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Abstract

We analyse the computational complexity of the recentlyppsedideal semanticsvithin
both abstract argumentation frameworks$) and assumption-based argumentation frame-
works (ABFS). Itis shown that while typically less tractable than cleds admissibility se-
mantics, the natural decision problems arising with thieesion-based model can, perhaps
surprisingly, be decided more efficiently than scepticaf@mred semantics. In particular the
task offindingthe unique idea¢xtensioris easier than that afecidingif a given argument

is accepted under the sceptical semantics. We provideegftielgorithmic approaches for
the class obipartite argumentation frameworks and, finally, present a numbeedirii-
cal results which offer strong indications that typical lpems in ideal argumentation are
complete for the claseﬁ of languages decidable by polynomial time algorithms adldwio
make non-adaptive queries t@aracle, where® is an upper bound on the computational
complexity of deciding credulous acceptan€ex= NP for AFs and logic programming.p)
instantiations ofBFs; C = X} for ABFs modelling default theories.

Key words: Computational properties of argumentation; abstractrasytation
frameworks assumption-based argumentation; computdtammplexity;

1 Introduction

Argumentation models have provided a fruitful source ofasl@and technologies
within both theoretical studies and applications of Al. Aeat overview of these
contributions may be found in the survey of Bench-Capon amdr@ [3]. Two im-
portant models which have received considerable attemven the last ten years
are the abstract argumentation frameworkses) of Dung [17] and the related as-
sumption based frameworksgFs) of Bondarenket al.[5]. Both approaches pro-
vide interpretations for intuitive notions of “collecticof justified arguments” as
subsets satisfying particular criteria with respect to twhelerlying framework. In
Dung's model the concept of “argument” is regarded as an at@mtity whose
principal feature of interest concerns those other argusnesith which it is in-
compatible (such incompatability being described by theatedattack relatior).
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The formalism adopted in Bondarenkbal. develops a rationale capturing incom-
patability by treating an argument’s structure in termsmBasertion which is the
outcome of a formal derivation process within some logibabtry. In this way two
arguments are incompatible if the assertion supported leyi@mconsistent with
the premises from which the other is derived.

Importing terminology from non-monotonic logic — one of tearly and still im-
portant application domains of argumentation techniquesllections of justified
arguments (in both schemes) are referred t@xdsnsionsA variety of different
semantics defining the criteria that a set must satisfy iemconstitute an exten-
sion of a particular form have been proposed, e.g. groungtederred, and stable.
With respect to such semantics specific arguments may besdi@scredulously
accepted (a member of at least one set sanctioned by the seshansceptically
accepted (a member eferyset sanctioned by the semantics). The extension based
semantics defined bigleal extensionsvere introduced by Dung, Mancarella and
Toni [19,20] as an alternative sceptical basis for defininiections of justified
arguments in the frameworks promoted by Dung [17] and Basrdaet al. [5].

Our principal concern in this article is in classifying thengputational complexity
of a number of natural problems related to ideal semantibsih the abstract argu-
mentation frameworks of [17] and the assumption-basedaaapr of [5]: thereby

addressing a question raised in the study of ideal semagsgnted in [20]. In to-
tal our results present a complexity-theoretic analysigleél semantics of a sim-
ilar level of detail to that which has already been achievadtlie more widely

studied preferred and stable semantics, e.g. in the workimiopoulos and Tor-

res [15], Dunne and Bench-Capon [23,24], Dimopoulos, Nebel Toni [12—-14]

and Dunne [21].

The problems we consider include batécisionquestions and those related to the
constructionof ideal extensions. Thus,

a. Given an argumentis it accepted under the ideal semantics?
b. Given asetof argumentsS
bl. IsS asubsebf the (unigue) maximal ideal set (subsequently called the
idealextensiopf?, i.e. without, necessarily, being an ideal set itself.
b2. IsS, itself, an ideakef?
b3. IsS the (unique) ideaéxtensiof?
c. Is the ideal extension empty?
d. Does the ideal extension coincide with the set ofadlptically acceptedr-
guments?
e. Given amF or ABF, construct its ideal extension.

For the case oAFs andflat ABFs with credulous reasoning problems decidable
in some complexity clas§, we obtain bounds for these problems ranging from
C-hard, c@-hard, and Diif—hard (the last of these being the class of languages



expressible as the intersection of a language= C with a languagd., € caC)
through to an exaafépﬁ—completeness classification for the construction problem
defined in (e).

These preliminary results leave a gap between lower (hagjriunds and upper
bounds for a number of the decision questions. We subsdgyeesent strong evi-
dence that problems (a), (b1), (b3) and (c) are not contamaay complexity class
strictly belowpﬁ: specifically that all of these problems anﬁa—hard viarandomized
reductionswhich are correct with probability approaching

In the remainder of this paper, background definitions avergin Section 2.1 to-
gether with formal definitions of the problems introducedaf(e) above. In the
first part of the paper, forming Section 2, we concentrate@npexity and algo-
rithmic properties ofaAFs.! In Section 2.2, two technical lemmata are given which
characterise properties of ideal sets (Lemma 1) armrgdimentselonging to the
ideal extension (Lemma 2). The complexity of decision goestis considered in
Section 2.3 while Section 2.4 provides details of efficieaitiBon approaches for
the special case dfipartite argumentation frameworks, a class whose properties
have previously been studied in [21]. Our main technicaultefor AFs is pre-
sented in Section 2.5 wherein an exact classification foctmeplexity offinding
the ideal extension is given. One consequence of this nssihiat (under the usual
complexity-theoretic assumptionspnstructingthe ideal extension of a given ar-
gumentation framework is, in general, easier tdagidingif one of its arguments

is sceptically accepted. In Section 2.6 we apply a numbeedirtiques originat-
ing from work of [7,8,34] which provide strong evidence thilaé upper bounds
resulting from Section 2.5 are optimal.

We then, in Section 3, turn our attention to complexity guest as they arise
for ideal semantics in assumption-based frameworks, tktending the range of
known complexity properties foxBFs from the pioneering studies of Dimopoulos,
Nebel and Toni in [12-14]. In Section 3.1 we review the basments ofABFs
and the formulation of analogues to conceptsfs given earlier in Section 2.1. We
then recall the translations of divers non-monotonic reagpsystems — amongst
which we focus orogic ProgrammingLP) and Default LogicpL) — as originally
presented in [5]. The complexity of decision problems in itheal semantics for
a number of such settings is considered in Section 3.3. Qdimg remarks are
presented in Section 4.

I The results in this first section have been reported in Du2% the current article
includes full proofs of these together with their developitn® ABF settings.



2 Abstract Argumentation Frameworks
2.1 Backgrounds and review aF concepts

The following concepts were introduced in Dung [17].

Definition 1 An argumentation frameworfaFr) is a pair H = (X, .A), in which
X is a finite set orgumentsand A C X x X is theattack relationshigor H.
A pair (z,y) € A is referred to asy is attacked by:’ or ‘ x attacksy’. For R,
S subsets of arguments in the H(X, A), we say that € S is attackedby R —
written attacks(R, s) — if there is some € R such that(r, s) € A. For subsets?
andS of X we writeattacks(R, S) if there is some € S for whichattacks(R, s)
holds; z € X is acceptable with respect t9 if for everyy € X that attackse
there is some € S that attacksy. A subsets, is conflict-freeif no argument inS
is attacked by any other argument$n A conflict-free set' is admissiblaf every
y € S is acceptable w.r.6 and S is a preferred extensioif it is a maximal (with
respect toC) admissible set. A subsed, is astable extensiorf S is conflict free
and everyy ¢ S is attacked bys. AnAF, H is coherentf every preferred extension
in H is also a stable extension.

The subseb is anideal sef([19,20]) of H if S is admissibleanda subset of every
preferred extension dff; S is the idealextensiorif it is the maximal such set.

TheAF, H is cohesivaf its maximal ideal extension coincides with the intergstt
of all preferred extensions 61.3

ForS C X,

S~ =4t {p : Iq€ S suchthatlp,q) € A}
ST =4t {p : Fq€ S suchthat(q,p) € A}

The various semantics motivate the general decision pmabtef Table 1 that have
been considered in [15,23] w.raFs and [12-14] inABFs. Subsequently de-
notes one of the (extension) type semanfiebM,PR,ST,IDL,IE } corresponding to
admissible sets, preferred extensions, stable extenso@asets and the idea¢x-
tension? For a given semanticsandAr, H (X, .A) we usef, to denote the set of

2 Dunget al.[19,20] show that there is a unique maximal ideal set in eweryABF.

3 The term cohesive is introduced here: although the consegefined in [19,20], no
explicit terminology is used to describe such frameworlesein.

4 These, of course, are far from exhaustive: in addition tadeal semantics with which
the present paper is concerned, our selection is intendedvier the principal cases for
which complexity-theoretic issues have been addressed.



all subsets oft that satisfy the conditions specified bylnformally, the canonical
decision problems aréerification(VER), Credulous AcceptandgA) and Scepti-
cal Acceptancésa), so that for exampl®ER;, refers to the decision problem of
verifying that a given set of arguments satisfies the comattiof the semantics
i.e. that the set is in the collecti@. The formal definitions of these problems for
AFs is presented in Table 1.

Table 1
Decision Problems inFs
Problem Name Instance Question
Verification (VER;) H(X,A); SCX IsS € E(H)?

Credulous AcceptandeA;) | H(X,A);z € X | 35 € E(H) for whichz € S?
Sceptical AcceptangsA;) | H(X,A),z e X VT € &(H)isx eT?
ExistenceEXISTS) H(X,A) IsE(H) # 02
Emptinesgver?) H(X,A) Is Es(H) = {0}?

In order to avoid excessive repetition, when we subsequesfitr to an argument
x as credulously accepted, unless explicitly stated ottsrwhis is with respect to
admissibility, i.e.cAppm - Similarly “sceptically accepted” should be understood
as with respect to preferred extensions, $.&pR.

Table 2 summarises known complexity results w.r.t thesélpros.

Table 2
Computational Complexity w.r.t. semanties

s VERj CAs SAs EXIST, VER!?
ADM P([17]) NP-c ([15]) | Trivial ([17]) | Trivial ([17]) | conpP-c ([15])
PR conP-c ([15]) | NP-c ([15]) | IIB-c ([23]) | Trivial ([17]) | conp-c ([15])
ST P([17]) NP-C ([15]) | coNP-c /DP-c | NP-C ([15]) Trivial

Remarks

(1) For a complexity class, C — ¢ denoteg’-completeness.

(2) Cases which are described as “trivial” are either thaseathich the prop-
erty in question always holds such as existence of prefexezhsions, or for
which it never holds (or holds only in extreme cases), e.g.gét of stable
extensions fofX', A) is {0} if and only if ¥ = 0.

(3) The two distinct classifications f@agT arise from the two possible interpre-
tations of sceptical acceptance w.r.t. stable extensmmsHs without any, i.e.
if one regardsc € NgesT(3) S @s holding even whefist(H) = 0 then the
decision problem is aoP—complete ([15] via commentary of [23, p. 189]). If,



however, one required to haveat least onestable extension as a precondition
for x to be sceptically accepted the decision problem becafe®mplete?

We consider a number of decision problems relating to ptogeeof ideal exten-
sions in argumentation frameworks as described in Table 3.

Table 3
Decision questions for Ideal Semantics
Problem Name Instance Question
A. | VERDL H(X,A); SC X | IsS anidealsef
B. | VER|E H(X,A); S C X | IsS the idealextensiof?
C. VER?E H(X,A) Is the ideal extension empty?
D. | CAE H(X,A); z € X | Isz inthe ideal extension?
E.|cs H(X,A) IsH(X,.A) cohesiv@

We also considesearch(so-calledfunction problempswhere the aim is not simply
to verify that a given set has a specific property buttmstructan example. In
particular we examine the function problent in which, given amr H(X', A), it
is required to return the ideal extension7egf

We recall thatp? is the class of decision problems, whose positive instances
are characterised as those belongind.toN L, wherel; € NP and L, € CONP.
The problemsAT-UNSAT whose instances are pairs ofc8# formulae (®;, ®,)
accepted ifd, is satisfiableand @, is unsatisfiable has been shown to be complete
for this class [32, p. 413]. This class can be interpretechase decision prob-
lems which may be solved by a (deterministic) polynomialdiaigorithm which
is allowed to make at most two calls uponmporacle More generally, the com-
plexity classesNP and FPNP (sometimes denoted’ andFA5) consist of those
decision problems (respectively function problems) tlzat be solved by a (deter-
ministic) polynomial time algorithm provided with accessé&n NP oracle (calls
upon which take a single step so that only polynomially mamwpcations of this
oracle are allowedy. An important (presumed) subset B¥" and its associated
function class is defined by distinguishing whether oraelksareadaptive— i.e.
the exact formulation of the next oracle query may be depanole the answers
received to previous questions — or whether such queriesaredaptivei.e. the
form of the questions to be put to the oracle is predetermatiesving all of these
to be performed in parallel. The latter class has been cereidn Wagner [36,37],
Jenner and Toran [27]. Under the standard complexity-#tenassumptions, it is

° Although not directly relevant to the topic of the currertice, since we are unaware of
any previous published proof of this claim we present sudhgpendix B.
5 We refer the reader to e.g. [32, pp. 415-423] for further lgagknd.



conjectured that,

NP b
P C c o’ cpfcpVPc
CONP I

We prove the following complexity classifications.

VER|pL IS CONP—cOmplete.

CA|pL IS canP-hard via<? -reducibility.

VER{E is NP-hard via<? -reducibility.

VER|g is DP—hard via<? -reducibility.

csis Xi—complete.

FIE is FP\'P—complete.

Problems (A)—(E) of Table 3 armlE are polynomial time solvable fdyipar-
tite frameworks.

. Problems (B)—(E) of Table 3 ar}P—complete viaandomizedeductions.

Q@=-po0oTp

0

2.2 Characteristic properties of ideal sets

The upper bound proofs exploit a characterisation of idetl i terms of credulous
acceptability presented in Lemma 1. Lemma 2 gives a negessal sufficient
condition for a giverargumento be a member of the ideal extension.

Lemma l LetH(X,.A) be aaF andS C X. ThenS defines an ideal set 6{ if
and only if both of the conditions below are satisfied:

11. S € Eapm (H), i.e.S is an admissible set of argumentsfin
I2. For every argumenp € S—, there isno admissible set of{ that contains,
ie.Vpe S —-cAaapm(H,p).

Proof:

(=) Suppose that C X' is an ideal set oH. It is immediate from the definition
of ideal set thatS is admissible so (1) holds. Furthermore, were it the casé th
(12) failed to hold, then there would be some admissible ‘Betpf H for which

T NS~ # 0, and thus some preferred extensidt),with R N .S~ # (). For this
preferred extension, however, one cannot hdve R, thereby contradicting the
assumption tha$'is an ideal set.

