
Real-time and Probabilistic Temporal Logics: An
Overview?

Savas Konur

Department of Computer Science
University of Liverpool

November 2008

? This research was supported by EPSRC under the grant EP/F033567/1.



CONTENTS 2

Contents

1 Introduction 4

2 Classical Temporal Logic 5

3 Classification of Temporal Logics 6

3.1 Fundamental Entities of the Logic . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Temporal Domain Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Propositional Temporal Logics 9

5 First-Order Temporal Logics 10

5.1 Undecidable Fragments of QTL . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Decidable Fragments of QTL . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Branching Time and Partial-Order Temporal Logics 13

6.1 Branching Time Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . 13

6.1.1 Computational Tree Logic (CTL) . . . . . . . . . . . . . . . . . . . . 13

6.1.2 Full Computational Tree Logic (CTL*) . . . . . . . . . . . . . . . . . 14

6.1.3 Full Computational Tree Logic with Past (CTL*[P]) . . . . . . . . . 14

6.1.4 Other Branching Temporal Logics . . . . . . . . . . . . . . . . . . . 15

6.1.5 Expressiveness of Branching Temporal Logics . . . . . . . . . . . . . 15

6.2 Partial-Order Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.2.1 The Logic POTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.2.2 Expressiveness of Partial Order Temporal Logics . . . . . . . . . . . 17

7 Interval Temporal Logics 17

7.1 Propositional Interval Temporal Logics . . . . . . . . . . . . . . . . . . . . 17

7.1.1 The Logic HS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.1.2 The Logic CDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.1.3 The Logic PNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.1.4 The Logic PITL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



CONTENTS 3

7.2 First-Order Interval Temporal Logics . . . . . . . . . . . . . . . . . . . . . 21

7.2.1 The Logic ITL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.2.2 The Logic NL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.2.3 The Logic DC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.2.4 The Logic IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Real-Time Temporal Logics 24

8.1 Real-Time Temporal Logic (RTTL): . . . . . . . . . . . . . . . . . . . . . . 24

8.2 Metric Temporal Logic (MTL): . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.3 Real-Time Logic (RTL): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.4 Real-Time Interval Logic (RTIL): . . . . . . . . . . . . . . . . . . . . . . . 28

8.5 Tempo Reale ImplicitO (TRIO): . . . . . . . . . . . . . . . . . . . . . . . . 28

8.6 Temporal Interval Logic with Compositional Operators (TILCO): . . . . . . 29

9 Probabilistic Logics 30

9.1 Probabilistic Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9.1.1 The Logics PCTL and PCTL* . . . . . . . . . . . . . . . . . . . . . 30

9.1.2 The Logic PLTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9.1.3 The Logics PTLf and PTLb . . . . . . . . . . . . . . . . . . . . . . 33

9.1.4 The Logic PDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.1.5 The Logic PNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

9.2 Probabilistic Dynamic Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9.3 Probabilistic Mu-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9.4 Probabilistic Instuitionistic Logics . . . . . . . . . . . . . . . . . . . . . . . 38

9.5 Probabilistic Logics with New Types of Probability Operators . . . . . . . . 38

9.6 Probabilistic Logics for Reasoning About Knowledge and Uncertainty . . . 39

10 Conclusion 41



1 INTRODUCTION 4

Abstract

In this paper we analyse various temporal formalisms, including propositional/first-
order linear temporal logics, branching temporal logics, partial-order temporal logics,
interval temporal logics, real-time temporal logics and probabilistic temporal logics.
We extrapolate the notions of decidability, axiomatizability, expressiveness, model
checking, etc. for each logic analysed. We also provide a comparison of features of
the temporal logics discussed.

1 Introduction

The number of formalisms that facilitate modelling, specifying, and proving timing
properties of real-time systems has exploded over the last decade. Specification of
real-time systems must be supported by formal, mathematically founded methods in
order to be satisfactory and reliable. Temporal logics have been used for this purpose
for several years.

Temporal logics allow the specification of system behaviour in terms of logical
formulas, including temporal constraints, events, and the relationships between the
two. In most cases, temporal logics have been defined to satisfy specific needs. In
recent years the structure and capabilities of temporal logics have grown (although
not all are suitable for specifying real-time systems). In some cases, simple temporal
logics are preferable to more complex and powerful ones, since the former are more
satisfactorily adopted in certain applications.

In this survey we review a number of well-known temporal logics designed for the
specification of real-time systems. All these logics are different in terms of expressive-
ness, order, presence of a metric for time, the type of temporal operators, the funda-
mental time entity and the structure of time. They also have different capabilities for
the specification, validation, and verification of real-time systems.

As well as the basic temporal framework, we also survey two important areas of
extension: ‘real-time’ and ‘probability’. Real-time aspect of temporal logics is quite
crucial for the specification and verification of functional requirements1 for software
embedded hard real-time systems.

The need for reasoning about probability arises in many areas of research. In
computer science we analyse randomised or probabilistic programs, reason about the
behaviour of a program under probabilistic assumptions about the input, reason about
uncertain information in an expert system or deal with dependability requirements2.
The underlying mathematical foundation for reasoning about probability is the theory
of probability and stochastic processes (e.g. Markov processes). In order to carry out
formal reasoning about probability, it is helpful to have a logic for reasoning about
probability with a well-defined syntax and semantics. Having such a logic might also
clarify the role of probability in the analysis.

1The functional requirements express what a system must be able to do and what it must not to do.
2The dependability requirements express that the probability for undesirable but unavidable behaviour

of a system must be below a certain limit.



2 CLASSICAL TEMPORAL LOGIC 5

2 Classical Temporal Logic

Temporal logics focus on statements whose truth values depend on time. Tempo-
ral statements typically contain some reference to time conditions, while classical logic
deals with timeless entities. While classical logic formulas can characterise static states
and properties, temporal logic formulas can describe dynamic state changes and prop-
erties of behaviours, and, hence, can span a wide range of problems in various fields
with a richer notation.

A temporal logic basically results from an extension of a classical propositional
or predicate logic with temporal quantifiers introducing temporal modalities. Due
to its temporal quantifiers, temporal logic is a convenient and appropriate means to
reason with time-related statements. Indeed, classical logic can also handle temporal
properties, but the formulas tend to be complicated since points of time have to be
explicitly represented, as a separate sort in the underlying universe.

In modal logics, statements are evaluated with respect to certain worlds. Temporal
logics are particular modal logics where the set of worlds W is interpreted as the set
of all possible instants T of a temporal domain. Temporal logics are usually built as
extensions of classical logic by adding a set of new operators that hide quantification
over the temporal domain. Temporal logics in the literature are principally obtained
by extending propositional or first-order logic.

As in modal logic, where the world in which the formula is evaluated is referenced,
in temporal logics the evaluation instant of a formula is used. The value of a formula is
a dynamic concept. Therefore, the concept of formula satisfiability must be modified
to consider both the interpretation of a formula and the instant of evaluation.

A particular system of temporal logic called Tense Logic introduced in [Pri67] adds
four new unary operators to classical logics:

• P : “It has at some time been the case.”

• F : “It will at some time be the case.”

• H : “It has always been the case.”

• G : “It will always be the case.”

P and F are known as the weak tense operators, while H and G are known as
the strong tense operators. G and H are duals of F and P, respectively. Therefore,
Fφ ≡ ¬G¬φ and Pφ ≡ ¬H¬φ, where φ is a formula.

Soon after the introduction of Tense Logic, its basic “PFGH ” syntax was extended
in various ways. Some important examples are the following:

The binary temporal operators S and U (“since” and “until”). These were intro-
duced by Kamp [Kam68]. The intended meanings are:

• Spq: “q has been true since a time when p was true”

• Upq: “q will be true until a time when p is true”

The importance of the S and U operators is that they are expressively complete
with respect to first-order temporal properties on continuous, strictly linear temporal
orders (which is not true for the one-place operators on their own) [Kam68]. The



3 CLASSIFICATION OF TEMPORAL LOGICS 6

introduction of operators S and U is relevant because these operators can express
concepts that cannot be expressed with the operators G, H, F and P. On the contrary,
these operators can be defined in terms of S and U:

• Pp ≡ Sp(p ∨ ¬p)

• Fp ≡ Up(p ∨ ¬p)

Other common operators are next and prev. These operators are unary and can
be defined in terms of the S and U operators. These two operators assume different
meanings depending on the time structure, for example, discrete or continuous, or
whether the logic is event-based.

The presence of distinct operators for the past and future simplifies the specification
model. On the other hand, this distinction is only a convention, since in most temporal
logics formulas can easily be shifted to the past or to the future.

Similar to the extension of propositional logic with the temporal operators S and
U one can extend predicate logic with these operators to get a first-order temporal
logic. In first-order temporal logics, problems arise because of the interplay between
quantification and time [Koy90]. One of these problems is the possibility that the
quantified variables (and possibly even their value domains) change over time. This
problem is avoided by only allowing quantification over variables that do not change
over time. Even in this restricted case most first-order temporal logics are incomplete.
One important exception is the monadic fragment of first-order temporal logic, which
is shown to be complete [WZ01].

3 Classification of Temporal Logics

Temporal logic systems can be classified along various dimensions: propositional versus
first-order, point-based versus interval-based, linear versus branching, discrete versus
continuous, etc [Eme95, Ven98, BMN00]. In this section we provide a taxonomy and
evaluation criteria to classify and compare temporal logics. Below we discuss the most
important features of temporal logics and the criteria used to identify their general
characteristics and properties.

3.1 Fundamental Entities of the Logic

Choosing a mathematical model of time has been a primary concern in philosophy. A
basic way to characterise temporal logics is whether points (instants) or intervals are
used to model time.

Time, based on the point-based paradigm, can be formally represented as a struc-
ture T = 〈T,<〉 such that T is a non-empty set of time points, and < is a binary
relation on T . Time durations are expressed by using quantification over time. Logics
based on time points [MP83] specify system behaviour with respect to certain refer-
ence points in time; points are determined by a specific state of the system and by
the occurrence of events marking state transition. In order to describe temporal rela-
tionships, some modal operators are adopted. In point-based logics it is more difficult
to express relationships between intervals in which certain events are verified. The



3 CLASSIFICATION OF TEMPORAL LOGICS 7

difficulties associated with modelling the refinement of a system specification using a
point-based temporal logic are widely recognised as an important problem [FM94].

Interval-based temporal logics (interval logics) are more expressive, since they are
capable of describing events in time intervals. Usually, interval-based logics permit
one to write formulas with a greater level of abstraction, and so are more concise and
easy to understand than point-based temporal logics. In the case of time intervals
[SMS82, SMSV83, Mos83, Lad87, MS87, RG89, HS91] formulas specify the temporal
relationships among facts, events, and intervals, thus allowing a higher level of abstrac-
tion for system specification. Interval-based logics usually present specific operators to
express the relationships between intervals (meets, before, after, etc. [All83]), opera-
tors to combine intervals (e.g., the chop operator [RP86]), or operators to specify the
interval boundaries on the basis of the truth of predicates [MS87].

There are two approaches to translate the interval notion into a precise mathemat-
ical formalism: (i) either intervals are primitive objects of the model and studied on
their own, without referring to their internal structure, or (ii) they are built up from
a traditional point-based temporal domain.

The first approach has been followed in [vB91], where a ‘period structure’ has been
studied and analysed. Interval structures are formally represented by 〈I,⊆,≺〉, where
I is a non-empty set of atomic objects called ‘intervals’, ⊆ is a sub-interval relation, and
≺ is a precedence relation (“it is entirely before”). [MSV02, Vit05] consider the notion
of interval, similarly. While this approach seems cleaner from a “philosophical” point
of view, it turns out that the basic principles needed to directly define an interval
structure are more involved than the ones for point-based structures. Furthermore,
many usual properties of flows of time, like linearity, density, and discreteness, which
are easily defined in terms of points do not directly transfer to intervals.

The latter approach is more common in the interval logics literature [GMS04, HS91,
Ven91]. In this view, an underlying flow of time is modelled as a strict partial order-
ing of time points, while intervals are defined as sets of time points satisfying some
particular constraints. By doing so, all the usual properties of strict orderings (like
linearity, density, discreteness, unboundedness, . . .) can be defined and transferred to
interval structures. Given a strict partial ordering T = 〈T,<〉 (T is a non-empty set
of time points, and < is a binary relation on T ), an interval structure can be formally
represented by 〈T , I(T )〉, where I(T ) is a set of intervals.

We conclude this section with the historical development of interval-based approach.
The concept of time intervals was first studied by Walker [Wal47]. Walker considered
a non-empty set of intervals, which is ordered by a partial ordering relation. How-
ever, his work does not cover aspects of temporal logic in a general sense. In [Ham71]
interval ontology was analysed philosophically. In [Hum79] an interval tense logic
which is based on sub-interval relations was introduced. Dowty emphasised that hu-
man language and reasoning have an interval-based semantics rather than point-based
one, and he worked on interval-based temporal languages [Dow79]. Similar works
in natural languages, such as axiomatic systems for interval-based temporal logics,
persistency, homogeneity, were done by [Kam79, Rop80, Bur82, vB83]. In philosoph-
ical logic Simons and Galton argued that temporal constructions of natural language
required interval-based approach rather than point-based approach [Gal84, Sim87].



3 CLASSIFICATION OF TEMPORAL LOGICS 8

Interval-based temporal logics have played an important role in reasoning in artifi-
cial intelligence. Some important research has been done within this field by Allen
[All83, All84, AH89, AF94].

This work mainly includes thirteen interval relations, known as Allen’s relations,
axiomatisation and representation of interval structures, and interval-based theory of
actions and events. Ladkin worked on completeness theorem and satisfiability algo-
rithms for Allen’s logic [Lad87]. Galton pursued a further study on Allen’s works
[Gal90]. Interval based-logics have been applied to other fields in computer science. In
[Par78, Pra79, HPS83] some work on process logic can be found. In process logic in-
tervals represent pieces of information. Another important work was the development
of interval temporal logic (ITL), and its application to design of hardware components
[Mos83, HMM83]. ITL had an important impact in temporal logic studies. Various
variations have been proposed so far. In particular, Duration Calculus is an extension
of interval temporal logic with a calculus to specify and reason about properties of
state durations [CHR91].

3.2 Temporal Domain Structure

In a modal logic, interpreted over some Kripke structure 〈W,R,V〉, the main properties
are related to the properties of the relation R. Similarly, the structure of temporal
domains is derived from properties of relationship R. For temporal logics, the relation
R is called a precedence relation, and is denoted by<. Some of the important properties
of the temporal domain structure are given below:

In a temporal logic the structure of time is linear if any two points are comparable.
Mathematically, a strict partial ordering is called linear if any two distinct points satisfy
the condition: ∀x, y : x < y ∨x = y ∨x > y. In linear temporal logics there is only one
possible successor for each time instant. A temporal logic is called linear time logic if
the structure of time is linear.

A particular class of structures is the branching-time structures. The underlying
temporal structure of branching-time temporal logics has a branching-like nature where
each time point may have many successor points. The structure of time thus corre-
sponds to an infinite tree. A tree is a set of time points T ordered by a binary relation
< which satisfies the following requirements [GHR94]:

• 〈T,<〉 is irreflexive;

• 〈T,<〉 is transitive;

• ∀t, u, v ∈ T u < t and v < t → u < v, u = v or u > v (i.e. the past of any point
is linear);

• ∀x, y ∈ T, ∃z ∈ T such that z < x and z < y (i.e. 〈T,<〉 is connected).

A temporal logic is called a branching time logic if it is interpreted over a branching
Kripke structure. In a linear time logic temporal modalities describe events along a
single time line. In contrast, in branching time logic systems modalities allow quan-
tification over possible future paths.



4 PROPOSITIONAL TEMPORAL LOGICS 9

A temporal domain is discrete with respect to the relation < if each non-final point
is followed by a next point or an immediate successor. This can be formulated in first-
order logic: ∀x, y (x < y → ∃z (x < z ∧ ¬∃w(x < w ∧ w < z))). Discrete (linear) time
is a model isomorphic to a discrete series of natural numbers, such that the instants
x, y, z are positive integers. In most temporal logics used for program reasoning, time
is discrete where the present instant corresponds to the program’s current state and
the next instant corresponds to the program’s immediate successor state. Thus, the
temporal structure corresponding to a sequence of states of a program execution is the
nonnegative integers.

A temporal domain is dense if, between any two distinct points, we can find another
different point. This can be mathematically formulated as ∀x, y(x < y → ∃z(x < z <

y)). Rational or the real numbers are quite convenient to represent the flow of dense
time, therefore to model arbitrary small steps in time. This is useful, for example, in
capturing the notion of movement.

It is noteworthy to mention that there is a distinction between density and con-
tinuity. A model of dense time is isomorphic to a dense series of rational numbers,
meaning that there is always a rational number between any two rational numbers;
whereas a model of continuous time is isomorphic to a continuous series of real num-
bers. Arithmetical continuity defines a real number as the limit of an infinite series of
rational numbers, such that the infinite set of limits is a continuous set of real numbers.
Suppose that the set of rational numbers is cut into a left and a right half, of numbers
smaller and bigger than

√
2, respectively. Such a cut, without a proper point on either

edge, is called a gap, and a flow of time is called continuous if it has no gaps. Q thus
forms the standard counterexample, whereas R and Z are continuous [Ven98].

