, Cha99, CH04]. Another extension of ITL
was developed, which is called graphical interval logic that is the foundation of a tool set
supporting formal specification and verification of concurrent software systems [Dillon et.

2 TEMPORAL ONTOLOGIES 8

all 1994]. Temporal logic has also been successfully applied in model checking techniques
and tools [CG96, PPH98].

In philosophy there are two different perspectives of the structure of an interval type.
Intervals are defined in terms of points, which are the only primitive objects, or they are
primitive objects in the logic. Most of the interval-based logics construct intervals out of
points; there are examples of the latter, though (e.g. Allen’s logic [All83]).

2.3 Choice between Propositional and First-order

Propositional temporal logic corresponds to the classical propositional logic. The generic
language includes the set of propositional letters, the classical propositional connectives,
¬, ∨ and ∧, and a set of temporal operators (The propositional constants > and ⊥ can
also be defined). Propositional temporal logics have the finite model property 1 making
them useful for the derivation of programs from formal specifications. The derived model
resembles a finite state machine; however, the model accepts infinite strings.

Similarly, first-order temporal logic corresponds to predicate logic. Various types of FOTL
have been proposed; but the generic language compromises predicate symbols, variables,
constants, boolean connectives, quantifiers and temporal operators. FOTL systems can
be classified according to several respects. A classification based on the assumption on
the structure distinguishes between uninterpreted FOTL, where there is a specific domain
for each variable and function symbols are partially or fully interpreted, and interpreted
FOTL where a specific structure is assumed. Another distinction can be made by allowing
or disallowing restrictions on the interaction of quantifiers and temporal operators. Some
freedom might yield undecidable logics. For example, allowing modal operators within the
scope of quantifiers has a severe problem in this sense. In contrast one can disallow such
quantification over temporal operators to get a restricted FOTL consisting of propositional
temporal logic plus a firstorder language for specifying the atomic propositions [Eme95].

2.4 Choice between Discrete and Dense

The choice between time discrete and dense time has been also another primary concern
in philosophy. If the time is discrete then it would consist of a series of instances. Each
non-final point is followed by a next point or an immediate successor. Hence we can talk
about a property being true in the next instant as well as for all time or at some future
time. This can be formulated in first-order logic: ∀x,y (x < y →∃z (x < z ∧ z ≤ y ∧
∀w(x < w ∧w ≤ y→z ≤ w))). In most temporal logics used for program reasoning, time
is discrete where the present instant corresponds to the program’s current state and the

1By finite model property we mean that if a formula φ is satisfiable, then it is satisfiable in a finite model
whose size is bounded by some function of the length of the formula φ.

3 PROPOSITIONAL TEMPORAL LOGICS 9

next instant corresponds to the program’s immediate successor state. Thus the temporal
structure corresponding to a sequence of states of a program execution is the nonnegative
integers.

A linear ordering is called dense if between any two distinct points we can find another
different point. This can be mathematically represented as ∀x,y (x < y → ∃z (x < z <

y)). Rational or the real numbers is quite convenient to represent the flow of dense time,
therefore to model the notion of movement. It is noteworthy to mention that there is a
distinction between density and continuity. Suppose that the set of rational numbers is
cut into a left and a right half, of numbers smaller and bigger than

√
2, respectively. Such

a cut, without a proper point on either edge, is called a gap, and a flow of time is called
continuous if it has no gaps. Q thus forms the standard counterexample, whereas R and
Z are continuous [Ven98]. Tense logics interpreted over a dense time structure have been
investigated by philosophers. Their application to reasoning about concurrent programs
was proposed in [BKP86]. Such dense time temporal logics may also have applications
in real time programs where strict, quantitative performance requirements are placed on
programs.

2.5 Choice between Past and Future

Logicians have provided temporal modal operators to describe the occurrence of events
both in past and future. For example, PCTL* is an extension to CTL* and includes
both past and future time temporal connectives. Some of temporal logics, e.g. CTL and
CTL*, only provide future tense operators. In temporal logic systems for reasoning about
concurrency past tense operators do not increase the expressivity since program executions
have a definite starting time. For this reason, these logic systems generally do not involve
future tense operators. Meanwhile, past tense operators appear to play an important role
in compositional specification somewhat analogous to that of history variables [Eme95].
There are some examples showing that use of the past tense operators might be useful
simply in order to make the formulation of specifications more natural and convenient (e.g.
[LPZ85]).

3 Propositional Temporal Logics

An important success in propositional temporal logic was the introduction of the temporal
operators into linear-time temporal logic by Kant [Kam68]. In [GPSS80] a linear temporal
logic over discrete time models with next and until temporal operators was introduced.
The models are infinite sequences of states with a first state, but no last state. A sound
and complete axiomatic system for propositional temporal logic is provided in [GPSS80]. It
was also shown that the logic is decidable and complete. In [LPZ85] the logic of [GPSS80]

3 PROPOSITIONAL TEMPORAL LOGICS 10

was extended with the past operators, and a complete proof system for both future and
past operators was presented.

In this section we give a general definition of Propositional Temporal Logic, containing
future and past operators. A detailed discussion can be found in [Sza95, LP00]. The
generic language of propositional temporal logic includes the set of propositional letters Φ,
the propositional constants > and ⊥, the classical propositional connectives and temporal
operators. Formulae of PTL is defined recursively as follows:

φ ::= p | ¬φ | φ ∧ ψ | φAψ | φBψ

where p ∈ Φ, φ and ψ are PTL formulae, A and B are temporal operators.

Let M =〈T,<,Vp〉 be a model, where T is set of integer time points, < is precedence
relation and Vp : Φ 7→ {true, false} is a valuation function. The formal semantics of PTL
formulas is defined as follows:

M, t |= p iff Vp(t) = true for p ∈ Φ

M, t |= ¬φ iff notM, t |= φ

M, t |= φ ∧ ψ iffM, t |= φ andM, t |= ψ

M, t |= φAψ iff (∃t′ > t) M, t′ |= φ ∧ ψ and (∀t′′ : t < t′′ < t′) M, t′′ |= ¬ψ

M, t |= φBψ iff (∃t′ < t) M, t′ |= φ ∧ ψ and (∀t′′ : t′ < t′′ < t) M, t′′ |= ¬ψ

PTL defined here can deal with monadic first-order theory of the flow of time. That is,
unary temporal predicates over time and quantifiers over time points can be defined. The
definition includes only the operators A and B, which are fully expressive under the integer
time structure. This means that, for any monadic first-order formula ϕ of the flow of time
there is a formula ϕ′ of PTL with the same truth table of ϕ. Additional future and past
temporal operators can be defined as follows:

−→
♦φ ≡ (true)Aφ : eventually
←−
♦φ ≡ (true)Bφ : once (at some time in the past)
−→
�φ ≡ ¬

−→
♦¬φ : henceforth

←−
�φ ≡ ¬

←−
♦φ¬φ : so far

�φ ≡ ←−�φ ∧ φ ∧ −→�φ: always

♦φ ≡ ¬�¬φ : sometimes

φUψ ≡ ψA(φ→ ψ) : until

φSψ ≡ ψB(φ→ ψ) : since

3 PROPOSITIONAL TEMPORAL LOGICS 11

−→
©φ ≡ φA(true): immediately after
←−
©φ ≡ φB(true): immediately before

It should be noted that the definitions of temporal operators consider strict past and future,
without now. Semantics of the logic concern time with a structure of nonnegative integers
and a definite starting point.

If a PTL formula is satisfiable then it is satisfiable by a finitely representable model M,
whose size can be calculated from the size of the formula.

The theorem can be proved using a standard technique of filtration (see [Gol87]). Since
PTL is decidable, there is an algorithm to decide whether a given formula is satisfiable. An
automata theoretic technique of obtaining satisfiability procedures for temporal logics can
be found in [SVW87].

In the literature several examples of properties of programs expressible by means of temporal
logics can be found [Kro87, MP81a, MP81b]. Some important properties are expressed in
PTL as follows:

- p→ −→�q (safety property): All states reached by a program after the state satisfying p do
satisfy q.

-
−→
� ((¬q) ∨ (¬p)) (safety property): The program cannot enter critical regions p and q

simultaneously.

- p →
−→
♦ q : (liveness property): There is a state reached by a program after the state

satisfying p does satisfy q.

-
−→
�
−→
♦ p→

−→
♦ q : (liveness property): If a request p is repeated, a response q is received.

-
−→
�p→

−→
♦ q (liveness property): If a request p is hold permanently, a response q is received.

In the literature there are two different approaches to time models: one is fully symmetric
time models, infinite in both directions, and the other is the models with definite starting
point and the corresponding restriction to future temporal operators. The restriction to
models with definite starting point is done by describing the computations of programs
which all have an initial state. If the logic with past operators over linear models are con-
sidered with a first state, there are two different ways of defining the notion of satisfiability
of a formula ϕ by a model σ : s0, s1, The first interpretation is the floating interpretation
by which σ |= ϕ if ϕ holds at every state of σ. The second is the anchored interpretation,
by which σ |= ϕ if ϕ holds at the first state of σ. In [LPZ85] the former approach was used.
Later it has been found that the latter approach is better to properly define the temporal
hierarchy.

4 FIRST-ORDER TEMPORAL LOGICS 12

In [LP00] a collection of the recent developments was presented, by presenting a propo-
sitional temporal logic with the full set of operators under the anchored interpretation,
proposing an axiomatic system for this logic and establishing decidability of the logic and
completeness of the axiomatic system by an improved tableau method. The logic proposed
is a complete PTL with the past temporal operators. The main temporal operators are
given below. Additional temporal operators, including weak until and weak since, can also
be defined as showed above: © - next, U - until, ©- weak previous and S- since.

In [SC85] it was found that the satisfiability problem for PTL is PSPACE-complete. In
[LP00] an exponential time tableau algorithm, which has an overall time bound of 2O(|φ|),
is presented for the validity problem for PTL. The idea is that the negation of the for-
mula is checked for satisfiability, using a semantic tableaux. It is then decomposed into
its subformulas according to the different possibilities that come from disjunctions. This
decomposition is progressing in a tree-like tableaux, where each branch is terminated either
by a leaf that contains some subformula and its negation, which means that this branch
does not present a model, or by a leaf that contains a set of non-contradictory propositions
or negations of propositions, that represent some model.

A complete deductive system for proving the validity of PTL formulas is also provided. The
presented formal proof for completeness uses standard method for showing the completeness
of a deductive system: If ϕ is a valid PTL formula, then to show that ` ϕ, the process of
checking satisfiability of the formula ¬ϕ over its semantic tableaux is investigated.

Among the proof systems existing in literature are Hilbert-style proof system [Lad87] and
Gentzen-style proof system [Sza95]. Both proof systems are sound and complete.

4 First-Order Temporal Logics

First-order temporal logic is an extension of propositional temporal logic. Besides all fea-
tures of propositional temporal logic it also allows arbitrary data structures and quantifiers
over individuals. First-order temporal logic systems have found numerous applications in
computer science and artificial intelligence: A typical application is their usage in specifica-
tion and verification of reactive systems. They provide more expressive and powerful tools
for formalising the behaviour of executable temporal logics [Fis96a, Fis96b]. They could
extend model checking techniques to non finite-state systems, and to systems containing
multiple concurrent processes [Hol91, CGP00]. They also allow the extension of techniques
for reasoning about knowledge to more dynamic and powerful classes [FHMV96, WZ00].
First-order logic systems are also quite useful in information systems in the sense that query
languages for temporal databases are often based on variants of FOTL [CT98]. In addi-
tion, they provide a means for verifying properties of transaction protocols in e-commerce
[AVFY98, Spi00].

4 FIRST-ORDER TEMPORAL LOGICS 13

Despite its usefulness in various areas, first-order temporal logic is a very expressive lan-
guage with a very high computational complexity. Although some axiomatizations of first-
order temporal logics have been studied [Rey96], many varieties of FOTL are not even
recursively enumerable [Aba89, ANS79, GHR94, Mer92], and so do not admit finite proof
methods at all. For that reason, most of the works in this field have mainly dealt with
developing PTL-based tools. There are very few examples that recursively enumerable
or decidable fragments of first-order temporal logics have been found. However, these
variations were just small extensions to the propositional case. Some examples of these
extensions are weaker versions of validity [Aba89], minimal interaction between quantifiers
and temporal operators [Cho95] and very restricted first-order features [Mer92, Pli97].