(«) Let S be an admissible set for which no argumentSin is credulously ac-
cepted. We show thét is a subset of every preferred extensiorioaind, thus, an
ideal set. Consider any preferred extensiBrof . We first claim that the s&tU R



must be conflict free: the only way in which this could fail te tsue is if there are
arguments; € S andr € R such that(r, s) € A or (s,r) € A. In the former case

r € S~ which contradicts the assumption that no argumentinis credulously
accepted. In the latter case, singds a preferred extension, there must be some
argumeni; € R that defends against the attack by, i.e. (¢, s) € A andq € R:
again this giveg € S~ and would contradict the assumption that no argument in
S~ were credulously accepted. The set R is thus conflict-free. It is furthermore,
admissible: any argument it attackingS U R either attacks an argument M
(and so is counterattacked by an argument$isinceS is admissible) or attacks
an argument ink (and, again, is counterattacked by an argumer sinceR is

a preferred extension). The sBt however, is anaximaladmissible set and thus
SUR = R,i.e.S C R as required. 0

Lemma 2 Let H(X, . A) be anAF and letM C X be its ideal extension. Then
x € X is a member oM if and only if both of the conditions below are satisfied:

M1. No attacker of is credulously accepted, i.€.y € {xr}~ -CAapMm (H, ).
M2. For each attacker of x, at least one attacket of y is in M, i.e.V y €

{z} : {y} - nM#0.

Proof:

(=) Suppose that € M, the ideal extension df{. Since M is an ideal set,
from Lemma 1, no attacker o can be credulously accepted and, in particular,
no attacker ofr can be credulously accepted. Any such attack; {x}~, must,
however, be counterattacked by at least one argumeht sfince M is admissible.
The only available counterattacks gne {z}~ are those in the sdty}~, hence

{y} N M#0D.

(«=) Suppose that € X is such that no attacker ofis credulously accepted and
that for each such attacker, some counterattacker,of y is in M. We show that
MuU{z} forms an ideal set, from which it follows thate M sinceM is maximal.
Consider the sett U {x}. To see that\ U {x} is admissible, first observe that it is
conflict-free: if, forp € M, we have(p, z) € A thenp is credulously accepted (by
the admissibility ofAM) contradicting the property (M1); similarly ifz, p) € A for
somep € M then asM is admissible we fing € M with (¢, z) € Aresultingina
similar contradiction. Thud1tU{z} is conflict-free. This set, however, also defends
itself against any attack. For consider any argumethiat attacksM U {x}: either

y attacksM and so is counterattacked by some M; alternativelyy attackse.
Now sincey € {z}~ we can identifyz € {y}~ N M which counterattacks. In
summary,M U {z} is admissible. Sincé is an ideal set we know from Lemma 1
that no attacker oM is credulously accepted. From the properties assumed of
x, it is also the case that no attacker:ofs credulously accepted. It follows that
MU {z} is an admissible set none of whose attackers is credulousBpted, i.e.
from Lemma 1M U {z} is an ideal set. The sé! is, however, alreadynaximal



sothatM U {z} = M, i.e.z € M as required. 5

2.3 Preliminary complexity results on ideal semanticams

In this section we derive some initial results on the comipyeof the decision prob-
lems for ideal semantics described in Table 3. In a numbensés these leave a
gap between upper and lower bounds, however, the constingdtorm the basis for
the analyses of Section 2.6 in which approaches to obtaewagt classifications
are developed.

Theorem 2 VER|pL IS cONP—complete.

Proof: Given aninstancéH (X, .A), S) of VER|p. we can decide if this should be
accepted by checking

VERaDM (M, S) A A\ —CAapm (H,q)
qeES—

Correctness follows from Lemma 1 and sirceapm (H, ¢) is decidable inp, its
complement is decidable by arc@algorithm.”

To proveVER|pL is conP—hard we reduce frommNF-UNSAT (without loss of gen-
erality, restricted to instances which arec8F). Given a 3eNF formula

~
~

.
Il
—

(I)(Zl, ey Zn) = Cl = (Zi,l V Zi72 V Zi73)

=1

as an instance afNSAT we form an instancéFs, S) of VER|p as follows. First
construct thear Hg (described in Appendix A.1) from theNF . In this, via
[15, Thm. 5.1, p. 227], the argumesdtis credulously accepted if and only if the
CNF, ®(Z,,) is satisfiable, i.e® is notcredulously accepted if and onlydf(Z,,) is
unsatisfiable. Ther, F5, is formed fromHq by adding an argument together
with attacks

((0,2), (U,=z) : 1<i<n} U {(D,0), (T,d)}

The instance ofER|p_ is completed by setting = {V}.

We claim (F5, {¥}) is accepted as an instancew®R|p| if and only if ® is un-
satisfiable.

" The formA ,cs- —=CAapm (M, g) is equivalent to7 T'VERApm (H, T') = (TNS™ = )
so that it is not necessary to usg distinct covp tests.



First observe thafl' } isan admissible set: its only attacker is the argundewhich
¥ counterattacks. Thus, via Lemma 1, in order to complete thefpt suffices to
observe that

—CAADM (Fa,®) & —CAapMm (Ho, ®) < UNSAT(®)

Corollary 1 cApL is conP—hard.

Proof: It suffices to note thatFs, ¥) with Fg the AF defined in Thm. 2, defines a
positive instance ofA|p if and only if &(7,,) is unsatisfiable. o

Corollary 2 VER{ is NP-hard

Proof: TheAF F defined in Thm. 2 has an empty ideal extension if and only if
o(Z,,) is satisfiable. o

Theorem 3 VER|g is DP—hard.

Proof: Given(®,(Z,), ®,(Y,)) as an instance &fAT-UNSAT, form F 4, 4,y as the

AF containing the framework$s, and.F4, described in the proof of Thm. 2 where
we use¥; andW¥, to denote the arguments addedig, andHq, respectively. The
instance Fs, a,), { ¥2}) of VER|E is accepted if and only if®,, ®,) is accepted as
an instance o§AT-UNSAT. To see this note that there are exactly four possibilities
for the ideal extensionM, of Fig, ¢,): M = () (both®, and®, are satisfiable);
M = {¥,, U, } (neither formula is satisfiablefpt = {¥, } (¢, is unsatisfiable and
®, is satisfiable;M = {U,} (P, is satisfiable an@, is unsatisfiable). Only the
final case corresponds with the set given in the construasdmce. o

Theorem 4 csis YX—complete.

Proof: For membership irth, H(X, .A) is a cohesive system if and only if

VERADM (H(X,A), N S)

SGSPR

which can be tested by checking

IS VERpL(H,S) A /\ —SApRr(H, ) (2)
zeX\S

10



That is, there is a subset) of X which defines an ideal set &f and for which no
argument outsidé is in every preferred extensich.From Thm. 2, VER|p_ is in
CONP; in addition sincesApr € I15 its complementsApg is in X5 hence (1) gives
aX} test forcs.?

For Y5—hardness, we use a reduction fr@sAT, instances of which comprise a
cNFformula®(Y,,, Z,,) over disjoint sets of propositional variables. Such insé&n
being accepted if and only if there is an instantiatiorof X,, for which every
instantiation 3, of Y, fails to satisfy®, i.e.3aV 5 —-®(a, 7).

We use the reduction presented in Dunne and Bench-Capoffr¢i23}the comple-
mentary problem -@sATY, details of which are presented in Appendix A.2.

Given an instanc@(Y,,, Z,,) of QSAT22, consider theaF G4, defined from this as
described in Appendix A.2. Noting that the ideal extensibyg is the empty set
it suffices to show the intersection of all preferred extensiis empty if and only
if the cNF from which it is defined is accepted as an instance AT .

Notice that everys containingat most onelement from each of the paifg;, —y; }
is admissible. Furthermore, {, is such a set containirexactly ongepresentative
from each of these pairs (corresponding to an instantiatiaf Y,,) thenS,, is a
preferred extension if and only if there is no instantiatiprof Z,, under which
®(a, 5) = T. In summary, the preferred extensionsdaf have the formsS, U T,
with

o 0 if VB®(a,p)=_1
’ (O} U Ry if 388(a,f)=T

whereR; denotes the subset §f;, —z; : 1 <1i < n} induced by the instantiation
6 = <bl,. . ,bn> Oon, |eZZ € R,@ S b, =T.

The set{®} is not admissible and the argumenbccurs ineverypreferred exten-
sion if and only if for every instantiation of Y,, there is some instantiatiory, of

Zn, for which ®(«, ) = T. In other words, the intersection of all preferred sets
is non-emptyf and only if (Y,,, Z,,) is notaccepted as an instance@$ATy. We
deduce thatsis X5-complete in consequence. 0

Corollary 3 The property ottoherences neither necessary nor sufficient for an
AF to be cohesive.

8 Notice that any sucls' would form the ideakxtensiorof .

9 Note that we could extrapolate the existence part of Iwestructure implicit in
—SA(H, z) by “guessing” a sel/, to associate with each ¢ S in the scope of the opening
existential quantifier. With this approach, the testaApr(H, x) is replaced by verifying
thatU,, is a preferred extension @{ (coNnP) and thatr & U,.

11



Proof: From [23, Corollary 18], theF G used in the proof of Thm. 4 is coherent
if and only the argumen® is sceptically accepted. Recalling tltat has an empty
ideal extension, regardless of whethieis accepted as an instance @ATY, it
follows thatGs is coherent if and only if it isiot cohesive. o

2.4 Frameworks with Efficient Algorithms

We recall thabipartite AFs, (X', A) are those for whickt’ may be partitioned into
two sets ) andZ — both of which are conflict-free if¥', .A). We use the notation
B(Y, Z,A) for such frameworks.

Theorem 5 If B(), Z, A) is a bipartiteAr thenB(Y, Z, A) is cohesive
Proof: Consider any bipartiter, B(Y, 2, A), and let

M = N S
scyuz .S € Epr(B), i.e. S is a preferred extension &

ThusM is the set of sceptically accepted argument8.0lVe can define a partition
of each of the set¥ and Z into three subsets as follows:

Ysp = YnNM

Yea = {ye€dY : cAapm(B,y) }\ M
Youtr = {y€Y : ~CAapm(B.y)}
Zsan = Z0M

Zea = {z€Z : cAppm(B,z) }\ M

Zout = {2 €2 : CApDM (B, 2)}

Notice that since every argument ivf is sceptically accepted and from the fact
thatB is coherent — so that every preferred extensiofS &f also a stable extension
— we must have

Ysa € Zout + Y € ZouT

Zsa € Yout  Zéa € YouT

12



In addition,

VyeYcadze Zca (zy) € A
Vze ZcadyedVea (y,2) € A

To see this, suppose without loss of generality, thak does not attack € Vca:
then since the sefgp U Zca does not attack the only arguments which could at-
tacky are those in the segyT, i.€. No attacker of is credulously accepted. Now,
sinceB is coherent, such a situation would mean thatas sceptically accepted,
thereby contradicting the maximality Ofsa.

To complete the proof it suffices to argue that the A¢tis admissible Notice
that both of the setd/1 U Vca and M U Zca arepreferred extensionsf 5B: the
set Ysa U Vea is the maximal subset @f which is admissible, however, any
preferred extension containingsa U Vca Must haveZsa as a subset, i.e. there
is a preferred extensiory, of which M U Yca is a subset. The se¥l U Vca
cannot be a&trict subset ofP, otherwise we would hav€y, N Zca # 0 and Py is

not conflict-free, orPy, N (YouT U ZouT) # 0 contradicting the property that no
argument in/oytUZouT IS credulously accepted. In summary, we have identified
two preferred extension$1 U Yca andM U Zca of B. That M is admissible will
follow from the fact that botl)sa and Zg are admissible. Suppo9&sa is not
admissible: this could only happen if there were an argumeat Zgy1 which
attackedYsa and for whichz ¢ Y¢,. In this case, however, the same attack would
be undefended in the st U Z¢ 4 contradicting the fact this latter set is a preferred
extension. By an identical argument we see tBgh is admissible and now, by a
similar argument to that of Lemma 1 it follows th&t = YsaU Zga is admissible.

)

Corollary 4 LetB(Y, Z,A) be a bipartitear. The ideal extension &(), Z, A)
may be constructed in polynomial time.

Proof: From Thm. 5 the ideal extension Bfcorresponds with the set of all scep-
tically accepted arguments &. Applying the methods described in [21, Thm. 6]
this set can be identified in polynomial time. o

We note that as a consequence of Thm. 5 and Corollary 4 in e abipartite
AFs, the decision problem&Rrp , VER?E, VER|g andCA|p. are all inpandcs
is trivial.

A second class of restricted frameworks for which efficiemtidion methods exist
arebounded treewidtiAFs as described in [21, Sect. 7].
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Theorem 6 LetH(X, .A) be anAF and{w(H) denote the treedwidth 6{.

a. csis fixed-parameter tractab(§l6]) with respect totw(H).
b. The special case/,ER?E of deciding whether the ideal extension is empty, is
fixed-parameter tractable with respecttto(H).

Proof: Both parts follow from Courcelle’s Theorem [10,11,2] by deéfig sen-
tences ofmonadic second-order logi€ that describe the properties.

For cs the expression verifying membership o§ in X} in the proof of Thm. 4
leads to such a sentence after expanding the predicatgs (H, S) and—sSApRr(H, z).

An MSOL sentence describinng?E is given by

vS3T (S=0) v —VERapm (H,S)
V' VERaDM (H,T) A (Ft3s (s € S)(t € T)(t,s) € A)

2.5 Finding the Ideal Extension

The analysis of properties of the ideal extension in bipaftameworks and the
polynomial time method for constructing this suggest anreagh to construct-
ing the ideal extension in arbitramfs. In this section we show that if the set of
credulously accepted withiA' has already been identified then this suffices effi-
ciently to build the ideal extension. An immediate coroflés that decision ques-
tions concerning the ideal extension are in the CI?#&DS. We shall, subsequently,
in Section 2.6 argue that this upper bound is optimal.

Theorem 7 FIE is FP)P-complete.

Proof: We first present the argument tiak is FP!P—hard.

The following function problem is easily seen to be compfete:P"‘\‘P.

Sat Collectionsc

Instance:= = (p1, po, ..., ;) acollection of 3eNF formulae.

Problem: Compute the-bit valuex(Z) = cjeacs---¢. € [0,2" — 1] in which
c; = lifand only if ¢, is satisfiable.