A temporal domain is bounded above (bounded below) if the temporal domain is
bounded in the future (past); i.e. ∃x¬∃y.x < y (∃x¬∃y.y < x). Similarly, a temporal
domain is unbounded above (unbounded below) if every point has a successor (prede-
cessor); i.e. ∀x∃y.x < y (∀x∃y.y < x). Domains that are bounded below correspond
to many useful system specifications.

A temporal domain is Dedekind complete if every non-empty and bounded above
set of points has a least upper bound.

The temporal domain may be limited in the past and/or in the future or be unlim-
ited, and it may be dense or discrete. Thus, the temporal structure may be linear or
branched in the past and/or in the future. These properties have implications for the
decidability of the logic, its executability, and the style used to write formulas.

4 Propositional Temporal Logics

An important success in temporal logic study was the introduction of the temporal
operators into linear-time temporal logic by Kamp [Kam68]. In [Pnu77] Pnueli intro-
duced a very unfluental Linear Temporal Logic (LTL). LTL can express properties of
future paths in a computation tree. In particular, properties such as “for some state
on the path” or “for every two consecutive states” can be expressed. In [SC85] Sistla
and Clarke proved that the problem of determining whether a Kripke structure fulfill-



5 FIRST-ORDER TEMPORAL LOGICS 10

ing an LTL formula is PSPACE-complete. They also showed that model checking for
LTL is PSPACE-complete. It is also known that the fragment using only the “some-
times in the future” modality, denoted F, as well as the fragment using only the “next”
modality, denoted X, have NP-complete satisfiability problems[SC85]. Nevertheless,
the fragment when both F and X are allowed is PSPACE-complete.

In [GPSS80] the logic Propositional Temporal Logic was introduced (over discrete
time models with “next” (X ) and “until” (U ) temporal operators. The models are
infinite sequences of states with a first state, but no last state. A sound and complete
axiomatic system for propositional temporal logic was provided in [GPSS80]. It was
also shown that the logic is decidable and complete. In [LPZ85] PTL was extended with
the past operators, and a complete proof system for both future and past operators
was presented (A detailed discussion can be found in [Sza95, LP00].) PTL has a rich
language. In fact, the following temporal operators can be semantically defined in
PTL: eventually (

−→
♦φ), once (at some time in the past) (

←−
♦φ), henceforth (

−→
�φ), so

far (
←−
�φ), always (�φ), sometimes (♦φ), until (φUψ), since (φSψ), immediately after

(
−→
©φ), immediately before (

←−
©φ), etc.

In the literature several examples of properties of programs expressible by means
of temporal logics can be found [Kro87, MP81b, MP81a]. Some important properties
are expressed in PTL as follows:

- p→ −→�q (safety property): All states reached by a program after the state satisfying
p do satisfy q.
-
−→
� ((¬q) ∨ (¬p)) (safety property): The program cannot enter critical regions p and q

simultaneously.
- p→

−→
♦ q : (liveness property): There is a state reached by a program after the state

satisfying p does satisfy q.
-
−→
�
−→
♦ p→

−→
♦ q : (liveness property): If a request p is repeated, a response q is received.

-
−→
�p →

−→
♦ q (liveness property): If a request p is hold permanently, a response q is

received.

PTL is a decidable logic. An automata theoretic technique of obtaining satisfiability
can be found in [SVW85]. In [SC85] it was found that the satisfiability problem for
PTL is PSPACE-complete. In [LP00] an exponential time tableau algorithm, which
has an overall time boundof 2O(|φ|), is presented for the validity problem for PTL,
where φ is a PTL formula. [SC85] also provides a complete deductive system for
proving the validity of PTL formulas. Among the proof systems existing in literature
are Hilbert-style proof system [Lad87], a Gentzen-style proof system [Sza95] and a
clausal resolution approach [Fis91, FDP01]. These proof systems are all sound and
complete.

5 First-Order Temporal Logics

First-order temporal logics are extension of propositional temporal logics. Besides
all features of propositional ones these logics also allow arbitrary data structures and
quantifiers over individuals. First-order temporal logic systems have found numerous
applications in both computer science and artificial intelligence: A typical application



5 FIRST-ORDER TEMPORAL LOGICS 11

is their usage in specification and verification of reactive systems. First-order logics
provide more expressive and powerful tools for formalising the behaviour of executable
temporal logics. They allow the extension of techniques for reasoning about knowledge
to more dynamic and powerful classes [FHMV96, HWZ00]. First-order logic systems
are also quite useful in information systems in the sense that query languages for
temporal databases are often based on variants of FOTL [CT98].

Despite the usefulness in various areas, first-order temporal logics are very expres-
sive languages with a very high computational complexity. Although some axiomati-
sations of first-order temporal logics were studied [Rey96], many varieties of first-order
logics are not even recursively enumerable [Aba89, ANS79, GHR94, Mer92], and so do
not admit finite proof methods at all. For that reason, most of the works in this field
have mainly dealt with developing PTL-based tools. There are very few examples that
recursively enumerable or decidable fragments of first-order temporal logics have been
found. However, these variations were just small extensions to the propositional case.
Some examples of these extensions are weaker versions of validity [Aba89], minimal
interaction between quantifiers and temporal operators [Cho95] and very restricted
first-order features [Mer92, Pli97].

One important development was done by Hodkinson, Wolter, and Zakharyaschev,
who introduced a new natural monodic fragment of first-order temporal logic, and
showed that it is quite expressive and has much better computational behaviour [HWZ00].
In monodic formulas, the scope of temporal operators is restricted only to subformulas
with at most one free variable. The whole monodic fragment can be represented as a
finite axiomatic system [WZ02], and so can be supported by tableau or resolution-type
reasoning mechanism. Moreover, by restricting the first-order part to certain decidable
fragments [ANvB98, Grä99], decidable monodic fragments of first-order temporal logic
can be obtained over various flows of time.

The first-order temporal logic is represented by QTL, which is constructed from the
following alphabet, which does not comprise equality and function symbols: predicate
symbols: P0, P1..., variables: x0, x1, ..., constants: c0, c1, ... , boolean connectives: ∧,
¬, universal quantifier : ∀, and temporal operators: S(since) and U(until). Let F be
the underlying time structures assumed for QTL constitutes strict linear orders. Then,
QTL(F ) denotes the first-order temporal logic of F , and QTLfin (F ) denotes the logic
of F with finite domains.

5.1 Undecidable Fragments of QTL

In the literature, it has been known that both the monadic and two-variable frag-
ments of classical first-order logic are decidable [BGG97]. However, the computational
complexities of their temporal counterparts are different. Let QTL2 denote the two -
variable fragment of QTL, and QTLmo denote the monadic fragment (not monodic)
of QTL, which respectively means that every formula in QTL2 contains at most two
distinct individual variables, and the set of formulas that contain only unary predicates
and propositional variables. The theorems below show the complexities of these two
fragments of QTL.

Let T be either {〈N, <〉} or {〈Z, <〉} . Then QTL2 ∩ QTLmo ∩ QTL (T) is not



5 FIRST-ORDER TEMPORAL LOGICS 12

recursively enumerable (see [HWZ00]). Let F be either {〈N, <〉} or {〈Z, <〉}. Then
QTL2 ∩QTLmo ∩QTLfin (F ) is not recursively enumerable (see [HWZ00]).

5.2 Decidable Fragments of QTL

In the theorems given above there is a quantification in three ‘dimensions’, one temporal
and two domain, since the linear time operator U can be applied to formulas with two
free variables. This causes a problem that these fragments of QTL are undecidable.
It is known that the three-variable fragment of classical first-order logic is undecidable
[BGG97].

In order to avoid this problem corresponding fragment of QTL, which is QTL1,
contains all QTL-formulas ϕ such that any subformula of ϕ of the form ψ1Uψ2 and
ψ1Sψ2 has at most one free variable. These formulas are monodic (not monadic)
formulas, allowing quantification into temporal contexts only with one free variable.
The monodic fragments of QTL (〈N, <〉) and QTL (〈Z, <〉) are recursively enumerable.

Let F be any of the following classes of flows of time: {〈N, <〉}, {〈Z, <〉}, {〈Q, <〉}
the class of all finite strict linear orders, any first-order-definable class of strict linear
orders, and F+ be F and {〈R, <〉}. Then, the following fragments are decidable
: QTL (F ) ∩ QTL1, QTL (F ) ∩ QTL2

1, QTL (F ) ∩ QTLmo1 , QTLfin (F+) ∩ QTL1,
QTLfin (F+) ∩QTL2

1, QTLfin (F+) ∩QTLmo1 (see [HWZ00]).
In [GKWZ02] it was shown that QTL (〈N, <〉)∩QTL1 is EXPSPACE-hard. It also

follows that the satisfiability problem for QTLmo1 -formulas in models based on 〈N, <〉
is EXPSPACE-complete.

It has been assumed in this section that QTL and its fragments do not include equal-
ity and function symbols. It can be shown that undecidability is a major problem with
the logic extended with function symbols [WZ02]. For example, the set of one-variable
formulas with one function symbol that are valid in models based on 〈N, <〉 is not re-
cursively enumerable. Moreover, the set of monodic QTL formulas with equality that
are valid in all temporal models based on 〈N, <〉 is not recursively enumerable. [DFL02]
proves that an even simpler fragment consisting of monodic monadic two-variable for-
mulae is not recursively enumerable. In [WZ02] a finite Hilbert-style axiomatisation
of monodic fragment of first-order temporal logic was constructed. It was also proved
that the monodic fragment with equality is not recursively axiomatisable.

The decidability results can be extended to temporalties description logics. The re-
sulting temporalties description logics are suitable for temporal conceptual modelling.
These recent research results have showed that relatively expressive subsets of first-
order temporal logic could be found. In [WZ99] certain similarities between monodic
first-order temporal logic and effective multi-dimensional knowledge representation for-
malisms are described and it has been suggested that the monodic first-order temporal
logic systems can be considerably extended. In [HWZ00, WZ02] there is a scope for
enriching the expressive power of the monodic fragment. For example, applications of
temporal operators, such as next-time, can be allowed to formulas with two or more
free variables. Formulas of this form are particularly useful in temporal databases, and
cover the decidable fragments of first-order temporal logic developed by Pliuskevicius
[Pli97]. Some recent works present tableau-based satisfiability checking algorithms for



6 BRANCHING TIME AND PARTIAL-ORDER TEMPORAL LOGICS 13

description logics with temporal and epistemic operators [LSWZ02]. Similarities be-
tween such logics and monodic temporal logics suggest that tableau-based reasoning
systems can also be constructed for decidable monodic fragments. This can be carried
out by combining existing tableau systems for PTL and the classical first-order compo-
nents. It is also worth to mention that [DFKL08] introduces some resolution systems
for monodic first-order temporal logics.

6 Branching Time and Partial-Order Temporal Log-
ics

6.1 Branching Time Temporal Logics

A temporal logic system is called Branching Time logic if the underlying semantics
of the structure of time is branching. The underlying structure of time in branching
time is a tree-like structure. That is, every time instant may have several immediate
successors which correspond to different futures.

Temporal logics with underlying branching time is fundamental to both computer
science and artificial intelligence. Particularly, it has been widely used in AI appli-
cations. In planning systems agents formulate different plans and action strategies
according to different future world states. Branching time temporal logics are very
useful to model the reasoning of agents about the universe of possibilities in which
branches represent choices of actions or plans [McD82, RG93]. Another important
application of these logics is formalising specifications and behaviour of systems.

Branching time logics are usually used to verify finite state systems by model check-
ing because of the efficiency of the corresponding model checking algorithms. Linear
time logics usually come with a deductive proof system for dealing with the infinite
state systems.

The first ideas about branching time logics appeared in [Abr80]. Later, The unified
branching time system UB was defined [BAMP81]. A simple branching time logic,
CTL, was introduced in [CE82]. Thereafter, CTL* was introduced in [EH86]. CTL* is
an extension over CTL by adding the properties of linear time temporal logic. CTL*[P],
an extension over CTL*, was introduced in [LS95]. UB, CTL and CTL* include only
future time temporal connectives. In contrast, CTL*[P] contains both past and future
time temporal connectives.

6.1.1 Computational Tree Logic (CTL)

CTL is an extension to the logic UB by adding a new path modality U (until). The
fundamental temporal entity is the point, and presents specific operators for reasoning
about the system behaviour in terms of several futures, called sequences. CTL does not
provide an explicit metric for time. For verifying CTL specification a model checking
approach is typically used since the specification can be modelled as a state machine.
The language of CTL contains states formulas only.

Some examples of CTL formulas of CTL formulas are given below:



6 BRANCHING TIME AND PARTIAL-ORDER TEMPORAL LOGICS 14

• EF(Started ∧¬Ready): It is possible to get to a state where Started holds but
Ready does not hold.

• AG(Req ⇒ AF Ack): If a request occurs, then it will be eventually Acknowledged.

• AG(EF Restart): From any state it is possible to get to the Restart state.

Although branching time logics can be defined in a tree-like structure, in many ap-
plications it is quite useful to define the logic in a different way than the tree structure.
In this approach a set of states with a transition relation are considered as the basic
object.

In [Pen95] a sound and complete axiomatic system is provided for CTL. It has to
be shown that any consistent formula is satisfiable. The proof rests on constructing of
a pseudo-Hintikka structure for a satisfiable CTL formula.

It can be shown that CTL has the finite model property. That is, if a formula
φ is satisfiable, then it is satisfiable in a finite model whose size is bounded by some
function of the length of the formula φ. Hence, a non-deterministic algorithm can
determine the satisfiability of a CTL formula on a given structure in polynomial time.
CTL is decidable [EH82]. There is also a tableau-based deterministic exponential time
complete procedure for CTL satisfiability [EC82]. Efficient model checking algorithms
exist for CTL (linear in the state space of the system model and the formula) [CES86].

It is noteworthy to mention that the logic UB has the finite model property, as
well. It has a sound and complete axiomatisation system, and there is a deterministic
exponential time lower bound for UB satisfiability.

6.1.2 Full Computational Tree Logic (CTL*)

The logic CTL* was introduced in [EH86]. CTL* is an extension over CTL by adding
the properties of linear time temporal logic. There is an algorithm to decide the
satisfiability of CTL* formula, which has a double exponential complexity in the length
of the formula.

There are two kinds of CTL* formulas: state formulas and path formulas. State
formulas are interpreted over states and path formulas, containing all state formulas,
are interpreted over paths.

The axiomatizability of CTL* was an open question for a long time. A sound and
complete axiomatisation for CTL* has recently been defined by Reynolds in [Rey01].
There is an algorithm to decide the satisfiability of CTL* formula, which has a double
exponential complexity in the length of the formula [EJ00].

6.1.3 Full Computational Tree Logic with Past (CTL*[P])

As mentioned before there are two ways in formalising branching time temporal logics.
In the semantics definitions CTL and CTL* we used states and paths as basic object
types. In this section we will use discrete ω-height branching which is equivalent to
state representation. That is, CTL*[P] formulas are evaluated at nodes on branches
of labelled discrete rooted trees of height ω. Whereas the language of CTL* contains
state and path formulas, some formulas of CTL*[P] do not depend on the path on
which they are evaluated.



6 BRANCHING TIME AND PARTIAL-ORDER TEMPORAL LOGICS 15

As in the linear case, addition of past operators to the language does not increase
expressive power if we have a finite past. Decidability of CTL*[P] follows directly from
the expressibility observation along with the decidability of CTL*. Until recently the
axiomatizability of CTL*[P] has been a long-lasting open question. Reynolds gives a
sound and complete axiomatisation system for CTL*[P] in [Rey05].

6.1.4 Other Branching Temporal Logics

In [EMSS89] a real-time extension of CTL, called RTCTL, was introduced. It is a
bounded-operator extension of CTL with a point-based strictly-monotonic integer-time
semantics. RTCTL includes a metric for time. The satisfiability problem for this logic
is doubly-exponential-time-complete [EMSS89]. The model-checking has a polynomial
time algorithm [EMSS89].

In [ACD90], a branching real-time time logic called TCTL is proposed. It is based
on hidden clock bounded operators. TCTL is a bounded-operator extension of CTL
with a point-based strictly-monotonic real-time semantics. For TCTL, the validity
problem for dense time domains is undecidable, yet model-checking is decidable. The
complexity of model checking is exponential in the number of clocks (each new process
or hardware device needs its own clock), and doubly exponential in the product of the
timing constants that appear in the formula. It is linear in the product of program
and formula size.

Another branching time logic called TPCTL is introduced in [Han91]. The logic
deals with real-time constraints and reliability. Because of the action based nature
of TPCTL, it is difficult to specify state-based properties such as: “henceforth, if the
train is at the crossing then the gate must be down”. Propositions such as “the gate is
down” must be encoded indirectly through actions that change the state of the model,
in which case the specification becomes unnecessarily complicated. TPCTL is one of
the few logics that can express both hard and soft real-time deadlines, a feature useful
in the verification of communication protocols in noisy media. Strong assumptions on
the behaviour of the medium (e.g. the medium never loses more than three consecutive
messages) can be replaced with weaker assumptions (e.g. successful transmission with
some probability). The model checking algorithm is polynomial in the size of the
formula and number of arithmetic expressions.