One important development was done by Hodkinson, Wolter, and Zakharyaschev, who in-
troduced a new natural monodic fragment of first-order temporal logic, and showed that it
is quite expressive and have much better computational behaviour [HWZ00]. In monodic
formulas, the scope of temporal operators is restricted only to subformulas with at most
one free variable. The whole monodic fragment can be represented as a finite axiomatic
system [WZ02], and so can be supported by tableau or resolution-type reasoning mecha-
nism. Moreover, by restricting the first-order part to certain decidable fragments, decidable
monodic fragments of first-order temporal logic can be obtained over various flows of time
[ANvB98, Gra99].

In this section we will give a general definition of first-order temporal logic defined in
[HWZ00]. Thereafter, we will show some decidable and undecidable fragments.

The logic first-order temporal is represented by QTL, which is constructed from the follow-
ing alphabet, which does not comprise equality and function symbols:

predicate symbols: P0, P1... ;

variables: x0, x1, ... ;

constants: c0, c1, ... ;

boolean connectives: ∧, ¬;

universal quantifier : ∀;

temporal operators: S(since) and U(until);

Additional temporal operators can be defined as a similar to PTL.

LetM = 〈T,D, I〉 be a first-order temporal model where T = 〈T,<〉 is a strict linear order
representing time, D is a non-empty domain set of M, and I is a function assigning a
first-order structure of the form

I (t) =
〈
D, P I(t)

0 , ..., c
I(t)
0 , ...

〉

4 FIRST-ORDER TEMPORAL LOGICS 14

to every t ∈ T . For every i, P I(t)
i is a predicate on D of the same arity as Pi. The formal

semantics of QTL is defined as follows:

M, α, t |= Pi (x1, ..., xn) iff P
I(t)
i (α (x1) , ..., α (xn)) is true in I (t), where xi are variables

or constants

M, α, t |= φ ∧ ψ iffM, α, t |= φ andM, α, t |= ψ

M, α, t |= ¬φ iff notM, α, t |= φ

M, α, t |= φx∀ iffM, β, t |= φ for any valuation β which differs from α at most in the value
of variable x

M, α, t |= φSψ iff (∃t′ < t) M, α, t′ |= ψ and (∀t′′ : t′ < t′′ < t) M, α, t′′ |= φ

M, α, t |= φUψ iff (∃t′ > t) M, α, t′ |= ψ and (∀t′′ : t < t′′ < t′) M, α, t′′ |= φ

where α and β are valuation functions which assign values from D to variables.

Let F be the underlying time structures assumed for QTL defined here constitutes strict
linear orders. Then, QTL(F) denotes the first-order temporal logic of F , and QTLfin (F)
denotes the logic of F with finite domains.

4.1 Undecidable Fragments of QTL

In the literature, it has been known that both the monadic and two-variable fragments of
classical first-order logic are decidable [BGG97]. However, the computational complexities
of their temporal counterparts are different. Let QTL2 denote the two - variable fragment of
QTL, and QTLmo denote the monadic fragment (not monodic) of QTL, which respectively
means that every formula in QTL2 contains at most 2 distinct individual variables, and
the set of formulas that contain only unary predicates and propositional variables. The
theorems below show the complexities of these two fragments of QTL.

Let T be either {〈N, <〉} or {〈Z, <〉} . Then QTL2 ∩QTLmo ∩QTL (T) is not recursively
enumerable.

The theorem can be proved by reducing the recurrent tiling problem for N× N, which isP1
1- complete, to the satisfiability problem for the monadic QTL2 - formulas (see [HWZ00]).

Let F be either {〈N, <〉} or {〈Z, <〉}. Then QTL2∩QTLmo∩QTLfin (F) is not recursively
enumerable.

The theorem can proved by reducing the problem of whether a Turing machine comes to a
stop having started from the empty tape, which is known to be undecidable, to the satis-
faction problem for monodic QTL2 - formulas in models with finite domain (see [HWZ00]).

4 FIRST-ORDER TEMPORAL LOGICS 15

4.2 Decidable Fragments of QTL

In the theorems given above there is a quantification in three ‘dimensions’, one temporal
and two domain, since the linear time operator U can be applied to formulas with two free
variables. This causes a problem that these fragments of QTL are undecidable. It is known
that the three-variable fragment of classical first-order logic is undecidable [BGG97].

In order to avoid this problem corresponding fragment of QTL, which is QTL1, contains
all QTL-formulas ϕ such that any subformula of ϕ of the form ψ1Uψ2 and ψ1Sψ2has at
most one free variable. These formulas are monodic (not monadic) formulas, allowing
quantification into temporal contexts only with one free variable. The monodic fragments
of QTL (〈N, <〉) and QTL (〈Z, <〉) are recursively enumerable.

Let F be any of the following classes of flows of time: {〈N, <〉} , {〈Z, <〉}, {〈Q, <〉} the class
of all finite strict linear orders, any first-order-definable class of strict linear orders, and
F+ be F and {〈R, <〉}. Then, the following fragments are decidable : QTL (F) ∩ QTL1

, QTL (F) ∩ QTL2
1, QTL (F) ∩ QTLmo1 , QTLfin (F+) ∩ QTL1 , QTLfin (F+) ∩ QTL2

1,
QTLfin (F+) ∩QTLmo1 .

The proof is based on quasimodels. A quasimodel of ϕ over a flow of time T = 〈T,<〉 com-
prises as assignment of a realizable set of types St to each t ∈ T , the sequence 〈St : t ∈ T 〉
having certain specified properties. It can be shown that ϕ is satisfiable in a model T iff
there exists a quasimodel for ϕ over T (see [HWZ00]).

In [GKWZ02] it was shown that QTL (〈N, <〉) ∩ QTL1 is EXPSPACE-hard. It also fol-
lows that the satisfiability problem for QTLmo1 -formulas in models based on 〈N, <〉 is
EXPSPACE-complete.

It has been assumed in this section that QTL and its fragments do not include equality and
function symbols. It can be shown that undecidability is a major problem with the logic
extended with function symbols [WZ02]. For example, the set of one-variable formulas with
one function symbol that are valid in models based on 〈N, <〉 is not recursively enumerable.
Moreover, the set of monodic QTL formulas with equality that are valid in all temporal
models based on 〈N, <〉 is not recursively enumerable. In [WZ02] a finite Hilbert-style
axiomatization of monodic fragment of first-order temporal logic was constructed. It was
also proved that the monodic fragment with equality is not recursively axiomatizable.

The decidability results can be extended to temporalized description logics. The resulting
temporalized description logics are suitable for temporal conceptual modelling. These re-
cent research results have showed that relatively expressive subsets of first-order temporal
logic could be found. In [WZ99] certain similarities between monodic first-order temporal
logic and effective multi-dimensional knowledge representation formalisms are described
and it has been suggested that the monodic first-order temporal logic systems can be con-
siderably extended. In [HWZ00, WZ02] there is a scope for enriching the expressive power

5 BRANCHING TIME AND PARTIAL ORDER TEMPORAL LOGICS 16

of the monodic fragment. For example, applications of temporal operators, such as next-
time, can be allowed to formulas with two or more free variables. Formulas of this form are
particularly useful in temporal databases, and cover the decidable fragments of first-order
temporal logic developed by Pliuskevicius [Pli97]. Some recent works present tableau-based
satisfiability checking algorithms for description logics with temporal and epistemic opera-
tors [LSWZ02]. Similarities between such logics and monodic temporal logics suggest that
tableau-based reasoning systems can also be constructed for decidable monodic fragments.
This can be carried out by combining existing tableau systems for PTL and the classical
first-order components.

5 Branching Time and Partial Order Temporal Logics

5.1 Branching Time Temporal Logics

A temporal logic system is called branching time logic if the underlying semantics of the
structure of time is branching. Underlying structure of time in branching time is a tree-
like structure. That is, every time instant may have several immediate successors which
correspond to different futures. A formal definition of branching time structure has been
given in Section 2.

Temporal logics with underlying branching time is fundamental to both computer science
and artificial intelligence. Particularly, it has been widely used in AI applications. In plan-
ning systems agents formulate different plans and action strategies according to different
future world states. Branching time temporal logics are very useful to model the reasoning
of agents about the universe of possibilities in which branches represent choices of actions
or plans [McD82, RG93]. Another important applications of these logics is formulizing
specifications and behaviour of systems.

The first ideas about branching time logics appeared in [Abr80]. Later, The unified branch-
ing time system UB was defined [BMP81]. A simple branching time logic, CTL, was intro-
duced in [CE81]. Thereafter, CTL* was introduced in [EH86]. CTL* is an extension over
CTL by adding the properties of linear time temporal logic. PCTL*, an extension over
CTL*, was introduced in [LS94]. UB, CTL and CTL* include only future time temporal
connectives. In contrast, PCTL* contains both past and future time temporal connectives.

In this section the syntax, semantics, expressiveness and characterizations of some of the
branching time logics are briefly represented.

5.1.1 Computational Tree Logic (CTL)

CTL is an extension to the logic UB by adding a new path modality U . CTL formulas are
recursively defined as follows:

5 BRANCHING TIME AND PARTIAL ORDER TEMPORAL LOGICS 17

φ ::= p | ¬φ | φ ∧ ψ | ∀ (φUψ) | ∃ (φUψ) | ∃ (©φ)

where p is a set of atomic propositions Φ, φ and ψ are CTL formulas, © and U are linear
time operators, and ∃ and ∀ are path quantifiers. ♦, � and other modalities can be derived
as usual.

Although branching time logics can be defined in a tree-like structure, in many applications
it is quite useful to define the logic in a different way than the tree structure. In this
approach a set of states with a transition relation are considered as the basic object. The
language of CTL contains states formulas only.

Let M = 〈S,R,V〉 be a model , where S is nonempty set of state, R is a binary relation
R ⊆ S × S and V : S → 2Φ is a valuation function which assigns to each state a set of
atomic propositions. The formal semantics of CTL is then defined as follows:

M, s0 |= p iff p ∈ V (s0) for p ∈ Φ

M, s0 |= ¬φ iff notM, s0 |= φ

M, s0 |= φ ∧ ψ iffM, s0 |= φ andM, s0 |= ψ

M, s0 |= ∃ (φUψ) iff there is a forward fullpath σ = s0, s1, ... such that (∃i ≥ 0)M, si |= ψ

and (∀j : 0 ≤ j < i)M, sj |= φ

M, s0 |= ∀ (φUψ) iff for all forward fullpaths σ = s0, s1, ... (∃i ≥ 0) M, si |= ψ and
(∀j : 0 ≤ j < i) M, sj |= φ

M, s0 |=©φ iffM, s1 |= φ

M, s0 |= φ denotes that the state formula φ is true at the state s inM. A forward fullpath
of 〈S,R〉 is an infinite sequence s0, s1, s2, ... with each 〈si, si+1〉 ∈ R. σi denotes the suffix
si, si+1... of σ. A tree can be obtained by looking at all the finite sequences s0, s1, s2, ..., sm

which begin with a particular state s0 and go on satisfying 〈si, si+1〉 ∈ R. The set of such
finite sequences can be ordered by prefixing s0, s1, s2, ..., sm < s0, s1, s2, ..., sm, sm+1, ..., sn.

In [Pen95] a sound and complete axiomatic system is provided for CTL. It has to be shown
that any consistent formula φ is satisfiable. The proof rests on constructing of a pseudo-
Hintikka structure for a satisfiable CTL formula φ.

It can be shown that CTL has the finite model property. That is, if a formula φ is satisfiable,
then it is satisfiable in a finite model whose size is bounded by some function of the length
of the formula φ. Hence, a non-deterministic algorithm can determine the satisfiability of
a CTL formula in polynomial time. Therefore, CTL is decidable [EH82]. There is also
a tableau-based deterministic exponential time complete procedure for CTL satisfiability
[EC82].

5 BRANCHING TIME AND PARTIAL ORDER TEMPORAL LOGICS 18

It is noteworthy to mention that the logic UB has the finite model property, as well. It
has a sound and complete axiomatization system, and there is a deterministic exponential
time lower bound for UB satisfiability.

5.1.2 Full Computational Tree Logic (CTL*)

There are two kinds of CTL* formulas: state formulas and path formulas. State formulas
are interpreted over states and path formulas, containing all state formulas, are interpreted
over paths. CTL* formulas are recursively defined as follows:

α ::= p | ¬α | α ∧ β | ∃φ

φ ::= α | ¬φ | φ ∧ ψ | φUψ | ©φ

where p ∈ a set of atomic propositions Φ, φ and ψ are path formulas, α and β are state
formulas,© and U are path modalities, and ∃ is path quantifier. ♦, � and other modalities
can be derived as usual.