Given an instances = (p1, 9, ..., ,) of sc form the AF consisting of the-
instantiations ofF,,. Letting M denote the set of arguments forming the ideal

10 Simplified descriptions of this may be found in [2] or [21, §&4.
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extension of this framework, from Thm. 3, it follows th&t C {¥, U,, ..., ¥, }
(whereV; is the argument added td,,). In addition,¥; ¢ M if and only if ; is

satisfiable. It follows thaf (=) can be computed directly givelt, and thusiE is
FP\P—hard.

To see thatie € FP|" let H(X, A) be anar and consider the following partition
of X' (similar to that described in the proof of Thm. 5),

Xout = {z € X : ~CAppm(H,2)}

Xpsa = {ze X : {z}” U{a}" C Xout}\ Xour

Xea = {zeX : caapm(H,2)}\ Apsa

This partition satisfiestpgp € XouT andXgg, € XouT. In addition,

Vye Xcadze Xea ((y,2) € Aor(z,y) € A)

for were this not the case for somec Xca thenz would be inXpgp as all of its
attackers and attacked arguments would belontigoT. !

8%
@ O O,

(@) (b) ©

Fig. 1.

a.Xsp =0 C {z,v} = Xpsa; XouT = {y,u}; Xca = {w, z}.
b. Xpsa = {v}; Xout = {y, u}; Xca = {z,w, 2}.

C. Xpsa = {z}; XouT = {z,y,u,v,w}; Aca = 0.

1'In coherentsystemsYpgp is exactly the set of all sceptically accepted argumetits,.

In general, howeverksa will be asubsebf Xpga. The further conditions for membership
in Xpga are required to distinguish examples such as those illestia Fig. 1: in Fig. 1 (b)
we haver € Xcp rather thame € Xpga despite{z}~ C Xyt (0n account of the attack
(x,w); in Fig. 1 (c), although{z}~ U {z}" = {y,w} C Xoyrt sincex itself is in XoyT

it cannot be placed ikpga.
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With the partition of X' just defined we may constructlapartite framework —
B(Xpsa, XouT, F) — in which the set of attacks;, is

F =at A\ {({y,2) : ye XcaUXout and z € Xca U XouT }

(Note thatB(Xpsa, XouT, F) is bipartite sinceXpga is conflict-free andF con-
tains no attacks involving two arguments frotgyyT).

The FPH‘P upper bound now follows from the following observations:

O1. The partitionl Xpsa, Xca, XouT) can be constructed using’| calls (made
in parallel, i.e. non-adaptively) to arp oracle that decidesa(H, x) (one for
eachz € X). Eachz on which the oracle returnialse is placed in the set
XouyT otherwiser is placed into a s€Y. The correct partition o} into Xpga
and Xcp is found by by identifying those arguments gne ) for which
{y}~ U{y}™ C Xour, this set forming¥psa.

02. Giventhe partitionXpsa, Xca, XouT) the bipartite graptB(Xpsa, XouT, F)
described above, can be constructed frHi(®', A) by a (deterministic) poly-
nomial time algorithm.

03. The ideal extension dft is the maximal admissible subset &bgpa in the
bipartite graphB(Xpsa, XouT, F): this follows from the characterisation
proved in Lemma 1.

Using the algorithm of [21, Thm. 6(a)] this set can be foungatynomial time

and thusFiE FP"‘\IP as claimed. 5

The technique employed to establisted'P—hardness in proving Thm. 7 can be

used to demonstraﬂq’fp—hardness for a number of (admittedly rather artificial)
decision problems concerning properties of the ideal esiten For example,

Corollary 5 LetPARITY-IE be the decision problem which given ap, H, returns
true if and only if the ideal extension @{ contains anodd number of arguments.
The problenPARITY-IE is P)!P—complete.

Proof: Membership is immediate from the construction of Thm. 7.dtass fol-
lows from the fact — [36, Cor. 12.4, p. 274] — that determinthg parity of the
number of satisfiable formulae in a collecti¢b;, . .., ®,,) of givenCNFs is PH‘P—
hard and the reduction frosic of Thm. 7. o

More generally, for any predicate over collectionsafr formulae related to the
cardinality of the set of satisfiable formulardwhich is Pﬁ‘ P_hard, the correspond-
ing predicate with respect to the ideal extension of a givercan also be proven

P"‘\' P—hard using the approach of Corollary 5
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Corollary 6 H(X,.A) is cohesive if every argument € X is credulously ac-
cepted.

Proof: If Vo € X cAapm (H,z) thenXoyTt = 0. In such cases, the only argu-
ments,z, that could belong totpga are those for whicHz}™ U {z}~ = 0, i.e.
arguments which are “isolated” it (X', A). Such arguments are sceptically ac-
cepted and form an admissible subsefofFurthermore no argument iti \ Xpga
can be sceptically accepted (since each of these attackatacked by has at least
one credulously accepted argument). It follows thaga = { © : SApr(H,z)}
andXpga is the ideal extension, i.@{ is cohesive. o

Combining the results and noting the equivalences

CApr = CAADM ; CApL =CAIE = SAIE
we obtain the picture of the relative complexities in Table 4

Table 4
Relative Complexity of Testing Acceptability.

Decision problem

Lower bound

Upper Bound

CAPR NP-hard NP
CAIDL conP-hard P‘I\“P
SAPR E-hard J1ES

Similarly, Table 5 considers checking whether a gigetof arguments collectively
satisfies the requirements of a given semantics or is a masunth set, i.e. the
various cases of the verification problem

Table 5
Deciding set and maximality properties
Semantics| Lower bound| Upper Bound
ADM P P
IDL coNP-hard CONP
PR coNP-hard CONP
IE pP—hard P‘I\“P

We note in passing that the problem of deciding ifs the maximal set o$cepti-
cally accepted arguments, although not previously considesegsily shown to be
complete for the complexity clagsg of languaged. expressible as the intersection
of alanguagd.; € ¥} andL, € II5.
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In total the classifications given by the these tables retefthe case thatAapw
is easier thaicA;p which, in turn, is easier tha®Apg.

2.6 Reducing the complexity gaps

In [7], Chang and Kadin introduce the concepts of a languagel the properties
op, andor,, whereor is one of the Boolean operatofsND, OR}. Formally,

Definition 8 ([7, pp. 175-76] Letl. be a language, i.e. a set of finite words over
an alphabet. The languages\D, (L) andOR,(L) (k > 1) are

ANDk(L) =def {(wl,wg,...,wk) v1§2§l€’wZ€L}

ORy(L) =qet {(w1,ws,...,wy) : 31 <i<kw; € L}

The languagesND (L) andor, (L) are,

AND,(L) =at |J ANDi(L) ; OR,(L) =aes |J ORk(L)

k>1 k>1

A language,L, is said to have propertpp, (resp.or,) if or,(L) <P L (resp.
OPR,(L) <P L).

The reason why these language operations are of interdw feltowing result.

Fact9 ([7, Thm. 9, p. 182])

A languagel. is P)P-complete (via<?, reducibility) if and only if all of the follow-
ing hold.

F1. L e PP,

F2. LisNP-hardandL is canrP—hard.

F3. L has propertyaAND,.

F4. L has propertyor,,.

As a consequence of Fact 9, we have,
Theorem 10

If cA|pL is NP-hard thencap is P)'P—complete.

If CA|pL € CONP thenVER|g is DP—complete.

If cAipL € conp thenVER{: is NP—complete.

If VERE has propertyor, thenveRg is P) P—complete.

oo
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Proof:

a. With the assumption thatA|p is NP—hard,cA ;p. would satisfy conditions
(F1) and (F2) of Fact 9. To complete the argument it sufficeshtow thatcA|p
already has propertgND, and propertyor,. For the first of these consider any
instance((H;, x), (Ha, y)) of AND(CA|pL ). Form thear, H, consisting of copies
of H, andH, together with three additional argumerts,, z,, z}. Now adding
the attackd (z, z.), (v, 2,), (2., 2), (24, 2) }, via Lemma 2(H, z) is accepted as an
instance ofcajp. if and only if cA;pL ((H1,2)) A CApL ((Ha,y)). To see that
CA|pL has propertyor,, consider an instance(H1, z1), (Ha, 2}, - - ., (Hum, Tm) )

of OR,(CA|pL ). Form anAF, H, from thesen frameworks, adding two new argu-
ments,{y, z}. The instance is completed by adding the attagks, y) : 1 <: <
m} and the attacKy, z). Again, via Lemma 2(H, z) is accepted as an instance of
cApL ifand only if V", CAlpL ((H;, x;)).

b. It has already been shown thatr|g is DP—hard. Consider the languages,

Ly =qt {(H,S) : VzeS, capL(H,z)}
Ly =aet {(H,S) : Yz &S, ~CApL(H, )}

We havelL; € coNp (by the assumptiorA|p is in canP and by the straigh-
forward generalisation of (a) that showsp has propertyanD,,). In addition,
Ly € NP (from the premisecA|p. € coNP and the fact that:cA|p has property
AND,, sinceCA|p. has propertyor,). With these choices af, and L., (H, S) is
accepted as an instaneer g if and only if (H, S) € L, N Ly so thatvER|g € D”.
c. Easy consequence of (b).

d. It has already been shown thatr g satisfies (F1) and (F2) of Fact 9. In ad-
dition, VER|g has propertyaND,, (thus, trivially, alsoAND,): given an instance
( (H1,51), (H2,89), ..., (Hm, Sm) ) of AND,(VER|g) fix H to consist of then
frameworks(H1, Ha, ..., H,,) andS asU™, S;. With these(H, S) is accepted as
an instance ofer|g if and only if A" | VER g (H;, S;). It follows that werevER g
to have propertyRr,, thenver,g would beP"T‘P-compIete via Fact 9. o

We may interpret Thm. 10 as focusing the issue of obtainimgexlassifications in
terms ofCA|pL . If CA|pL € coNP (so that, with the usual assumptionngf£CoNP,
CA|pL would not benP—hard) then we obtain exact classifications of the complex-
ity of {CA|DL,VER|E,VER?E} as {conp, D?, NP}—complete. On the other hand,
an alternative hypothesis, in the event@f|p. ¢ CONP, is that suggested by
Thm. 10 (a): thatapy is P)'P—complete, a result which would follow by demon-
stratingCA|pL to beNpP-hard.

In fact, there is strong evidence tha&|p. ¢ coNP and, using one suite of tech-
nigues is more likely to be complete withhh\‘P. Our formal justification of these
claims rests on a number of technical analyses using resu®hanget al. [8],
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which in turn develop ideas of [1,4,34]. Two key concepts um further analyses
of CA|pL are,

a. The so-calleddnique Satisfiabilityproblem (SAT).
b. Randomized reductions between languages.

Unique Satisfiability (USAT)
Instance: cNF formula®(X,,) with propositional variablegr,, ..., z,).
Question: Does®(X,,) haveexactly onesatisfying instantiation?

Determining the exact complexity efSAT remains an open problem. It is known
thatusaT € p? and while Blass and Gurevich [4] show it to bexee-hard'? , usAT
has only be shown to be complete @t using arandomizededuction technique
of Valiant and Vazirani [34]. Two concepts of such reducti@ne studied in Chang
et al.[8] specifically with respect toSAT via the following general definition.

Definition 11 Let; and L, be languages and € [0, 1]. We say thal; randomly
reduces td., (denotedl; <!? L,) with probability if there is a polynomial time
computable functionf, and polynomial boung with f mapping pairs(z, z) —x
an instance of.; and » an element of0, 1)9(#)) — to instancesy, of L,, such that
for z drawn uniformly at random fronfn, 1)4(=!

x €Ly = Prob|f(x,z) € Ly] > §
x € Ly = Prob[f(z,z) &€ Ls] =1

We have the following properties ofsAT and randomized reductions:
Fact 12

a. SAT <P USAT with probability1/(4n). ([34, Lemma 2.1, p. 88])

b. If L; <I? L, with probabilityl/p(n) for some polynomially bounded function,
p, and L, has propertyor, thenL; <P L, with probability1 — 27", ([8,
Fact 1, p. 361}?3)

A relationship between unique satisfiabilitygAT) andCA|p is established in the
following theorem. Notice that the reduction we describdeserministi¢i.e. not
randomized.

12 The reader should note that [28, p. 93] has a typographigahsiereby Blass and Gure-
vich’s result is described as provingsAT to benp—hard.

13 The bound actually stated in [8] is for arbitrary exponehtidecreasing functions, i.e.
not just2—".
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Theorem 13 USAT <P CA|pL.

Proof: Given an instanc@(Z,,) of USAT construct amr, (X, A) as follows.

First form the systen¥s described in Thm. 2, but without the atta¢k, ¢) con-

tained in this and with attack&;, C;) for each clause ofb.'* We then add a
furthern + 1 arguments{y, ..., y,, 2} and attacks

{(zi, 9a), (mzows) - 1 <i<n} U {{yx) 1 <0 < nj

The instance ofA|p is (K(X, .A), z) and the resultingF is illustrated in Fig. 2.

)

Fig. 2. The Argumentation Framewok&s

We now claim thatb(Z,,) has a unique satisfying instantiation if and onlyifs a
member ofM . the ideal extension o€ (X, A).

Suppose first tha®(Z,,) doesnot have a unique satisfying instantiation.df is
unsatisfiable — i.e. the number of satisfying assignmentgiis — then all of the
arguments forming the sub-systetfs, fail to be credulously accepted, in par-
ticular, each of the arguments and —z; fail to be so accepted. It easily follows
thatz ¢ My since no defence to the attack enby y; is possible. There re-
mains the possibility thab(Z,,) has two or more satisfying assignments. Suppose

1 We make these arguments self-attacking purely for easeesfeptation: the required
effect - that no argument’; is ever credulously accepted — can be achieved without self-
attacks simply by adding two arguments ande; for each clause together with attacks

{(Cj.d;), (dj, €5), (e, Cj) }-
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a = (ay,a,...,a,) aNd3 = (by, b, ..., b,) are such tha®b(a) = ¢(3) = T and

a # (3. Without loss of generality, we may assume that# b, (sincea # [ there
must be at least one variable &f that is assigned differing values in each). In this
caseboth z; and—z; are credulously accepted so that neither can belonylia
from Lemma 2 condition (M1) gives, ¢ M (since—z; is credulously accepted)
and—z; € M (sincez; is credulously accepted). It now follows thatZ X, via
(M2) of Lemma 2: neither attacker gf, an argument which attacks belongs to
M. We deduce that i®(Z,,) is not a positive instance efsAT then(/C, z) is not

a positive instance afA|p| .