6.1.5 Expressiveness of Branching Temporal Logics

One of the main use of branching time logics in computer science is that the model-
checking procedure is very efficient. The task is to represent a given system as a Kripke
structure and check that it is a model of a given specification. CTL is quite adequate
to express a certain set of useful properties. In contrast to the exponential complexities
of model checking with a linear temporal logic (LTL), model checking with CTL is of
linear complexity. Model checking with CTL* is much more complex than CTL, which
is PSPACE-complete, as it needs a recursion involving checking of all paths from a
particularstate [GRF00].

The branching logic systems can also be used to specify propertiesof concurrent
programs. A frame of the logic represents an executiontree generated by a program.



6 BRANCHING TIME AND PARTIAL-ORDER TEMPORAL LOGICS 16

The system properties which can be expressedby means of UB are as follows:

∀�p: safety property : p is true at all states of each path.
∀♦p: liveness property : p is true at some state of each path.
∃♦p: possibility property : p is true at some state of some path.

Fairness constraints are not expressible in UB. All properties expressible in UB are
also defined in CTL. The new properties, such as relative order of events, expressed by
CTL contains the modality U . As in UB, fairness constraints cannot be expressible in
CTL. CTL* can specify more properties over UB and CTL [Pen95]:

�♦p: impartiality property
�♦p→ �♦q: fairness property
♦�p→ �♦q: justice property
∃ ((pUq) ∨�p): weak until property

These languages mentioned in this section can be made more expressive, while
still keeping all their formulas as state formulas, by allowing classical connectives in
between the temporal connectives and the path connective. If we add past operators
does not increase expressiveness; it just allows more convenient notation to express
useful properties. Due to complexity and expressiveness considerations some other
logics have been defined, such as CTL+ [EH82], ECTL [EC82], ECTL+ [EC82].

6.2 Partial-Order Temporal Logics

Partial order structures are similar to branching structures except that every time
instant may also have several immediate predecessors corresponding to different pasts.
The first logic based on partial orders was POTL, which is introduced in [PW84], and
later its extended version, POTL[U, S], defined in [KP86]. POTL and POTL[U, S] can
be viewed as extensions of UB and CTL by past modalities. However, their semantic
structures can be linked with partial orderings representing runs of concurrent systems.

6.2.1 The Logic POTL

POTL is intended to describe partially ordered computations directly. Hence, it is
possible to specify states with several successors and several predecessors. The language
of POTL is an extension of the language UB by allowing quantification over backward
paths. POTL does not have the finite model property due to the addition of backward
operators Checking whether a POTL formula is satisfiable requires an exponential time
algorithm.

POTL[U, S] is the extension of POTL obtained by introducing until and since.
There is a difference in the definition of POTL[U, S] model that the initial or terminal
states of some process may have no R-successors or predecessors, respectively.

POTL[U, S] extends POTL, and since POTL does not have the finite model prop-
erty, POTL[U, S] does not have it either. There is a deterministic algorithm for deciding
whether a POTL[U, S] formula is satisfiable, of exponential complexity in the length
of the tested formula. A sound and complete axiomatisation system for POTL[U, S] is
given in [Pen95].



7 INTERVAL TEMPORAL LOGICS 17

6.2.2 Expressiveness of Partial Order Temporal Logics

POTL extends the expressiveness of UB by referring to the past. However, there is a
difference between UB and POTL frameworks. The structure of the former represents
an entire concurrent system. In the latter, a structure represents one possible run of a
system composed of sequential processes. In this framework, POTL is used to specify
properties involving all runs. For example, q → ∀

←−
♦ p expresses that for every run, and

for all backward fullpaths ending at states where q holds, there is a state at which
p holds. All properties expressible in POTL can be expressible in POTL[U, S]. In
addition, POTL[U, S] allows specifying the properties concerning the relative order of
events in the future and past. Model checking with POTL[U, S] is more complicated
than CTL. Indeed, the complexity is exponential in the size of the model and doubly
exponential in the length of the tested formula [KP86]. The reason for this high
complexity is that POTL[U, S] formulas contain backward modalities, and they are
interpreted over models corresponding to runs of concurrent systems.

7 Interval Temporal Logics

Interval temporal logics are temporal logics for representing both propositional and
first-order logical reasoning about periods of time that is capable of handling both
sequential and parallel composition. The interval-based scheme provides us with a
richer representation formalism than the point-based approach.

In this section, we present a selection of well-known interval temporal logics. There
are many other temporal logics in the literature, but most of them can be regarded as
generalisations or specialisations of those discussed here.

7.1 Propositional Interval Temporal Logics

In this section we will present well-known propositional interval logics, which involve
unary or binary modal operators, and whose semantic structures are over partial or-
derings with linear interval property, i.e. orderings in which every interval is linear
(see [GMS04]).

The generic language of propositional interval temporal logics includes the set of
propositional variables Φ, the propositional constants ⊥ and >, the Boolean connec-
tives, and a set of modal operators specific to each logical system.

7.1.1 The Logic HS

The logic HS [HS91] is a relatively expressive propositional interval temporal logic.
All modal operators of HS are unary. The logic HS has enough expressive power to
distinguish the different situations of time’s being discrete, continuous, bound, linear
or complete. HS has enough expressive power to distinguish the different situations of
time’s being discrete, continuous, bound, linear or complete. Some of the situations
are given below:

• length0 ≡ [B]⊥



7 INTERVAL TEMPORAL LOGICS 18

• length1 ≡ 〈B〉> ∧ [B] length0 (length1 holds at intervals with no proper subin-
tervals.)

• dense ≡ ¬length1

• discrete ≡ length0 ∨ length1∨ (〈B〉 length1 ∧ 〈E〉 lenght1 )

where 〈B〉φ is true iff φ holds at some interval that begins with the current interval
and ends before it ends, 〈E〉φ is true iff φ holds at some interval that begins after the
current interval starts and ends when it ends, and [B]φ is defined as ¬ 〈B〉 ¬φ.

HS is a quite expressive logic due to its large modal operator set. However, it is
not axiomatisable and is highly undecidable [HS91]. The following theorems are taken
from [HS91]:

• The validity problem interpreted over any class of ordered structures with an
infinitely ascending sequence is r.e.-hard (Thus, in particular, HS is undecidable
for the class of all (non-strict) models, linear models, discrete linear models, dense
linear models and unbounded linear models.)

• The validity problem interpreted over any class of Dedekind complete ordered
structures having an infinitely ascending sequence is Q1

1-hard (For instance, the
validity in any of the orderings of the natural numbers, integers, or reals is not
recursively axiomatisable. Undecidability even occurs in the classes of structures
with no infinitely ascending sequences.)

• The validity problem interpreted over any class of Dedekind complete ordered
structures having unboundedly ascending sequences is co-r.e.-hard.

Undecidability results given above can be proved using an infinitely ascending se-
quence in the model to simulate the halting problem for Turing machines. Any un-
bounded ordering contains an infinite ascending sequence. A class of ordered structures
contains an infinite ascending sequence if at least one structure in the class includes an
infinite ascending sequence. In [MR99] undecidability was proved by means of tiling
problem.

In [Ven90] some interesting results for the logic HS were presented. By using a
geometrical representation for the modalities Venema introduced a sound and complete
proof system for HS. He also proved that HS is strictly more expressive than any
temporal logic based on linear orderings of time instants.

In [HS91] a translation machinery that converts a HS formula to its equivalent first-
order formula on a corresponding first-order structure was provided. Such a translation
is useful to reduce problems to well-known results in first-order logic.

7.1.2 The Logic CDT

The Logic CDT was introduced by Venema in [Ven91]. It is one of the most expressive
propositional interval logic over linear orderings. CDT includes the binary modal
operators C,D and T .

Since the logic HS is the propositional interval logic of Allen’s relations [All83],
every propositional interval logic with unary modalities based on Allen’s relations is



7 INTERVAL TEMPORAL LOGICS 19

subsumed by CDT. CDT can distinguish the different situations of time’s being dis-
crete, continuous, bound, linear or complete. For example, an interval’s being discrete
can be specified in CDT as follows:

• (length1 C>) ∧(>C length1 ).

In [Ven91] the author gives an axiomatic system which is sound and complete for the
logic CDT which is interpreted over non-strict linear models. This axiomatic system
can be extended for the classes of discrete linear orderings, dense linear orderings, etc.
As a consequence of the previous results for the logic HS, the satisfiability problem for
CDT is not decidable over almost all interesting classes of linear ordering, including
N,Z,R, etc.

A generalisation of CDT to (non-strict) partial orderings with the linear interval
property, called BCDT+, has been recently introduced in [GMS03a]. BCDT+ features
the same operators as CDT; however, it is interpreted over partially ordered domains
with linear intervals. The decidability and axiomatizability of the strict versions of
CDT and BCDT+ have not been studied yet; but it is natural to expect that similar
results apply there too.

7.1.3 The Logic PNL

Propositional Neighbourhood Logic (PNL) is the propositional fragment of First-Order
Neighbourhood Logic introduced in [CH98]. It has been studied on both strict and
non-strict linear structures [GMS03b]. The language with non-strict semantics is called
PNLπ+, and it includes the modal operators♦r (met by) and♦l (meets), and the model
constant π. The modal operators can have either strict or non-strict semantics.

Assume PNL+ denotes the non-strict PNL without the modal constant π, and
PNL− denotes the strict PNL without the modal constant π . It is easy to see that
the logic PNLπ+ subsumes both PNL+ and PNL−.

Given that formulas are interpreted over strict linear models, PNL− has enough
expressive power to distinguish the different classes of linear structures, such as dis-
creteness, continuity, boundness, or completeness. For example, unboundness and
density can be specified in PNL− as follows:

• unbound ≡ �rφ→ ♦rφ

• dense ≡ (♦r♦rφ→ ♦r♦r♦rφ) ∧ (♦r�rφ→ ♦r♦r�rφ)

In [GMS03b] several sound and complete axiomatic systems were provided for vari-
ous classes of models. In addition to strict linear models [GMS03b] also provides sound
and complete axiomatic systems for non-strict linear structures, complete unbounded
linear structures, unbounded structures, dense structures, discrete structures, dense
unbounded structures and discrete unbounded structures. As for decidability results,
in [BMS07a] the authors show that the satisfiability problem for PNLπ+, PNL+ and
PNL− over the integers is NEXPTIME-complete. They develop a sound and complete
tableau-based decision procedure, and prove that it is optimal. In [BGMS07], the ex-
pressive power of PNLπ+, PNL+ and PNL− is compared, and it is shown that PNLπ+

is strictly more expressive than PNL+ and PNL−. Then, the authors prove that the



7 INTERVAL TEMPORAL LOGICS 20

satisfiability problem for PNLπ+ over the class of all linear orders, as well as over some
natural subclasses of it, such as the class of all well-orders3 and the class of all finite
linear orders, can be decided in NEXPTIME by reducing it to the satisfiability prob-
lem for the two-variable fragment of first-order logic over the same classes of structures
[Ott01].

An important fragment of the PNL is the Right Propositional Neighbourhood Logic
(RPNL) which is based on the right neighbourhood relation between intervals. As
in the case of PNL, the language with non-strict semantics is called RPNLπ+. The
non-strict fragment without the modal constant π is denoted by RPNL+, an the strict
fragment without the modal constant π is denoted by RPNL−. As for decidabil-
ity results, in [BM05] an EXSPACE tableau-based decision procedure is devised for
RPNL− interpreted over natural numbers. In [BMS07b] the authors develop an alter-
native NEXPTIME decision procedure that works for all variants of RPNL (RPNLπ+,
RPNL+, and RPNL−) interpreted over natural numbers, and they prove its optimality.

7.1.4 The Logic PITL

PITL is the propositional fragment of the First-order Interval Temporal Logic (ITL)
(see Section 7.2.1). PITL includes the chop operator C.

PITL was originally restricted to the class of discrete linear orderings with finite
time. Intervals in such structures were identified with the finite sequences of points.
The satisfiability problem for PITL interpreted over the class of non-strict discrete
structures is undecidable [Mos83]. The satisfiability problem for PITL is reduced to
checking the emptiness of the intersection of two context-free grammars. This problem
is known to be undecidable. The satisfiability problem for PITL interpreted over
non-strict linear structures and non-strict dense linear structures is also undecidable
[Mos83].

Decidable variants of PITL, interpreted over discrete models, can be obtained by
imposing the locality projection principle. Locality projection means that each propo-
sitional variable is true over an interval if and only if it is true at its first state. This
allows one to collapse all the intervals starting at the same state into the single in-
terval consisting of the first state only. Let LPITL be the logic obtained by imposing
the locality projection principle to PITL. The syntax of LPITL coincides with that of
PITL. However, in LPITL propositional variables are evaluated over points instead of
intervals. The satisfiability for LPITL is non-elementary [Mos83].

[Mos83] introduced the logic QLPITL, which is an extension of LPITL over finite
time with quantification over propositional variables. It was also shown that the satis-
fiability problem for the logic QLPITL interpreted over the class of non-strict discrete
linear structures is (non-elementarily) decidable.

LPITL was also extended with the chop-star modality, denoted by * [Mos83,
Mos00b, Mos00a, Mos03]. For any φ, φ∗ holds over a given discrete interval if and
only if the interval can be chopped into zero or more parts such that φ holds over
each of them. The resulting logic is called LPITL∗, and it is interpreted over finite or

3A well-ordering relation on a set S is a total order on S with the property that every non-empty subset
of S has a least element in this ordering.



7 INTERVAL TEMPORAL LOGICS 21

infinite discrete linear structures.
In [Mos83] the author gives a sound and complete axiomatic system for LPITL∗

which is interpreted over non-strict discrete linear structures.
As a matter of fact, the chop-star operator is a special case of a more general

operator, called the projection operator. LPITLproj , which was originally proposed by
Moszkowski in [Mos83], is the extension of LPITL with the projection operator proj.
LPITLproj is interpreted over finite state sequences. It extends the operators© (strong
next) and C (chop) of LPITL with a new binary modal operator proj (projection) which
denotes the repetitive behaviour. ©ϕ holds if and only if ϕ holds over an interval of
length one less than the current interval, resulting from moving one state into the
future. An interval satisfies ϕCϕ′ if it can be divided into two contiguous sub-intervals
such that ϕ holds over the first sub-interval, and ϕ′ holds over the second. An interval
satisfies ϕ proj ϕ′ if it can be sub-divided into a series of sub-intervals, each of which
satisfies ϕ, called the projection formula, and the new interval formed from the end
points of these sub-intervals satisfies ϕ′, called the projected formula. The satisfiability
problem for LPITLproj is known to be non-elementary [GMS04].

7.2 First-Order Interval Temporal Logics

First-order interval temporal logics have been introduced as a tool for the formal spec-
ification and verification of hardware real time systems. ITL is the most commonly
known first-order interval temporal logic. Numerous extensions of ITL, such as Du-
ration Calculus [CHR91],Neighbourhood Logic [CHR91], etc., have been shown to be
useful in the specification of various kinds of software and hardware systems.

7.2.1 The Logic ITL

ITL, interpreted over discrete linear orderings with finite time intervals, was first intro-
duced in [Mos83]. The formulas of ITL are constructed from the following: an infinite
set of global (independent of time and time intervals) variables x, y, z, ..., an infinite
set of temporal variables t, t′, ..., an infinite set of global function symbols fn, gm, ...,
where fn is a function of arity n and gm is a function of arity m, an infinite set of
predicate symbols Pn, Rm, ..., where Pn is a predicate of arity n and Rm is a predicate
of arity m, an infinite set of temporal propositional letters X,Y, ... .

A sound and complete axiomatic system is represented in [Dut95]. A term or
formula is called flexible if a temporal variable including the symbol ` or a propositional
letter occurs in the term or formula. A term or formula which is not flexible is called
rigid.

Sound and complete axiomatic systems for local variants of ITL (with locality
constraint) for finite and infinite time were presented in [Dut95, Mos00a]. ITL was
extended with projection in [Gue00a] where a complete axiomatic system is provided.
A probabilistic extension of ITL was studied in [Gue98]. Not surprisingly ITL is highly
undecidable.



7 INTERVAL TEMPORAL LOGICS 22

7.2.2 The Logic NL

ITL does not allow looking outside of the current interval. The logic NL was proposed
in [CHR91], where the left neighbourhood modality ♦l and right neighbourhood modality
♦r were introduced.

NL can express any of the modalities corresponding to the Allen’s relations; thus,
it can represent the properties of the underlying linear ordering, such as discreteness,
density, etc. For example, the chop operator C can be expressed in terms of the
modalities ♦l and ♦r as follows:

• φCψ = ∃x, y (` = x+ y) ∧ ♦l♦r ((` = x) ∧ φ ∧ ♦r ((` = y) ∧ ψ))

In [BRC00] a sound and complete axiomatic system is given for the logic NL. In
[BC97] up and down modalities, represented by ♦u, ♦d respectively, were introduced,
and two dimensional version of NL, called NL2, was proposed. NL is an undecidable
logic as is ITL.