Let M = 〈S,R,V〉 be a model , where S is nonempty set of state, R is a binary relation
R ⊆ S × S and V : S → 2Φ is a valuation function. The formal semantics of CTL* is then
defined as follows:

M, s |= p iff p ∈ V (s) for p ∈ Φ

M, s |= ¬φ iff notM, s |= φ

M, s |= φ ∧ ψ iffM, s |= φ andM, s |= ψ

M, s |= ∃φ iffM, σ |= φ for some fullpath σ starting at s

M, σ |= φiffM, s0 |= φfor any state formula φ

M, σ |= ¬φ iff notM, σ |= φ

M, σ |= φ ∧ ψ iffM, σ |= φ andM, σ |= ψ

M, σ |=©φ iffM, σ1 |= φ

M, σ |= φUψ iff (∃i ≥ 0) M, σi |= ψ and (∀j : 0 ≤ j < i) M, σj |= φ

M, s |= φ denotes that the state formula φ is true at the state s inM. Similarly,M, σ |= φ

denotes that the path formula φ is true in the fullpath σ inM.

The axiomatizability of CTL* was an open question for a long time. A sound and complete
axiomatization for CTL* has recently been defined by Reynolds in [Rey01].

5 BRANCHING TIME AND PARTIAL ORDER TEMPORAL LOGICS 19

There is an algorithm to decide the satisfiability of CTL* formula, which has a double
exponential complexity in the length of the formula.

The idea behind the proof is to find a tree automaton which accepts the models of the
given CTL* formula exactly, to find a deterministic equivalent and to check whether that
is empty. That is, the satisfiability problem is reduced to testing the nonemptiness of tree
automata [EJ88].

5.1.3 Full Computational Tree Logic with Past (PCTL*)

As it mentioned before there are two ways in formalizing branching time temporal logics.
In the semantics definitions CTL and CTL* we used states and paths as basic object
types. In this section we will use discrete ω-height branching which is equivalent to state
representation. That is, PCTL* formulas are evaluated at nodes on branches of labelled
discrete rooted trees of height ω. Whereas the language of CTL* contains state and path
formulas, some formulas of PCTL* do not depend on the path on which they are evaluated.
PCTL* formulas are recursively defined as follows :

φ ::= p | ¬φ | φ ∧ ψ | φUψ | φSψ | ♦φ

where p is a set of atomic propositions Φ, φare ψ PCTL* formulas, and U , S and ♦ are
path modalities.

LetM = 〈T,<, h〉 be a model , where T is a set of time points ordered by a binary relation
<. The formal semantics of PCTL* is then defined as follows [GRF00]:

M, x, σ |= p iff t ∈ h (p)

M, x, σ |= ¬φ iff notM, x, σ |= φ

M, x, σ |= φ ∧ ψ iffM, x, σ |= φ andM, x, σ |= ψ

M, x, σ |= φUψ iff there is a node y > x in the branch σ such thatM, y, σ |= φ and for all
nodes z , x < z < y,M, z, σ |= ψ

M, x, σ |= φSψ iff there is a node y < x in the branch σ such thatM, y, σ |= φ and for all
nodes z , y < z < x,M, z, σ |= ψ

M, x, σ |= ♦φ iff there is a branch τ containing x such thatM, x, τ |= φ

M, x, σ |= φ denotes that φ holds at the node x on the branch σ of modelM.

Addition of past operator to the language does not increase expressive power. Decidability
of PCTL* follows directly from the expressibility observation along with the decidability of
CTL*. Until this year the axiomatizability of PCTL* has been a long-lasting open question.
Reynolds gives a sound and complete axiomatizion system for PCTL* in [Rey05].

5 BRANCHING TIME AND PARTIAL ORDER TEMPORAL LOGICS 20

5.1.4 Expressiveness of Branching Temporal Logics

One of the main use of branching time logics in computer science is that the model-checking
procedure is very efficient. The task is to represent a given system as a Kripke structure
and check that it is a model of a given specification. CTL is quite adequate to express
a certain set of useful properties. In contrast to the exponential complexities of model
checking with a linear temporal logic, model checking with CTL is of linear complexity.
Model checking with CTL* is much more complex than CTL, which is PSPACE-complete,
as it needs a recursion involving checking of all paths from a particular state [GRF00].

The branching logic systems can also be used to specify properties of concurrent programs.
A frame of the logic represents an execution tree generated by a program. The system
properties which can be expressed by means of UB are as follows:

∀�p: safety property : p is true at all states of each path.

∀♦p: liveness property : p is true at some state of each path.

∃♦p: possibility property : p is true at some state of some path.

Fairness constraints are not expressible in UB. All properties expressible in UB are also
defined in CTL. The new properties, such as relative order of events, expressed by CTL
contains the modality U . As in UB, fairness constraints cannot be expressible in CTL.
CTL* can specify more properties over UB and CTL [Pen95]:

�♦p: impartiality property

�♦p→ �♦q: fairness property

♦�p→ �♦q: justice property

∃ ((pUq) ∨�p): weak until property

These languages mentioned in this section can be made more expressive, while still keep-
ing all their formulas as state formulas, by allowing classical connectives in between the
temporal connectives and the path connective. If we add past operators does not increase
expressiveness; it just allows more convenient notation to express useful properties. Due to
complexity and expressiveness considerations some other logics have been defined, such as
CTL+[EH82], ECTL [EC82], ECTL+[EC82].

5.2 Partial Order Temporal Logics

Partial order structures are similar to branching structures except that every time instant
may also have several immediate predecessors corresponding to different pasts. The first
logic based on partial orders was POTL, which is introduced in [PW84], and later its

5 BRANCHING TIME AND PARTIAL ORDER TEMPORAL LOGICS 21

extended version, POTL[U ,S], defined in [KP86]. POTL and POTL[U ,S] can be viewed
as extensions of UB and CTL by past modalities. However, their semantic structures can
be linked with partial orderings representing runs of concurrent systems.

5.2.1 POTL

POTL is intended to describe partially ordered computations directly. Hence, it is possible
to specify that states with several successors and several predecessors. The language of
POTL is an extension of the language UB by allowing quantification over backward paths.
POTL formulas are recursively defined as follows [Pen95]:

φ ::= p | ¬φ | φ ∧ ψ | ∃
−→
©φ | ∃

−→
♦φ | ∃−→�φ | ∃

←−
©φ | ∃

←−
♦φ | ∃←−�φ

where p ∈ a set of atomic propositions Φ, φ and ψ are POTL formulas, and ∃
−→
©, ∃
−→
♦ , ∃−→� ,∃

←−
©, ∃
←−
♦ ,∃←−�

are modalities. The duals of the modalities can be defined as usual.

Let M = 〈S,R,V〉 be a model , where S is nonempty set of state, R is a binary relation
R ⊆ S × S and V : S → 2Φ is a valuation function. It is assumed that each state has at
least one R-successor and on R-predecessor. The formal semantics of POTL is then defined
as follows:

M, s0 |= p iff p ∈ V (s0) for p ∈ Φ

M, s0 |= ¬φ iff notM, s0 |= φ

M, s0 |= φ ∧ ψ iffM, s0 |= φ andM, s0 |= ψ

M, s0 |= ∃
−→
©φiff there is a forward fullpath σ = s0, s1, ... s.t. M, s1 |= φ

M, s0 |= ∃
−→
♦φ iff there is a forward fullpath σ = s0, s1, ... s.t. ∃i ≥ 0 M, si |= φ

M, s0 |= ∃
−→
�φiff there is a forward fullpath σ = s0, s1, ... s.t. ∀i ≥ 0 M, si |= φ

M, s0 |= ∃
←−
©φ iff there is a backward fullpath σ = ..., s1, s0 s.t. M, s1 |= φ

M, s0 |= ∃
←−
♦φ iff there is a backward fullpath σ = ..., s1, s0 s.t. ∃i ≥ 0 M, si |= φ

M, s0 |= ∃
←−
�φ iff there is a backward fullpath σ = ..., s1, s0 s.t. ∀i ≥ 0 M, si |= φ

POTL does not have the finite model property due to the addition of backward operators.
The proof is based on showing that the formula φ∧∀

−→
©∀−→�¬φ∧∀−→�∀

←−
♦φ is satisfiable in in-

finite models only. Checking whether a POTL formula is satisfiable requires an exponential
time algorithm. A sound and complete proof system for POTL can be found in [Pen95].

POTL[U ,S] is the extension of POTL obtained by introducing until and since. There is a
difference in the definition of POTL[U ,S] model that the initial or terminal states of some
process may have no R-successors or predecessors, respectively.

5 BRANCHING TIME AND PARTIAL ORDER TEMPORAL LOGICS 22

The formal semantics of formulas containing until and since is defined as follows:

M, s0 |= ∃ (φUψ) iff there is a forward fullpath σ = s0, s1, ... such that (∃i ≥ 0)M, si |= ψ

and (∀j : 0 ≤ j < i) ,M, sj |= φ

M, s0 |= ∀ (φUψ) iff for all forward fullpaths σ = s0, s1, ... such that (∃i ≥ 0) M, si |= ψ

and (∀j : 0 ≤ j < i) ,M, sj |= φ

M, s0 |= ∃ (φSψ) iff there is a backward fullpath σ = ..., s1, s0 such that (∃i ≥ 0)M, si |= ψ

and (∀j : 0 ≤ j < i) ,M, sj |= φ

M, s0 |= ∀ (φSψ) iff for all backward fullpaths σ = ..., s1, s0 such that (∃i ≥ 0) M, si |= ψ

and (∀j : 0 ≤ j < i) ,M, sj |= φ

In the semantics of POTL[U ,S] the definition of forward and backward fullpaths changes a
bit. A forward fullpath is a maximal sequence of states s0, s1, s2, ... with each 〈si, si+1〉 ∈ R.
A forward fullpath is finite iff its last state does not have any R-successor. Backward
fullpath are defined similarly.

POTL[U ,S] extends POTL, and since POTL does not have the finite model property,
POTL[U ,S] does not have it either. An in POTL the proof is based on showing that the
formula φ ∧ ∀

−→
©∀−→�¬φ ∧ ∀−→�∀

←−
♦φ is satisfiable in infinite models only. There is a deter-

ministic algorithm for deciding whether a POTL[U ,S] formula is satisfiable, of exponential
complexity in the length of the tested formula. A sound and complete axiomatization
system for POTL[U ,S] is given in [Pen95].

5.2.2 Expressiveness of Partial Order Temporal Logics

POTL extends the expressiveness of UB by referring to the past. However there is a
difference between UB and POTL frameworks. The structure of the former represents
an entire concurrent system. In the latter, a structure represents one possible run of a
system composed of sequential processes. In this framework, POTL is used to specify
properties involving all runs. For example, q → ∀

←−
♦ p expresses that for every run, and

for all backward fullpaths ending at states where q holds, there is a state at which p

holds. All properties expressible in POTL can be expressible in POTL[U ,S]. In addition,
POTL[U ,S] allows specifying the properties concerning the relative order of events in the
future and past. Model checking with POTL[U ,S] is more complicated than CTL. Indeed,
the complexity is exponential in the size of the model and doubly exponential in the length
of the tested formula [KP86]. The reason for this high complexity is that POTL[U ,S]
formulas contain backward modalities, and they are interpreted over models corresponding
to runs of concurrent systems.

6 INTERVAL TEMPORAL LOGICS 23

6 Interval Temporal Logics

The interval-based scheme provides us with a richer representation formalism than the
point-based approach. In philosophy there are two different perspectives of the structure
of an interval type. Intervals are defined in terms of points, which are the only primitive
objects, or they are primitive objects in the logic. Most of the interval-based logics construct
intervals out of points.

In the former view, an underlying flow of time is modelled as a strict partial ordering of
time points, while intervals are defined as sets of time points satisfying some particular
constraints.

The latter approach is followed in [vB91], where a ”resonable choice of basic principles
embodying the minimum conditions for a structure to qualify as a periodic structure” was
analysed. The author gives two examples of interval structures: the closed intervals over
the intergers and the open intervals over the reals. He then defines general principles by
abstracting from those concrete structures. He considers the subinterval relation ⊆ and
precedence ≺ between intervals, and studies the first-order theory of structures of the form
(I,⊆,≺), where I is an interval. The same approach is followed in [MSV02]. The authors
define an interval theory of a particular class of interval structures (Split structures) and
interval logics (Split Logics).

