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Abstract

Autonomous agents are not so difficult to construct. Constructing autonomous agents that will
work as required is much harder. A clear way in which we can design and analyze autonomous
systems so that we can be more confident that their behaviour is as required is to use formal methods.
These can, in principle, allow us to exactly specify the behaviour of the agent, and verify that any
implementation has the properties required. In addition to using a more formal approach, it is clear
that problems of conceptualization and analysis can be aided by the use of an appropriate abstraction.

In this article we tackle one particular aspect of formal methods for agent-based systems, namely
the formal representation and implementation of deliberation within agents. The key aspect here
is simplicity. Agents are specified using a relatively simple temporal logic and are executed by
directly interpreting such temporal formulae. Deliberation is captured by modifying the way in
which execution handles its temporal goals. Thus, in this article we provide motivations, theoretical
underpinnings, implementation details, correctness arguments, and comparisons with related work.

1 Introduction

The rapid growth of both the INTERNET and Grid Computing, together with the inappropriateness
of traditional approaches to developing complex, distributed applications, has led to the increasingly
widespread adoption of new, multi-agent solutions [59, 61]. The abstraction central to such approaches
is that of an agent, which is typically an autonomous software component, communicating and cooper-
ating with other agents in order to achieve common goals [64]. This technology has been particularly
successful in producing distributed systems where centralised control is either impractical or undesir-
able. Not only is the ability of agents to act autonomously vital, but such agents are often required to
dynamically adapt to unforeseen circumstances and to work cooperatively with other agents to over-
come problems. In this sense, such agents are truly autonomous, being responsible for deliberating over
a range of possibilities and for deciding on their own course of action. Consequently, agent technology
has been applied in a wide variety of areas, from industrial process control to cooperative information
retrieval [34, 1].

While considerable research has been carried out concerning the development of theories of agency,
negotiation and cooperation, notably BDI [48] and KARO [42], there are few high-level languages for
representing such agents. Although some alternatives are described in §6.1, most agent systems are
developed directly in Java. While this is a general purpose solution, and indeed agent shells have been
developed for Java [33, 3], this approach is often characterised by the absence of a clear semantics for
the agent activity, and a lack of clarity concerning exactly what deliberative aspects are involved.

This lack of appropriate high-level, semantically clear, agent programming languages often means
that implemented systems have very little connection with high-level agent theories, such as BDI [48],
though there are notable attempts in this direction, for example [53, 46, 38, 14, 63, 6, 12]. However,
while agent-oriented software engineering is advancing [62], there is, as yet, little evidence of a formal
engineering approach to the development of agent-based systems that can truly bridge the gap between
theory and implementation [8]; our work is a further step in this direction. In essence, since traditional
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programming languages typically lack the flexibility to handle, clearly and concisely, high-level deliber-
ation such as an agent’s dynamic control of its own behaviour, we aim to provide a high-level language
supporting the principled development of such agent-based systems, from logical theory to implemented
system.

1.1 Content

In this article, we describe one particular approach to the formalisation and implementation of agent-
based systems. Our aim here is to use high-level logical specifications for agents, then directly execute
such specifications. This work is part of the programme of research developing the Imperative Future
paradigm [2] for use in agent-based systems [19, 22]. In particular, we here consolidate and extend the
work originally presented in [21] on representing and implementing deliberative aspects, describing:

1. the use of a simple temporal logic to provide agent behaviours, including both reactive and delib-
erative elements;

2. an algorithm (implemented in Prolog) for executing such temporal descriptions;

3. the representation of goals by temporal eventualities and the use of orderings between goals to
capture rational deliberation;

4. the implementation of such orderings both within the underlying Prolog and at the meta-level;

5. correctness arguments for the execution of deliberation via goal ordering; and

6. a range of examples, indicating how such deliberation can be utilised.

The core aspect of our work can be summarised as follows. Within temporal logic [15], the ‘♦’ operator
represents the concept of “at some moment in the future”. Thus, a formula such as ‘♦paper_completed ’
represents the constraint that, at some moment in the future the paper will be completed. While such a
formula gives a declarative description of dynamic behaviour, the Imperative Future paradigm provides
a way of directly executing such formulae to actually ensure that we do make paper_completed true at
some time in the future. In this sense, we can see simple formulae containing ‘♦’ as representing goals
that must be achieved. Given such descriptions, we can utilise an execution mechanism for directly
executing logical formulae. The core execution mechanism actually maintains a list outstanding goals,
or eventualities, such as paper_completed , and endeavours to make each one true as soon as possible.
In doing so, those goals at the head of the list are attempted first. Now, by providing a mechanism for
dynamically re-ordering such a goal list, we essentially have a way of changing the order in which the
agent attempts to achieve goals. In this sense, such a re-ordering implements agent deliberation; a full
description of this approach is given in this article.

As mentioned above, we here extend, combine and consolidate work on executable agent specifica-
tions [19] and deliberative agent specifications [21, 32]. As such, this work contributes to research into
agent theory, by providing a logical basis for representing deliberative agents, programming language
design, providing an intuitive language for implementing deliberative agents, and software engineering,
by providing a framework of developing agent-based systems based on executable specifications.