One the other hand suppose that (a;, as, . .., a,) defines the unique satisfying
instantiation of®(7,,). Consider the following subset &f:

M= U {&tu U {~aru{e s}

i:a;=T i a;=1

Certainly M is admissible: since: satisfies®(Z,,) eachC; andy is attacked by
somez or =z in M and thus all of the attacks ob andx are counterattacked.
Similarly ® defends arguments against the attackslbyt is also the case, how-
ever, that no admissible set &fcontains an attacker 0¥1. No admissible set can
containC; (since these arguments are self-attackingjsince the only defenders
of the attack byp areC; arguments) oy, (1 < k£ < n) (since these requirg as a
defence againstzy, —z;}). Furthermore forz; € M an admissible set containing
—z; would only be possible if there were a satisfying assignnoédt under which
—z; = T: this would contradict the assumption tlbehad exactly one satisfying
instantiation.

We deduce thab(Z,,) has a unique satisfying instantiation if and only:iis in the
ideal extension ofC(X, A). 5

Combining Thms. 10 and 13 with Facts 9 and 12 gives the fofigwiorollaries.

0
Corollary 7 USAT <P —VER|g

Proof: TheAF g of Thm. 13 has aon-emptydeal extensionMy, if and only
if z € M. o

Corollary 8 cApy is complete fop|!” under<:? with probability1 — 27"

Proof: The decision probleroRr, (SAT-UNSAT) is P)\P—complete under (standard,
deterministic)<? reductions. We thus obtain

OR,,(SAT-UNSAT) <’P SAT-UNSAT with probability1/n
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(as observed in [8, Lemma 1, p. 365], simply choose, unifg@lrandom, one of
then sub-problemg®,, U,) in the instancg(®,, V4), ..., ($,, V,)) of OR, (SAT-UNSAT).

Now, via [34], SAT-UNSAT <!P USAT with probability1/(4n) so that, combining
these randomized reductions,

OR,(SAT-UNSAT) <P UsAT with probability1/(4n?)

Now applying the (deterministic) reduction of Thm. 13 shows
OR,(SAT-UNSAT) <P cAjp_ with probability1/(4n?)

As demonstrated in the proof of Thm. 10(aypL has propertyor, so that via

Fact 12(b) we obtain,

OR,,(SAT-UNSAT) <'P cA|pL With probabilityl — 27"

Since we know thatA p € P\ this completes the proof. 5

Corollary 9 VER{g is complete foP)” via <7# with probability1 — 2.
Proof: We may apply a similar argument to that of Corollary 8 to obtaR,, (SAT-UNSAT) <'P
—VER{g with probability 1 /(4n?). SinceveRr{z has propertyaND,, so its comple-

ment, has propertgr,,. The corollary now follows via Fact 12(b) and the fact that
P\ is closed under complementation. .

Corollary 10 VERg is complete fop/!” via <I# with probability1 — 2.
Proof: Easy consequence of Corollary\BER?E is a special case OfER|E. o

To conclude we observe that althougbaT <P cA|p_ itis unlikely to be the case
that these decision problems have equivalent complextythatcA|p. <P, USAT.

Corollary 11 If cApL. <P USAT (notedeterministicreduction) then the Polyno-
mial Hierarchy @H) collapses ta:}, i.e.

CApL <P, usaT = |J ZfulJ I} C =%
k>3 k>3
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Proof: Suppose itis the case thad|p. <P, USAT. We then have

OR,(USAT) <P OR,(CApL) by Thm. 13
<P CA|DL sincecA|pL has propertyor,

<P USAT by premise

So thatusAT would have propertyRr,,: [8, Thm. 5, p. 364] demonstrates that this
leads to the collapse stated. o

Now, noting that<? can be interpreted as<!? with probability 1", we can re-
consider the lower bounds of Tables 4 and 5 using hardness {iéwith “high”
probability) instead of hardness via (deterministi¢), as shown in Table 6.

Table 6
Complexity of ideal semantics relative to randomized reéidns

Decision Problem  Complexity | <P probability
CAADM NP—complete 1
CAIDL Pﬁ‘P—compIete 1—2"
SAPR [I5—complete 1
VERADM P -
VER|DL CONP—complete 1
VERPR coNP—complete 1
VER conP—complete 1
VER|E Pwp—complete 1—2"
VER\L PNP—complete|  1-27"

3 Ideal Semantics in Assumption-based frameworks

The formalism of abstract assumption-based argument&omeworks ABFS) is
described in Bondarenket al. [5] and offers an alternative but related approach
to theArF mechanisms of Dung [17]. Whereas the concept of argumenatiack
within AFs does not attempt to analyse issues of argursgattureor the ratio-
nale underpinning attacks between arguments;s view arguments as a state-
ments justified through some formal logical deductive systgth the concept of
attack being that the conclusion of one argument is incoilgawith the premises
supporting another. We now consider similar complexityessto those examined
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in the preceding sections fairs, concentrating on the model aBFs. Although
there is some variation in the exact specification of denigimblems, as before,
the canonical questions of interest concern Verificatiash@redulous Acceptance.

We first review the basic elements mgFs in Section 3.1 including the formal de-
scription of the verification and credulous reasoning peaid. Following, in Sec-
tion 3.2 we describe the translations, from [5] of divers fatessical logics into
correspondingnBF contexts and summarise the contribution of [12—14] in which
the computational complexity of credulous and sceptiasoaing under preferred,
stable and admissible semantics was considered.

Finally in Section 3.3 we consider the computational comipfef ideal semantics
in ABFs using a number of the settings described in Section 3.2.

3.1 Review of Elements from Assumption-based argumenfatimeworks

In the sequel L, R) is adeductive systenie. L is a formal language whose ele-
ments are denumerable — e.g. well-formed propositionahfdae — andr is a set
of inference ruleswhich we consider to be of the form

A, 9, ...,0,

g

with o; € L, g € L andn > 0. We refer to anyl’ C L as atheory. GivenT C L
in the system L, R) the subseT'h(T") of L of derivablesentences fof in (L, R)
hasa € Th(T) if there is a (finite) sequencd, .. ., 5,, (m > 0) with which for
everyi (1 < i < m) either3; € T orthereis arulé® 3; «— a;,as,...,a, € R
and{ay,...,a,} C{f1,...,Bi—1}. We writeT - « if & € Th(T). Such systems
aremonotonici.e. if 7'+ o thenT’ - o forany7’ O T.

As shown by several examples in [5] coupling the well-stdd@malism of de-
ductive systems with the novel conceptsasBumptionsndcontrary provides an
(argumentation founded) approach giving a unified treatroéa wide variety of
non-classical logics.

Definition 14 For a deductive systefii, R) anassumption-based framewosk.t.

(L, R) is a triple (T, A,™) whereT C L is a theory,A C L a non-empty set of
assumptionsand™ : A — L a mapping that associates with each assumption
a € A its contrary denotedx.

Although the contrary mapping can be instantiated as daksegation, it inot
limited to this sense only. Instead of the atomic notion gluanent from [17], the

15 For ease of readability we use the fofin— o, . .., o, inside text.
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objects of interest withimaBFs are subsets aissumptionshat defineextensions
of the theoryT" according to various semantics. In this way, the followinigrans
Defn. 1 forAFs, presenting analogous ideashlFs.

Definition 15 Let (7, A,”) be anABF w.r.t. some deductive systefh, R) and
A C A. Fory € L, we writeA = ¢ as a shorthand fop € Th(T U A).

The set of assumptiods attacksan assumptio € A if A = @; A attacks aset

of assumptiong\’ if A = @ for somea € A’. We writeatt(A, «) to denote the
attack relation over” x A, and similarly (albeit with a slight abuse of notation)
useatt(A, A’) for attacks byA on a set of assumptions'. The assumption seX

is said to beclosedif A = {a € A : A = a}, i.e. a closed assumption set cannot
derive any assumption other than those already containéd Tihose frameworks
whose supporting deductive systems are suchetfetyset of assumptions is closed
are calledflat frameworks

A setA C Aisconflict-freeif —att(A, A); A is anadmissibleset of assumptions if
it is closed, conflict-free, and for evecjosedassumption sed\’ if att(A’, A) then
att(A, A"); A'is a preferred extension if it is a maximal admissible seteAsis
a stableextension if it is closed, conflict-free, and for everg A\ A, att(A, a),
e A Ea.

Following [19,20], A is anideal setif A it is admissible and a subset of every
preferred extensionA is (the) idealextensiorif it is the maximal such sef

Corresponding to the decision problems f#s considered earlier, we have the
following formulations inaBFs. Note that the underlying deductive systém R)

is reflected in the problemamerather than explicitly as part of thastance We
use&((T, A,”)) to denote the subsets of assumptions satisfying the eritri
semantics; in the ABF (T', A,7).

Table 7
Decision Problems inBFs
Problem Name Instance Question
Verification (VERS ) (T, A7), AC A IsA € (T, A7))?

Credulous Acceptanc(e:AﬁL’m) (TVA7 ), pe L | 3A € &((T,A,)) forwhich A = ¢?

Sceptical Acceptanc(e;AéL’m) (T,A™);p€eL VAe&ENT,A™)) doesA | p?

ExistenceexisTs{" ™) (T, A7) IsE((T, A7) #0?

Emptinesgver (> (T, A7) IsE((T, A7) = {0}?

The formulations ot A% andsa{** are rather more general than might seem to
be the natural analogue: rather than asking whether a gissmmptiona belongs
to at least one (or every) set &, (so directly paralleling the form oA, and

16 We recall that [19,20] have shown evexy, ABF has a uniquely defined ideal extension.
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SA, from AFs), the decision problems ask whether a gigentencgy € L, can

be deduced via at least one (resp. every) sef;inin complexity terms for flat
frameworks and» = o € A, the given form is equivalent to the natural analogue:
A E ¢ =aifandonlyifa € A.

3.2 Instantiations oABFs modeling default reasoning and their complexity

In this section we reprise the translations from a rangeaswoaing formalisms into
equivalentaBFs. Our presentation summarises the descriptions from]5,14

3.2.1 Logic Programming P

We recall that a (hormal) logic prograr, comprises a set of clauses of the form
o «— [B1,..., 0, wherea is a ground atom from some underyliktgrbrand base
(HB) andg; is aliteral from Lits = HB U HB,,,; WwhereHB,,,, = {nota : a €
‘HB}. Given a normal logic prograny;, the correspondin@BF is (T, HB,.,” )
where for each assumptiont o € HB,,.; its contrarynot a = «. The underlying
deductive systemiL, R) corresponds to Horn logic derivability, where following
[25], assumptiongot « are regarded as new atoms.

3.2.2 Default Logic -bL

Given a deductive system for classical first-order logig, R,) Reiter [33] defines
adefault theoryas a paif W, D) whereinlW C L, andD is a set ofdefault rules

a Mﬁla'-wMﬁn
g

where a, Bi,...,0,, 7€ Ly, n >0

Informally a default rule may be interpreted as “it is reaslole to assume if we
know (or have proved that) is the case and have no basis on which to suppose
any—5; (1 <i < n) holds”, e.g. in the standard example of default reasoniing “
reasonable to assume tHateetycan fly if we know thaffweetyis a bird and have

no basis to suppose either thiateetyis a penguin or thatweetycan not fly.” is
expressed via the default rule

bird(Tweety) : M- penguin(Tweety), M flies(Tweety)
flies(Tweety)
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For the default theorylV, D) the relatedhBF (7', A, ) is formulated in the deduc-
tive system(L, R) with

= LoU{Ma : o€ Lo}

= RyUD

= W

{Mp : € Ly andMp occurs in some default rule @}

S
Q
I

=

3.2.3 Autoepistemic LogiCAEL

In AEL the starting point is a deductive systefd,, R), in which L is a modal
language with modal operatd®, and R an inference scheme of classical logic
for L: the interpretation oB«a being that % is believed. For a theoryT C L

of AEL, the correspondingsF, (7, A,”) w.r.t. (L,R) hasA = {Ba : a €
L} U{-Ba : «a € L}. The contrary mapping hd8a = —Ba and—Ba = a.

Both Reiter [33] and Konolige [29] have observed that defaules of the form
v «— «a : Mp@,...,Mj, can be regarded as=L inference rules of the form
v «— Ba, =-B-fy,...-B—j,.

3.2.4 Summary of known complexity properties

A key contribution of [14] is in linking the computational eplexity of the deci-
sion problems in Table 7 to that of tlierivability problemin the supporting de-
ductive system{L, R), i.e. the computational complexity of deciding givAnC A
andy € L whetherA | ¢. If (A E7¢) is decidable some clagsthen a num-
ber of generic upper bounds can be demonstrated in termsolfeocomputations
provided with access t06 oracles. In total from the complexity bounds on deciding
A = o stated in Table 8 the upper bounds of Table 9 have been derived

Table 8
Computational Complexity of deciding = ¢

Logic | Complexity of decidingA = ¢

LP P
DL CONP—complete
AEL CONP—complete

Although [14] does not addredswer bounds for the verification problems, all
of the bounds for the credulous and sceptical reasoninggmabare shown to be
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Table 9
Upper bounds for Decision ProblemsABFs from [14]

Problem | LpP DL | AEL
(L,R) NP P
VERA DM P P X
VERUE™ | conp | TR | TI
VER<SL-|1R> p | PNP | T
(L,R) p P
(L,R) D D
(L,R) p P P
SApR | 1| I
sa:f | cone | TG | TT

tight, i.e. ifC is an upper bound ooa{H# or sall-# from Table 9 then the decision
guestion is als@—hard.

3.3 Complexity of Ideal SemanticsABFs

Lemma 1 and Lemma 2 characterise properties of ideal setthandeal extension
in AFS. Under certain restrictions both of these have countesparrABFs.

Lemma 3 Let7 = (7, A~ ) be anABF w.r.t. the deductive systefh, R). If T is
a flat framework then:

a. VA C A, VERIE(T, A) ifand only if
VERGA (T, A) andV T C A : att(T, A) = ~VERYgy (T,T)

b. Let®© C A be the ideal extension af. Forall o € A, o € © if and only if
VD C A : att(T,a) = [-~VERYHH (T,T) and att(©,T) ]

Proof: For (a), if A is an ideal set it is admissible by definition. Considering an
' C A for which att(I', A), were" to be admissible it would not be possible
for A C I for every preferred extension since a preferred extensooriacningl’
would fail to be conflict-free. Thus, ifA is an ideal set then no subsEt,attacking

it can be admissible. On the other handAebe admissible and nd’ attacking it
be so. Consider any preferred extensibrf 7: from the fact thal is a preferred
extension we have: att(I',T"); from the premise thaf\ is admissible it further
holds— att(A, A). Consider the sat U A. " We claim that-att(T' U A, T U A).