6.1 More Into Intervals

Given that T = 〈T,<〉 is a strict partial ordering and T is a set of time points, an interval
in T is a pair [t1, t2] such that t1, t2 ∈ T . [t1, t2] is a strict interval if t1 < t2. [t1, t2] is a
non-strict interval if t1 ≤ t2. Intervals of the form [t1, t1]are called point intervals.

We denote the set of strict intervals on T as I(T)−, and the set of all (strict and point)
intervals on T as I(T)+. I(T) denotes either of these sets.

Given a strict partial ordering T = 〈T,<〉 and a set of intervals I(T), we call a pair 〈T, I(T)〉
an interval structure. The interval structures 〈T, I(T)−〉, 〈T, I(T)+〉 denote strict and
non-strict interval structure, respectively.

In the literature it is well known that there are Allen’s thirteen different binary relations
between intervals on a linear ordering, which are before, meets, overlaps, starts, during,
finishes, equals, finished by, during by, started by, overlapped by, met by, after [All83].

Another natural binary relation between intervals, definable in terms of the Allen’s relations,
is the sub-interval relation. Given a strict partial ordering T and two intervals [t1, t2] and
[t′1, t

′
2], we have that [t1, t2] is a sub-interval (⊆) of [t′1, t

′
2] if t1 ≤ t′1 and t2 ≤ t′2; [t1, t2] is a

strict sub-interval (⊂) of [t′1, t
′
2] if t1 < t′1 and t2 < t′2; [t1, t2] is a proper sub-interval (⊂) of

[t′1, t
′
2] if [t1, t2]⊆[t′1, t

′
2] and [t1, t2]6=[t′1, t

′
2].

6 INTERVAL TEMPORAL LOGICS 24

In the area of propositional interval logics another important relation is ternary relation A
between intervals [Ven91]. For given intervals i, j, k Aijk holds if and only if i meets j, i
begins k, and j ends k.

6.2 Propositional Interval Temporal Logics

In this section we will present well-known propositional interval logics, which involve unary
or binary modal operators, and whose semantic structures are over partial orderings with
linear interval property, i.e. orderings in which every interval is linear (see [GMS04]).

The generic language of propositional interval temporal logics includes the set of proposi-
tional variables Φ, the propositional constants ⊥ and >, the Boolean connectives, and a
set of modal operators specific to each logical system.

There are two different natural semantics for interval temporal logics. A strict model for a
formula is a tuple M− =〈T, I(T)−,V〉 where 〈T, I(T)−〉 is a strict interval structure with
linear interval property, and V : Φ 7→ 2I(T)− is a valuation function that which associates
each propositional variable p with the set of intervals where p is true. A non-strict model
is a tupleM+ =〈T, I(T)+,V〉 where 〈T, I(T)+〉 is a non-strict interval structure with linear
interval property, and V : Φ 7→ 2I(T)+ . M denotes either of these models.

6.2.1 The Logic HS

The logic HS [HS91] is one of the most expressive propositional interval temporal logics that
have been defined so far. The formulas of the logic HS are recursively defined as follows:

φ ::= p | ¬φ | φ ∧ ψ | 〈A〉φ | 〈B〉φ | 〈E〉φ |
〈
Ā
〉
φ |
〈
B̄
〉
φ |
〈
Ē
〉
φ

Allen’s all relations between two distinct intervals can be expressed by means of these modal
operators. The informal semantics are as follows:

〈A〉φ: φ holds at some interval that begins just after the current interval ends.

〈B〉φ: φ holds at some interval that begins with the current interval, and ends before it
ends.

〈E〉φ: φ holds at some interval that begins after the current interval starts, and ends when
it ends.〈
Ā
〉
φ: φ holds at some interval that ends just before the current interval starts.〈

B̄
〉
φ: φ holds at some interval that begins with the current interval, and ends after it

ends.

6 INTERVAL TEMPORAL LOGICS 25

〈
Ē
〉
φ: φ holds at some interval that begins before the current interval starts, and ends

when it ends.

The duals of the modalities can be also be defined: [Xφ] ≡ ¬ 〈X〉 ¬φ, where X represents
the modal operators. Other modalities, such as 〈D〉, 〈L〉, 〈O〉 etc., and their duals can be
formalized in terms of the modalities given above. If we define modal constant π as [B]⊥,
the begin and end of the current interval can be defined as follows:

[[BP]]φ ≡ (φ ∧ π) ∨ 〈B〉 (φ ∧ π) and [[EP]]φ ≡ (φ ∧ π) ∨ 〈E〉 (φ ∧ π).

It should be noted here that in [Ven90] it was shown the modalities 〈A〉 and
〈
Ā
〉
can be

defined in terms other modal operators in the non-strict semantics (that is, partial ordering
is non-strict):

〈A〉φ ≡ [[EP]]
(〈
B̄
〉
φ
)
and

〈
Ā
〉
φ ≡ [[BP]]

(〈
Ē
〉
φ
)

Let beM be a model, V : Φ 7→ 2I(T), and [t1, t2] ∈ I(T). Assume that the partial ordering
has a linear interval property. The formal semantics of HS formulas is then defined as
follows:

M, [t1, t2] |= p iff [t1, t2] ∈ V (p) for p ∈ Φ

M, [t1, t2] |= ¬φ iff notM, [t1, t2] |= φ

M, [t1, t2] |= φ ∧ ψ iffM, [t1, t2] |= φandM, [t1, t2] |= ψ

M, [t1, t2] |= 〈A〉φ iff (∃t3 : t2 < t3) s.t. M, [t2, t3] |= φ

M, [t1, t2] |= 〈B〉φ iff (∃t3 : t1 ≤ t3 < t2) s.t. M, [t1, t3] |= φ

M, [t1, t2] |= 〈E〉φ iff (∃t3 : t1 < t3 ≤ t2) s.t. M, [t3, t2] |= φ

M, [t1, t2] |=
〈
Ā
〉
φ iff (∃t3 : t3 < t1) s.t. M, [t3, t1] |= φ

M, [t1, t2] |=
〈
B̄
〉
φ iff (∃t3 : t2 < t3) M, [t1, t3] |= φ

M, [t1, t2] |=
〈
Ē
〉
φ iff (∃t3 : t3 < t1) M, [t3, t2] |= φ

HS has enough expressive power to distinguish the different situations of time’s being
discrete, continuous, bound, linear or complete:

length1 ≡〈B〉> ∧ [B]π

dense ≡¬ length1

discrete ≡π ∨ length1 ∨ (〈B〉length1 ∧〈E〉lenght1)

unbound ≡ 〈A〉>∧
〈
Ā
〉
>

6 INTERVAL TEMPORAL LOGICS 26

linear ≡(〈A〉φ → [A](φ∨ 〈B〉φ∨
〈
B̄
〉
φ)) ∧

(
〈
Ā
〉
φ →

[
Ā
]
(φ∨ 〈E〉φ∨

〈
Ē
〉
φ)) (where φ is a proposition)

complete ≡(〈B〉cell ∧ [[EP]]¬φ ∧ [E]([[BP]]φ→〈B〉cell)) →

〈B〉([E](¬π→〈D〉cell))

(where cell ≡[[BP]]φ∧ [[EP]]φ∧ [D]φ ∧ 〈D〉φ and 〈D〉φ ≡ 〈B〉 〈E〉φ)

length1 is true over an interval [t1, t2] iff t1 < t2,and there are no points between t1 and
t2. A temporal structure is discrete if the formula discrete is valid in that structure.
Therefore, discrete is not satisfiable in Q or R, but it is valid in N. The formula dense is
valid in R and Q, but not in N. linear is valid in linear temporal structures. The formula
complete is valid in complete temporal structures. In particular, it is valid in R, but not in
Q. This property distinguishes R from Q, which are elementarily equivalent in first-order
logic.

HS is a quite expressive logic due to its large modal operator set. However, it is not axiom-
atizable and highly undecidable [HS91]. The following theorems are taken from [HS91].

The validity problem for any class of temporal structures that contains an infinitely as-
cending sequence is r.e.-hard.

HS is undecidable for the class of all models, linear models, discrete models, dense models,
and dense, linear, unbounded models.

The validity problem for complete classes of temporal structures which contain an infinitely
ascending sequence is Q1

1-hard.

HS is undecidable for the orderings of the natural numbers, integers, or reals.

Undecidability even occurs in the classes of structures with no infinitely ascending se-
quences.

The validity problem for any complete class of temporal structures which has unboundedly
ascending sequences is co-r.e.-hard.

Undecidability results given above can be proved using an infinitely ascending sequence in
the model to simulate the halting problem for Turing machines. Any unbounded ordering
contains an infinite ascending sequence. A class of ordered structures contains an infinite
ascending sequence if at least one structure in the class includes an infinite ascending
sequence [GMS04]. In [MR99] undecidability was proved by means of tiling problem.

In [Ven90] some interesting results for the logic HS were presented. By using a geometrical
representation for the modalities Venema introduced a sound and complete proof system
for HS. He has also proved that HS is strictly more expressive than any temporal logic
based on linear orderings of time instants.

6 INTERVAL TEMPORAL LOGICS 27

In [HS91] a translation machinery that converts a HS formula to its equivalent first-order
formula on a corresponding first-order structure was provided. Such as translation is useful
to reduce problems to well-known results in first-order logic.

6.2.2 The Logic BE

The logic BE is a fragment of HS containing the modal operators 〈B〉 and 〈E〉. The syntax
can be recursively defined as follows:

φ ::= p | ¬φ | φ ∧ ψ | 〈B〉φ | 〈E〉φ

BE can express the conditions on the underlying interval structure as with HS, except
the formula linear. In the literature there is no result concerning the decidability of the
satisfiability problem over strict models, or a sound and complete proof system for BE.
In [Lod00] the satisfiability problem for BE formulas interpreted over all non-strict linear
structures was found to be undecidable. The proof is based on reducing the non-halting
problem of a Turing machine on a blank tape to the satisfiability problem for BE.

6.2.3 The Logic D

The logic is a sub-interval relation, which only allows to look inside the current interval
[HS91]. The formulas of the logic D are recursively defined as follows:

φ ::= p | ¬φ | φ ∧ ψ | 〈D〉φ

Besides the strict and non-strict versions, the logic D has different semantic variations,
depending on which sub-interval relation is assumed. Thus, the semantic definition of
modal operator 〈D〉 is defined as follows:

M, [t1, t2] |= 〈D〉φ iff there exists an sub-interval [t′1, t
′
2]of [t1, t2] such thatM, [t′1, t

′
2] |= φ

The sub-interval logic was first studied in [vB91], where the subinterval relation ⊆ is con-
sidered. When the strict semantics is considered and formulas are interpreted over the
rational numbers or the class of all linear orderings, the logic D becomes equivalent to the
standard modal logic S4. When formulas are interpreted over integers, the logic D becomes
equivalent to the modal logic S4 with Grzegorczyk’s Axiom, [D] ([D](p → [D]p)→ p)→ p,
expressing that ⊆ is well-formed. The satisfiability problem for both S4 and S4 with Grze-
gorczyk’s Axiom is known to be PSPACE-complete ([CR03], [DG00]).

In the literature there is no information about decidability results and axiomatization sys-
tems for the logic D when the non-strict semantics and/or the proper non-strict subintreval
relation ⊂ is considered over any class of linear orders.

6 INTERVAL TEMPORAL LOGICS 28

6.2.4 Propositional Neighbourhood Logic

Propositional neighbourhood logic is the propositional fragment of first-order neighbour-
hood logics introduced in [CH98]. It has been studied on both strict and non-strict linear
structures [GMS03a]. The language with non-strict semantics is called PNLπ+, and it in-
cludes the modal operators ♦r (met by) and ♦l (meets), and the model constant π. The
formulas of PNLπ+ is defined as follows:

φ ::= p | π | ¬φ | φ ∧ ψ | ♦rφ | ♦lφ

The dual operators, �l and �r, can be defined as usual.

Let beM be a model, V : Φ 7→ 2I(T), and [t1, t2] ∈ I(T). The formal semantics of PNLπ+

formulas is then defined as follows:

M, [t1, t2] |= p iff [t1, t2] ∈ V (p) for p ∈ Φ

M, [t1, t2] |= π iff t1 = t2

M, [t1, t2] |= ¬φ iff notM, [t1, t2] |= φ

M, [t1, t2] |= φ ∧ ψ iffM, [t1, t2] |= φandM, [t1, t2] |= ψ

M, [t1, t2] |= ♦rφ iff (∃t3 ≥ t2) s.t. M, [t2, t3] |= φ

M, [t1, t2] |= ♦lφ iff (∃t3 ≤ t1) s.t. M, [t3, t1] |= φ

Note that the semantic definition given above is for non-strict linear orderings. In case of
strict linear structures semantics of the modal operators can be defined similarly:

M, [t1, t2] |= ♦rφ iff (∃t3 > t2) such thatM, [t2, t3] |= φ

M, [t1, t2] |= ♦lφ iff (∃t3 < t1) such thatM, [t3, t1] |= φ

Assume PNL+ denotes the non-strict PNL without the modal constant π, and PNL−

denotes the strict PNL without the modal constant π . It is known that the logic PNLπ+

subsumes both PNL+ and PNL−.