7.2.3 The Logic DC

Duration Calculus (DC) [CHR91] is a first-order interval temporal logic with the ad-
ditional notion of state, which is characterised by a duration. The duration of a state
is the length of the time period during which the system remains in the state. DC is
an extension of ITL in the sense that temporal variables other than ` have a structure∫
S, where

∫
S is called a state duration and S is called a state expression. The special

interval variable ` denotes the interval length.
DC has been successfully applied to the specification and verification of real-time

systems. As a specification example, we specify the real-timerequirement of a gas
burner system, which is “the proportion of leak time in an interval is not more than one-
twentieth of the interval, if the interval is at least one minute long”. This requirement
can be expressed in DC as follows:

• Req ≡ ` ≥ 60 ⇒ 20
∫
Leak ≤ `

All axioms and inference rules of ITL can be adopted in DC. However, additional
axioms are needed for temporal variables. In [CH04] an axiomatic system for Duration
Calculus is given. The satisfiability problem for both first-order and propositional DC
has been shown to be undecidable [CHS93].

Various fragments of DC have been investigated so far. In [CHS93] a fragment of
propositional DC, called RDC, was introduced. It was shown that RDC has a decidable
satisfiability problem when interpreted over N, Q and R. In [Rab98] the satisfiability
problems of several extensions of RDC were studied . In [Fra96] a decidable class
of RDC was extended for continuous time with a restriction on the finite variability
such that the number of discontinuous points of any state in any unit interval has
a fixed upper bound. In [GD99] a decidability result was presented for a variant of
DC where negation is removed from RDC; but an iteration operator is introduced to-
gether with some form of inequalities. In [CSC00] another fragment of propositional
DC was introduced by imposing some syntactic restrictions. It was shown that this
logic is expressive enough to capture Allen’s relations [All83]. By proposing a sound,



7 INTERVAL TEMPORAL LOGICS 23

complete and terminating tableau system for the logic it was shown that the satis-
fiability problem is decidable. The tableau system is a mixed procedure, combining
standard tableau techniques with temporal constraint network resolution algorithms.
In [Pan01] quantification over states was introduced. The satisfiability of formulas is
still decidable. This decision algorithm was implemented as a tool called DCVALID.
In [CH98] Duration Calculus and first-order neighbourhood logic were combined, and
a axiomatic systems for DC and NL were merged. The fragment of DC/NL obtained
by restricting the formulas to be constructed only from state expressions was proved
to be decidable, while the extension with the formulas with equality is undecidable.

So far, there has been no tool available for model checking DC. In general, there is
no universal model checking techniques for DC formulas. In order to achieve relatively
efficient model checking techniques, we have to restrict ourselves to a class of system
models and DC requirements. In [Fra96] some model checking tools were developed for
a class of models which are restricted to the possible behaviours of embedded real-time
systems. In [Zho94, DH96, TH98, TH04] some techniques were developed to check
if a timed automaton satisfies a duration calculus formula written in the form of lin-
ear duration invariants. In [Pan01] a DC validity checker, called DCVALID, to check
the validity of discrete time DC formulas. [Frä02] suggested bounded validity check-
ing [BCCZ99] of a discrete-time DC without timing constraints by polynomial-sized
reduction to propositional SAT solving. In [SHP98] some algorithms were developed
to check if a DC formula is satisfied by all integer models.

7.2.4 The Logic IDL

Duration Calculus is designed to be a highly expressive logic for specifying complex
requirements over real-time systems; but the automata theory for DC models is rather
primitive and there are no tools supporting such models. By contrast, the notion of
timed state sequences has found widespread use in modelling behaviour of real-time
systems [AD96]. Their automata theory is also well investigated, and there are now
powerful tools such as Hytec [AHH96], Uppaal [BLL+96], Kronos [BDM+98] etc. for
the analysis of these automata.

In [Pan02] a variant of the Duration Calculus, called Interval Duration Logic (IDL)
is introduced. IDL has finite timed state sequences as its models. It is a dense time
interval logic, incorporating the notion of cumulative amount of time (duration) for
which a condition holds in a given time interval. Because of this, IDL is well-suited for
describing complex properties of real-time systems, including scheduling and planning
constraints. As an example, we give a specification example from a gas burner system.
The property “between two occurrences of Leak there will be at least k seconds” is
specified in IDL as follows:

• �((ddLeake_dd¬Leake_ddLeake0)⇒ ` ≥ k)

Due to its high expressive power, the satisfiability of IDL turns out to be unde-
cidable. However, several approaches can be used for checking validity (and model
checking) of IDL formulae in practice. [SPS05] proposes bounded validity checking
[BCCZ99] of IDL formulae by polynomially reducing this to checking unsatisfiabil-



8 REAL-TIME TEMPORAL LOGICS 24

ity of lin-sat formulae. This technique is implemented and performance results are
obtained by checking the unsatisfiability of the resulting lin-sat formulae using the
ICS solver [FORS02], a SAT-based solver to check the lin-sat formula for satisfiability.
[SPS05] also performs experimental comparisons of several approaches for checking va-
lidity of IDL formulae, including (a) digitization technique [CP03], combined with an
automata-theoretic analysis[Pan01], (b) digitization technique [CP03] followed by pure
propositional SAT solving [Frä02], and (c) lin-sat solving [FORS02]. The paper pro-
vides experimental results on the relative performance of these techniques on several
problems drawn from the Duration Calculus literature.

[Pan02] presents a subset LIDL of IDL consisting only of located time constraints
which is decidable. The paper shows that the models of an LIDL formula can be cap-
tured as timed words accepted by a finite state event-recording integrator automaton.
This gives an automata theoretic decision procedure for the satisfiability of LIDL. It is
also shown that LIDL has the same expressive power of an event-recording automata.
A large number of examples from Duration Calculus literature can be expressed within
LIDL. Thus, it is amongst the important significant subsets of DC which are known
to be decidable and also practically interesting.

8 Real-Time Temporal Logics

Specification of real-time systems must be supported by formal, mathematically-founded
methods in order to be satisfactory and reliable. Temporal logics have been used for
this purpose for several years. Temporal logics allow the specification of system be-
haviour in terms of logical formulas, including temporal constraints, events, and the
relationships between the two. In the last decade, temporal logics have reached a high
degree of expressiveness, although not all are suitable for specifying real-time systems.

Generally speaking real-time temporal logics have been defined to satisfy specific
needs. In recent years the structure and capabilitiesof temporal logics have grown. In
some cases, simple temporal logicsare preferable to more complex and powerful ones,
since the former can be more satisfactorily adopted in certain applications.

Below we review a number of well-known temporal logics designed for the specifi-
cation of real-time systems. All these logics are different in terms of expressiveness,
order, presence of a metric for time, the type of temporal operators, the fundamental
time entity and the structure of time. They also have different capabilities for the
specification, validation, and verification of real-time systems.

8.1 Real-Time Temporal Logic (RTTL):

RTTL [OW87, Ost89] is a first-order explicit clock logic. The temporal structure is
linear and the fundamental entity is the point. Time is limited in the past and unlimited
in the future. Time is defined with both a sequence of states and a sequence of temporal
instants. RTTL is an explicit clock logic because an RTTL formula may explicitly use
the clock time variable t with any of the arithmetic operators (e.g. +,−,=,≥, <) using
arbitrary first-order quantification over rigid time variables. An example of an RTTL
formula is the bounded response time given by



8 REAL-TIME TEMPORAL LOGICS 25

• �T [(red ∧ t = T )→ ♦(green ∧ T + 3 ≤ t ≤ T + 5)]

In the above formula, the clock variable t is a flexible variable (changes from state
to state in the trajectory). The quantified variable T is a rigid variable (retains the
same value over all states in the trajectory). The above formula asserts that if the
traffic light is red at time T, then eventually within 3 to 5 ticks from T the light
must turn green. The bounded response property may be abbreviated by the formula
red→ ♦[3,5]green.

The possibility of adopting an explicit reference to the system clock value, and
indirect quantifications on values assumed by the clock leads to the ability to write
every type of ordering and quantitative constraints. This is extremely interesting for
the specification of real-time systems. However, this flexibility leads to undecidability
and the production of formulas that are quite difficult to understand and manipulate
with respect to other temporal logics that avoid quantification over time-dependent
variables.

The specification in Section 8.3 is expressed in RTTL as follows:

• �(B →©((♦≤tbendA) ∧ ¬(¬startA U endA)))

where © is the next operator, A U B means “A until B”, and ♦≤tA means that there
is an occurrence of A which lasts t time units.

RTTL is a very expressive logic. It can be interpreted over discrete and dense time
domains. The satisfiability problem is undecidable for any of the cases [AH90]. The
model checking problem is also undecidable. A sound proof system is provided for
RTTL.

There are some interesting syntactic fragments of RTTL. These fragments are re-
stricted to finite state, propositional temporal properties:

XCTL [HLP90] is a discrete time propositional explicit clock logic. The atomic
timing constraints allow the primitives of comparison and addition. XCTL restricts
the quantification level. It allows only one outermost level of quantification over rigid
time variables. The quantification is therefore never explicitly displayed. On the
other hand, it allows general arithmetic timing expressions, including addition and
subtraction of variables and constants. The satisfiability and model checking problems
are both undecidable for XCTL over dense time [HLP90]. However, these problems
are PSPACE-complete for the quantifier-free explicit-clock logic XCTL, despite the
admission of addition over time [HLP90]. [HLP90] provides a single exponent decision
procedure for the validity of XCTL formulas. XCTL, however, is a language that is not
closed under negation and, hence, cannot be used to solve the homogeneous verification
problem (i.e. both the model and the specification are expressed in the same formal
language). However, a special model-checking algorithm for XCTL is given that is
doubly exponential in the size of the formula and singly exponential in the size of the
model [HLP90].

TPTL [AH90] is a discrete time propositional logic whose timing constraints allow
comparison and addition (but only of integer constants, i.e. no variables). TPTL uses
auxiliary static timing variables to record the value of the clock at different states, but
replaces the explicit references to the clock itself by a special type of freezing quan-



8 REAL-TIME TEMPORAL LOGICS 26

tification4. The satisfiability and model checking problems are EXPSPACE-complete
for TPTL over discrete time domain, but undecidable TPTL over dense time domain
[AH89]. [AH89] gives a doubly-exponential-time decision procedure for TPTL. The
model checking algorithm for the logic depends exponentially on the value of the prod-
uct of all time constants. [AH90] shows that the addition of past operators renders the
satisfiability problem for TPTL non-elementary. [Hen91] proves that there is a com-
plete finite axiomatization for TPTL in the case of discrete time. These results show
that the freeze quantification of TPTL to be superior to the classical quantification of
RTTL.

8.2 Metric Temporal Logic (MTL):

MTL [Koy90] is a propositional bounded-operator logic; its temporal operators include
time-bounded versions of the ‘until’, ‘next’, ‘since’, and ‘previous’ (the past dual of
next) operators. It is a fragment of RTTL in which references to time are restricted to
bounds on the temporal operators. For example, the formula A → ♦≤5B means that
if A occurs then eventually within 5 time units B must occur. The presence of the
metric for time allows one to reduce the need for quantifications on a temporal domain
(i.e. no references to an explicit clock are allowed), and hence MTL is called a hidden
clock or bounded temporal operator logic.

Interpretations for MTL are metric point structures based on a linearly ordered
time domain. A distance function provides a metric for time. Various time constraints
can be imposed on the distance function, depending on the notion of time that is used
(e.g. transitivity, irreflexibility, and the existence of absolute differences).

In [Koy90], a real-valued time domain is used. This allows MTL to express certain
properties of continuous time variables (e.g temperature and pressure) more succinctly
than discrete time logics. MTL does not allow references to an absolute point in time,
nor does it allow the specifier to relate adjacent temporal contexts. As an example
formalism, the specification in Section 8.3 is specified in MTL as follows:

• B → FtbendA ∧ ¬(¬startA until endA)

[AH90] states that the satisfiability and model checking problems for MTL over
dense time domain are undecidable, but a deductive system is available. [AH90] also
shows that these problems are EXPSPACE-complete for MTL over discrete time do-
main. [AH90] gives a doubly-exponential-time decision procedure for MTL. The veri-
fication algorithm for MTL [AH90] depends exponentially on the value of the largest
time constant involved. [Koy90] provides a sound proof system for MTL. In [HLN+90]
it is shown that XCTL and MTL are incomparable. For each of these logics, there
is a property expressible in one which is not expressible in the other. Each of these
properties is a reasonable real-time requirement. In the discrete time case, TPTL and
MTL are equally expressive (it is conjectured that this equality does not extend to
dense domains [Hen91]). [OW05] finds that the satisfiability problem for MTL over
finite timed words is decidable, with non-primitive recursive complexity.

4The freeze quantifier “x.” binds the associated variable x to the time of the current temporal context:
the formula x.φ(x) holds at time t iff φ(x) does. Thus, in the formula ♦y.φ the time variable y is bound to
the time of the state at which φ is “eventually” true.



8 REAL-TIME TEMPORAL LOGICS 27

The real-time logic MITL was introduced in [AFH91] as a restriction of MTL. MITL
is a propositional linear-time logic with an interval-based strictly-monotonic real-time
semantics; that is, it is interpreted over timed observation sequences. MITL employs
the nonnegative reals as time domain. MITL uses the bounded-operator syntax with
the restriction that the temporal operators must not be bounded (subscripted) by
singular intervals. For example, the formula �(p → ♦[3,3]q) is disallowed; that is,
MITL rules out a form of equality constraints.

The proof of the undecidability of real-time logics over a dense time domain makes
crucial use of punctuality properties5. The bounded-operator logic MITL originated
in an effort to define a nontrivial real-time logic that cannot express punctuality re-
quirements and, indeed, the satisfiability and model checking problems for MITL were
shown to be EXPSPACE-complete. The doubly-exponential-time verification algo-
rithm for MITL, which is the first such algorithm for a linear-time logic over a dense
time domain, is considerably more complex than discrete-time algorithms.

The restriction of MITL time modalities to positive-length intervals was intended
to guarantee decidability; but recent results [OW05, LW08] show that this restriction
is not necessary for deciding MTL over finitary event-based semantics. The original
version of MITL [AFH91] contains only future temporal operators. [MNP05] compares
the past and future fragments of the real-time temporal logic MITL with respect to the
recognizability of their models by deterministic timed automata. It proves that timed
languages specified by the past fragment of MITL, can be accepted by deterministic
timed automata. On the other hand, certain languages expressed in the future fragment
of MITL are not deterministic.

8.3 Real-Time Logic (RTL):

RTL is a formal language for reasoning about events and their times of occurrence.
It is introduced in [JM86]. RTL is an extension of first-order logic with a so-called
occurrence function which assigns a time value to each occurrence of an event. RTL
formulas may be used to express real-time requirements in a formal way or to set up
additional safety constraints that the system must comply with. Mechanical methods
have been devised to translate real-time requirements into RTL formulas and to validate
a class of safety assertions against a specification [JM86].

RTL presents an absolute clock to measure time progression. The value of this
clock can be referenced in the formulas. The temporal domain is the set of natural
numbers, and is linear, discrete, limited in the past, unlimited in the future, and totally
ordered. The fundamental entity is the time instant. It was shown in [AH90] that RTL
is undecidable even when the syntax is restricted.

In RTL, there are no problems in specifying ordering and quantitative tempo-
ral constraints, since it is possible to make explicit reference to time even through
quantification. The main problem with RTL is the fact that absolute system time is
referenced, with a low level of abstraction, leading to very complex formulas required

5A punctuality property states that the event B follows A in exactly 3 seconds. For any real-time logic
that is closed under boolean operations, and that can express punctuality, the satisfiability problem is
undecidable for a dense time domain.



8 REAL-TIME TEMPORAL LOGICS 28

to describe the system. Let us consider the following temporal constraint: for each
occurrence of an event B which happens at a time instant t0, the predicates startA and
endA hold (marking an interval [startA, endA] at which A is true), and the interval
[startA, endA] is subsumed by the interval [t0, t0+tb], where t0≤startA ≤ endA≤t0+tb.
This constraint is specified in RTL as follows:

• ∀t.∀i.@(ΩB, i) = t→ (∃j.(t ≤ @(↑ A, j)) ∧ (@(↓ A, j) ≤ t+ tb))

where ΩB denotes the occurrence of the event B, t denotes time, ↑ A denotes the
beginning of the action A, ↓ A denotes the completion of the action A, and i and j
are the occurrences of the events marked with the operator @. Time is captured by
the occurrence function @ which assigns time values to event occurrences. @(ΩB, i) is
defined as the time of the i -th occurrence of ΩB.

RTL’s event occurrence function allows for a rich expression of periodic and non-
periodic real-time properties. However, RTL is undecidable [AH90]. It does not treat
data structures or infinite state systems. RTL formulas impose a partial order on
computational actions which is useful for representing high level timing requirements.

The decision and verification algorithms for RTL are not practical in general. To
improve the decision procedures RTL formulas are better structured, using domain
knowledge, into a computation graph. With this improved structuring an exponential
time decision procedure (in the worst case) is obtained. In [JS88], a visual formalism
called Modecharts is introduced. Modecharts have some similarities to Statecharts.
Modecharts specify a decidable fragment of RTL, in a “natural”, state-based, visual
fashion preferred by design engineers. A method is provided for translating Modecharts
into computational graphs, from which the verification can be performed.