1.2 Structure

The structure of this article is as follows. We begin, in §2, by describing our view of agents and multi-
agent systems, and present our desiderata for a description language for agent-based systems. Such a
language is developed, in §3, for describing agents using temporal logic and implementing these agents
via direct execution. In §4, we address the problem of representing and implementing deliberation
between goals in a high-level manner, principally by introducing the concept of priority functions for
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dynamically re-ordering goals. During this, we not only contrast our executable descriptions with the
standard BDI model of rational agency (§4.3) but also provide correctness arguments (§4.5). In §5,
implementation aspects are presented, as are a number of examples. Finally, in §6 we provide concluding
remarks and outline related and future work.

2 Agent-Based Systems

There is widespread use of the term ‘agent’, ranging from being identical to the concept of ‘object’
to being “an encapsulated entity with ‘traditional’ AI capabilities” [64]. So variable is its usage that,
in some areas, the term itself is seen as being meaningless. The view we take here is that, while the
key aspect of an object is encapsulation of state and (some) behaviour, agents are truly autonomous.
Thus, an agent not only has control over its own state, but also can dynamically change its patterns of
behaviour and communication as execution progresses (for example by ‘learning’ or ‘forgetting’), and
so can choose what form of interactions it presents to its environment. In this sense, the agent abstraction
captures the core elements of autonomous systems.

We are particularly concerned with what are typically termed rational agents [9, 10, 50, 60]. The
key aspect of this type of agent is that, since it is autonomous, it has some motivation for acting in
the way it does. The decisions the rational agent makes, based on these dynamic motivations, should
be both ‘reasonable’ and ‘justifiable’. Just as the use of agents is now seen as an essential tool in
representing, understanding and implementing complex software systems, so the characterisation of
complex components as rational agents allows the system designer to work at a much higher level of
abstraction. Since we are here concerned with deliberative aspects, we will term the rational agents we
examine simply as deliberative agents.

Agents of the above form, autonomously (and asynchronously) executing, reside in an environment
consisting of other agents. The only interaction between such agents occurs through message-passing
and, through this simple communication mechanism, agents can be organised into a variety of structures.
As it is often the case that agents must work together, these structures typically support cooperative ac-
tivity. While we will not address such dynamic organisations of agents in this article, we note that they
can take many different forms, such as groups [40, 26, 24], teams [35, 55, 45, 37, 25] and organisa-
tions [28, 16, 65, 58].

2.1 Requirements for Agent Description Languages

In representing the internal behaviour of an individual agent, we argue that a notation satisfying most, if
not all, of the following criteria is required.

• It should be high-level, yet concise, consisting of a small range of powerful constructs.

• It should possess a semantics that is both intuitive and, if possible, obvious from the syntax of the
language.

• It should be able to represent not only the static, but the dynamic, behaviour of agents.

• It should impose as few operational constraints upon the system designer as possible (for example,
concurrent activities within a single agent should be allowable and agents should be able to reside
in an open, asynchronously executing, environment).

In representing an individual agent’s behaviour, we choose to utilise a formal logic. One of the advan-
tages of following such an approach is that the notation has a well-defined, and usually well understood,
semantics. The use of a formal logic language also allows us to narrow the gap between the agent de-
scriptions and agent theory in that the semantics of an agent is close to that of its logical description.
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This allows for the possibility of employing both specification and verification techniques based upon
formal logic in the development of agent-based systems.

As we are considering rational agents, we impose additional requirements for describing, and rea-
soning about, rational behaviour at a high level. We note that the predominant rational agent theories all
share similar elements, in particular

• an informational component, such as being able to represent an agent’s beliefs or knowledge,

• a dynamic component, allowing the representation of dynamic activity, and,

• a motivational component, often representing the agents desires, intentions or goals.

For the deliberative agents we are concerned with, we will omit the first of these, but note that this
informational component is usually formalised using logics of knowledge or belief [43, 49, 57].

The remaining aspects are typically represented logically by temporal or dynamic logics (dynamism),
and modal logics of intentions, desires or wishes (motivation). Thus, the predominant approaches to
rational agent theory use relevant combinations, for example the BDI model [47] uses branching-time
temporal logic (CTL?) combined with modal logics of desire (KD) and intention (KD), while the KARO
framework [42] uses dynamic logic (PDL) combined with a modal logic of wishes (KD).

Unfortunately, many of these combinations become too complex (not only undecidable, but incom-
plete) to be used in practical situations. As we shall see later, our framework represents a simpler (and
more tractable) logical basis for many aspects of deliberative agents.

3 Temporal Representation and Execution

In this section we will describe the basic temporal framework, which is an adaption of our earlier work
on executable temporal logics [2]. The aspects particular to the representation of deliberative activity,
as outlined in §2.1, will be addressed specifically in §4.