Given that formulas are interpreted over strict linear models, PNL− has enough expres-
sive power to distinguish the different classes of linear structures, such as discreteness,
continuity, boundness, or completeness:

unbound ≡�rφ→ ♦rφ

dense ≡(♦r♦rφ→ ♦r♦r♦rφ) ∧ (♦r�rφ→ ♦r♦r�rφ)

discrete≡(�r⊥ → �l (�r�r⊥ ∨ ♦r (♦r> ∧�r�r⊥)))∧

((♦r> ∧�r (φ ∧�l¬φ ∧�rφ))→ �l�l♦r (♦r¬φ ∧�r�rφ))

6 INTERVAL TEMPORAL LOGICS 29

complete ≡♦r♦r�lφ ∧ ♦r�r¬�lφ→ ♦r (♦r�l�lφ ∧�r♦r¬�lφ)

Since PNL− can be encoded into PNLπ+, the above classes of structures can also be defined
in PNLπ+.

In [GMS03a] several sound and complete axiomatic systems are provided for various classes
of models, including strict linear structures, strict linear structures, complete unbounded
linear structures, unbounded structures, dense structures, discrete structures, dense un-
bounded structures and discrete unbounded structures.

As for decidability results, in [BMS07a] the authors show that the satisfiability problem
for PNLπ+, PNL+ and PNL−over the integers is NEXPTIME-complete. They develop a
sound and complete tableau-based decision procedure, and prove that it is optimal. In
[BGMS07], the expressive power of PNLπ+, PNL+ and PNL− is compared, and it is shown
that PNLπ+ is strictly more expressive than PNL+ and PNL−. Then, the authors prove
that the satisfiability problem for PNLπ+over the class of all linear orders, as well as over
some natural subclasses of it, such as the class of all well-orders and the class of all finite
linear orders, can be decided in NEXPTIME by reducing it to the satisfiability problem for
the two-variable fragment of first-order logic over the same classes of structures.

An important fragment of the propositional neighbourhood logic is the right propositional
neighbourhood logic (RPNL) which is based on the right neghbourhood relation between
intervals. As in the case of propositional neighbourhood logic, the language with non-strict
semantics is called RPNLπ+. The non-strict fragment without the modal constant π is
denoted by RPNL+, and the strict fragment without the modal constant π is denoted
by RPNL−. As for decidability results, in [BM05] an EXSPACE tableau-based decision
procedure is devised for RPNL− interpreted over natural numbers. In [BMS07b] the authors
develop an alternative NEXPTIME decision procedure that works for all variants of RPNL
(RPNLπ+, RPNL+, and RPNL−) interpreted over natural numbers, and they prove its
optimality.

6.2.5 The Logic CDT

The Logic CDT was introduced by Venema in [Ven91]. It is the most expressive proposi-
tional interval logic over non-strict linear structures. The formulas of CDT logic is recur-
sively defined as follows:

φ ::= p | π | ¬φ | φ ∧ ψ | φCψ | φDψ | φTψ

Assume that the total ordering is non-strict. The formal semantics of CDT formulas is
then defined as follows:

6 INTERVAL TEMPORAL LOGICS 30

M, [t1, t2] |= π iff t1 = t2

M, [t1, t2] |= p iff [t1, t2] ∈ V (p) for p ∈ Φ

M, [t1, t2] |= ¬φ iff notM, [t1, t2] |= φ

M, [t1, t2] |= φ ∧ ψ iffM, [t1, t2] |= φandM, [t1, t2] |= ψ

M, [t1, t2] |= φCψ iff (∃t3 : t1 ≤ t3 ≤ t2) s.t. M, [t1, t3] |= φ andM, [t3, t2] |= ψ

M, [t1, t2] |= φDψ iff (∃t3 : t3 ≤ t1) s.t. M, [t3, t1] |= φ andM, [t3, t2] |= ψ

M, [t1, t2] |= φTψ iff (∃t3 : t2 ≤ t3) s.t. M, [t2, t3] |= φ andM, [t1, t3] |= ψ

Since the logic HS is the propositional interval logic of Allen’s relations, every propositional
interval logic with unary modalities based on Allen’s relations is subsumed by CDT:

〈B〉ϕ = ϕC(¬π);
〈
B
〉
=(¬π)Tϕ;

〈E〉ϕ = (¬π)Cϕ;
〈
E
〉
=ϕD(¬π);

〈A〉ϕ = (¬π ∧ ϕ)T>;
〈
A
〉
=(¬π ∧ ϕ)D>;

In [Ven91] a sound and complete axiomatic system is provided for the logic CDT which is
interpreted over non-strict linear models. This axiomatic system can be extended for the
classes of discrete linear orderings, dense linear orderings, etc. As a consequence of the
previous results for the logic HS, the satisfiability problem for CDT is not decidable over
almost all interesting classes of linear ordering, including N,Z,R, etc.

A generalization of CDT to (non-strict) partial orderings with the linear interval property,
called BCDT+, has been recently introduced in [GMS03b]. BCDT+ features the same
operators as CDT; however, it is interpreted over partially ordered domains with linear
intervals. The decidability and axiomatizability of the strict versions of CDT and BCDT+

have not been studied yet; but it is natural to expect that similar results aply there too.

6.2.6 The Logic PITL

PITL is the propositional fragment of the First-order Interval Temporal Logic (ITL) (see
Section 3.2). The formulas of PITL logic is recursively defined as follows:

φ ::= p | π | ¬φ | φ ∧ ψ | φC

The modalities 〈B〉 and 〈E〉 can be defined as follows:

〈B〉φ ≡ φCπ and 〈E〉φ ≡ ¬πC

6 INTERVAL TEMPORAL LOGICS 31

PITL was originally restricted to the class of discrete linear orderings with finite time,
with the chop operator is paired with a next operator ©, instead of π. Intervals in such
structures will be identified with the finite sequences of points.

The satisfiability problem for PITL interpreted over the class of non-strict discrete struc-
tures is undecidable [Mos83].

The satisfiability problem for PITL is reduced to checking the emptiness of the intersection
of two context-free grammars. A PITL formula is satisfiable if and only if the intersection
of the languages generated by two context-free grammars, over which PITL formula is
constructed, is not empty. This problem is known to be undecidable; thus the satisfiability
problem for PITL is undecidable.

The satisfiability problem for PITL interpreted over non-strict linear structures and non-
strict dense linear structures is also undecidable.

Decidable variants of PITL, interpreted over discrete models, can be obtained by imposing
the locality projection principle. Locality projection means that each propositional variable
true over an interval if and only if it is true at its first state. This allows one to collapse all
the intervals starting at the same state into the single interval consisting of the first state
only. Let LPITL be the logic obtained by imposing the locality projection principle to
PITL. The syntax of LPITL coincides with that of PITL. However, in LPITL propositional
variables evaluated over points instead of intervals.

[Mos83] introduced the logic QLPITL, which is an extension of LPITL over finite time with
quantification over propositional variables. It was also shown that the satisfiability problem
for the loic QLPITL interpreted over the class of non-strict discrete linear structures is
(non-elementarily) decidable.

LPITL was also extended with the chop-star modality, denoted by * [Mos83, Mos00a,
Mos00b, Mos03]. For any φ, φ∗ holds over a given discrete interval if and only if the
interval can be chopped into zero or more parts such that φ holds over each of them. The
resulting logic is called LPITL∗, and it is interpreted over finite or infinite discrete linear
structures.

In [Mos03] a sound and complete axiomatic system is provided for LPITL∗ which is inter-
preted over non-strict discrete linear structures.

6.3 First-Order Interval Temporal Logics

First-order interval temporal logics have been introduced as a tool for the formal specifi-
cation and verification of hardware real time systems. ITL is the most commonly known
first-order interval temporal logic. Numerous extensions of ITL have been shown to be
useful in the specification of various kinds of software and hardware systems.

6 INTERVAL TEMPORAL LOGICS 32

6.3.1 The Logic ITL

ITL, interpreted over discrete linear orderings with finite time intervals, was first introduced
in [Mos83]. The formulas of ITL are constructed from the following: an infinite set of global
(independent of time and time intervals) variables x, y, z, ..., an infinite set of temporal
variables t, t′, ..., an infinite set of global function symbols fn, gm, ..., where fn is a function
of arity n and gm is a function of arity m, an infinite set of predicate symbols Pn, Rm, ...,
where Pn is a predicate of arity n and Rm is a predicate of arity m, an infinite set of
temporal propositional letters X,Y, The set of terms θ, θi is defined by the following
abstract syntax:

θ ::= x | t | fn (θ1, ..., θn)

The formulas of ITL can be recursively defined as follows:

φ ::= X | Pn (θ1, ..., θn) | ¬φ | φ ∧ ψ | φCψ | (∃x)φ

Let ∆ be the set of temporal variables, Φ be the set of temporal propositional letters and I
be the set of all bounded and closed intervals of real numbers {[t1, t2] : t1 ≤ t2 ∧ t1, t2 ∈ R}.
The meanings of temporal variables and propositional letters, i.e. the interval-dependent
symbols, are given by the interpretation:

J ∈ (∆→ (I → R)) ∪ (Φ→ (I → {true, false}))

where J (t) ([t1, t2]) ∈ R for all t ∈ ∆, J (`) ([t1, t2]) = t2 − t1 (` is a special temporal
variable denoting the interval length) , J (X) ([t1, t2]) ∈ {true, false} for all X ∈ Φ.

A valuation is a mapping V which associates a real number with each global variable. Given
a variable x, two valuations V and V ′ are said to be x − equivalent if V (y) = V ′ (y) for
every global variable y which is different from x.

Assume that a total function fn∈ Rn→R is associated with each n-ary function symbol
fn. The semantics of a term θ at an interval [t1, t2] under a valuation V is denoted by
J V[t1,t2] (θ). The function J V[t1,t2] is recursively defined as follows:

- for a global variable x, J V[t1,t2] (x) = V (x)

- for a temporal variable t, J V[t1,t2] (t) = J (t) ([t1, t2])

- for a term θ of the form fn (θ1, ..., θn), J V[t1,t2] (θ) = fn (α1, ..., αn) where αi = J V[t1,t2] (θi)
for 1 ≤ i ≤ n

6 INTERVAL TEMPORAL LOGICS 33

Assume that a total function Gn∈ Rn→{true, false} is associated with each n-ary relation
symbol Gn. LetM = 〈J ,V〉 be a model for ITL. The formal semantics of ITL formulas is
then defined as follows:

M, [t1, t2] |= X iff J (X) ([t1, t2]) = true

M, [t1, t2] |= Gn (θ1, ..., θn) iff Gn (α1, ..., αn) = true where αi = J V[t1,t2] (θi)

for 1 ≤ i ≤ n

M, [t1, t2] |= ¬φ iff notM, [t1, t2] |= φ

M, [t1, t2] |= φ ∧ ψ iffM, [t1, t2] |= φ andM, [t1, t2] |= ψ

M, [t1, t2] |= φCψ iff (∃t3 : t1 ≤ t3 ≤ t2) M, [t1, t3] |= φ and

M, [t3, t2] |= ψ

M, [t1, t2] |= (∃x)φ iff M, [t1, t2] |= φ for some value assignment V ′ which is x-equivalent
to V

A sound and complete axiomatic system is represented in [Dut95]. A term or formula is
called flexible if a temporal variable including the symbol ` or a propositional letter occurs
in the term or formula. A term or formula which is not flexible is called rigid.

Sound and complete axiomatic systems for local variants of ITL (with locality constraint)
for finite and infinite time were presented in [Dut95, Mos00b]. ITL was extended with
projection in [Gue00a] where a complete axiomatic system is provided. A probabilistic
extension of ITL was studied in [Gue00b]. Not surprisingly ITL is highly undecidable.