8.4 Real-Time Interval Logic (RTIL):

RTIL is introduced in [RG89]. RTIL includes a metric for time. Intervals are con-
structed by assigning numerical values to interval bounds. It is also possible to measure
the interval duration. This characteristic makes RTIL interesting for the specification
of real-time systems. Instants can be specified absolutely or relative to the beginning
of the current context. RTIL also permits quantification over finite domains. This
feature does not enhance the expressiveness of the logic, but simplifies the writing of
complex and repetitive formulas.

The specification in Section 8.3 is specified in RTIL as follows:

• � [�B ↪→ tb]
∗ (�startA⇒ �endA)

where �A extracts the time instant in which A becomes true, and the operator∗ means
there exists a subinterval.

8.5 Tempo Reale ImplicitO (TRIO):

TRIO [GMM90] is a formal language and a method for the specification, analysis and
verification of critical, real-time systems. The TRIO language is based on a metric
extension of first-order temporal logic and exploits typical object-oriented features to
support the managing of large, complex, and maintainable specifications.



8 REAL-TIME TEMPORAL LOGICS 29

The choice of first order temporal logic was motivated by reasons of naturalness,
simplicity and compactness of specification. The temporal structure is linear and
totally ordered: possible temporal domains are the natural numbers, the integers, the
real numbers, or an interval of one of these set. The fundamental temporal entity is
the point and a metric for time is available. On that basis, it is possible to measure
the distance of two points and the length of an interval.

TRIO presents only two temporal operators: Future(A,t) and Past(A,t) for speci-
fying that A occurs at time instant t in the future and past, respectively. From these
two basic operators many other derived temporal properties can be defined such as
“always in the future” and “sometime in the past”.

The temporal operators introduced by TRIO, with the possibility of quantification
on temporal variables without any restriction, permit the expression of order and
quantitative temporal constraints as needed for real-time systems specification. It is
necessary to use quantification over the time domain, so formulas are often complex
and difficult to read and manipulate.

The specification example in Section 8.3 can be written in TRIO as follows:

• Alw(B → ∃t((0 < t < tb) ∧ Futr(endA, t) ∧ ∃t′(0 < t′ < t ∧ Futr(startA, t′)))

where Futr(A, t) denotes that A occurs at a time instant t in the future, and Alw is
a user-defined operator which stands for ∀t(t > 0 → Futr(A, t)) ∧A ∧ ∀t(t > 0 →
Past(A, t)).

TRIO has mainly been used for the validation and verification of system require-
ments through testing activity (history-checking), and not by means of the proof of
system properties. TRIO has been described as an executable logic language in the
general sense. It can be used to build a model of the system under specification as
TRIO formulas. Histories of system variables can be checked against the specification
in order to verify whether they satisfy the specification. So TRIO must be considered
a specific case of model-checking.

Since TRIO is an extension of FOL, which is undecidable, TRIO is also an unde-
cidable logic.

8.6 Temporal Interval Logic with Compositional Operators (TILCO):

TILCO [Mat96, MN96] extends FOL with a set of temporal operators to create a logic
language that can specify both relationships between events and time and data domain
transformations. TILCO uses the interval as a fundamental temporal entity. The
temporal structure is linear and presents a metric for time that associates an integer
number to every temporal instant; no explicit temporal quantification is allowed.

TILCO can be used to specify temporal constraints among events in either a qualita-
tive or quantitative manner. Therefore, interval boundaries, which specify the length of
intervals and actions, can be expressed relative to other events (qualitatively) or with
an absolute measure (quantitatively). This allows for the definition of expressions
of ordering relationships among events or delays and time-outs. These features are
mandatory for specifying the behaviour of real-time systems. The TILCO deductive
approach is sound and, thus, consistent.



9 PROBABILISTIC LOGICS 30

In TILCO, the same formalism used for system specification is employed for de-
scribing high-level properties that should be satisfied by the system itself. These must
be proved on the basis of the specification in the system-validation phase. Since TILCO
operators quantify over intervals, instead of using time points, TILCO is more concise
in expressing temporal constraints with time bounds, as needed in specifying real-time
systems. In fact, TILCO can be effectively used to express invariants, precedence
among events, periodicity, liveness and safety conditions, etc. These properties can be
formally verified by automatic theorem-proving techniques.

The specification in Section 8.3 can be expressed in TILCO as follows:

• B → endA?(0, tb) ∧ ¬until(endA,¬startA)

where ? denotes universal temporal quantification.
A sound deductive system for TILCO is presented in [Mat96, MN00]. This system is

used in the context of the general theorem-prover Isabelle [Pau94] to provide support
for proving TILCO formulas. Since TILCO extends FOL, it is undecidable in the
general case. However, the subset of formulas that presents only quantifications on
finite sets is decidable.

9 Probabilistic Logics

Probabilistic reasoning has been recognised as a useful tool in many fields of computer
science and artificial intelligence. There is an extensive investigations about formal
systems for reasoning in the presence of uncertainty. In probabilistic temporal rea-
soning, it is usual to start with classical logic and to add probabilistic operators that
behave like modal operators. It is also possible to combine the probabilistic approach
with some other nonclassical logics. For example, the probabilistic operators are added
to modal logic of knowledge in [FH94], while a probabilistic extension of Intuitionistic
Logic is analysed in [MOR03].

9.1 Probabilistic Temporal Logics

9.1.1 The Logics PCTL and PCTL*

Probabilistic Computation Tree Logic, PCTL, is a probabilistic branching time tem-
poral logic which allows for probabilistic quantification of described properties. It was
defined by Hansson and Jonsson in [HJ89, HJ94]. PCTL is a useful logic for stating
soft deadline properties, e.g. “after a request for a service, there is at least a 98%
probability that the service will be carried out within 2 seconds.” Soft deadline are
interesting in systems in which a bound on the response time is important; but the
failure to meet the response time does not result in a disaster.

This logic extends the temporal logic CTL by Emerson, Clarke and Sistla [CES86].
In PCTL time is discrete and one time unit corresponds to one transaction along an
execution path. To enable reasoning about soft deadlines path quantifiers have been
replaced with probabilities. Formulas in this logic are interpreted over discrete-time
Markov chains. The set of PCTL formulas is divided into path formulas and state



9 PROBABILISTIC LOGICS 31

formulas. Intuitively, state formulas represent properties of states and path formulas
represent properties of paths (i.e. sequences of states).

The main difference between PCTL and branching time temporal logics, such as
CTL, is the quantification over paths and the ability to specify quantitative time.
CTL allows universal and existential quantification over paths, i.e. One can state that
a property should hold for all computations (paths) or that it should hold for some
computations (paths). It is not possible to state that a property should hold for a
certain portion of the computations, e.g. for at least 50% of the computations. In
PCTL, on the other hand arbitrary probabilities can be assigned to path formulas,
thus obtaining a more general quantification over paths.

In PCTL it is possible to state that a property will hold continuously during a
specific time interval, or that a property will hold sometime during a time interval.
Some real-time requirements are specified in PCTL as follows:

• (i) AGf ≡ fU≤∞≥1 false (ii) EFf ≡ trueU≤∞>0 f .

where f1U≤p≥t f2 means that “there is at least a probability p that either f1 will remain
true for at least t time units, or that both f2 will become true within t time units and
that f1 will be true from now on until f2 becomes true”; and f1U

≤p
≥t f2 means that “there

is at least a probability p that both f2 will become true within t time units and that
f1 will be true from now on until f2 becomes true.” Therefore, AGf intuitively means
that “f is always true (in all states that can be reached with non-zero probability), and
EFf means that there exists a state where f holds which can be reached with non-zero
probability.”

In [HJ94] several model checking algorithms for the logic PCTL, with different
suitability for different classes of formulas, are presented. The algorithms require
a polynomial number of arithmetic operations, in size both of the formula and the
Markov chain6.

[ASB95] defines another probabilistic variant of CTL [CES86]. This new logic
is called PCTL*. The logic expresses quantitative stochastic properties of systems,
which are themselves modelled as discrete Markov processes7; furthermore, it exhibits
an elementary model checking procedure. Discrete Markov processes exhibit a nat-
ural notion of bisimulation; this is shown to be sound and complete with respect to
PCTL*. [ASB95] also extends the universe of models to include generalized discrete
Markov processes8 which can be used for modelling systems where the transition prob-
abilities are not completely specified; these systems allow notions of abstraction and
refinement. Using characterisations of discrete Markov processes and results on the
decidability of real closed fields [BOKR84], [ASB95] derives an elementary decision
procedure for model checking PCTL* over generalized discrete Markov processes. The

6A Markov chain is a pair (S, P ) where S is a (potentilly infinite) set of states and P : S × S → [0,1] is
the transition probability matrix satisfying the condition (∀s ∈ S)

P
s′∈S P (s, s′) = 1

7A (finite) Markov process is a 4-tuple (AP, S, P,L), where AP is a finite set of atomic propositions, S
is a countable set of states, P : S × S → [0,1] is the transition probability matrix satisfying the condition
(∀s ∈ S)

P
s′∈S P (s, s′) = 1 and L : S → 2AP is labeling function.

8A generalized Markov process is a 3-tuple (AP, S,L), where AP, S and L are defined as in Markov
processes, and a finite set of constraints on the transition probabilities.



9 PROBABILISTIC LOGICS 32

model-checking algorithm presented in [ASB95] can be used to determine the validity of
PCTL* formulas. In fact, [ASB95] shows that the decision problem for PCTL* formu-
las on generalized Markov processes is decidable. However, no efficient computational
method is given for this problem. In addition, no sound and complete axiomatisation
of the logic is given.

[BA95] presents model-checking algorithms for extensions of PCTL and PCTL* to
systems in which the probabilistic behaviour coexists with nondeterminism (probabilistic-
nondeterministic systems), and shows that these algorithms have a polynomial-time
complexity in the size of the system. This provides a practical tool for reasoning
on the reliability and performance of parallel systems. It is already known from
[HJ89, HJ94, ASB95] that PCTL and PCTL* model checking on Markov chains can be
done in polynomial time in the size of the system. This therefore means that adding
nondeterminism still preserves the polynomial time bound, provided the size of the
system takes into account not only the number of states, but also the encoding of
the transition probabilities. The situation is different for the time bounds expressed in
terms of the size of the formula. Model checking of PCTL formulas can be done in linear
time on the size of the formula for both Markov chains [HJ89, HJ94] and probabilistic-
nondeterministic systems. However, while PCTL* model checking on Markov chains
can be done in single exponential time in the size of the formula [ASB95], PCTL* model
checking on probabilistic-nondeterministic systems requires at least doubly exponential
time in the size of the formula.

9.1.2 The Logic PLTL

[Ogn06] describes a way in which probabilistic reasoning can be enriched with some
temporal features. It introduces a Probabilistic Propositional Temporal Logic (PLTL),
which is a propositional probability discrete-linear temporal logic. The temporal part
of the logic is a standard discrete linear-time logic, where the time flow is isomorphic
to natural numbers, i.e. each moment of time has a unique possible future, while the
corresponding language contains the ‘next’ operator and the reflexive strong ‘until’
operator, while the operators ‘sometime’ and ‘always’ are definable from the ‘next’
and ‘until’ operators. In this logic the probabilistic operators quantify events along a
single time line. It allows one to express sentences such as “(according to the current
set of information) the probability that, sometime in the future, α is true is at least
n.” As the knowledge can evolve during time, the probability of α might change too.

Given that ©, F and G are the ‘next’, ‘sometime’ and ‘always’ operators, respec-
tively, and Pτα (τ ∈ {<,≤,=,≥, >}) is a unary probabilistic operator, an example of
a PLTL formula is

• ©P≥rp ∧ FP<s(p→ q)→ GP=tq

which can be read as “if the probability of p in the next moment is at least r and
sometime in the future q follows from p with the probability less than s, then the
probability of q will always be equal to t.”

[Ogn06] analyses completeness, decidability and complexity of the logic PLTL. It
describes a class of so called measurable models. It is proved that PLTL restricted to



9 PROBABILISTIC LOGICS 33

the class of all measurable models (PLTLMeas) has a sound and complete (infinitary)
axiomatisation. The term infinitary means the language and formulas are finite, while
only proofs are allowed to be infinite (The completeness cannot be proved with fini-
tary axiomatisation). A PLTLMeas-satisfiable formula is satisfiable in an ultimately
periodic model in which various parameters are bounded by functions depending on he
size of the formula. [Ogn06] also shows that the satisfiability problem for PLTLMeas

is PSPACE-hard, and that it belongs to NEXPTIME.
In [Ogn06] also introduces First-order Probabilistic Temporal Logic (FOPLTL),

which is the first-order version of PLTL. The complete infinitary axiomatisation is
extended for the logic FOPLTL (No complete finitary axiomatisation is possible). The
set of all FOPLTL-valid sentences is not recursively enumerable [GHR94].

9.1.3 The Logics PTLf and PTLb

[HS84] presents two (closely-related) propositional probabilistic temporal logics, called
PTLf and PTLb, based on temporal logics of branching time as introduced in [BAMP81]
and [CE82]. These logics are interpreted over models which can simulate the execution
of probabilistic programs; for PTLf these are essentially finite Markov chains, whereas
for PTLb they are infinite stochastic processes whose state-transition probabilities are
bounded away from 0 (this assumption holds for finite-state concurrent probabilistic
programs since there are only finitely many different state-transitions).

PTLf and PTLb are expressive enough to allow one to express various properties
of programs, such as invariant and liveness properties, without explicit reference to the
values of the transition probabilities. PTLf is intended for reasoning about sequential
programs whereas PTLb extends PTLf and is intended for reasoning about concurrent
programs. To show the syntax of the logics, let us consider the formula p∀Uq. This
formula intuitively means that along all paths w starting with the initial state and
consisting only of transitions with nonzero probability, p holds at all states of w up to
the first state, if any, at which q holds.

It turns out that satisfiability of formulae in both logics is decidable, in one-
exponential time, by decision procedures based on the tableau technique which-generalise
similar procedures for the nonprobabilistic logics of [BAMP81] and [CE82]. Together
with these decision procedures, [HS84] also provides complete axiomatisations for both
logics, and shows that the same decision procedures can be used to construct a proof of
the negation of any unsatisfiable formula. Several meta-results, including the absence
of a finite-model property for PTLb, and the connection between satisfiable formulas
of PTLb and finite state concurrent probabilistic programs, are also discussed.

Some of the related works in the literature are given as follows: Like the logic
PTLb, the logics proposed by Pnueli [Pnu83] and by Lehmann and Shelach [LS83] also
aim to reason about concurrent probabilistic programs and do not refer explicitly to
the values of probabilities involved. However, the logic of Pnueli is not complete; the
logic of Lehmann and Shelach is more expressive than PTLb, and consequently the
presently available decision procedures for that logic are much more inefficient than
PTLb. Both these logics are based on temporal logic of linear time.

We would like to finally mention that [CY88] determines the complexity of testing



9 PROBABILISTIC LOGICS 34

whether a finite state (sequential or concurrent) probabilistic program satisfies its
specification expressed in linear temporal logic (PTL). For sequential programs [CY88]
gives an exponential time algorithm, and shows that the problem is in PSPACE; this
improves the previous upper bound by two exponentials and matches the known lower
bound. For concurrent programs it is shown that the problem is complete in double
exponential time, improving the previous upper and lower bounds by one exponential
each. [CY88] also addresses these questions for specifications described by ω-automata
or formulas in extended temporal logic.

9.1.4 The Logic PDC

The Probabilistic Duration Calculus (PDC ) was introduced in [LRSZ92] as an exten-
sion of Duration Calculus [CHR91]. PDC presents a calculus that enables the design
of an embedded real-time system to reason about and calculate whether a given re-
quirement will hold with a sufficiently high probability for a given failure probabilities
of components used in the system design. The main idea is to specify requirements
in DC, to define satisfaction probabilities for formulas in this calculus, and establish a
calculus with rules that support calculation of the probability for a composite formula
from probabilities of its constituents. This ensures that reasoning about probabilities
is consistent with requirements and design decisions. In this paper, separate models for
requirements and reliability analysis are not introduced. The system model is a finite
automaton with fixed transition probabilities. This defines discrete Markov processes
as the basis for the calculus. The approach to introducing PDC is as follows: Consider
some finite probabilistic timed automata A. The behaviours of A can be represented
as a set of M of DC models. The probabilistic principles that manage the working
of A used to introduce probability on the subsets of M. Given a DC formula D, the
term π(D)(t) denotes the probability of those models from M that satisfy D at the
interval [0, t]. A term of this sort is the component of PDC language. An example
PDC formulas is given below:

• πs0((true; dse); (ds′e; true))(t) = 0

In [LRSZ92] the authors focused on the case of discrete time for the sake of sim-
plicity. That is, the model of implementations is based on probabilistic automata,
in which transitions (events, actions) take place at discrete time points represented
by integers. In a later work, [HC94], PDC was introduced for the case of continuous
time. It uses probabilistic automata with transitions occurring in continuous time to
model implementations, and then establishes PDC for continuous time. The paper
deals with dependability of imperfect implementations of given requirements. The re-
quirements are assumed to be written as formulas in DC. Implementations of given
requirements are modelled by continuous semi-Markov processes with finite space,
which are expressed as finite automata with stochastic delays of state transitions (such
an automata is called continuous time probabilistic automata). A probabilistic model
for DC formulas is introduced, so that the satisfaction probabilities of DC formulas
with respect to semi-Markov processes can be defined, reasoned about and calculated
through a set of axioms and rules (which is an extension of the set of axioms and rules



9 PROBABILISTIC LOGICS 35

of DC) of the model. To our best knowledge, no complete proof system for PDC has
been proposed so far. As for the decidability, PDC is, not surprisingly, an undecidable
logic.