17t is this part of the argument that requirgsto be aflat framework: otherwise, even If
andA arebothclosed, we cannot infer thatu A will also be so.
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Suppose this were not so, i€t(I' U A, I' U A). Then eitheratt(I' U A, A) or
att(' U A, T). In the former case
att(CUA,A) = att(A,TUA) sinceA is admissible
= att(A,T) since—att(A, A)
= att(I',A) sincel is admissible

= - VER<AL[’DR,\>I (7,T') from premise that no attacker df is admissible

This contradicts the choice dfas a preferred extension.

In the latter case,

att(TUA,T) = att(l,T'UA) sincel” is admissible
= att(l', A) since—att(T',T')

= - VER,&LbR,&l (7,T') from premise that no attacker &f is admissible

again contradicting the choice bfas a preferred extension.
It follows thatI” U A is conflict-free. This set, however, is also admissible:

att(l',AUT) = [att(T",T) oratt(I",A)] = att(TUA,TY)

Sincel is a preferred extensionU A = T',i.e.A C I" and we deduce thak is
an ideal set.

For (b), if « € O, then it is immediate from part (a) that 1o C A for which
att(T', ) is admissible. In addition, sina@ is admissibleqtt(I", o) = att(T", ©)
thus att(©,1"). Conversely, if no attacket; of « is admissible and every such
attacker is attacked b§ then© U {«} is conflict-free. To see this, assume the
contrary and thattt(© U {a},© U {a}). Eitheratt(© U {a}, {a}) or att(© U
{a}, ®). In the first case we have,

att(© U{a}, {a}) = att(0,0U{a}) from premise

= att(©,{a}) since—att(©, ©) from admissibility of©

= —VERYg™ (T,0) from premise

contradicting® being the ideal extension. In the second case, since

att(© U{a}, 0) = att(0,0 U {a})
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we derive a similar contradiction. It is easy to see Bat {«} is also admissible
since every set attacking it is counterattacked=byFurthermore no attacker of

© U {a} is admissible: eitheutt(I',©) andI" is not an admissible set via (a);
or att(T",{«}) andT is not admissible from the premises an We deduce that
©U{«a} is anideal set, and witB being the ideal extension, i.e. maximal such set,
Soa € O as claimed. o

Corollary 12 If 7 = (T, A, ) is a flat framework in( L, R) and decidingA = ¢

is in some complexity clags thenver|f;” € conFe,

Proof: Given an instancéT’, A) of VER(5;[ we may check/ERGA, (7, A) via
aP‘ computation, as described in [14, Thm. 4]. We can then testferyl’ C A
that should:t¢(I", A) (JA| calls to aC oracle deciding” |= @ for a € A), thenI' is
not admissibler®). In total the algorithm is implemented in ©e™ = conF’ as
claimed. 5

Corollary 13 The problem of verifying thahk is an ideal set can be decided in

a. CaNP for LP instantiations olABFS.
b. IT5 for DL instantiations ofABFs.

Proof: All instances ofaBFs instantiating P or DL describe flat frameworks. Thus
both bounds follow from Corollary 12 and Table 8 giving\e® = conPp for LP
instances, and eae®ONP = conpNP = II% for DL instances. .

In contrast to the upper bounds given in Corollary 13, whers mot possible to
assume flatness, the characterisation from Lemma 3 mayrfaiich cases one has
the general upper bound,

Lemma4 Let7 = (T, A,”) be anABF with underlying deductive systefh, R)
and for whichA = ¢ is decidable irC.

NP
VER|{5|” € CONP

Proof: Given an instancé7 , A) of VER%’,}_%> for 7 = (T, A,”) as in the Lemma

statement, this can be decided by check,iag<AL|’DR,\>I (T, A) (coNFC, via[14, Thm. 3])
and then testing

VI C A (-VERSE?(T,T) V ACT)
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Thatis, every preferred extension®BfcontainsA. Again via, [14, Thm. 3],—\VER§3L|’QR> €

. . NP .
NPNP so the test described can be completed mRY " as claimed. o

Corollary 14 For AEL instantiations olBFs the problem of verifying thak is an
ideal set is inlT}.

Proof: Those frameworks describingeL instantiations can fail to be flat, hence
the upper bound is immediate from Table 8 and Lemma 4. o

The characterisation of ideal sets and properties of thal ielension are not the
only properties oiAFs that carry across to flat frameworks. With some minor vari-
ations it turns out that theonstructionprocess for building the ideal extension —
described in Thm. 7 — can also be adapted to flat frameworkdirg¥elescribe the
algorithm for flat frameworks in Algorithm 1 and prove its cectness in Thm. 16.
Finally its run-time is analysed in terms of upper boundsorpriﬁ’jR,\}I and that of
decidingA | ¢ in Thm. 17.

Algorithm 1 Construction of the Ideal Extension in flasFs
1: function FIND-IDEAL-EXTENSION (7 = (T, A,7))

20 Agu = {a€ A . —cAYEH (T, )}
3 A = A\ Ao

4. ACA = {OZEAZ‘H : Azn }:@},

5: Apsa = A\ Aca;

6: I' := Apsa;

7: repeat

8: an : F,

9 Z:={a€Au TEa)};
10 A = {~yely,, : ZUAca F 7}
11: [ =T\ A;

12: until an =T

13: return I

Prior formally to proving its correctness, some discusabithis algorithm may
be helpful. In a similar manner to the mechanism describexbtaining the upper
bound of Thm. 7, the algorithm builds a partition of the asption set into three
parts:A,,; (the counterpart atgyt from Thm. 7) with the remaining assumptions
(A;,) divided between those which cannot be sceptically acdefibe setAca)
and those whicleould be sceptically accepted (the s&bsa). The main loop, be-
tween Il. 7-12, progressively removes assumptions febpg s (until no change
results), by identifying those assumptions wheamnotbe part of the ideal exten-
sion. The computational process, in effect, mirrors thevibes of (Xpsa, XouT)
as a bipartite subgraph @1 adopted in Thm. 7 in its treatment QApsa, Aout)-
The major difference is that the attack relation must be icemed in terms oets
of assumptions, whereas in te algorithm it sufficed to deal with the interac-
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tion between individual arguments Xyt and arguments ikpga. 1® Informally
one may view the rationale of Algorithm 1 as implicitly codering a bipartitexr
formed by(Apsa, 24#t) with the attack relation containing\, o) for A any (min-
imal) subset of4,,; for which A U Aca | @; together with(Apga, 3) whenever
(the current, in the sense of . 81psa | 5.

Theorem 16 Given a flat framework?, Algorithm 1 returns its ideal extension.

Proof: For7 = (T,A,”) a flat framework w.r.t. the deductive syste, R)
let ©® C A be its ideal extension. First observe that the subdsgis computed in
line 5 of the algorithm is both conflict-free and is such tBatC Apga. To see
this notice thattt(Apsa, Apsa) would imply Apsa = 7 and, henced;,, = 7
contradictingy € Apga (cf. lines 4-5). That C Apgp, follows by observing
O N A,; = 0: © is admissible, however, no assumptionAp,; belongs to an
admissible set (line 2). Supposing, to the contrary, that Aca # () consider any
a € © N Aca. By definition,a € Acpa implies A;, = @, henceutt(A;,, ©) from
which att(©, A;,) as© is admissible. We, therefore, can find sofe A;, such
that® = § so that© attacks any preferred extensiah,of 7 for which§ € A.
Such a preferred extension exists by virtu AL[’)R,\% (7,0) but then we cannot
have® C A contradicting the choice @ as the ideal extension Gf. In summary
Apsais conflict-free and® C Apga. In addition—att(Apsa, Aca): if ApsaE7
for v € Aca, thenatt(Apsa, I') for any preferred extension with v € T" leading
to the contradictiortt(A;,, Apsa) as a consequence @ft(I", Apsa).

To complete the proof of correctness it remains to show thasetl” returned by
Algorithm 1 is the maximal admissible subset&$sa. CertainlyI is conflict-free
(since Apsa is conflict-free). Consider ang C A for which att(Z,T"). It must
be the case th& N A,,; # 0 for otherwise= C Aca andatt(=,T") would yield
EE7fory el ie. A, =7 contradictingy € Apsa. LetZ,; = =N Ay If
att(T, Zyye) then, trivially, att(T', =), sol" would only fail to be admissible if it is
attacked by= such that

v€ € Eout _'(F):E)

This, however, contradicts being the set returned by Algorithm 1: for consider
the subset\ for which = = ¢ for eachd € A (from att(Z,T) it is immediate
that|A| > 1). This is precisely the subset identified in line 10 and reeabffrom
the currentl’) in line 11. We deduce, as a result thats an admissible subset of

18 The polynomial time algorithm of [21] identifying non-creldusly accepted arguments
in bipartite AFs, B(), Z,.A) does so by repeatedly identifying thogec ) (resp.z €
Z) for which somez € {y}~ (resp.y € {z}7) is unattacked by (resp. Z), cf. the
construction in Il. 9-10 of Algorithm 1: line 9 identifies tlset= of assumptions iM,,;
that are unattacked (bypsa) and eliminates fromdpga those assumptions attacked by

—_—
—
—
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Apsa. It must, however, also bermaximalsuch set. For consider any non-empty
A C Apsa\ I'. We claim the sel’ U A is not admissible. To see this let

FO7 Fla"'7 Fk:

be the sequence of sefy = Apga, [y, = I, andl'; € T, 1 (£ @ < k) over
successive iterations of lines 7-11. Frdxm I" = (), we can identify a partition of
A into r sets(Aq, ..., A,) and a subsequencgg, j, ..., j.) of (0,1,....k — 1)
such that

Ji+1

Thus, A; is a subset of those assumptions removed from the currelgctioh
I';n, = T, inline 11 of the algorithm. Without loss of generality we dagus on
A; andl';,. By inspection we see that,

—_
—
—

{ao€e Ao - ~(I'y, E@)} line9

Noting thatl' U A; C I';, and that

ECE={aedu: (T Fa)}

it follows thatatt(Aca U Z',T" U Ay) and, in particularatt(Aca U Z',Aq). In
summary, if it is the case thatU A is admissible, then this set must be able to
counter the attack o\, by Aca UZ'. Hence,

VER,<0\L|f)R|\>/| (7, TUA) = att(TUA, AcaUZ")
= att(l'UA, Aca) oratt(l'UAZ)

FromI'UA C Apsaand—att(Apsa, Aca) the only possibility isitt(I' U A, Z'):
the definition ofl';, which is a superset df U A shows that no such counterattack
is possible. In total we deduce thatu A cannot be admissible and, hericas
the maximaladmissible subset ofpga. It is easily seen that that no attackerlof
defines an admissible set of assumptions sit@\, ') = A N A, # 0.

To summarise©, the ideal extension, is a subsetbpsa; I' the set returned by
Algorithm 1 is an admissible subset dbsa and no attacker) of I" is admissible,
i.e by Lemma 3 (a) is an ideal sét; however, is thenaximaladmissible subset of
Apsa hone of whose attackers is admissible, so that © as claimed. o
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Theorem 17 Let7T = (T, A,”) be a flat framework w.r.t.L, R) for whichA = ¢
is decidable irC. Using Algorithm 1 the maximal ideal extensioryomay be found

in FPH‘PC, i.e. the class of function problems that are solvable bypmnial time
algorithms which make non-adaptive queries to an orackern.

Proof: The partition of A = {ay,...,a,} into (4,., A;) can be obtained
using the single parallel query which repots:, ...z, € (T,L)" with z; =

T & cAsh (T, ). From [14, Thm. 8], in the case of flat frameworks with
A = ¢ decidable inC, CA<AL[5R,\>I € NF° so that this partition is constructible in
FPH‘PC. The remaining stages of the algorithm require only a patyiad number

of adaptive queries tG oracles: an easy generalisation of [27, Thm. 2.2, p. 379]
givesFpNPllog] — FPHIPC, (whererpPleg] is the class of functions computable by
polynomial time algorithms that make(log n) queries to & oracle on instances

of sizen), so that sinc&r® C FPNP the overall upper bound stated follows. o

Turning to the specific case® andbL, the following corollaries are immediate
from Thm. 17 and Table 8.

Corollary 15

a. FIELP ¢ FPHIP.
ZP
b. FIEPL ¢ FP 2.

Corollary 16
a. The decision problenERl-EP, VER:‘EP’@

b. The decision problemerR:, verR-"

andca(f, areallinp|P.
DL in po2
andcAp areallinp,®.

The results of Corollaries 13, 15, and 16 establish uppenti®wn each of the
three variants of the verification problem, credulous reasp and the complex-
ity of constructing ideal extensions. These upper bounlysar properties of the
supporting deductive system and the complexity of deciding= ¢. In order to
address issues of lower bounds and the complexity of the dé@sion problems
we consider the different deductive systems in turn.

Regarding.p instantiations we have the following theorem.
Theorem 18

a. VERKE, is covp-hard via<?,.

b. caff, is P|P-hard via<? with probability1 — 2.

c. VER[E is P)P—hard via<]? with probability1 — 2.

35



d. verjE s P)'P—hard via<'? with probability1 — 27"

e. FIELP is FP"T‘P—hard via<? .

Proof: All of the lower bounds follow by giving a translation fromlatrary AFs
H(X,A) to a related_P setting, i.e. in effect, ifLp is a problem defined in the
ideal semantics forrs with LiE its counterpart imaBFs instantiatingp forms,
then the translation we describe forms the basis of a praafitpy <, LhP.

The translation we describe fromd(X’, A) to a logic programi™ is effectively that
given in Dung [17, p. 348]. For anF, H(X, A) defineLits™ as the set of ground
atoms

Lits™ = {d(z) : 2 € X} |J {notd(z) : x € X}

(although these sets are described as unary functionspyoiixed (X', A), Lits™
defines a set df|.X’| propositional variables.)

The logic program]™ has exactly the following rules:

T — U U {d(z) « notd(y)}

zeX  ye{z}-

Informally these assert that the arguments “defeated” if any of its attackers

(y € {z}7) is assumediot to be defeated. For the deductive system so defined we
have the thexsr, 77 = (T A" ™) in which A® = {notd(z) : » € X},

not d(x) = d(z).