6.3.2 The Logic NL

ITL does not allow looking outside of the current interval. The logic NL was proposed in
[CHR91], where the left neighbourhood modality ♦l and right neighbourhood modality ♦r
were introduced. The formulas of NL can be recursively defined as follows:

φ ::= X | Pn (θ1, ..., θn) | ¬φ | φ ∧ ψ | ♦lφ | ♦rφ | (∃x)φ

where X and θi’s are defined as in ITL. The semantics of the modal operators ♦land ♦r is
defined as in PNL, and the rest of the semantics is defined as in ITL. NL can express any
of the modalities corresponding to the Allen’s relations; thus, it can represent the
properties of the underlying linear ordering, such as discreteness, density, etc. For
example, the chop operator C can be expressed in terms of the modalities ♦l and ♦r as
follows:

φCψ = ∃x, y (` = x+ y) ∧ ♦l♦r ((` = x) ∧ φ ∧ ♦r ((` = y) ∧ ψ))

6 INTERVAL TEMPORAL LOGICS 34

In [BC97] up and down modalities, represented by ♦u, ♦d respectively, were introduced,
and two dimensional version of NL, called NL2, was proposed. In [BRC00] a sound and
complete axiomatic system is provided for the logic NL. NL is an undecidable logic as in
ITL.

6.3.3 Duration Calculus

Duration Calculus (DC) is a first-order interval temporal logic with the additional notion
of state, which is characterized by a duration. The duration of a state is the length of
the time period during which the system remains in the state. Duration calculus has been
successfully applied to the specification and verification of real-time systems [GMS04]. It
was first introduced in [CHR91], where formulas are interpreted over the class of non-strict
interval structures based on R.

The formulas of DC can be recursively defined as follows:

φ ::= Pn (θ1, ..., θn) | ¬φ | φ ∨ ψ | φCψ | (∃x)φ

where θi’s are terms as defined in ITL, Pn is an n-ary predicate, C is the chop modality,
and x is a global variable.

Duration calculus is an extension of ITL in the sense that temporal variables other than `
have a structure

∫
S, where

∫
S is called a state duration and S is called a state expression.

The set of state expressions is generated from a set of state variables P,Q,R, ..., according
to following abstract syntax:

S ::= 0 | 1 | P | ¬S1 | S1 ∨ S2

Let S be a set of state of state variables, Φ be the set of temporal propositional letters and I
be the set of all bounded and closed intervals of real numbers {[t1, t2] : t1 ≤ t2 ∧ t1, t2 ∈ R}.
The meanings of state variables, temporal variable `, and propositional letters are given by
the interpretation:

J ∈ (S → (R→ {0, 1}))∪({`} → (I → R)) ∪ (Φ→ (I → {true, false}))

where J (S) (t) ∈ {0, 1} for all state variables S∈ S and t ∈ R, J (`) ([t1, t2]) = t2 − t1,
J (X) ([t1, t2]) ∈ {true, false} for all X ∈ Φ.

Given the interpretation J , the semantics of a state expression S is a total function = [S]
: R→ {0, 1} which has a finite number of discontinuity points only. For any time point t,
the semantics can be defined inductively on the structure of state expressions as follows:

6 INTERVAL TEMPORAL LOGICS 35

= [0] (t) = 0

= [1] (t) = 1

= [P] (t) = J (P) (t)

= [¬S1] (t) = 1−= [S1] (t)

= [S1 ∨ S2] (t) =

{
0 if = [S1] (t) = 0 and = [S2] (t) = 0
1 otherwise

The semantics of a duration
∫
S in a given model, with respect to an interval [t1, t2], can

be defined by =
[∫
S
]

([t1, t2]) =
∫ t2
t1
= [S] (t) dt.

For a given two interpretations = and =′whose values for any state variable S disagree in
at most a finite number of points in any interval we have

=
[∫
S
]

([t1, t2]) = =′
[∫
S
]

([t1, t2])

One can define some useful abbreviations in DC:

dSe ≡ ` = 0

dSe ≡
∫
S = ` ∧ ` > 0

Here dSe stands for : ”S holds almost everywhere over a strict interval”.
∫

1, usually
abbreviated by `, can be viewed as the length of the current interval.

All axioms and inference rules of ITL can be adopted for DC. However, additional axioms
are needed for temporal variables.

In [CH04] a sound and complete axiomatic system is provided for Duration Calculus. The
satisfiability problem for both first-order and propositional DC has been shown to be un-
decidable [CHS93]. Various fragments of DC have been investigated so far. In [CHS93] a
fragment of propositional DC, called RDC, was introduced. RDC formulas are generated
by

if S is a state expression, then dSe ∈ RDC

if φ, ψ ∈ RDC, then ¬φ, φ ∨ ψ, φCψ∈ RDC

It was shown that RDC has a decidable satisfiability problem when interpreted over N, Q
and R. In [Rab98] it was shown that the satisfiability problems for RDC interpreted over
N and RDC interpreted over R are decidable by providing a linear time reduction from
the equivalence problem for star-free expressions to the validity problem for the considered
fragment of DC. When RDC is extended with the formulas of the type ` = k, the satisfia-
bility problem remains decidable over N. However, the problem becomes undecidable over

6 INTERVAL TEMPORAL LOGICS 36

Q and R. The fragment of propositional DC whose formulas are constructed from primitive
formulas of the type

∫
S1 =

∫
S2 is undecidable. In [Fra96] the decidable class of RDC

was extended for continuous time by including
∫
S = k, but with a restriction on the finite

variability such that the number of discontinuous points of any state in any unit interval
has a fixed upper bound. In [Gra99] a decidability result was presented for a variant of
DC where negation is removed from RDC but an iteration operator is introduced together
with the inequalities ` ≥ k and ` ≤ k, where k ∈ N. In [CSDC00] another fragment of
propositional DC was introduced by imposing some syntactic restrictions. It is shown that
this logic is expressive enough to capture Allen’s relations. By proposing a sound, complete
and terminating tableau system for the logic it is shown that the satisfiability problem is
decidable. The tableau system is a mixed procedure, combining standard tableau tech-
niques with temporal constraint network resolution algorithms. In [Pan01] quantification
over states are introduced. The satisfiability of formulas is still decidable. This decision
algorithm was implemented as a tool called DCVALID. In [CH98] Duration Calculus and
first-order neighbourhood logic were combined, and a axiomatic systems for DC and NL
were merged. The fragment of DC/NL obtained by restricting the formulas to be con-
structed only form the primitive formulas of the type dSe was proved to be decidable, while
extension of the extension with the formulas of the type ` = k is undecidable.

DC has been applied to several areas, such as real-time and hybrid systems. Automatic
verification and model-checking tools have been developed and analyzed. In [Fra96] model
checking methods for DC were described, and it was argued that the class of models is
restricted to the possible behaviours of embedded real-time systems, model checking pro-
cedures are feasible for rich subsets of DC.

6.4 Temporal Logics for Events and States

Researchers have tried to develop computationally manageable logics which can capture
the formal semantics of temporal constructions in natural language [Dow79, CP93, HS94,
Ter96]. However, these formal systems exhibit high computational complexity. In gen-
eral, semantics of temporal constructions are represented in a first-order interval temporal
logic where variables range over time-intervals, predicates correspond to event-types and
temporal-order relations. Such a logic is undoubtedly undecidable. Using temporal log-
ics with limited expressive power is motivated by work in natural language semantics and
discourse. TPL, introduced in [PH05], is such an interval temporal logic with a limited
expressive power. A simple context-free grammar is used to define a fragment of English
featuring the temporal constructions. The phrase-structures assigned to this fragment can
be viewed as expressions in TPL. In [PH05] it has been shown that the satisfiability problem
is NEXPTIME-complete.

In the sequel, I denotes the set of intervals, where an interval is closed, bounded, non-

6 INTERVAL TEMPORAL LOGICS 37

empty subset of R. Temporal variables are denoted by the variables I, J, ..., which range
over I. Given that I represents the interval [t1, t2] and J represents the interval [t3, t4]
where t1, t2, t3, t4 ∈ R and t1 ≤ t3 ≤ t4 ≤ t2, the partial functions init (J, I) and fin (J, I)
denote the intervals [t1, t3] and [t4, t2], respectively. J ⊂ I means that J is a strict subset
of I. Similarly, J ⊆ I means that J is a non-strict subset of I.

Assume that E is a fixed infinite set of event atoms, and e ∈ E . The set of event relations
α is defined by the following abstract syntax:

α ::= e | ef | el

where the letter f and l stand for the adjectives first and last, respectively. That is, ef

denotes the first of finitely many events of type e, and el denotes the last of finitely many
events of type e within a temporal context I. However, in some cases finding the first or last
of events might be ambiguous. This might happen when an event e does not begin or end
before all others. In [PH05] this ambiguity is resolved as follows: Let J be the non-empty
set of all proper subintervals of I over which an event e occurs, and J ′ be the non-empty
subset whose elements have the earliest end-point. If we select J ∈ J ′ whose start-point is
latest, we get the smallest of the proper subintervals which have the earliest end-point, and
over which the event e occurs. Thus, the phrase the first e denotes the interval J within
a temporal context I. Similiarly, the phrase the last e denotes the smallest of the proper
subintervals which have the latest beginning-point, and over which the event e occurs.

The formulas of TPL can be recursively defined as follows:

φ ::= > | ¬φ | 〈e〉φ | [e]φ | {α}φ | {α}> φ | {α}< φ | φ ∧ ψ | φ ∨ ψ

The connectives → and ↔ can be defined in usual way.

Let E be a fixed infinite set of events atoms, and I be the set of all bounded, closed,
non-empty intervals of real numbers {[t1, t2] : t1 ≤ t2 ∧ t1, t2 ∈ R}. A model M is a finite
subset of I × E . For any J ∈ I and e ∈ E ,M (J) andM (e) can be defined as follows:

M (J) ≡ {e ∈ E | 〈J, e〉 ∈ M} andM (e) ≡ {J ∈ I | 〈J, e〉 ∈ M}

where 〈J, e〉 represents that the event e occurs over the interval J . Here we assumed that
models be finite. This is due to the fact that there are situations in which event atoms are
instantiated in finite contexts. The formulas which require infinite models are not satisfiable
in TPL. For example, 〈e〉> ∧ [e] 〈e〉>is unsatisfiable since the formula requires an infinite
model.

LetM be a model, and I, J ∈ I. The semantics of the event-relation α can be defined as
follows:

6 INTERVAL TEMPORAL LOGICS 38

M, J |=I e iff J ⊂ I and e ∈M (J)

M, J |=I e
f iffM, J |=I e and J is the minimal-first interval of I

M, J |=I e
l iffM, J |=I e and J is the minimal-last interval of I

Minimal - and maximal- first interval can be defined by the following definition: Assume
that J = [t1, t2] ⊂ I where J satisfies some property P. J is the minimal-first subinterval
of I if for every J ′ = [t′1, t

′
2] ⊂ I where J satisfies the property P either t2 < t′2 or t2 = t′2

and t1 ≥ t′1. Similarly, J is the minimal-last subinterval of I if for every J ′ = [t′1, t
′
2] ⊂ I

where J satisfies the property P either t1 > t′1 or t1 = t′1 and t2 ≤ t′2. SinceM is finite if
there exists any J ⊂ I with 〈J, e〉 ∈ M, then the minimal-first and minimal-last interval J
exist, and they are unique.

LetM = 〈I, E〉 be a model for TPL and I ∈ I. The formal semantics of TPL formulas is
then defined as follows:

M |=I >is always true

M |=I 〈e〉φ iff there is a J ⊂ I such thatM, J |=I e andM |=J φ

M |=I [e]φ iffM, J |=I e impliesM |=J φ for all J ⊂ I

M |=I {α}φ iff there is a unique J ⊂ I such thatM, J |=I α andM |=J φ

M |=I {α}< φ iff there is a unique J ⊂ I such thatM, J |=I α andM |=init(J,I) φ

M |=I {α}> φ iff there is a unique J ⊂ I such thatM, J |=I α andM |=fin(J,I) φ

M |=I ¬φ iff notM |=I φ

M |=I φ ∧ ψ iffM |=I φ andM |=I ψ

M |=I φ ∨ ψ iffM |=I φ orM |=I ψ

In [PH05] it is shown that the satisfiability problem is NEXPTIME-complete. Upper com-
plexity bound is achieved by establishing an exponential bound on the size of satisfying
models. This is done by constituting a terminating tableu decision procedure for TPL,
interpreted over a linear time flow, and finite models including finitely many events that
occur over bounded intervals. The hardness-proof is done by encoding any instance of any
exponential tiling problem as an instance of the satisfiability problem of TPL.