In [HZ07] another probabilistic extension of Duration Calculus is considered to ex-
press dependability requirements for real-time systems. This new logic is called Simple
Probabilistic Duration Calculus (SPDC). SPDC has an intuitive semantics based on
probabilistic timed automata, and has a simple grammar that allows to write formulas
to reason about the probability of the satisfaction of a duration formula by a proba-
bilistic timed automaton as well as to specify real-time properties of the system itself.
The paper uses the behavioural model proposed in [KNSS02]9 to define the seman-
tics of the logic, and then develops a model checking technique to decide if a set of
SPDC models generated by a probabilistic timed automaton satisfies a SPDC formula.
Depending on different forms of model sets we can have different model checking prob-
lems. The problem is decidable for a class of SPDC formulas of the form linear duration
invariants, or a formula for bounded liveness. The technique for model checking is an
extension of the technique developed earlier in [TH04] to check if a timed automaton
satisfies a DC formula in the form of linear duration invariants or discretisable DC
formulas based on searching the integral reachability graph of the timed automaton.
The complexity of the decision procedure is high in general.

9.1.5 The Logic PNL

In [Gue00b] a probabilistic extension of Neighbourhood Logic, called Probabilistic
Neighbourhood Logic (PNL), is introduced. The study of such an extension is mo-
tivated by the need to supply Probabilistic Duration Calculus with a proof system.
[Gue00b] presents a complete proof system for the new logic. The proof system of NL
was extended to obtain a complete one for PNL. PNL also generalises the notion of
finite probabilistic timed automaton in [HC94].

A PNL language is built starting from the same kinds of symbols as a NL language.
PNL languages are two-sorted. Together with the well-known sort of durations, they
have a sort of probabilities. The function symbols of Pa from automata-related lan-
guages take an argument of the duration sort to make a term of the probability sort.
We now consider an example. Let b abbreviate a formula which is true at intervals be-
tween two consecutive processes. The assumption that the probability for the duration
of such a period to be no bigger than x is a function of x which is the interpretation
of the function symbol F in a satisfying model can be expressed by the formula

• p(b ∧ ` ≤ x = F (x))

PNL has the expressive power of PDC, except for state expressions and their du-
rations. Since PNL is an extension of NL, it is an undecidable logic.

9The authors propose a variant of probabilistic timed automata that allows probabilistic choice only at
discrete transitions. To resolve the nondeterminism between the passage of time and discrete transitions
they use the concept of adversary which is essentially a deterministic schedule policy. Then, the set of
executions of a probabilistic time automaton according to an adversary forms a Markov chain, and hence
the satisfaction of a probabilistic CTL formula by this set can be defined, and then based on the region
graph of the timed automaton the satisfaction of a probabilistic CTL formula by the timed automaton can
be also verified.



9 PROBABILISTIC LOGICS 36

9.2 Probabilistic Dynamic Logics

Following the popularity of probabilistic algorithms for solving problems which are
hard or even unsolvable, some attention was given to the formalisation of correctness
proof methods for probabilistic programs. Perhaps the first step in this direction is
Kozen’s definition of a formal semantics for such programs [Koz79]. The next step
would be a formal programming logic for probabilistic programs. Indeed, several sys-
tems, in particular various probabilistic dynamic logics, were proposed. Some historical
developments in this area are given below:

Feldman and Harel’s Pr(DL) [FH82] is a typical example of a first-order prob-
abilistic dynamic logic. Pr(DL) enables reasoning about probabilistic programs or,
alternatively, reasoning probabilistically about conventional programs. The syntax of
Pr(DL) derives from Pratt’s first-order dynamic logic [Pra76] and the semantics ex-
tends Kozen’s semantics of probabilistic programs. An axiom system for Pr(DL) is
presented and shown to be complete relative to an extension of first-order analysis
[FH82]. For discrete probabilities it is shown that first-order analysis actually suffices.
Examples are presented, both of the expressive power of Pr(DL), and of a proof in the
axiom system. Unfortunately, the underlying theory is highly undecidable (equivalent
to second-order arithmetic in the discrete case).

On propositional level, some early important logics are Feldman’s P-Pr(DL) [Fei83]
and Kozen’s PPDL [Koz83]. [Fei83] defines a propositional version P-Pr(DL) of Feld-
man and Harel’s Pr(DL) which preserves many of the powerful characteristics of that
logic, such as the ability to use full first-order real-number theory for dealing with
probabilities, and deterministic regular programs, while still being decidable. The
complexity of the decision procedure for P-Pr(DL) is not addressed. In addition, no
axiomatisation is given.

In [Koz83] probabilistic analog PPDL of Propositional Dynamic Logic is given.
[Koz83] proves a small model property, and gives a polynomial space decision procedure
for formulas involving well-structured programs. [Koz83] also gives a deductive calculus
and illustrates its use by a program example.

In [Fel84] a Propositional Dynamic Logic with explicit probabilities is introduced.
Some important features of this logic are as follows: The formal language is based on
the Propositional Dynamic Logic; the main objects are programs; and probabilistic
operators can be applied on a limited class of formulas. [Fel84] provides a double-
exponential space decision procedure for the logic, also by reduction to the decision
problem for the theory of real closed fields. The completeness problem for the logic is
not solved.

[Gue99] introduces a propositional logic for reasoning about probabilistic processes,
such as semi-Markov processes. The author obtains a logic, called DQP, by extending
the propositional logic of qualitative probabilities (QP) [Seg71] with one binary oper-
ator ≤. The informal reading of ϕ ≤ ψ, where ϕ and ψ stand for arbitrary formulas,
is that “the probability of ϕ is not greater than the probability of ψ.” A model of this
logic is introduced as a set of possible worlds. [Seg71] presents a complete deductive
system for QP, which contains an infinite set of axiom schemata. The logic QP can be
regarded as a minimal logic for reasoning about probability with respect to how much



9 PROBABILISTIC LOGICS 37

it extends classical propositional logic.
The logic DQP is obtained as an extension of QP with many ≤-operators and

operations among them that are analogous to the operations of composition, union,
and iteration on modal operators known in propositional dynamic logic. The informal
reading of w |= ϕ ≤t ψ is that “the probability for a transition (experiment) t to trans-
form w into a possible world that satisfies ϕ is smaller or equal to the probability for t
to transform w into a possible world that satisfies ψ.” The probabilities are restricted
only to the finitely additive ones. Just like QP, DQP can be regarded as a minimal
purely propositional system that allows reasoning about probabilistic processes. That
is why DQP language, frames and the properties it displays can be expected to be
at least in part shared by all other, more application-oriented and more complicated
formal systems for reasoning about probabilistic processes.

[Gue99] gives the following reasons for the study of DQP: First, DQP is a natural
approach to making Probabilistic Dynamic Logic (PDL) [FH82] probabilistic. An
alternative approach is Kozen’s PPDL [Koz83], but the completeness of PPDL’s system
of axioms can be so far backed up by example derivations alone. Besides, PPDL’s
language admits arithmetical terms, and derivations in PPDL rely on arithmetic, which
means that it actually has a first order component. Second, the language of QP seems
to be simple, and therefore it can capture reasoning about probability, and quantity,
in general. Although proofs in QP can be shaped after quantitative intuition, no
explicit mention of quantity is needed. All the arithmetic that is intuitively needed for
probabilistic reasoning is implemented by means of Boolean operations. [Gue99] finds
a ω-complete proof system for DQP. The proof of the ω-completeness theorem involves
the construction of a ‘canonical’ model, that is not finite; hence DQP is not decidable.

9.3 Probabilistic Mu-Calculus

[CIN05] presents a Mu-Calculus-based modal logic, called Generalised Probabilistic
Logic (GPL), for describing properties of reactive probabilistic labelled transition sys-
tems (RPLTSs). GPL is a uniform framework for defining temporal logics on reactive
probabilistic transition systems. In a reactive model the nonprobabilistic choices are
external: the environment, not the system itself, selects which action to perform. This
point of view stands in contrast to models like Markov decision processes, in which
nonprobabilistic choices are internal. GPL is based on the distinction between (proba-
bilistic) ‘systems’ and (nonprobabilistic) ‘observations’: using the modal mu-calculus,
one may specify sets of observations, and the semantics of this logic then enable state-
ments to be made about the measures of such sets at various system states. This
logic is expressive enough to encode some of probabilistic modal and temporal logics
(i.e. PCTL*). [CIN05] also presents a model-checking procedure that relies on solving
non-linear equations. The logic induces an equivalence on RPLTSs that coincides with
accepted notions of probabilistic bisimulation in the literature. Finally, we consider an
example: P≥1(νX.φ∧ [.][.]X) says that it is almost always true that φ holds at all even
time instants ([.]φ ≡

∧
a∈Act[a]φ, where Act denotes a set of actions).



9 PROBABILISTIC LOGICS 38

9.4 Probabilistic Instuitionistic Logics

[MOR03] introduces a probabilistic extension of propositional instuitionistic logic.
There is a popular view of instuitionistic logic: In addition to propositions which
are proved to be true and those which are proved to be false, there is a third class
of propositions which may turn out either way and intuitionism allows us to reason
about them. [MOR03] adds probabilistic operators to the propositional instuitionistic
language, which enables making statements such as P≥nα with the intended meaning
“the probability of truthfulness of α is at least n”. In this logic nesting of probabilistic
operators, i.e. higher-order probabilities, are not allowed. At the semantics level, a
class of models that combine properties of instuitionistic Kripke models and probabil-
ities are introduced. A sound and complete infinitary axiomatic system is given. It is
also proved that the logic is decidable.

9.5 Probabilistic Logics with New Types of Probability Oper-
ators

[OR99] introduces a probability logic, called LPP,Q,O, with new types of probability
operators of the form QF , where F is a set from a recursive family O of recursive
rational subsets of [0, 1]. Informally, a formula QFα means that “the probability of α
is in F.” To give semantics to probability formulas a possible-world approach is used.
In the paper, the authors assume the so called measurable case, i.e. every propositional
formula is associated a well-defined probability in every model.

The probability operators introduced in this logic are different than ordinary prob-
ability operators. Namely, the new probability operators QF cannot be definable in
a probability language which contains P≥-operators only. Thus, LPP,Q,O is more ex-
pressive.

This logic is suitable for reasoning about discrete sample spaces. For example,
consider an experiment which consists of tossing a fair coin an arbitrary, but finite
number of times. Then, QFα holds in this model, where α means that only heads
are observed in the experiment, and F denotes the set { 1

2 ,
1
22 ,

1
23 , ...}. Since QF is

not definable over the probability language LP = {¬,∧, P≥}, this sentence cannot be
described in the probabilistic logics which are obtained by adding probability operators
to the classical propositional language.

It turns out that the choice of the family O of recursive rational subsets of [0, 1] that
appear in the probability operators Q is important, because it affects the decidability
and expressiveness of the corresponding probability logic. Every particular choice of
the family O produces a different probability language, a different set of probability
formulas, and a distinct LPP,Q,O logic.

Although the logic LPP,Q,O is not decidable in general, [OR99] provides a sub-
language which is shown to be decidable. [OR99] also provides a sound and complete
axiomatic systems for a number of probability logics augmented with the QF -operators.



9 PROBABILISTIC LOGICS 39

9.6 Probabilistic Logics for Reasoning About Knowledge and
Uncertainty

Halpern et. al., in a series of articles, studied reasoning about knowledge and proba-
bility. In [FHM90] the authors focus on technical issues, such as axiomatisations and
decision procedures. In [FH91] the authors consider the issue of appropriate models
for reasoning about uncertainty in more detail and compare the probabilistic approach
to the Dempster-Shafer approach [Sha76]. In [FH94] the authors consider a logic of
knowledge and probability that allows arbitrary nesting of knowledge and probability
operators. They are able to prove technical results about complete axiomatisations
and decision procedures for the resulting logics extending those of this paper. There is
also a general look at the interaction between knowledge and probability. The paper
[HT93] focuses on knowledge and probability in distributed systems. [AH94] consid-
ers issues of reasoning about probability in a first-order context. Below we give more
detailed accounts of the articles mentioned:

In [FHM90] a language is considered for reasoning about probability which allows
making statements such as “the probability of E1 is less than 1/3 and the probability
of E1 is at least twice the probability of E2.”, where E1 and E2 are arbitrary events.
[FHM90] considers the case where all events are measurable (i.e. represent measurable
sets), and the more general case where they may not be measurable. The measurable
case is essentially a formalisation of the propositional fragment of Nilssons’ probabilis-
tic logic [Nil86]. The general nonmeasurable case corresponds precisely to replacing
probability measures by Dempster-Shafer belief functions [Sha76]. In both cases, a
complete axiomatisation is provided, and it is shown that the problem of deciding sat-
isfiability is NP-complete, no worse than that of propositional logic. This is actually
done by reducing the problem of validity to a linear programming problem. As a tool
for proving the complete axiomatisations a complete axiomatisation is given for reason-
ing about Boolean combinations of linear inequalities which is of independent interest.
This proof and others make crucial use of results from the theory of linear program-
ming. The language is then extended to allow reasoning about conditional probability,
and it is shown that the resulting logic is decidable and completely axiomatisable by
making use of the theory of real closed fields.

Some related works to that of [FHM90] is as follows: [GKP88] presents a less
expressive logic, which is shown to be NP-complete. The measurable case of the logic
proposed by [FHM90] can also be viewed as a fragment of the Probabilistic PDL
by [Fel84]Temporal . [Koz83] also considers a Probabilistic PDL, which is PSPACE-
complete; but this logic is not closed under Boolean combination, and it does not allow
linear combinations.

[FH91] introduces a new probabilistic approach to dealing with uncertainty, based
on the observation that probability theory does not require that every event be as-
signed a probability. For a nonmeasurable event (one to which we do not assign a
probability), one can talk about only the inner measure and outer measure of the
event. In addition to removing the requirement that every event be assigned a prob-
ability, this approach circumvents other criticisms of probability-based approaches to
uncertainty. For example, the measure of belief in an event turns out to be represented



9 PROBABILISTIC LOGICS 40

by an interval (defined by the inner and outer measure), rather than by a single num-
ber. Further, this approach allows assigning a belief (inner measure) to an event E
without committing to a belief about its ¬E (since the inner measure of an event plus
the inner measure of its negation is not necessarily one). Inner measures induced by
probability measures turn out to correspond in a precise sense to Dempster-Shafer be-
lief functions [Sha76]. Hence, in addition to providing promising new conceptual tools
for dealing with uncertainty, this approach shows that a key part of the important
Dempster-Shafer theory of evidence is firmly rooted in classical probability theory.

[FH94] presents an abstract model for reasoning about knowledge and probability
in which they assign to each agent-state pair a probability space to be used when
computing the probability, according to that agent at that state, that a formula ϕ is
true. The language considered extends the traditional logic of knowledge by allow-
ing explicit reasoning about probability. Probabilities can be explicitly mentioned in
formulas, so that the language has formulas that essentially say “according to agent
t, formula ϕ holds with probability at least b.” In order to reason about an agent’s
knowledge as well as the probability he places on certain events, [FH94] extends the
logic considered in [FHM90], which is essentially a formalisation of Nilsson’s probabil-
ity logic [Nil86]. The language also allows reasoning about higher-order probabilities,
as well as following explicit comparisons of the probabilities an agent places on dis-
tinct events. [FH94] presents a general framework for interpreting such formulas, and
considers various properties that might hold of the interrelationship between agents’
probability assignments at different states. [FH94] provides a complete axiomatisation
for reasoning about knowledge and probability, proves a small model property, and
obtains some decision procedures. The authors then consider the effects of adding
common knowledge and a probabilistic variant of common knowledge to the language.

In [AH94] decidability and expressiveness issues for two first-order logics of prob-
ability are considered. In one the probability is on possible worlds, whereas in the
other it is on the domain. It turns out that in both cases it takes very little to make
reasoning about probability highly undecidable. All the results are proved under the
assumption that the probability is discrete. The complexity of the logics gets even
worse if arbitrary probability distributions are allowed. One implication of these re-
sults is that sound and complete axiom systems cannot be found for these logics (since
the existence of such an axiom system would imply that the validity problem would be
r.e.). There are a few special cases where these results show that it is possible to get
complete axiomatisations, for example, in the case where the language consists only of
unary predicates and the case where we restrict to bounded domains. In particular,
when combined with the standard axioms for reasoning about first-order logic, the
axioms for reasoning about probabilities over the domain are complete for a language
if it contains only unary predicates; when combined with axioms for equality and an
axiom that says that the domain has at most n elements, the axioms are complete for
the language if we restrict attention to domains with at most n elements.



10 CONCLUSION 41

10 Conclusion

In this paper we have analysed various temporal formalisms, including propositional/first-
order linear temporal logics, branching temporal logics, partial-order temporal logics,
interval temporal logics, real-time temporal logics and probabilistic temporal logics.
We extrapolated the notions of decidability, axiomatizability, expressiveness, model
checking, etc. for each logic analysed, whenever possible. For a comparison of features
of the temporal logics we discussed see Table 1. Note that we use the following abbre-
viations: No* : Undecidable in general, but decidable for some fragments or specific
cases; No** : No deduction system in general, but available for some fragments or
specific cases; No*** : No model checking algorithm in general, but available for some
fragments or specific cases; Yes* : Decidable for some time domains; Yes** : Available
for some time domains; Yes*** : Available for some time domains.