Rather than derive (a)—(e) separately, it is, in fact suficto prove there is a one-
to-one correspondence between ideal setsaafgbmentyin H(X,.4) and ideal
sets (ofassumptionsin 7%. For S C X, A(S) C A™ is the set of assumptions
{not d(y) : y € S}. Similarly, for A C A™, S(A) C X is the set of arguments
{y : notd(y) € A}.Itis easy to see that (a)—(e) are all immediate consegsence
of the following

S'is an ideal set irt{ if and only if A(S) is an ideal set 7 7 (2)
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In order to establish (2), first suppose tlfatdefines an ideal set withil and
considerA(S) C A™. The setA(S) is conflict-free since

att(A(S), A(S)) < {notd(z), not d(y)} C A(S)
and (d(z) « not d(y) € T™ ord(y) < not d(z) € T™)
< {z,y} €S and ((y,z) € Aor(z,y) € A)

contradicting the fact thaf is conflict-free. SimilarlyA(S) must be admissible,
for given anyl’ C A7, att(T", A(S)) ifand only if ' |= not d(z) = d(z) for some
not d(x) € A(S). From the definition off ™, I" contains an assumptiort d(y)

for which d(z) «+ not d(y) is a rule inT", so that(y,z) € A, ie.y € X
attacksz in S. It follows that there is some € S for which (z,y) € A, hence
somenot d(z) € A(S) for which d(y) « not d(z) isin T™, i.e. Ag = not d(y)
andatt(A(S),T'). ThusA(S) is also admissible. We recall from Lemma 1 that,
sincesS is an ideal set, no argument 1 is credulously accepted. We show that,
in consequence, no subgebf assumptions for whichtt(I', A(S)) is admissible.
This suffices to complete the first part of the proof via Lemni@).3So suppose
att(I'; A(S)) and hencé = not d(x) for not d(z) € A(S), i.e.not d(y) € I"and
d(x) < not d(y) € T" sothat(y,x) € A. Itis easy to show, however, thatlif
were admissible the6(I') = {y : notd(y) € T'} C X would be admissible in
H:asy € S(I') N S, this contradicts the fact that no attackersis credulously
accepted. We deduce thatdfis an ideal set irt{ thenA(.S) is an ideal set iry ™.

For the converse implication, le¥ be an ideal set of * and consider the subset
S(A) of X. By similar arguments to those abo%éA) is an admissible set since
A is admissible. Now consider any attackeof somex € S(A). In 7" any set

of assumptionsl’ containingnot d(y) attacksnot d(x) € A by virtue of the rule
d(z) « not d(y) in T™, thus, from Lemma 3(a) it follows that no such set can be
admissible in7”, i.e. the argumeny is not credulously accepted . ThusS(A)

is an admissible set dft none of whose attackers is credulously accepted: from
Lemma 1,5(A) is therefore an ideal set. 5

Readers familiar with [15] may recognise that the formZdf in the proof just
given is that of a “reduced negative logic program” the dtieeemployed in order
to derive earlier complexity results irs. In principle we could also have derived
upperbounds for problems onp instantiations oABFs, by transforming normal
logic programs to reduced negative logic programs and imgthe “rule graph”
construction of [15, Defn. 3.8, p. 219]. There are severatons why we haveot
adopted such an approach: although translations from rdogia programs to re-
duced negative logic programs can always be carried outl&agPropn. 4.2], there
is some debate about how efficiently such processes can ezl Linke [30]
claims an exponential size increase may occur, an asseispnted in Costantini
et al.[9] which outlines a polynomial time process building on égoaithm of [6].
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Irrespective of how efficiently transformations to negatiegic programs can be
performed, the upper bound mechanisms presented eaffierzomore general ap-
proach encompassing all flat frameworks, i.e. not simyplgases. The exact form
of the lower bound translation (and the fact the the uppemntdozonstruction is
unconstrained) yield the following observation.

Corollary 17 The lower bounds of Thm. 18 continue to hold even in the case of
theories, T, in whicheveryclause ofl" has the formy < not (3, i.e. with a single
atom inHB,,; defining the premises of each rule.

We now consider lower bounds faBFs instantiating default logics. The proof
methods are built on techniques from work of Gottlob [26] {ethalso feature
in the treatment of default logics in [14]), the charactatiisn of ideal sets from
Lemma 3, and the approach adopted in the proof of Thm 2.

Theorem 19 VERRS; is ITh—complete.

Proof: Thatver[; € IT; has already been shown in Corollary 13 (b). To show
that this problem igI5—hard, we reduce to the complementary problemvgrRS;
from the XY—complete problen@saT;. We assume instances ared8 formu-

lae with product termdq Py, P, ..., P,,} each comprising exactly three literals
defined over two (disjoint) sets of propositional variabl¥és = (y1,...,yn);

Zn = (z1,...,2), aninstance(Y,,, Z,) being accepted if there is some instanti-
ation,ay, of Y,,, under which®(«, Z,,) = T.

Given, (Y, Z,) form the default theoryW, D) over the language whose literals
are

LO = {yl> Ziy VYi, T Ziy t 1§Z§’ﬂ,} U {%ﬁ%wf@}

[Note: The terms{y, ~¢, 1), )} are treated abterals in this language, so that
is effectively a “place-holder” for theNF expression?; Vv - - - V P, over literals of
Z, UY,, e.g. as in the second set of default rules below.]

We fix W = () and D to contain the following default rule$’

{T:My,» T M-y, T :Mp T : My

, : 1§i§n}
Yi Y; Yi Y

{T My T My T M(—|P1/\—|P2/\---/\ﬁPm)}
—|S0 ’ —|77/) ’ —|S0

19 Readers familiar with default logic will note that these dut nefine anormal set of

defaults. There are, however, general translation meshamicf. [26, p. 414], that can be

used to build equivalergemi-normaldefault theories from arbitrary defaults. In order to
minimise notational overheads we have eschewed suchdtamsin our presentation.
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TheABF instance formed froniW, D) is 7, = (0, A,,”) with

= { My;, M—y; : 1 <i<n}U{Mp, Mp}U{M(-P,A=Py\---AN=P,)}

We recall that the contrary mappingiga = —a.

We claim that{ M+ } doesnotdefine an ideal set withif, if and only if o(Y,,, Z,,)

is a positive instance afsATy. We first observe that)/¢} defines an admissible
set of assumptions from.,. For consider any\ C A, for which att(A, {M}).
This can only happen i\ = —, from which it follows thatM/¢ € A and hence
(since{ M} = —y) it follows thatatt({ My}, A). Given that{ M} is admissi-
ble, in order for it to fail to be an ideal set, via Lemma 3 (meA C A, for
whichatt(A, M) must define an admissible set within We have aleady argued
that any set attackinfi}/¢)} must contain the assumptidrip so it suffices to show
thatCAADM (T, M) ifand only if 3oy : p(ay,Z,) =T.

Suppose first thactAADM (7, My) and letl’ C A, be a preferred extension @f.
for which My € T'. Certainly if My € A thenatt(A,T"), however from{ My} =
—) such attacks are countered. Fravhy € T', any set of assumptiong), for
which M (=P, A =P, A --- A =P,,) € A will also attackl" so thatl’ = (=P, A

-+AN=P,) = P,V---V P,.Inconsequencd, must contaim assumptions (one
for each pai{ My;, M—y;}), T, such thal” = P, v ---V P,. Itis easily seen
that choosingyy = (ay,...,a,) to be the corresponding instantiation df, i.e.
a; =T & My, € I" givesp(ay, Z,) = T.

For the converse implication supposing that somesatisfiesp(ay, Z,) = T.
Consider the set of assumptioiis= { My; : a; = T}U{M-y; : a; = L} U
{Mp}. Itis certainly the case thatatt(T", T"). Furthermore the onhA attackingl’
are those containing/« (which is counterattacked throudid/p} = —v), M—y;
(for thosey; with a; = T: counterattacked vigMy;} = v;); My, (for thosey;
with a; = L: counterattacked byM—y;} = —y;), and, finally, M (=P, A =P, A

-+ A =P,,) (which is counterattacked by the premise théty, Z,) = T so that
F'EPV---VP,.

In summaryCAAD,\/I (T Mgp) if and only if (Y, Z,) is accepted as an instance

of QSATY, henceﬁVERmL(T {M}) if and only if 3oy p(ay, Z,) = T. We
deduce thaverRS; (7, {Mv}) is TThs—complete as claimed. 5

Corollary 18
a. cAlY; isI5-hard.

b. VERDL Ois YE—hard.
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c. VERQY is Db—hard, wherep?, is the set of languages expressible as the inter-
section of a language iR with a language ifl5.

Proof: Similar to the arguments used in Corollary 1, Corollary 2 &ran. 3.
For (a),cAR; (7, My) using theasr of Thm. 19 if and only ifp(Y;,, Z,) de-
fines a negative instance QBATY. To establish (b)7 either has an empty ideal
extension or its ideal extension {sV/¢}, so that—NERPEL’@(T) if and only if
VERDY, (7, {M+}). Finally (c) follows by considering instancég,, ¢,) of the
canonicab’—complete problemQsAT;—QSATY, applying the translation to axBF

described above and choosing the ideal extension to beadeai{ A1), }. o

Eg_

Corollary 19 FIEP! is FP *—complete.

Proof: The upper bound has been proven in Corollary 15(b). The Iboend uses
the construction given in Thm. 19 and a similar argument &b ¢fi Thm. 7. Instead

of Sat Collectionwe use theFPﬁg—complete problem of computing the sequence
of values describing if;(Y;!, Z') is accepted as instance @6AT, for n separate
instances ey, pa, . .., Pn)- o

The lower bounds results of Corollary 184—hardness for credulous reasoning,
Yr—hardness for verifying if the empty set defines the ideaémsibn, and)—
hardness on verifying if an arbitrary set of assumptionshes ideal extension),
as with the initial bounds proved inFs for the related problems (Corollary 1,

Corollary 2 and Thm. 3) are some distance from the upper b TAcbn these
which is an immediate consequence of Corollary 15(b). Ireoitd reduce this
gap, in theaF setting, we made use of a number of structural complexityltes
from [7,8] (Facts 9, 12) together with properties of the wagatisfiability problem
(UsAT) established in [34]. Given that our approach with instantiatons oABFs
mirrors many of the ideas applied in the analysig\b$, a natural tactic in closing
this gap would be to exploit similar methods. To this end itefpful to observe that
the structural characterisation e””’—hard languages from [7] leading to Fact 9, is
through a simulation of oracle computations and doaexplicitly depend on the
oracle itself being froonp. We thus obtaid’

Fact 20 For all £ > 1, a languagel. is Pﬁz—complete if all of the following hold.

F1. Lept.
F2. Lis ¥}-hardandL is II}—hard.

20 We have chosen to state this generalisation in terms ofe=ass and I1Y within the
polynomial hierarchy — which are the cases of interest forlater development — rather
than arbitrary complexity class€s We further note that the “only if” part is not needed in
the subsequent treatment.
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F3. L has propertyaAND,.
F4. L has propertyor,,.

In order to amplify the lower bounds to Corollary 18Ft§>§—hardness, Fact 20 sug-
gests an approach, analogous to the devices discusseccontimeentary following
the proof of Thm. 10, namely

S1. Prove thad:APD'-,_ is X—hard (noting that we already know it to bBé—hard).
S2. Prove thatARY has propertyAnD,.

S3. Prove thatAR); has propertyor,.
We deal with S2 and S3 in Thms. 21 and 22.

Theorem 21 cARY; has propertyanD,.

Proof: We restrict attention to instancé&l’, A,” ), Ma) for Ma € A. In this case
it suffices to show that given instancgg, M «;) and(7,, May) of CAPD'-L we can
form an instancél{(, M () for which

CAIBL (U, MB) if and only if CAfpL (71, Mai) A CAfpL (T2, Mas)

Let ((Th, Ay, 7), Ma,) and{(Ty, Ay,™), May) be instances afARY; where, with-
out loss of generality, the underlying languages and L, are disjoint?! Let

(W1, Dy) and(Ws, Dy) be the default theories from which and7; are defined.
Definel{ to be theasF built from the default theoryW; UW,, D1 U Dy U D) where
D is a new set of defaults over new literdls, v», z) and

Y ) Y

D — {T c Moy T @ Mas T @ Mz T : M(y1Vy2)}
_‘yl —\y2 z -z

<U, B,_> with U = TWJUly,B= Al U A2 U {MZ, M(yl V yg} We claim that
D

CA|DL|_(Z/{, MZ) = CAPDLL (Z,MOQ) A CAPDLL (%,MQQ)

Suppose thai{, Mz) defines a positive instance oAl and let,, be the ideal
extension ot/. Fromatt({ M (y1 Vy2)}, {M=z}) we obtainatt(Oy, { M (y1 Vy2)}),

i.e.0y E —(y1 Vya) = -y A—ye. Itfollows, therefore, thaf Moy, Mas} C Oy.

The ideal extension d¥ is, however,©; U ©, U {Mz} (where®, is the ideal
extension of7;, so that fromA4; N A, = 0 it follws Ma; € ©, andMa, € O, as
claimed.

21 This can always be guaranteed by renaming the literal temreach.
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For the converse direction, assume thdty, € ©; and May; € O, (so that
cAR (71, May) A cARY (T3, May) and consider th®, U ©, U {Mz} C B.
This set is admissible:att(©; UG, U{ Mz}, 0, UO, U {Mz});if I' C Bis such
thatatt(I', ©, U ©2 U {Mz}) then one ofutt(©4, 1), att(0©2,T") or att(l', {Mz})
must hold. In the last of thesE = -z so thatM(y; V y,) € T'. Now from
{May, Moy} C ©,U 6O, we obtain the counterattadl/ o, Mas} = —y1 A —ys.
It is easily seen thaECAADM U AM(y1 V y2)}): May € ©1 andMas € O3 SO
that for every preferred extensiaky, of 7; and every preferred extensidx, of 75,
{MOél, MO[Q} - 51 U AQ ): _|(y1 V yg) We deduce th@l U B, U {MZ} is an
admissible set none of whose attackers is admissible, soitnhemma 3, this is
an ideal set henceAl; (U, M>). o

Theorem 22 cAlY; has propertyoRr,.

Proof: We use a similar construction to that of Thm 21: given

{(Ti, Man), ..., (Tp, May)}

a set ofk instances otARY;, with 7; = (T;, A;,”) defined from default theories
(Wi, D;), we form the default theor{iV, D) with

k k
Uw,; b = DulJ Db

i=1 i=1

whereD’ is a new set of defaults built using additional literals o{igr=} given by

,ott

I {T:My T : Moy T:Mak,}
—Z ’ —\y —\y

We denote by/ theABF capturing this default theory and fix the instance:aPDL,_
to be (U, Mz). With this instance it is not hard to show that

\/ CA| LL ,];, MO(Z) <~ CAlDL(Z/{ MZ)

=1

From the constructions of Thms. 21 and 22, in order to imptbedower bounds

obtained tOPH *_hard, we need to show thanly; is Z5—hard. Faced with the
related issue (provingP—hardness ofA|p| ) in AF settings, we used a reduction
from USAT combined with properties of a randomized reduction figsm to USAT,
i.e. the approach described in Fact 12, Thm. 13. There arertetbods we might
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attempt to use in adapting these techniques to prom'xfé—,_ to beX}—hard. Define
the quantifierd! to hold whenever a witnessing solutioruisique e€.g.USAT is then
the language whose positive instances are those for which: ¢(«). Consider
the following two formulations of “unique satisfiabilitydf the second level afH,

T
T

USAT,' TJay 3! By p(ay, B2)

usaTy? Il ay V¥ Bz olay, 87)

Given the result of Marx [31, Thm. 5], showing the first of theés be>}—complete,
one might attempt to provesat,' <? calL . Unfortunately, attempts to trans-
late the form ofUSATg’1 into a simulating default theory turn out to be problem-
atic:*? the device used earlier to map multiple satisfying assigrtmr unsatis-
fiability) to non-membership of an argument in the ideal asten, fails with the
form Jay 3162 0(ay, B7) since itis unable to deal with two (or more) instantiations
of Y,, all of whichreducep to acNF having a unique satisfying instantiation.