In [Kon06] TPL is extended with the notion of state models and durations, and the new
logic is called TPL∗. Thus, TPL∗ contains both event-based and state-based views, and it is
more suitable than TPL for specifying properties of finite sequences of states, and presenting
the semantics of temporal constructions in English. TPL∗ also includes the chop modality
C which is necessary to capture important real-time problems like behaviour of complex
systems. [Kon06] also proposes a terminating tableu system for the logic TPL∗, thus
showing that its satisfiability problem is decidable. Indeed, this problem is still NEXTIME-
complete.

7 CONCLUSION 39

7 Conclusion

In this survey paper we have outlined recent important developments on temporal logics
by presenting various formal systems dealing with various time structures, and discussing
important features, such as (un)decidability results, expressiveness and axiomatization sys-
tems.

References

[1] [Aba89] Abadi M. The power of temporal proofs. Theoretical Computer Science, vol.
64, pp. 35-84, 1989.

[2] [Abr80] Abrahamson K. Decidability and expressiveness of logics of programs. Ph.D.
Thesis, University of Washington, 1980.

[3] [AF94] Allen J. F. and Ferguson G. Actions and Events in Interval Temporal Logic.
Journal of Logic and Computation, vol. 4, num. 5, pp. 531-579, 1994.

[4] [AH85] Allen J. F. and Hayes J. P. A Common-Sense Theory of Time. Proceedings of
the Ninth International Joint Conference on Artificial Intelligence, pp. 528-531, 1985.

[5] [AH89] Allen J. F. and Hayes J. P. Moments and Points in an Interval-based Temporal
Logic. Computational Intelligence 5, pp. 225-238, 1989.

[6] [All83] Allen J. F. Maintaining Knowledge about Temporal Intervals. Communica-
tions of the ACM, vol. 26, pp. 832-843, 1983.

[7] [All84] Allen J. F. Towards a General Theory of Action and Time. Artificial Intelli-
gence vol. 23, pp. 123-154, 1984.

[8] [ANS79] Andreka H., Nemeti I. and Sain I. Completeness problems in verification of
programs and program schemes. In Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science, Springer, 1979.

[9] [ANvB98] Andreka H., Nemeti I. and van Benthem J. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, vol. 27, pp. 217-274, 1998.

[10] [AVFY98] Abiteboul S., Vianu V., Fordham B. and Yesha Y. Relational transducers
for electronic commerce. In PODS’98, pp. 179-187, ACM Press, 1998.

[11] [BC97] Barua R., Chaochen Z. Neighbourhood Logics. NL and NL2, report num. 120,
UNU/IIST, 1997.

[12] [BGG97] Boerger E., Graedel E. and Gurevich Y. The Classical Decision Problem.
Perspectives in Mathematical Logic, Springer, 1997.

REFERENCES 40

[13] [BGMS07] Bresolin D., Goranko V., Montanari A., and Sciavicco G. On Decidability
and Expressiveness of Propositional Interval Neighbourhood Logics. In Proceedings of
the International Symposium on Logical Foundations of Computer Science (LFCS),
vol. 4514 of LNCS, pp. 84-99, 2007.

[14] [BKP86] Barringer H., Kuiper R. and Pnueli A. A Really Abstract Concurrent Model
and its Temporal Logic. POPL, pp. 173-183, 1986.

[15] [BM05] Bresolin D. and Montanari A. A Tableau-based Decision Procedure for Right
Propositional Neighbourhood Logic. In Proceedings of TABLEAUX 2005, vol. 3702
of LNAI, pp. 63-77, 2005.

[16] [BMP81] Ben-Ari M., Manna Z. and Pnueli A. The temporal logic of branching time.
In Proceedings of the 8th Annual ACM Symposium on Principles of Programming
Languages, pp. 164-176, 1981.

[17] [BMS07a] Bresolin D., Montanari A. and Sala P. An Optimal Tableau-based Decision
Algorithm for Propositional Neighbourhood Logic. In Proceedings of STACS 2007:
24th International Symposium on Theoretical Aspects of Computer Science, vol. 4393
of LNCS, pp. 549-560, 2007.

[18] [BMS07b] Bresolin D. Montanari A and Sciavicco G. An Optimal Tableau-based De-
cision Procedure for Right Propositional Neighbourhood Logic. Journal of Automated
Reasoning, vol 38(1-3), pp. 173-199, 2007.

[19] [BRC00] Barua R., Roy S. and Chaochen Z. Completeness of Neighbourhood Logic.
Journal of Logic and Computation, vol. 10, num. 2, pp. 271-295, 2000.

[20] [Bur82] Burges J. P. Axioms for tense logic II: Time periods. Notre Dame Journal of
Formal Logic, v. 23, pp. 375-383, 1982.

[21] [CE81] Clarke E. and Emerson E. A. Synthesis of synchronization skeletons for
branching time temporal logic. In Proceedings of IBM workshop on Logic of Pro-
grams, pp. 52-71, Springer, 1981.

[22] [CG96] Campos S. and Grumberg O. Selective Quantitative Analysis and Interval
Model Checking: Verifying Different Facets of a System. Proceedings of the 8th In-
ternational Conference on Computer Aided Verification, Lecture Notes in Computer
Science, Springer, num. 1102, pp. 257-268, 1996.

[23] [CGP00] Clarke E., Grumberg O. and Peled D. A. Model Checking. MIT Press, 2000.

[24] [CH98] Chaochen Z. and Hansen M. An Adequate First Order Interval Logic. Compo-
sitionality: the Significant Difference, Lecture Notes in Computer Science, Springer,
num. 1536, pp. 584-608, 1998.

REFERENCES 41

[25] [CH04] Chaochen Z. and Hansen M. Duration Calculus. A Formal Approach to
Real-Time Systems. EATCS Series of Monographs in Theoretical Computer Science,
Springer, 2004.

[26] [Cha99] Chaochen Z. Duration Calculus: A Logical Approach to Real-Time Systems.
Proceedings of the Annual Conference of the European Association for Computer Sci-
ence Logic, Lecture Notes in Computer Science, Springer, num. 1548, pp. 1-7, 1999.

[27] [Cho95] Chomicki J. Efficient checking of temporal integrity constraints using
bounded history encoding. ACM Transactions on Database Systems, vol. 20, pp. 149-
186, 1995.

[28] [CHR91] Chaochen Z., Hoare C. and Ravn A. P. A Calculus of Durations. Information
Processing Letters, vol. 40, pp. 269-276, 1991.

[29] [CHR93] Chaochen Z., Hansen M. and Ravn A. An Extended Duration Calculus for
Real-time Systems. Hybrid Systems, Lecture Notes in Computer Science, Springer,
num. 736, pp. 36-59, 1993.

[30] [CHS93] Chaochen Z., Hansen M. and Sestoft P. Decidability and Undecidability
results for Duration Calculus. In Proceedings of the 10th Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science, Springer, num.
665, pp. 58-68, 1993.

[31] [CHX95] Chaochen Z., Hung D. V. and Xiaoshan L. A Duration Calculus with Infinite
Intervals. Fundamentals of Computation Theory, Lecture Notes in Computer Science,
Springer, num. 965, pp. 16-41, 1995.

[32] [CP93] Crouch R. and Pulman S. G. Time and Modality in a Natural Language
Interface to a Planning System. Artificial Intelligence, vol. 63, num. 1-2, pp. 265-304,
1993.

[33] [CR03] Chagrov A.V. and Rybakov M.N. How Many Variable Does One Need to
Prove PSPACE-hardness of Modal Logics. In Advances in Modal Logic, vol. 4, pp.
71-82, 2003.

[34] [CT98] Chomicki J. and Toman D. T emporal logics in information systems. In Logics
for Database and Information Systems, Kluwer, 1998.

[35] [CX94] Chaochen Z. and Xiaoshan L. A Mean Value Calculus of Durations. A Clas-
sical Mind: Essays in Honour of C.A.R. Hoare, Prentice Hall International Series in
Computer Science, pp. 431-451, 1994.

[36] [DG00] Demri S. and Gore R. An O((n.logn)3)- Time Transformation from Grz into
Decidable Fragments of Classical First-Order Logic. In Automated Deduction in Clas-
sical and Non-Classical Logics, vol.1761 of LNAI, pp. 153-167, 2000.

REFERENCES 42

[37] [Dow79] Dowty D. Word Meaning and Montague Grammar. Dordrecht: D. Reidel,
1979.

[38] [Dut95] Dutertre B. On First-order Interval Temporal Logic. Technical report, no.
CSD-TR-94-3, Department of Computer Science, Royal Holloway College, University
of London, 1995.

[39] [EC80] Emerson E. A. and Clarke E. M. Characterizing correctness properties of par-
allel programs using fixpoints. In Proceedings of 7th International Colloquium on Au-
tomata, Languages and Programming, Lecture Notes in Computer Science, Springer,
no. 85, pp. 169-181, 1980.

[40] [EC82] Emerson E. A. and Clarke E. M. U sing branching time temporal logic to
synthesize synchronization skeletons. Science of Computer Programming 2, pp. 241-
266, 1982.

[41] [EH82] Emerson E. A. and Halpern, J. Y. Decision Procedures and expressiveness
in the temporal logic of branching time. In Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, pp. 169-180, 1982.

[42] [EH86] Emerson E. A. and Halpern, J. Y. ‘Sometimes’ and ‘Not Never’ Revisited:
On Branching versus Linear Time Temporal Logic. JACM, vol. 33, no. 1, pp. 151-
178,1986.

[43] [EJ88] Emerson E. A. and Jutla C.S. The complexity of free automata and logics of
programs. In Proceedings of the 29th Annual IEEE-CS Symposium on Foundations
of Computer Science, pp. 328-337, 1988.

[44] [Eme95] Emerson E. A. Temporal and Modal Logic. Handbook of Theoretical Com-
puter Science, North-Holland Pub. Co., 1995.

[45] [FHMV96] Fagin R., Halpern J., Moses Y. and Vardi M. Reasoning About Knowledge.
MIT Press, 1996.

[46] [Fis96a] Fisher M. An introduction to executable temporal logics. Knowledge Engi-
neering Review, vol. 11, pp. 43-56, 1996.

[47] [Fis96b] Fisher M. A temporal semantics for concurrent MetateM. Journal of Symbolic
Computation, vol. 22, pp. 627-648, 1996.

[48] [FM94] Fiaderio J.L. and Maibum T. Action Refinement in a Temporal Logic of
Objects. Temporal Logic, Lecture Notes in Computer Science, Springer , vol. 827,
1994.

REFERENCES 43

[49] [Fra96] Fraenzle M. Synthesizing Controllers from Duration Calculus. Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science,
vol. 1135, pp. 168-187, 1996.

[50] [Gal84] Galton A. The Logic of Aspect. Claredon Press, Oxford, 1984.

[51] [Gal90] Galton A. A Critical Examination of Allen’s Theory of Action and Time.
Artificial Intelligence, vol. 42, pp. 159-198, 1990.

[52] [GD99] Guelev D. and Dang V. H. On the Completeness and Decidability Duration
Calculus with Iteration. Advances in Computer Science, Lecture Notes in Computer
Science, vol. 1742, pp. 139-150, 1999.

[53] [GHR94] Gabbay D., Hodkinson I. and Reynolds M. Temporal Logic: Mathematical
Foundations and Computational Aspects. Clarendon Press, vol.1, Oxford, 1994.

[54] [GKWZ02] Gabbay D., Kurucz A., Wolter F. and Zakharyaschev M. Many-
Dimensional Modal Logics: Theory and Applications. Elsevier, 2002.

[55] [GMS03a] Goranko V., Montanari A. and Sciavicco G. Propositional Interval Neigh-
bourhood Temporal Logics. Journal of Universal Computer Science, vol. 9, num. 9,
pp. 1137-1167, 2003.

[56] [GMS03b] Goranko V., Montanari A. and Sciavicco G. A General Tableau Method for
Propositional Interval Temporal Logics. Proceedings of the International Conference
Tableaux 2003, Lecture Notes in Artificial Intelligence, Springer, pp. 102-116, 2003.

[57] [GMS04] Goranko V., Montanari A. and Sciavicco G. A Road Map of Interval Tem-
poral and Duration Calculi. Journal of Applied Non-Classical Logics, vol. 14, 2004.

[58] [Gol87] Goldblatt R. Logics of time and computation. Stanford Center for the study
of Language and Information, 1987.

[59] [GPSS80] Gabbay D., Pnueli A., Shelah S. and Stavi J. On the temporal analysis of
fairness. In Proceedings 7th ACM Symposium Principles of Programming Languages,
pp. 163-173, 1980.