Most of the temporal logics examined are found not fully satisfactory for the spec-
ification of real-time systems. The general view is that a “good” temporal logic should
have some certain essential characteristics. According to general point of view and the
trend in temporal logics in recent years, the following features should be available to
build a temporal logic which is suitable for the specification of real-time systems. It
should (i) be decidable (ii) allow limited quantification on temporal variables; (iii)
have a metric for time or duration; iv have probabilistic modal operators in the syntax
(v) have a limited number of basic operators and the possibility of building special
functions; (vi) specify quantitative temporal constraints; and vii allow efficient model
checking techniques.



10 CONCLUSION 42

T
ab

le
1:

A
co

m
pa

ri
so

n
of

fe
at

ur
es

of
te

m
po

ra
ll

og
ic

s.
L
og

ic
L
og

ic
O

rd
er

Fu
n
d
.

E
nt

it
y

T
em

p
.

S
tr

u
c.

M
et

ri
c

fo
r

T
im

e
D

ec
id

ab
il
it
y

D
ed

u
ct

iv
e

S
ys

.
M

od
el

C
h
ec

ki
n
g

LT
L

P
ro
po

si
ti
on

al
P
oi
nt

Li
ne
ar

N
o

Y
es

Y
es

Y
es

P
T
L

P
ro
po

si
ti
on

al
P
oi
nt

Li
ne
ar

N
o

Y
es

Y
es

Y
es

Q
T
L

F
ir
st
-o
rd
er

P
oi
nt

Li
ne
ar

N
o

N
o*

N
o*
*

?
C
T
L

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

N
o

Y
es

Y
es

Y
es

C
T
L*

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

N
o

Y
es

Y
es

Y
es

C
T
L*

[P
]

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

N
o

Y
es

Y
es

Y
es

T
C
T
L

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

Y
es

N
o

?
Y
es

R
T
C
T
L

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

Y
es

Y
es

?
Y
es

T
P
C
T
L

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

Y
es

Y
es

?
Y
es

P
O
T
L

P
ro
po

si
ti
on

al
P
oi
nt

P
ar
ti
al

N
o

Y
es

Y
es

?
H
S

P
ro
po

si
ti
on

al
In
te
rv
al

Li
ne
ar

N
o

N
o

N
o

N
o

C
D
T

P
ro
po

si
ti
on

al
In
te
rv
al

Li
ne
ar

N
o

N
o

Y
es

N
o

P
N
L

P
ro
po

si
ti
on

al
In
te
rv
al

Li
ne
ar

N
o

Y
es

Y
es

N
o

P
IT

L
P
ro
po

si
ti
on

al
In
te
rv
al

Li
ne
ar

N
o

N
o

N
o*
*

N
o

IT
L

F
ir
st
-o
rd
er

In
te
rv
al

Li
ne
ar

N
o

N
o

Y
es

N
o

N
L

F
ir
st
-o
rd
er

In
te
rv
al

Li
ne
ar

Y
es

N
o*

Y
es

N
o

D
C

F
ir
st
-o
rd
er

In
te
rv
al

Li
ne
ar

Y
es

N
o*

Y
es

N
o*
**

ID
L

F
ir
st
-o
rd
er

In
te
rv
al

Li
ne
ar

Y
es

N
o*

N
o

N
o*
**

R
T
L

F
ir
st
-o
rd
er

In
te
rv
al

Li
ne
ar

Y
es

N
o*

N
o

N
o*
**

R
T
IL

P
ro
po

si
ti
on

al
In
te
rv
al

Li
ne
ar

Y
es

Y
es

N
o

?
R
T
T
L

F
ir
st
-o
rd
er

P
oi
nt

Li
ne
ar

Y
es

N
o

Y
es

N
o

T
P
T
L

P
ro
po

si
ti
on

al
P
oi
nt

Li
ne
ar

Y
es

Y
es
*

Y
es
**

Y
es
**
*

M
T
L

P
ro
po

si
ti
on

al
P
oi
nt

Li
ne
ar

Y
es

Y
es
*

Y
es

Y
es
**
*

M
T
IL

P
ro
po

si
ti
on

al
In
te
rv
al

Li
ne
ar

Y
es

Y
es

?
Y
es

X
C
T
L

P
ro
po

si
ti
on

al
P
oi
nt

?
Y
es

Y
es
*

?
Y
es
**
*

T
R
IO

F
ir
st
-o
rd
er

P
oi
nt

Li
ne
ar

Y
es

N
o

Y
es

N
o*
**

T
IL
C
O

F
ir
st
-o
rd
er

In
te
rv
al

Li
ne
ar

Y
es

N
o*

Y
es

N
o*
**

P
C
T
L

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

N
o

Y
es

?
Y
es

P
C
T
L*

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

N
o

Y
es

?
Y
es

P
LT

L
P
ro
po

si
ti
on

al
P
oi
nt

Li
ne
ar

N
o

N
o*

N
o*
*

N
o

P
T
L
f

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

N
o

Y
es

Y
es

?
P
T
L
b

P
ro
po

si
ti
on

al
P
oi
nt

B
ra
nc
hi
ng

N
o

Y
es

Y
es

?
P
D
C

F
ir
st
-o
rd
er

In
te
rv
al

Li
ne
ar

Y
es

N
o

?
?

P
N
L

F
ir
st
-o
rd
er

In
te
rv
al

Li
ne
ar

Y
es

N
o

Y
es

?



REFERENCES 43

References

[Aba89] M. Abadi. The power of temporal proofs. Theoretical Computer Science,
65(1):35–83, 1989.

[Abr80] K. Abrahamson. Decidability and Expressiveness of Logics of Programs.
PhD thesis, University of Washington, 1980.

[ACD90] R. Alur, C. Courcoubetis, and D. L. Dill. Model checking for real-time
systems. In Proceedings 5th Conference on Logic in Computer Science,
pages 12–21. IEEE Computer Society Press, 1990.

[AD96] R. Alur and D.L. Dill. Automata-theoretic verification of real-time sys-
tems. Formal Methods for Real-Time Computing, pages 55–82, 1996.

[AF94] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic.
Journal of Logic and Computation, 4(5):531–57, 1994.

[AFH91] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctual-
ity. In Proceedings of the 10th Annual ACM Symposium on Principles of
Distributed Computing. ACM, 1991.

[AH89] J. F. Allen and J. P. Hayes. Moments and points in an interval-based
temporal logic. In Computational Intelligence, pages 225–238. Blackwell
Publishers, 1989.

[AH90] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expres-
siveness. In Proceedings of the 5th Annual IEEE Symposium on Logic in
Computer Science, pages 390–401. IEEE Computer Society Press, 1990.

[AH94] M. Abadi and J. Y. Halpern. Decidability and expressiveness for first-order
logics of probability. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, pages 148–153. IEEE Computer Society
Press, 1994.

[AHH96] R. Alur, T. A. Henzinger, and P. H. Ho. Automatic symbolic verifica-
tion of embedded systems. IEEE Transactions on Software Engineering,
22(3):181–201, 1996.

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Communi-
cations of the ACM, 26:832–843, 1983.

[All84] J. F. Allen. Towards a general theory of action and time. Artificial Intel-
ligence, 23:123–154, 1984.

[ANS79] H. Andreka, I. Nemeti, and I. Sain. Mathematical foundations of computer
science. Lecture Notes in Computer Science, pages 208–218, 1979.

[ANvB98] H. Andreka, I. Nemeti, and J. van Benthem. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, pages 217–274,
1998.

[ASB95] A. Aziz, V. Singhal, and F. Balarin. It usually works: The temporal logic
of stochastic systems. In Proceedings of the 7th International Conference
on Computer Aided Verification, pages 155–165. Springer-Verlag, 1995.



REFERENCES 44

[BA95] A. Bianco and L. D. Alfaro. Model checking of probabilistic and nondeter-
ministic systems. In Foundations of Software Technology and Theoretical
Computer Science, pages 499–513. Springer-Verlag, 1995.

[BAMP81] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching
time. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 164–176. ACM, 1981.

[BC97] R. Barua and Z. Chaochen. Neighbourhood logics. Research Report 120,
UNU/IIST, 1997.

[BCCZ99] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without bdds. In Proceedings of the 5th International Conference on Tools
and Algorithms for Construction and Analysis of Systems, pages 193–207.
Springer-Verlag, 1999.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kro-
nos: A model-checking tool for real-time systems. In CAV ’98: Proceed-
ings of the 10th International Conference on Computer Aided Verification,
pages 546–550. Springer-Verlag, 1998.

[BGG97] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Springer, 1997.

[BGMS07] D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. On decid-
ability and expressiveness of propositional interval neighbourhood logics.
In Proceedings of the International Symposium on Logical Foundations of
Computer Science, pages 84–99. LNCS, 2007.

[BLL+96] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal -
a tool suite for automatic verification of real-time systems. In Proceedings
of the DIMACS/SYCON Workshop on Hybrid systems III : Verification
and Control, pages 232–243. Springer-Verlag, 1996.

[BM05] D. Bresolin and A. Montanari. A tableau-based decision procedure for
right propositional neighbourhood logic. In Proceedings of TABLEAUX
2005, pages 63–77. LNAI, 2005.

[BMN00] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system
specification. ACM Computing Surveys, 32(1), 2000.

[BMS07a] D. Bresolin, A. Montanari, and P. Sala. An optimal tableau-based decision
algorithm for propositional neighbourhood logic. In Proceedings of STACS
2007: 24th International Symposium on Theoretical Aspects of Computer
Science, pages 549–560. LNCS, 2007.

[BMS07b] D. Bresolin, A. Montanari, and G. Sciavicco. An optimal tableau-based
decision procedure for right propositional neighbourhood logic. Journal of
Automated Reasoning, 38:173–199, 2007.

[BOKR84] M. Ben-Or, D. Kozen, and J. Reif. The complexity of elementary algebra
and geometry. In Proceedings of the Sixteenth Annual ACM Symposium
on Theory of Computing, pages 457–464. ACM, 1984.



REFERENCES 45

[BRC00] R. Barua, S. Roy, and Z. Chaochen. Completeness of neighbourhood logic.
Journal of Logic and Computation, 10(2):271–295, 2000.

[Bur82] J. P. Burgess. Axioms for tense logic 2: Time periods. Notre Dame Journal
of Formal Logic, 23(2):375–383, 1982.

[CE82] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Logic of Programs,
Workshop, pages 52–71. Springer-Verlag, 1982.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite state concurrent systems using temporal logic. ACM Transactions
on Programming Languages and Systems, 2(8):244–263, 1986.

[CH98] Z. Chaochen and M. Hansen. An adequate first order interval logic. In
Compositionality: the Significant Difference, pages 584–608. LNCS, 1998.

[CH04] Z. Chaochen and M. Hansen. Duration Calculus: A Formal Approach to
Real-Time Systems. EATCS Series of Monographs in Theoretical Com-
puter Science. Springer, 2004.

[Cho95] J. Chomicki. Efficient checking of temporal integrity constraints using
bounded history encoding. ACM Transactions on Database Systems,
20:149–186, 1995.

[CHR91] Z. Chaochen, C. Hoare, and A. P. Ravn. A calculus of durations. Infor-
mation Processing Letters, 40:269–276, 1991.

[CHS93] Z. Chaochen, M. Hansen, and P. Sestoft. Decidability and undecidability
results for duration calculus. In Proceedings of the 10th Symposium on
Theoretical Aspects of Computer Science, pages 58–68. LNCS, 1993.

[CIN05] R. Cleaveland, S. P. Iyer, and M. Narasimha. Probabilistic temporal logics
via the modal mu-calculus. Theoretical Computer Science, 342(2-3):316–
350, 2005.

[CP03] G. Chakravorty and P. Pandya. Digitizing interval duration logic. In
Computer Aided Verification, pages 167–179. Springer-Verlag, 2003.

[CSC00] N. Chetcuti-Serandio and L. Del Cerro. A mixed decision method for
duration calculus. Journal of Logic and Computation, 10(6):877–895, 2000.

[CT98] J. Chomicki and D. Toman. Temporal logic in information systems. pages
31–70, 1998.

[CY88] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of
finite-state probabilistic programs. In Proceedings of the 29th Annual
Symposium on Foundations of Computer Science, pages 338–345. IEEE
Computer Society, 1988.

[DFKL08] C. Dixon, M. Fisher, B. Konev, and A. Lisitsa. Practical first-order tem-
poral reasoning. In 15th International Symposium on Temporal Represen-
tation and Reasoning, TIME ’08, pages 156–163. IEEE Computer Society
Press, 2008.

[DFL02] A. Degtyarev, M. Fisher, and A. Lisitsa. Equality and monodic first-order
temporal logic. Studia Logica, 72(2):147–156, 2002.



REFERENCES 46

[DH96] L. X. Dong and D. V. Hung. Checking linear duration invariants by linear
programming. In Concurrency and Parallelism, Programming, Network-
ing, and Security, pages 321–332. Springer-Verlag, 1996.

[Dow79] D. Dowty. Word Meaning and Montague Grammar. Dordrecht: D. Reidel,
1979.

[Dut95] B. Dutertre. On first-order interval temporal logic. Technical Report
CSD-TR-94-3, Department of Computer Science, Royal Holloway College,
University of London, 1995.

[EC82] E. A. Emerson and E. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. pages 241–266, 1982.

[EH82] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness
in the temporal logic of branching time. In Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, pages 169–180. ACM,
1982.

[EH86] E. A. Emerson and J. Halpern. ‘Sometimes’ and ‘Not Never’ revisited:
On branching versus linear time temporal logic. Journal of the ACM,
33(1):151–178, 1986.

[EJ00] E. A. Emerson and C. S. Jutla. The complexity of tree automata and
logics of programs. SIAM Journal of Compututation, 29(1):132–158, 2000.

[Eme95] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science. North-Holland Pub. Co., 1995.

[EMSS89] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinisvan. Quantitative
temporal reasoning. In E. M. Clarke, A. Pnueli, and J. Sifakis, editors,
Proceedings of the Workshop on Automatic Verification Methods for Finite
State Systems. LNCS, 1989.

[FDP01] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM on
Transactions of Computational Logic, 2(1):12–56, 2001.

[Fei83] Y. A. Feidman. A decidable propositional probabilistic dynamic logic.
In Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, pages 298–309. ACM, 1983.

[Fel84] Y. A. Feldman. A decidable propositional dynamic logic with explicit
probabilities. Information Control, 63(1-2):11–38, 1984.

[FH82] Y. A. Feldman and D. Harel. A probabilistic dynamic logic. In Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing, pages
181–195. ACM, 1982.

[FH91] R. Fagin and J. Y. Halpern. Uncertainty, belief and probability. Compu-
tational Intelligence, 7(3):160–173, 1991.

[FH94] R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability.
Journal of the ACM, 41(2):340–367, 1994.

[FHM90] R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation, 87:78–128, 1990.



REFERENCES 47

[FHMV96] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge.
MIT Press, 1996.

[Fis91] M. Fisher. A resolution method for temporal logic. In Proceedings of
Twelfth International Joint Conference on Artificial Intelligence (IJCAI).
Morgan Kaufmann, 1991.

[FM94] J. L. Fiaderio and T. Maibum. Action refinement in a temporal logic of
objects. In Temporal Logic. LNCS, 1994.

[FORS02] J. C. Filliatre, S. Owre, H. Ruess, and N. Shanka. Ics: Integrated canon-
izer and solver. In Computer Aided Verification, pages 246–249. Springer-
Verlag, 2002.

[Fra96] M. Fraenzle. Synthesizing controllers from duration calculus. In For-
mal Techniques in Real-Time and Fault-Tolerant Systems, pages 168–187.
LNCS, 1996.

[Frä02] M. Fränzle. Take it np-easy: Bounded model construction for duration
calculus. In Formal Techniques in Real-Time and Fault-Tolerant Systems,
pages 245–264. Springer-Verlag, 2002.

[Gal84] A. Galton. The Logic of Aspect. Claredon Press, Oxford, 1984.

[Gal90] A. Galton. A critical examination of Allen’s theory of action and time.
Artificial Intelligence, 42:159–198, 1990.

[GD99] D. Guelev and V. H. Dang. On the completeness and decidability duration
calculus with iteration. In Advances in Computer Science, pages 139–150.
LNCS, 1999.

[GHR94] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathemat-
ical Foundations and Computational Aspects, volume 1. Clarendon Press,
Oxford, 1994.

[GKP88] G. Georgakopoulos, D. Kavvadias, and C. H. Papadimitriou. Probabilistic
satisfiability. Journal of Complexity, 4(1):1–11, 1988.

[GKWZ02] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-
Dimensional Modal Logics: Theory and Applications. Elsevier, 2002.

[GMM90] C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO, a logic language for
executable specifications of real-time systems. Journal of Systems and
Software, pages 107–123, 1990.