We first show that if we consider the form described in the sdo@riant — which
we will now denote byusaTs, i.e. the language of formulag(Y;,, Z,,) for which
NayVB, ¢(ay, B7) — thenusaT; < cAlL . We then address the question of
yf—hardness fousAT;.

It should be noted that we dmtassume instances 0EAT; to be in a normal form.

Theorem 23 USAT; <P, CARY
Proof: Let (Y, Z,) be an instance afsAT;. Consider the following instance —

(T, Mw) — of cARY; | in which 7, = (T,,, A,,”). First form the default theory
(W,, D) over the literals

{yi: Wiy Ziy TZiy, Ly TG - 1 S i S n} U {U),_Q,U,QO, _'90}

with W, = ¢ andD, = D; U D, U D3 where,

1 = ’ ’ ) ) )

yi —|y2 —ZX; —ZX; W X,

:1§i§n}

D, — {TiM(w(Yn,Zn)) T M(=p(Yy, Z,))
Yi ~Yi

22 This is, perhaps, unsurprising: a close inspection of Mameof indicates that were it

possible directly to proveisaty' <2 call; thenitis likely that one could directly derive

QSATy <P, CAPD'-,_ thereby obviating any need to consider a generalisatiarsefr for the

second level of the Polynomial Hierarchy.
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Y ) Y

{T:Mw T:Mep T:M(p(Ya, Zy)) T:M(w(Yn,Zn))}
D3 ==
w @ o(Yn, Zn) —p

Note that we distinguisky(Y,,, Z,,) the propositional formulgpresented as an in-
stance ofJsAT; from ¢ a formalliteral in the constructed default theofi,,, D,,).
TheAsr 7, then hasl;, = () and

A, = {My;, M—y;, Mz; : 1 <i<n} U{Mp, Mw, M(=p(Y,,Z,))}

with Ma = —a foreachMa € A,.
The instance of ARY; formed is(7,, Mw).

We claim thatp(Y,,, Z,,) is accepted as an instanceusfats, i.e.3lay V32 p(ay, 32),
if and only if (7,,, Mw) is accepted as an instanceasly; .

Leta = (a1,...,a,) € (L, T)™ be the unique instantiation af, that witnesses
©(Yn, Z,) as a positive instance ofsAT;. Consider the subsét, of A, given by

'y = {My; : a, =T} U {M-y; : a;=1} U{Mp, Mw}

We first note thal’, defines an admissible subsetdf. Itis it clear that-att(I'y, I'y).
Consider anyA C A, for which att(A,T',). If My, € A (resp.M—y; € A) for
someM —y; (resp.My;) in ', then such attacks are countered sifdé—y;} =
—y; and{My;} = y;. If Mz; € A(sothatA = —w) then we either havé/y; € I',
or M-y, € 'y so thatl', = —z;. Finally, if M (—¢(Y,, Z,)) € A so thatA = —p
sincea is such thatp(«, Z,,) = T we obtain

L'y E o(Yn, Z,) = M(—p(Ya, Z,))

To complete the first part of the proof it remains only to shtvattno subset

of A, for which att(A,T',) is admissible, whence via Lemma 3(a), it follows that
(T,, Mw) is accepted as an instance@[y; . Thus, consider anyA for which
att(A,T',). From the earlier discussion showing tliatis admissible we have the
following possibilities.

D1. AN{M(=p(Yy, Z,)), Mxy,..., Mz, } #0
In this caseutt(A, A): A | M(=p(Y,, Z,)) (from D3) or A = Mz; (from
D) so thatA cannnot be admissible.

D2. M-y, € AforsomeMy; € I,.
In order for A to be admissible, we must have = M (-p(Y,, Z,)). This,
however, implies that there is an instantiatior= 3,,. .., 3, of Y, for which
©(B, Z,) = T so contradicting the premise thais theuniquesuch instanti-
ation ofY,,.
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We deduce that if>(Y,, Z,) is a positive instance afsaT; then (7, Mw) is a
positive instance ofARY; .

On the other hand suppose that, the ideal extension df,, contains the assump-
tion Mw. Then©,, contains exactly one assumption frqm/y;, M-y, } for each

1 <i < n (atleastone in order th&, = —z; is needed sincéMz;} = —w; at
most one sincg¢ My;, M—y;} cannot be belong t®,). Without loss of generality
suppose thafMy,, ..., My,} C O,. Since{M (—¢(Y,, Z,))} = —y; we deduce
thato, = M(—¢(Y,, Z,)), i.e. that the instantiationy in whichy, := T for
eachi is such thatp(ay, Z,,) = T. Furthermore, from the fact that no subfeof
A, havingatt(I', ©,) can be admissible, we deduce that is the unique instan-
tation of Y,, with p(ay, Z,) = T. Hence if(7,, Mw) is accepted as instance of
cAl) theny(Y,, Z,) is accepted as an instanceusfAT;. o

Improvements to the lower bounds of Corollary 18 are esthblil as a consequence
of the following result.

Theorem 24 QsSAT; <P USAT; with probability1/4n.

Proof: The detailed argument is presented in Appendix C below. o

Corollary 20

a. caly; is Pﬁg—complete via<!? with probability 1 — 2.

DL,@ H 2127_ H D i ihi _9n
b. VER g " is P complete via<’? with probabilityl — 27".

DL

C. VER[E IS Pﬁg—complete via<!? with probability1 — 27",

Proof: Noting that membership inﬁg for each case has already been shown and
recalling the earlier arguments of Corollary 18, it suffiteprove only (a).

Consider thepﬁg—complete probler®? OR,(QSAT;—QSATY) instances of which
comprisen pairs ofcNF formulae —(; (Y, Zim), ¥:i(Vin, Wiy)) — over disjoint sets
of variables (so the instance involvésm distinct variables in total). Such an in-
stance being accepted if there is at least one QaitY,,, Z..), ¥:;(Vin, Wp,)) for
which¢;(Y,,, Z,,) is accepted as an instanceadATY, i.e. Jay —~¢;(ay, Z,) = T
and;(Y,,, Z,,) is accepted as an instance@sATy, i.e.Vay 382 ¥(ay, 3z).

P
23 That the given problem is indeﬂ&%—complete is an easy generalisation of the methods
used to establisbr, (SAT-UNsAT) is pf!FP—complete.
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Choosing uniformly at random one of thepairs in such an instance immediately
yields

OR,(QSAT;—QSATY) <'P QSAT;—QSATS with probability1/n

From Thm. 24,

QSAT;—QSAT, <P USAT,—QSATy with probability 1/4n

m

so that combining Corollary 18(a) and Thm. 23 gives

OR,(QSAT;—QSATY) <" AND,(CARS; ) with probability1/4n2

Hence, via Thm. 21,

OR,(QSAT;—QSATY) <" calL  with probability 1/4n>

Finally, applying Fact 12 and Thm. 22 we obtain

OR,(QSAT;—QSATY) < call  with probability1 — 2

from which (a) is immediate. o

4 Conclusions and Further Work

We have considered the computational complexity of desiaiad search problems
arising in the ideal semantics of [19,20], addressing bwiaE model of Dung [17]
andflat frameworks within theaBF approach of Bondarenket al.[5].

It has been shown that for settings in which credulous reéagaran be carried out
in a complexity clas€, the principal computational problems of interest can be
resolved withirP‘f| or its functional analoguepﬁ: classes believed to lie strictly be-
low conP the complexity ocepticareasoning in such environments. We have, in
addition, presented compelling evidence that deciding di@ument is acceptable
under the ideal semantics, if a set of arguments defines #a &ktension, and if
the ideal extension is empty, are not contained within amgpexity class falling
strictly within Pﬁ: all of these problems beir‘igﬁ—hard with respect t&’? reduc-
tions of probabilityl —2~". Although this complexity class compares unfavourably
with theC and c@—complete status of related questions under the credul@is p
ferred semantics, it represents an improvement on the‘ca&completeness level of
similar issues within the sceptical preferred semantics.
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Given that sceptical acceptance is a precondition of meshigeim an ideal set this
reduction in complexity may appear surprising. If we coesitheAF cases, the ap-
parent discrepancy is, however, accounted for by examitiiagsecond condition
that asetof arguments must satisfy in order to form an ideal set: as agebeing
sceptically accepted, the set must be admissible. Thisitonglays a significant
role in the complexity shift. An important reason why tegtsceptical acceptance
of a gven argument fails to belong to capP (assuming cepP # II) is that the
condition “no attacker of is credulously accepted” whileecessaryor sceptical
acceptance of is not sufficient a fact which seems first to have been observed
by Vreeswijk and Prakken [35] in their analysis of sound aadhplete proof pro-
cedures for credulous acceptance. Although this condiisnfficient incoherent
frameworks, deciding if{ is coherent is alreadi;—complete [23]. In contrast, as
demonstrated in the characterisation of ideal sets givéeimma 1, aradmissible
set,S, is also sceptically accepted if and only if no argumeriin-i.e. attacker of
S —is credulously accepted: we thus have a condition whiclbeatested in cop.
With an analogous characterisation of ideal sets also hglah flat assumption
based fraemworks — Lemma 3 — a similar reduction in compjesgiobtained.

The reason whyinding the ideal extension (and consequently decision questions
predicated on its properties, e.g. cardinality, memberséic.) can be performed
more efficiently than testing sceptical acceptance steam the fact this set can

be readily computed given thpartite framework,B(Xpsa, XouT, F) associated
with H (X', A). Construction of this framework only requires determinthg set,
XouT, of arguments which are not credulously accepted, soetkaltcit consider-
ation of sceptical acceptance is never required. Althoudinext representation of
the structures as a bipartite graph is not employed, theogoak partition of as-
sumptions in flanBFs affords a simlar device by which explicit testing of sceaiti
acceptance is avoided.

This paper has focused on the graph-theoretic abstracirenguation framework
model from [17] and instantiations @&t assumption based frameworks, e.g. those
realisingLp andDL theories. Of the questions left open in ideal semanticsiplys
the most challenging concerns the computational compieXiproblems in non-
flat ABFs, in particular those realisingeL. Of these it would be of some interest to
demonstrate, as we conjecture is indeed the case, thatiagrd set of assumptions
as an ideal set iH}—hard inAEL settings, thereby giving an exact bound. A final
collection of issues concern the performance of Algorith@sla practical mech-
anism for constructing the ideal extension. Thus Dung, Meglta, and Toni [20]
describe dialectic approaches for identifying the idedaépgion using a variation
of a procedure described in [18]. To what extent the methéddgmrithm 1 can be
used to complement or offer an effective alternative is astjae of some interest.

47



References

[1] L. M. Adleman and K. Manders. Reducibility, randomness @tractibility. InProc.
9th ACM Symposium on Theory of Computipgges 151-163, 1979.

[2] S.Arnborg, J. Lagergren, and D. Seese. Easy problentsgerdecomposable graphs.
Jnl. of Algorithms 12:308-340, 1991.

[3] T. J. M. Bench-Capon and P. E. Dunne. Argumentation iificigl intelligence.
Artificial Intelligence 171:619-641, 2007.

[4] A. Blass and Y. Gurevich. On the unigue satisfiability fpieam. Information and
Control, 55:80-82, 1982.

[5] A.Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. Alpstract, argumentation-
theoretic approach to default reasonidgtificial Intelligence 93:63-101, 1997.

[6] S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transfotimabased bottom-
up computation of the well-founded model. Trheory and Proactice of Logic
Programming 2001.

[7] R.Changand J. Kadin. On computing Boolean connectifebaracteristic functions.
Math. Syst. Theory28:173-198, 1995.

[8] R.Chang, J. Kadin, and P. Rohatgi. On unique satisftgtzhd the threshold behavior
of randomised reductiongnl. of Comp. and Syst. Sghages 359-373, 1995.

[9] S. Costantini, O. D’Antona, and A. Provetti. On the e@l@nce and range of
applicability of graph-based representations of logicgpams. Inf. Proc. Letters
84:241-249, 2002.

[10] B. Courcelle. The monadic second-order logic of graphecognizable sets of finite
graphs.Information and Computatiqr85(1):12—75, 1990.

[11] B. Courcelle. The monadic second-order logic of grafihstree-decompositions,
minor and complexity issuesinformatique Tkorique et Applications26:257—-286,
1992.

[12] Y. Dimopoulos, B. Nebel, and F. Toni. Preferred arguisesre harder to compute
than stable extensions. In D. Thomas, edifngc. of the 16th International Joint
Conference on Artificial Intelligence (IJCAI-99-Vo]lpages 36—43, San Francisco,
1999. Morgan Kaufmann Publishers.

[13] Y. Dimopoulos, B. Nebel, and F. Toni. Finding admissilaind preferred arguments
can be very hard. In A. G. Cohn, F. Giunchiglia, and B. Selngtitors, KR2000:
Principles of Knowledge Representation and Reasqmiages 53—-61, San Francisco,
2000. Morgan Kaufmann.

[14] Y. Dimopoulos, B. Nebel, and F. Toni. On the computagilortomplexity of
assumption-based argumentation for default reasodirtdicial Intelligence 141:55—
78, 2002.

48



[15] Y. Dimopoulos and A. Torres. Graph theoretical struetuin logic programs and
default theoriesTheoretical Computer Scienck70:209-244, 1996.

[16] R. G. Downey and M. R. Fellows. Fixed parameter traditgband completeness I:
basic resultsSIAM Jnl. on Computing24:873-921, 1995.

[17]1P. M. Dung. On the acceptability of arguments and itsdamental role in
nonmonotonic reasoning, logic programming, andperson games. Atrtificial
Intelligence 77:321-357, 1995.

[18] P. M. Dung, R. A. Kowalski, and F. Toni. Dialectic proafggedures for assumption-
based, admissible argumentatigtificial Intelligence 170:114-159, 2006.

[19] P. M. Dung, P. Mancarella, and F. Toni. A dialectical gedure for sceptical
assumption-based argumentation. In P. E. Dunne and T. JeRtHBCapon, editors,
Proc. 1st Int. Conf. on Computational Models of Argumgalume 144 ofFAIA, pages
145-156. 10S Press, 2006.