[60] [Gra99] Graedel E. Decision procedures for guarded logics. In CADE’99, Lecture
Notes in Artificial Intelligence, Springer, vol. 1632, pp. 31-51, 1999.

[61] [GRF00] Gabbay D., Reynolds M. and Finger M. Temporal Logic: Mathematical
Foundations and Computational Aspects. Clarendon Press, vol.2, Oxford, 2000.

[62] [Gue00a] Guelev D. A Complete Proof System for First Order Interval Temporal
Logic with Projection. no. 202, UNU/IIST, 2000.

REFERENCES 44

[63] [Gue00b] Guelev D. Probabilistic Neighbourhood Logic. Proceedings of the 6th Inter-
national Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems,
Lecture Notes in Computer Science, vol. 1926, pp. 264-275, 2000.

[64] [Ham71] Hamblin C. L. Instants and intervals. Stadium Generale, vol. 27, pp. 127-134,
1971.

[65] [Han94] Hansen M. Model-Checking Discrete Duration Calculus. Formal Aspects of
Computing, vol. 6, pp. 826-845, 1994.

[66] [HC92] Hansen M. R. and Chaochen Z. Semantics and Completeness of Duration Cal-
culus. Real-Time: Theory in Practice, Lecture Notes in Computer Science, Springer,
num. 600, pp. 209-225, 1992.

[67] [HC97] Hansen M. and Chaochen Z. Duration Calculus: Logical Foundations. Formal
Aspects of Computing, vol. 9, pp. 283-330, 1997.

[68] [HMM83] Halpern J. Y., Manna Z., and Moszkowski B. A high-level semantics based
on interval logic. In Proceedings of 10th ICALP, pp. 278-291, 1983.

[69] [Hol91] Holzmann G.J. Design and Validation of Computer Protocols. Prentice Hall,
New Jersey, 1991.

[70] [HPS83] Harel D., Pnueli A. and Stavi Y. Process logic: Expressiveness, decidability,
completeness. JCSS, vol. 25, pp. 145-180, 1983.

[71] [HS91] Halpern J. Y. and Shoham Y. A Propositional Modal Logic of Time Intervals.
Journal of the ACM, vol. 38, num. 4, pp. 935-962, 1991.

[72] [HS94] Hwang C. H. and Schubert L. K. Interpreting tense, aspect and time adver-
bials. Proceedings of the First International Conference on Temporal Logic, Lecture
Notes in Computer Science, Springer, vol. 827, pp. 238-274, 1994.

[73] [Hum79] Humberstone L. Interval semantics for tense logic: Some remarks. Journal
of Philosophical Logic, vol. 8, pp. 171-196, 1979.

[74] [HWZ00] Hodkinson I., Wolter F. and Zakharyaschev M. Decidable fragments of
first-order temporal logics. Annals of Pure and Applied Logic, vol. 106, pp. 85-134,
2000.

[75] [Kam68] Kamp H. Tense Logic and the Theory of Linear Order. Ph.D. Thesis, Uni-
versity of California, LA, 1968.

[76] [Kam79] Kamp H. Events, Instants and temporal reference. Semantics from Different
Points of view, Springer, pp. 376-417, 1979.

REFERENCES 45

[77] [Kon06] Konur S. A Decidable Interval Temporal Logic for Events and States. TIME
2006, International Symposium on Temporal Representation and Reasoning, IEEE
Computer Society Press, 2006.

[78] [KP86] Kornatzky Y. and Pinter S. An extension to partial order temporal logic
(POTL). EE Publication no. 596, Department of Electrical Engineering, Technion-
Israel Institute of Technology, 1986.

[79] [Kro87] Kroger F. Temporal Logic of programs. Springer, 1987.

[80] [Lad87] Ladkin P. Logical Time Pieces. AI Expert, pp. 58-67, 1987.

[81] [Lam80] Lamport L. Sometimes is Sometimes ‘Not Never’: On the temporal logic of
programs. 7th Annual ACM Symposium on Principles of Programming Languages,
pp. 174-185, 1980.

[82] [Lod00] Lodaya K. Sharpening the Undecidability of Interval Temporal Logic. Pro-
ceedings of 6th Asian Computing Science Conference, Lecture Notes in Computer
Science, Springer, num. 1961, pp. 290-298, 2000.

[83] [LP00] Lichtenstein O. and Pnueli A. Propositional Temporal Logics: Decidability
and Completeness. Logic Journal of the IGPL, vol. 8, no.1, pp.55-85, Oxford Univer-
sity Press, 2000.

[84] [LPZ85] Lichtenstein O., Pnueli A. and Zuck L. The Glory of the Past. In Proceeding
Conferences on Logics of Programs, Lecture Notes in Computer Science, Springer,
vol. 193, pp. 196-218, 1985.

[85] [LS94] Laroussinie F. and Schnoebelen P. A hierarchy of temporal logics with past.
In Proceedings STACS 94, Lecture Notes in Computer Science, Springer, no. 775, pp.
47-48, 1994.

[86] [LSWZ02] Lutz C., Sturm H., Wolter F. and Zakharyaschev M. A tableau decision
algorithm for modalized ALC with constant domains. Studia Logica, vol. 72, pp.
199-232, 2002

[87] [McD82] McDermott D. A temporal Logic for reasoning about process and plans.
Cognitive Science, vol. 6, pp. 101-155, 1982.

[88] [Mer92] Merz. Decidability and incompleteness results for first-order temporal logics
of linear time. Journal of Applied Non-classical Logic, vol. 2, pp. 139-156, 1992.

[89] [Mos83] Moszkowski B. Reasoning about Digital Circuits. PhD Thesis, Stanford Uni-
versity, Computer Science Department, 1983.

REFERENCES 46

[90] [Mos00a] Moszkowski B. An Automata-Theoretic Completeness Proof for Interval
Temporal Logic. Proceedings of the 27th International Conference on Automata, Lan-
guages and Programming, Lecture Notes in Computer Science, Springer, no. 1853, pp.
223-234, 2000.

[91] [Mos00b] Moszkowski B. A complete axiomatization of Interval Temporal Logic with
infinite time. Proceedings of the 15th Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press, pp. 242-251, 2000.

[92] [MP81a] Manna Z. and Pnueli A. Verification of concurrent programs: The temporal
framework. In the correctness problem in computer science, pp. 215-273, Academic
Press, New York, 1981.

[93] [MP81b] Manna Z. and Pnueli A. Verification of concurrent programs: Temporal
proof principles. Lecture Notes in Computer Science, Springer, vol. 131, pp. 200-252,
1981.

[94] [MR99] Marx M. and Reynolds M. Undecidability of Compass Logic. Journal of Logic
and Computation, vol. 9, num. 6, pp. 897-914, 1999.

[95] [MSV02] Montanari A., Sciavicco G. and Vitacolonna N. Decidability of Interval
Temporal Logics over Split-frames via Granularity. In Proceedings of the 8th Europian
Conference on Logics in AI, vol. 2424 of LNAI, pp. 259-270, 2002.

[96] [OH95] Ohrstrom P. and Hasle P. F. Temporal Logic: From Ancient Ideas to Artificial
Intellgience. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

[97] [Pan01] Pandya P.K. Specifying and Deciding Quantified Discrete-Time Duration
Calculus Formulas using DCVALID. Workshop on Real-Time Tools, Aalborg, 2001.

[98] [Par78] Parikh R. A decidability result for second order process logic. In Proceedings
of 19th FOCS, IEEE, pp. 177-183, 1978.

[99] [Par94] Parsons T. Events in the Semantics of English: A Study of Subatomic Se-
mantics. MIT Press, 1994.

[100] [Pen95] Penczek W. Branching time and partial order in temporal logics. In Time
and Logic: a computational approach, pp. 179-228, UCL Press, London, 1995.

[101] [PH05] Pratt-Hartman I. Temporal Prepositions and their logic.Artificial Intelligence,
vol. 166(1-2), pp. 1-36, 2005.

[102] [PHB93] Pratt-Hartmann I. and Bree D. The Expressive Power of the English Tem-
poral Preposition System. Technical Report, UMCS-93-1-7, University of Manchester.

REFERENCES 47

[103] [Pli97] Pliuskevicius R. On the completeness and decidability of a restricted first-
order linear temporal logic. In Lecture Notes in Computer Science, Springer, num.
1289, pp. 241-254, 1997.

[104] [Pnu85] Pnueli A. Linear and Branching Structures in the Semantics and Logics of
Reactive Systems. Proceedings of the 12th ICALP, pp. 15-32, 1985.

[105] [PPH98] Penix J., Pecheur C. and Havelund K. Using Model Checking to Validate
AI Planner Domain Models. 23rd Annual Software Engineering Workshop, NASA
Goddard, 1998.

[106] [Pra76] Pratt. V. R. Semantical considerations on Floyd-Hoare logic. In Proceedings
of 17th FOCS, IEEE, pp. 109-121, 1976.

[107] [Pra79] Pratt V. R. Process Logic. In Proceedings of 6th POPL, ACM, pp. 93-100,
1979.

[108] [PW84] Pinter S. and Wolper P. A temporal logic for reasoning about partially or-
dered computations. In Proceedings of the 3rd Symposium on Principles of Distributed
Computing, pp. 28-37, 1984.

[109] [Rab98] Rabinovich A. Non-Elementary Lower Bound for Propositional Duration Cal-
culus. Information Processing Letters, vol. 66, pp. 7-11, 1998.

[110] [Rey96] Reynolds M. Axiomating first-order temporal logic: until and since over linear
time. Studia Logica, vol. 57, pp. 279-302, 1996.

[111] [Rey01] Reynolds M. An axiomatization of full computation tree logic. Journal of
Symbolic Logic, vol. 66, pp. 1011-1057, 2001.

[112] [Rey05] Reynolds M. An axiomatization of PCTL*. Journal of Information and Com-
putation, Elsevier,vol. 201, pp. 72-119, 2005.

[113] [RG93] Rao A. and Georgeff M. A model-theoretic approach to the verification of
situated reasoning systems. In Proceedings of IJCAI, 1993.

[114] [Rop80] Roper P. Intervals and tenses. Journal of Philosophical Logic, pp. 451-469,
1980.

[115] [SC85] Sistla A.P. and Clarke E.M. The complexity of propositional linear temporal
logic. Journal of ACM, vol. 32, pp. 733-749, 1985.

[116] [Sim87] Simons P. Parts, A Study in Ontology. Claredon Press, Oxford, 1987.

[117] [Spi00] Spielmann M. Verification of relational transducers for electronic commerce.
In PODS’2000, ACM, pp. 92-103, 2000.

REFERENCES 48

[118] [SVW87] Sistla A. P., Vardi Y. and Wolper P. The complementation problem for
Buchi automata with applications to temporal logics. Theoretical Computer Science,
vol. 49, pp. 217-237, 1987.

[119] [Sza95] Szalas A. Temporal logic of Programs: standard approach. In Time and logic:
A Computational Approach, pp. 1 -50, UCL Press, London, 1995.

[120] [Ter96] Ter Meulen A. G. Representing Time in Natural Language. MIT Press, Cam-
bridge, 1996.

[121] [vB83] van Benthem J. F. The Logic of Time. Dordrecht, 1983.

[122] [Ven67] Vendler Z. Linguistics and Philosophy. Cornell University Press, 1967.

[123] [Ven90] Venema Y. Expressiveness and Completeness of an Interval Tense Logic.
Notre Dame Journal of Formal Logic, vol. 31, num. 4, pp. 529-547, 1990.

[124] [Ven91] Venema Y. A Modal Logic for Choppping Intervals. Journal of Logic and
Computation, vol. 1, pp. 453-476, 1991.

[125] [Ven98] Venema Y. Temporal Logic. Blackwell Guide to Philosophical Logic, Blacwell
Publishers, 1998.

[126] [Wal47] Walker A. G. Durees et instants. La Revue Scientifique, num. 3266, 1947.

[127] [Whi72] Whitrow G. J. Reflections on the Concept of Time. The Study of Time,
Springer, vol. 1, pp. 1-11, 1972.

[128] [WZ99] Wolter F. and Zakharyaschev M. Modal description logics: modalizing roles.
Fundamenta Informaticae, vol. 39, pp. 411-438, 1999.

[129] [WZ00] Wolter F. and Zakharyaschev M. Temporalizing description logics. In Fron-
tiers of Combining Systems II, pp. 379-401, Research Studies Press LTD, UK, 2000.

[130] [WZ02] Wolter F. and Zakharyaschev M. Axiomatizing the monodic fragment of first-
order temporal logic. Annals of Pure and Apllied Logic, vol. 118, pp. 133-145, 2002.