[GMS03a] V. Goranko, A. Montanari, and G. Sciavicco. A general tableau method for
propositional interval temporal logics. In Proceedings of the International
Conference Tableaux 2003, pages 102–116. LNAI, 2003.

[GMS03b] V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval
neighbourhood temporal logics. Journal of Universal Computer Science,
9(9):1137–1167, 2003.

[GMS04] V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval
temporal and duration calculi. Journal of Applied Non-Classical Logics,
14, 2004.



REFERENCES 48

[GPSS80] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis
of fairness. Conference Record of the 7th Annual ACM Symposium on
Principles of Programming Languages, pages 163–173, 1980.

[Grä99] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic,
64:1719–1742, 1999.

[GRF00] D. Gabbay, M. Reynolds, and M. Finger. Temporal Logic: Mathemati-
cal Foundations and Computational Aspects, volume 2. Clarendon Press,
Oxford, 2000.

[Gue98] D. P. Guelev. Probabilistic interval temporal logic. Technical Report 144,
UNU/IIST, 1998.

[Gue99] D. P. Guelev. A propositional dynamic logic with qualitative probabilities.
Journal of Philosophical Logic, 28:575–604, 1999.

[Gue00a] D. P. Guelev. A complete proof system for first order interval temporal
logic with projection. Technical Report 202, UNU/IIST, 2000.

[Gue00b] D. P. Guelev. Probabilistic neighbourhood logic. In Proceedings of the 6th
International Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems, pages 264–275. Springer-Verlag, 2000.

[Ham71] C. L. Hamblin. Instants and intervals. Stadium Generale, 27:127–134,
1971.

[Han91] H. A. Hansson. Time and Probability in Formal Design and Distributed
Systems. PhD thesis, Department of Computer Science, Uppsala Univer-
sity, Sweden, 1991.

[HC94] D. V. Hung and Z. Chaochen. Probabilistic duration calculus for contin-
uous time. In Formal Aspects of Computing, pages 21–44, 1994.

[Hen91] T. A. Henzinger. The Temporal Specification and Verification of Real-
Time Systems. PhD thesis, Department of Computer Science, Stanford
University, 1991.

[HJ89] H. Hansson and B. Jonsson. A framework for reasoning about time and
reliability. In Proceedigns of Real-time Systems Symposium, pages 102–111.
IEEE, 1989.

[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and reliabil-
ity. Formal Aspects of Computing, 6:102–111, 1994.

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and
M. Trachtenbrot. Statemate: A working environment for the development
of complex reactive systems. IEEE Transactions on Software Engineering,
16:403–414, 1990.

[HLP90] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal logic. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science,
pages 402–413. IEEE Computer Society Press, 1990.

[HMM83] J. Y. Halpern, Z. Manna, and B. Moszkowski. A high-level semantics based
on interval logic. In Proceedings of 10th ICALP, pages 274–291, 1983.



REFERENCES 49

[HPS83] D. Harel, A. Pnueli, and Y. Stavi. Process logic: Expressiveness, decidabil-
ity, completeness. Journal of Computer and System Sciences, 25:145–180,
1983.

[HS84] S. Hart and M. Sharir. Probabilistic temporal logics for finite and bounded
models. In Proceedings of the Sixteenth Annual ACM Symposium on The-
ory of Computing, pages 1–13. ACM, 1984.

[HS91] J. Y. Halpern and Y. Shoham. A propositional modal logic of time inter-
vals. Journal of the ACM, 38(4):935–962, 1991.

[HT93] J. Y. Halpern and M. R. Tuttle. Knowledge, probability and adversaries.
Journal of ACM, 40(4):917–960, 1993.

[Hum79] L. Humberstone. Interval semantics for tense logic: Some remarks. Journal
of Philosophical Logic, 8:171–196, 1979.

[HWZ00] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of
first-order temporal logics. Annals of Pure and Applied Logic, pages 85–
134, 2000.

[HZ07] D. V. Hung and M. Zhang. On verification of probabilistic timed automata
against probabilistic duration properties. In Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time Computing Systems
and Applications, pages 165–172. IEEE Computer Society, 2007.

[JM86] F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-
time systems. IEEE Transactions on Software Engineering SE-12, 9:890–
904, 1986.

[JS88] F. Jahanian and D. Stuart. A method for verifying properties of modechart
specifications. In Proceedings 9th Real-time Systems Symposium, pages 12–
21. IEEE Computer Society Press, 1988.

[Kam68] J. A. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California, Los Angeles, 1968.

[Kam79] H. Kamp. Events, instants and temporal reference. In Semantics from
Different Points of View, pages 376–417. Springer, 1979.

[KNSS02] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic
verification of real-time systems with discrete probability distributions.
Theoretical Computer Science, 282(1):101–150, 2002.

[Koy90] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2:255–299, 1990.

[Koz79] D. Kozen. Semantics of probabilistic programs. In Proceedings of the 20th
Annual Symposium on Foundations of Computer Science, pages 101–114.
IEEE Computer Society, 1979.

[Koz83] D. Kozen. A probabilistic pdl. In Proceedings of the fifteenth annual ACM
symposium on Theory of Computing, pages 291–297. ACM, 1983.

[KP86] Y. Kornatzky and S. Pinter. An extension to partial order temporal
logic (potl). Research Report 596, Department of Electrical Engineering,
Technion-Israel Institute of Technology, 1986.



REFERENCES 50

[Kro87] F. Kroger. Temporal Logic of Programs. Springer-Verlag, 1987.

[Lad87] P. Ladkin. Logical time pieces. AI Expert, 2(8):58–67, 1987.

[LP00] O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability
and completeness. Logic Journal of the IGPL, 8(1):55–85, 2000.

[LPZ85] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In Pro-
ceedings of the Conference on Logic of Programs, pages 196–218. Springer-
Verlag, 1985.

[LRSZ92] Z. Liu, A. P. Ravn, E. V. Sorensen, and C. Zhou. A probabilistic duration
calculus. Technical report, University of Warwick, 1992.

[LS83] D. J. Lehmann and S. Shelah. Reasoning with time and chance (extended
abstract). In Proceedings of the 10th Colloquium on Automata, Languages
and Programming, pages 445–457. Springer-Verlag, 1983.

[LS95] F. Laroussinie and P. Schnoebelen. A hierarchy of temporal logics with
past. Theoretical Computer Science, 148(2):303–324, 1995.

[LSWZ02] C. Lutz, H. Sturm, F. Wolter, and M. Zakharyaschev. A tableau deci-
sion algorithm for modalized ALC with constant domains. Studia Logica,
72(2):199–232, 2002.

[LW08] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans-
actions on Computational Logic, 9(2):1–27, 2008.

[Mat96] R. Mattolini. TILCO: A Temporal Logic for the Specification of Real-
Time Systems (TILCO: una Logica Temporale per la Specifica di Sistemi
di Tempo Reale). PhD thesis, University of Florence, 1996.

[McD82] D. McDermott. A temporal logic for reasoning about process and plans.
Cognitive Science, 6:101–155, 1982.

[Mer92] S. Merz. Decidability and incompleteness results for first-order temporal
logics of linear time. Journal of Applied Non-classical Logic, pages 139–
156, 1992.

[MN96] R. Mattolini and P. Nesi. Compositional inductive verification of duration
properties of real-time systems. In Proceedings of the Second IEEE Inter-
national Conference on Engineering of Complex Computer Systems, pages
18–25. Chapman and Hall, 1996.

[MN00] R. Mattolini and P. Nesi. An interval logic for real-time system specifica-
tion. IEEE Transactions on Software Engineering, 2000.

[MNP05] O. Maler, D. Nickovic, and A. Pnueli. Real time temporal logic: Past,
present, future. In Formal Modeling and Analysis of Timed Systems, pages
2–16. Springer-Verlag, 2005.

[MOR03] Z. Marković, Z. Ognjanović, and M. Rasković. A probabilistic extension
of intuitionistic logic. Mathematical Logic Quarterly, 49:415–424, 2003.

[Mos83] B. Moszkowski. Reasoning about Digital Circuits. PhD thesis, Computer
Science Department, Stanford University, 1983.



REFERENCES 51

[Mos00a] B. Moszkowski. A complete axiomatization of interval temporal logic with
infinite time. In Proceedings of the 15th Annual IEEE Symposium on Logic
in Computer Science, pages 242–251. IEEE Computer Society Press, 2000.

[Mos00b] B. Moszkowski. Compositional inductive verification of duration properties
of real-time systems. In Proceedings of the 27th International Conference
on Automata, Languages and Programming, pages 223–234. LNCS, 2000.

[Mos03] B. Moszkowski. A hierarchical completeness proof for interval temporal
logic with finite time. In Proceedings of the ESSLLI Workshop on Interval
Temporal Logics and Duration Calculi, pages 41–65, 2003.

[MP81a] Z. Manna and A. Pnueli. Verification of concurrent programs: Temporal
proof principles. pages 200–252, 1981.

[MP81b] Z. Manna and A. Pnueli. Verification of concurrent programs: The tem-
poral framework. pages 215–273, 1981.

[MP83] Z. Manna and A. Pnueli. Proving precedence properties: The temporal
way. In Proceedings of the Tenth Colloquium on Automata Languages and
Programming, pages 491–512. Springer, 1983.

[MR99] M. Marx and M. Reynolds. Undecidability of compass logic. Journal of
Logic and Computation, 9(6):897–914, 1999.

[MS87] P. M. Melliar-Smith. Extending interval logic to real time systems. In
Proceedings of the Conference on Temporal Logic Specification, pages 224–
242. Springer, 1987.

[MSV02] A. Montanari, G. Sciavicco, and N. Vitacolonna. Decidability of interval
temporal logics over split-frames via granularity. In Proceedings of the 8th
Europian Conference on Logics in AI, pages 259–270. Springer, 2002.

[Nil86] N. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.

[Ogn06] Z. Ognjanović. Discrete linear-time probabilistic logics: Completeness,
decidability and complexity. Journal of Logic and Computation, 16(2):257–
285, 2006.

[OR99] Z. Ognjanović and M. Rasković. Some probability logics with new types
of probability operators. Journal of Logic and Computation, 9(2):181–195,
1999.

[Ost89] J. S. Ostroff. Temporal Logic for Real-Time Systems. Advanced Software
Development Series. Research Studies Press Limited, 1989.

[Ott01] M. Otto. Two variable first-order logic over ordered domains. Journal of
Symbolic Logic, 66(2):685–702, 2001.

[OW87] J. S. Ostroff and W. Wonham. Modeling and verifying real-time embedded
computer systems. In Proceedings of the 8th IEEE Real-Time Systems
Symposium, pages 124–132. IEEE Computer Society Press, 1987.

[OW05] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In
Proceedings 20th Annual IEEE Symposium on Logic in Computer Science,
pages 188–197. IEEE Computer Society Press, 2005.



REFERENCES 52

[Pan01] P. K. Pandya. Specifying and deciding quantified discrete-time duration
calculus formulas using DCVALID. In Real-Time Tools, 2001.

[Pan02] P. K. Pandya. Interval duration logic: Expressiveness and decidability. In
Proceedings of TPTS, 2002.

[Par78] R. Parikh. A decidability result for second order process logic. In Proceed-
ings of 19th FOCS, pages 177–183. IEEE Computer Society Press, 1978.

[Pau94] L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS, 1994.

[Pen95] W. Penczek. Branching time and partial-order in temporal logics. pages
179–228, 1995.

[Pli97] R. Pliuskevicius. On the completeness and decidability of a restricted
first order linear temporal logic. In Proceedings of the 5th Kurt Gödel
Colloquium on Computational Logic and Proof Theory, pages 241–254.
Springer-Verlag, 1997.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual IEEE Symposium on Foundations of Computer Science, pages 46–
57. IEEE Computer Society Press, 1977.

[Pnu83] A. Pnueli. On the extremely fair treatment of probabilistic algorithms.
In Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, pages 278–290. ACM, 1983.

[Pra76] V. R. Pratt. Semantical consideratiosn on floyd-hoare logic. Technical
report, 1976.

[Pra79] V. R. Pratt. Process logic. In Proceedings of 6th POPL, pages 93–100.
ACM, 1979.

[Pri67] A. N. Prior. Past, Present and Future. Oxford University Press, 1967.

[PW84] S. S. Pinter and P. Wolper. A temporal logic for reasoning about partially
ordered computations (extended abstract). In Proceedings of the Third
Annual ACM Symposium on Principles of Distributed Computing, pages
28–37. ACM, 1984.

[Rab98] A. Rabinovich. Non-elementary lower bound for propositional duration
calculus. Information Processing Letters, 66:7–11, 1998.

[Rey96] M. Reynolds. Axiomating first-order temporal logic: Until and since over
linear time. pages 279–302, 1996.

[Rey01] M. Reynolds. An axiomatization of full computation tree logic. Journal
of Symbolic Logic, 66:1011–1057, 2001.

[Rey05] M. Reynolds. An axiomatization of pctl. Information and Computation,
201(1):72–119, 2005.

[RG89] R. Razouk and M. Gorlick. Real-time interval logic for reasoning about
executions of real-time programs. SIGSOFT Software Engineering Notes
14, 8:10–19, 1989.

[RG93] A. Rao and M. Georgeff. A model-theoretic approach to the verification
of situated reasoning systems. In Proceedings of IJCAI, 1993.



REFERENCES 53

[Rop80] P. Roper. Intervals and tenses. Journal of Philosophical Logic, pages 451–
469, 1980.

[RP86] R. Rosner and A. Pnueli. A choppy logic. In Proceedings of the First
IEEE Symposium on Logic in Computer Science, pages 306–313. IEEE
Computer Society Press, 1986.

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM, 32:733–749, 1985.

[Seg71] K. Segerberg. Qualitative probability in a modal setting. Proceedings of
the Second Scandinavian Logic Symposium, pages 575–604, 1971.

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, 1976.

[SHP98] M. Satpathy, D. V. Hung, and P. K. Pandya. Some decidability results
for duration calculus under synchronous interpretation. In Proceedings of
the 5th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, pages 186–197. Springer-Verlag, 1998.

[Sim87] P. Simons. Parts, A Study in Ontology. Claredon Press, Oxford, 1987.

[SMS82] R. L. Schwartz and P. M. Melliar-Smith. From state machines to tem-
poral logic: Specification methods for protocol standards. IEEE Trans.
Commun. 30, pages 2486–2496, 1982.

[SMSV83] R. L. Schwartz, P. M. Melliar-Smith, and F. H. Voght. An interval logic
for higher-level temporal reasoning. In Proceedings of the Second ACM
Symposium on Principles of Distributed Computing, pages 173–186. ACM
Press, 1983.

[SPS05] B. Sharma, P. Paritosh, and C. Supratik. Bounded validity checking of
interval duration logic. In TACAS 2005: Tools and Algorithms for the
Construction and Analysis of Systems, pages 301–316. Springer-Verlag,
2005.

[SVW85] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for
büchi automata with applications to temporal logic (extended abstract).
In Proceedings of the 12th Colloquium on Automata, Languages and Pro-
gramming, pages 465–474. Springer-Verlag, 1985.

[Sza95] A. Szalas. Temporal logic of programs: A standard approach. pages 1–50,
1995.

[TH98] P. H. Thai and D. V. Hung. Checking a regular class of duration calculus
models for linear duration invariants. In Proceedings of the International
Symposium on Software Engineering for Parallel nd Distributed Systems,
pages 61–71. IEEE Computer Society Press, 1998.

[TH04] P. H. Thai and D. V. Hung. Verifying linear duration constraints of timed
automata. In Proceedings of ICTAC’04, pages 295–309. Springer-Verlag,
2004.

[vB83] J. F. van Benthem. The Logic of Time. Kluwer Academic Publishers,
Dordrecht, 1983.



REFERENCES 54

[vB91] J. F. van Benthem. The Logic of Time: A Model-Theoretic Investigation
into the Varieties of Temporal Ontology and Temporal Discourse. Kluwer,
second edition, 1991.

[Ven90] Y. Venema. Expressiveness and completeness of an interval tense logic.
Notre Dame Journal of Formal Logic, 31(4):529–547, 1990.

[Ven91] Y. Venema. A modal logic for choppping intervals. Journal of Logic and
Computation, 1:453–476, 1991.

[Ven98] Y. Venema. Temporal Logic. Blackwell Guide to Philosophical Logic,
Blacwell Publishers, 1998.

[Vit05] N. Vitacolonna. Intervals: Logics, Algorithms and Games. PhD thesis,
Department of Mathematics and Computer Science, University of Udine,
2005.

[Wal47] A. G. Walker. Durees et instants. La Revue Scientifique, (3266), 1947.

[WZ99] F. Wolter and M. Zakharyaschev. Modal description logics: Modalizing
roles. Fundamenta Informaticae, pages 411–438, 1999.

[WZ01] F. Wolter and M. Zakharyaschev. Axiomatizing the monadic fragment of
first-order temporal logic. Annals of Pure and Applied Logic, 2001.

[WZ02] F. Wolter and M. Zakharyaschev. Axiomatizing the monodic fragment
of first-order temporal logic. Annals of Pure and Applied Logic, pages
133–145, 2002.

[Zho94] C. Zhou. Linear duration invariants. In Proceedings of the Third Inter-
national Symposium Organized Jointly with the Working Group Provably
Correct Systems on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 86–109. Springer-Verlag, 1994.