[20] P. M. Dung, P. Mancarella, and F. Toni. Computing idedical argumentation.
Artificial Intelligence 171:642—-674, 2007.

[21] P. E. Dunne. Computational properties of argumentesystsatisfying graph-theoretic
constraints Artificial Intelligence 171:701-729, 2007.

[22] P. E. Dunne. The computational complexity of ideal setita |: abstract
argumentation frameworks. IRroc. 2nd Int. Conf. on Computational Models of
Argumentvolume 172 ofFAIA, pages 147-158. I0S Press, 2008.

[23] P. E. Dunne and T. J. M. Bench-Capon. Coherence in finij@raent systems.
Artificial Intelligence 141:187-203, 2002.

[24] P. E. Dunne and T. J. M. Bench-Capon. Two party immediagponse disputes:
properties and efficiencyArtificial Intelligence 149:221-250, 2003.

[25] K. Eshghi and R. A. Kowalski. Abduction compared witlgagon as failure. IrfProc.
6th Int. Conf. on Logic Programming@ages 234—254, 1989.

[26] G. Gottlob. Complexity results for nonmonotonic logici Journal of Logic and
Computation 2(3):397—-425, 1992.

[27] B. Jenner and J. Toran. Computing functions with patajueries to NPTheoretical
Computer Scienge41:175-193, 1995.

[28] D. S. Johnson. A catalog of complexity classes. In J.haguwen, editorHandbook
of Theoretical Computer Science. Volume A: Algorithms anthflexity pages 67—
161. Elsevier Science, 1998.

[29] K. Konolige. On the relation between default and auistepnic logic. Artificial
Intelligence 35:343-382, 1988.

[30] T. Linke. Graph theoretical characterization and catagon of answer sets. Iaroc.
IJCAI-200], pages 641-648, 2001.

49



[31] D. Marx. Complexity of unique list colorability. Teckoal report, Dept. of Comp.
Science and Inf. Theory, Budapest Univ. of Tech. and Ecorecelhber 2007.
http://www.cs.bme.hu/"dmarx/papers/marx-unique.pdf

[32] C. H. PapadimitriouComputational ComplexityAddison-Wesley, 1994.
[33] R. Reiter. A logic for default reasonind\rtificial Intelligence 13:81-132, 1980.

[34] L. G. Valiant and V. V. Vazirani. NP is as easy as detartimique solutions.
Theoretical Computer Sciencé7:85-93, 1986.

[35] G. Vreeswijk and H. Prakken. Credulous and scepticgligrent games for preferred
semantics. IfProc. of JELIA’2000, The 7th European Workshop on Logic fifigial
Intelligence, pages 224-238, Berlin, 2000. Springer LNAI 1919, Sprindatag.

[36] K. Wagner. Bounded query computations. Mmoc. 3rd Conf. on Structure in
Complexity Theorypages 260-277, 1988.

[37] K. Wagner. Bounded query class&AM Jnl. Compu}.19:833—-846, 1990.

50



Appendix A

A.1 The argumentation framewoks

The form we describe is virtually identical to that first peesed by Dimopoulos
and Torres [15, Thm. 5.1, p. 227] where it is used to establsthardness ofA
via a reduction from 35AT.

Given acNF formula®(Z,) = AL, C; with eachC}; a disjunction of literals from
{z1,.. ., 2n, 021, .., 2, }, theAF, He (X, A) has

X ={9,C,...,CL} U {z, -z : 1<i<n}

{(#:,C;) : z oceursinC;} U {(—z;,C;) : —z occursinC;}

Fig. 3 illustratesH .

Fig. 3. The Argumentation FramewoHs

Fact 25 (Dimopoulous and Torres [15]) Leb(Z,,) be an instance of 3AT, i.e. a

3-cNF formula. Thend(Z,,) is satisfiable if and only i€EA(He (X, A), ©).

A.2 The argumentation framewogs

The proof thatsa is TI,—complete from [23] uses a reduction frogsAT} in-
stances of which may, without loss of generality, be resddo 3¢NF formu-
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lae, ®(Y,, Z,), accepted it/ ay 3 57 ®(ay, [7), i.e. for every instantiation of the
propositional variable%’, («y) there is some instantiation ¢f, (3;) for which
(ay, B7) satisfiesb.

TheAF Go(W, B) is formed fromHq (X, A), i.e. X € WandA C B, so that

W = {®,C,....,Cn} U {yi, i, zi,7z : 1 <i<n} U {by, by, b3}
B = {(C;;®) : 1<j<m}uU

{i i), (v wi)s (20, 720)5 (020, 20) 0 1< i <npU

{(vi, C;) : y;oceursinC;} U {(—wy;, C;) = —y; oceurs inC;} U
{(z,C;) : z oceursinC;} U {(—z;,C;) : —z occurs inC;} U
{(®,b1), (P, b2), (D, b3), (b1, b2), (b2, b3), (b3, b1) } U

(

{bl7zi>7<bla_'zi> : 1§Z§n}

The resultingaF is shown in Fig. 4.

Fig. 4. The Argumentation Framewogk.

Fact 26 (Dunne and Bench-Capon [23])

a. ®(Y,, Z,) is accepted as an instance @$ATY if and only ifSA(Gg, D).
b. ®(Y,,, Z,) is accepted as an instance @$ATY if and only ifGg is coherent.
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Appendix B: Complexity of SAgT in AFS

We recall there is a possible objection to definift, =) € SAgr as accepted even
when G hasno stable extension whatsoever, i. ¢ EXISTSgr.?* In order to
deal with this objection one might require as a preconditib(i, x) € SAgy that
'H € EXISTSgr. In this appendix we present a proof that this variant, whvehwill
denote bysAg;. is DP—complete.

Theorem 27 The decision problersaz,. accepting instance&H, ) for which
has at least one stable extensiand x is a member of every such extension is
DP—complete.

Proof: Membership irp? follows by observing that accepted instances are exactly
those belonging to,

LiNLy = cAsr N{{(X, A),z) : VS C X (VERsr({(X,A),S) = (z€9)}

As L; € NP andL, € coNP the upper bound is immediate.

For the matchingp?—hardness lower bound we again employ the standard trans-
lation from 3-CNF instances described in Appendix A, to instan¢es, @) of

the canonicab”—hard problemsAT-UNSAT. Given an instancéy,, ¢,) of SAT-
UNSAT, form the instanceC, ;) of SAZ; in which the AF, K has arguments
Xy U X, U{a, 11,10}, i.e. the arguments of thers H,,, and’H,,, together with

new arguments«;, 12, a}. In addition to those attacks already preseritipn, K
contains attacks

Ui i), (i o)} 1< <2
(¢1,y;) for each literaly; of ©,
(19, ;) for each literaly; of ¢y

{1 @), (@, ¢9) }

This AF is illustrated in Fig. 5.

The instance/K, v,) of SA§} satisfies bottexisTsgr and hasiy, a member of
every stable extension if and onlygf, € 3-SAT and ¢, € 3-UNSAT.

24 Resulting inAFs for which (X, A),z) € SAgr and ((X,A),z) ¢ CAgr for every
x € X, i.e.everyargument is sceptically accepted Imainecredulously so.
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attacks all arguments
Y1 g W, attacks all arguments

Fig. 5. The Argumentation Framewoi&

To see this, first note that has no stable extension if and onlyif is unsatisfiable:
CApR(K, 1) if and only if ¢, is satisfiable, so that if this is not case thens
unattacked in every preferred extension. Thus the instakice»,) can only be
accepted ifp, is satisfiable. In addition, shoulg, be satisfiable, then, belongs to
every stable extension if and onlyf, isunsatisfiableThat is, ifp, has a satisfying
instantiation eitheiC has no stable extension at al};(being unsatisfiable) or if
both ¢, andy, are satisfiable thefip;, 9o} together with the literals selected by
the witnessing satisfying assignments form a stable eiienisat does not contain

Vs o

Appendix C: Proof of Theorem 24

We recall that Thm. 24 asserts

QSAT; <'P USAT; with probability 1 /4n.

The proof of this is based on the fact that Valiant and Vazsaandomized reduc-
tion from SAT to USAT [34] exploits acombinatorialproperty ofarbitrary subsets
S of the n-dimensional vector spac@, 1)" formed via the operation®, A} %
and randomly chosen elements from this, i.e. it does noi@ipldepend orsat-
isfiability per se

25 That is the vector spac&F|[2]": the operation® being Boolean “exclusive—or”, i.e.
r@y=1ifand only ifx # y.
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In our subsequent discussion, we view instantiations tot afse propositional
variables asi-tuples from(0, 1)™. Given

x = {(x1,%a,...,2,) € (0,1)"

Y= (Y1,Y2, -, ya) € (0, 1)"

the inner productw.r.t. {®, A} of z andy (denotedz - y) is the value in(0, 1)
given by,

n

z-y = P (@ Ay

=1

The reduction fromsAT to USAT in [34] builds on the following result.

Fact 28 ([34, Thm. 2.4, p. 89]) LetS C (0,1)" and wy, ws, ..., w, be chosen
uniformly at random from0, 1)™. For eachl < i < n, defineS; to be the set

S; = {UES: /i\(v-wj:O)}

J=1

Furthermore, letP,(S) be the probability that, for some < n, |S;| = 1. Then

The main device needed is a mechanism for manipulating thetste of formulae
in order to exploit Fact 28. This is achieved in the followitdgyvelopment of [34,
Lemma 2.1, p. 88], where the notion of a setahdidatedor an instance(Y,,, Z,,)
of QSATY — denoted” () — is defined as

Cle) = {ae 0" VEe(0,1)" p(a,f3) =1}

Note the set of candidates is well-defined irrespective ®&tkact form taken by,
i.e. itis not required thap be either iInCNF or DNF: we restrict attention, however,
to formulae defined over the logical bagis, v, —}.

Lemma5 Lety(Y,, Z,) be aformula defining an instance@$AT; and letw,, ws, ..., wy
be elements df), 1)".

a. There is a propositional formulaj, (Y, Z,) (that may be constructed in lin-
ear time) and is such that(y,) C C(y¢) and

Vae Cyy) /\ (o - w; =0)

=1
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b. Given, one may construct in polynomial time a formula over the basis
{nV, =} xw(Y, U U, Z,) using variablesy,, U Z,, U U,, for some value
of m such that defining

Clxr) = {ve )™ V3 x(v,0) =1}

Then there exists som,, 1, . . ., Yntm) € (0, 1)™ for which

<041a A9, ..oy Opy Y41y Vnt2y - - - 7'7n+m> € C(Xk)

if and only if (ay, ag, ..., ay) € C (W)

Proof: Giveny(Y,, Z,) as defined in the Lemma statement &ng, . . . , w;) from
(0,1)", define the formulay,(Y,,, Z,) to bep(Y,, Z,) A wi(Y,) where,

w(Y,) = (1@ &b yj) fori =1

j : wl,]-zl

wl(Yn) = w;—1 N (1 D @ %) fori > 1

j : wi,]-zl

Notice thatC' () C C(y) since,

Cr) = {a : ¢p(a,Yy) =1}
= {a: p(o,Y,) =1} n{a : wi(a) =1}
C fa: plaYy)=1)

Cp)

Furthermore, any such must satisfyw,(«) = 1, so that for each < i < £,
(1 ® @j:w, =1 v;), itfollows that

( D yj>(a):0

J o w; =1

i.e.w; - y = 0. This establishes part (a).

For part (b), withp(Y,,, Z,,) assumed already to be over the logical bdsisv, -}

to converty, to a formulay of this form it suffices to observe that only the sub-
formulawy (involving the opeartiorp) is not in the required form. Furthermoxg
consists of a conjunction of terndg each having the form

1® vy, @y, @ -+ D Uiy,
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for some subsety;,, ..., y;,, } of Y,,. Without loss of generality it suffices to show
thatl Gy, Dy ® - - - By, May be efficiently translated to a formubg,Y,,, UU,, 1)
using only operations froriA, v, —}.

Note that ifn = 0 no translation is needed; andhiif = 1 thenl &y, = -y, SOwe
may assumen > 2. Introducing new variable§u;, ua, . .., um—1}, X(Yn U Up—1)
is formed from

(ur = (1 ©y2)) A (ug = (U @ Y3)) Ao A (U1 < (Um—2 D Ym)) A (U1 D 1)

Since

(e (y®2) = 10rdyd2)
= (xQyd=2)
= (mzVyVz)(-xV-oyV-oz)(zVyVoz)(zV oy Vz)

this conversion can be performed in polynomial time withimtitoducing further
new variables. Letting((Y,, U U,,, Z,) be the formula resulting by translating
Uk (Yo, Zn) = o(Ya, Z,) A wi(Y,) in this way, it remains only to note that any
candidate

<a17 Qgy ..oy Oy Y41, Y42y - - - 7ryn+m>

of xx(Y,UU,,, Z,,) maps to a unique candidat@y(, as, . .., a,,)) of (Y, Z,,) and
that for (o, as, ..., a,,) € C(¢) there is some choice dfy, 1, Vni2s - - Yrtm)
for which

<041a Ay v vy Oy Vg1 Y42y - - - 7'7n+m> € C(Xk)

We observe that the argument and construction of Lemma Sastefely identical
to that of [34, Lemma 2.1]: the latter deals with satisfyingtantiations ofp(X,,)
instead of the notion of candidatesefY,,, Z,,).

We now have sufficient machinery in place to provide the

Proof: (of Thm. 24) Giveny(Y,,, Z,,) an instance 0§SATy choose (uniformly at
random) a valué in {1,2,...,n} and then (also uniformly at randorh)n-tuples
wy, W, ..., wp from (0,1)". The instance ofJSAT; constructed is the formula
k(Yo U U, Z,) of Lemma 5.
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To see thatp(Y,,, Z,) is accepted as an instance@sAty if and only if x; (Y, U
U, Zy,) is accepted as an instancewsATs, first observe that ifp(Y,,, Z,,) fails
to define a positive instance QfsATy, i.e. C () = 0, theny; can never define a
positive instance ofiSAT;: in this case’ () = 0.

On the other hand, i ()| = ¢ > 0, then from Fact 28, given randomly chosen
elements{w;, ws, . .., w,) from (0, 1)", we know that with probability at leasy 4
there is a choice of € {1,2,3,...,n} such that

{ve(J(@): /k\(v-wizo)}’ =1

=1

Hence the correct choice @&f(in forming ;) is made with probability (at least)
1/n, from which it follows that with probability at least/4n exactly one such
candidate will survive as a member@f x;). In consequencg;, will be accepted

as an instance afsArTs. o
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