While a general logic-based approach satisfies many of the criteria in §2.1, we choose to use tem-
poral logic as the basis of our formal description of agent behaviour. Temporal logic is a form of non-
classical logic where a model of time provides the basis for the notation. In our case, a simple discrete,
linear sequence of moments is used as the basic temporal model, with each moment in this temporal se-
quence being a model for classical logic. Such a temporal logic is more powerful than the corresponding
classical logic, is still tractable (at least in the propositional case) and, as we shall describe, is useful for
the description of dynamic behaviour in agent-based systems.

We begin with a brief introduction to (propositional, discrete, linear) temporal logic; see [15].

3.1 Propositional Temporal Logic

The basic definition of each agent will be given by a temporal logic specification [39]. As the temporal
logic used here is based on a linear, discrete model, time is represented as an infinite sequence of discrete
‘moments’, with an identified starting point, called “the beginning of time”. Classical formulae are
used to represent constraints within individual moments, while temporal formulae represent constraints
between moments. Examples of temporal operators are:

♦ϕ is satisfied now if ϕ is satisfied at some moment in the future;

ϕ is satisfied now if ϕ is satisfied in all moments in the future;

ϕUψ is satisfied now if ϕ is satisfied from now until a future moment when ψ is satisfied;hϕ is satisfied now if ϕ is satisfied at the next moment in time;
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start is only satisfied at the beginning of time;

Formally, formulae are constructed using the following connectives and proposition symbols.

• A set, P , of propositional symbols.

• Nullary connectives, true, false and start.

• Propositional connectives, ¬, ∨, ∧, and ⇒.

• Temporal connectives, h, ♦, , U , and W .

The set of well-formed formulae of the logic, denoted by WFF, is inductively defined as the smallest set
satisfying:

• any element of P is in WFF, as are true, false and start;

• if ϕ and ψ are in WFF then so are

¬ϕ ϕ ∨ ψ ϕ ∧ ψ ϕ⇒ ψ ♦ϕ ϕ ϕUψ ϕWψ hϕ
An eventuality is defined as a WFF of the form♦ϕ, while a state formula is a WFF containing no temporal
operators.

As mentioned above, the semantics of this logic is standard [29] with formulae being interpreted over
structures isomorphic to the Natural Numbers, N. Thus, a model, σ, can be characterised as a sequence
of moments or states

σ = s0, s1, s2, s3, . . .

where each state, si , is a set of propositions representing those satisfied in the i th moment in time. As
formulae in this logic are interpreted at a particular state in the sequence (i.e. at a particular moment in
time), the notation

〈σ, i〉 |= ϕ

denotes the truth (or otherwise) of formula ϕ in the model σ at moment i ∈ N. If there is some σ such
that 〈σ, 0〉 |= ϕ, then ϕ is said to be satisfiable. If 〈σ, 0〉 |= ϕ for all models, σ, then ϕ is said to be valid
and is written |= ϕ. Note that formulae here are interpreted at s0; this is an alternative, but equivalent,
definition to the one commonly used [15]. Given this form of interpretation, the semantics of formulae
in WFF are given in Fig. 1.

3.2 A Normal Form for Execution

As an agent’s behaviour is represented by a temporal logic formula, the formula can be transformed
into the temporal normal form, SNF [20]. This process not only removes the majority of the temporal
operators within the logic, but also translates the formula into a set of rules suitable either for execution
or verification. A formula translated into SNF is of the form

n∧
i=1

Ri
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〈σ, i〉 |= p ⇔ p ∈ si [where p ∈ P]
〈σ, i〉 |= true 〈σ, i〉 6|= false
〈σ, i〉 |= start ⇔ i =0
〈σ, i〉 |= ϕ ∧ ψ ⇔ 〈σ, i〉 |= ϕ and 〈σ, i〉 |= ψ
〈σ, i〉 |= ϕ ∨ ψ ⇔ 〈σ, i〉 |= ϕ or 〈σ, i〉 |= ψ
〈σ, i〉 |= ¬ϕ ⇔ 〈σ, i〉 6|= ϕ
〈σ, i〉 |= hϕ ⇔ 〈σ, i + 1〉 |= ϕ
〈σ, i〉 |= ♦ϕ ⇔ there exists a k ∈ N such that k > i and 〈σ, k〉 |= ϕ
〈σ, i〉 |= ϕ ⇔ for all j ∈ N, if j > i then 〈σ, j 〉 |= ϕ
〈σ, i〉 |= ϕUψ ⇔ there exists a k ∈ N, such that k > i and 〈σ, k〉 |= ψ

and for all j ∈ N, if i 6 j < k then 〈σ, j 〉 |= ϕ
〈σ, i〉 |= ϕWψ ⇔ either 〈σ, i〉 |= ϕUψ or 〈σ, i〉 |= ϕ

Figure 1: Semantics of Propositional Discrete Linear Temporal Logic

where each Ri is of one of the following varieties.

start ⇒
r∨

j=1

mj

q∧
i=1

ki ⇒ h r∨
j=1

mj

q∧
i=1

ki ⇒ ♦l

These are termed initial, step and eventuality rules, respectively.

3.3 Why use Temporal Logic?

There are a number of reasons for using temporal logic to describe the dynamic behaviour of agents,
some of which we outline below.

• The discrete linear model structure that is the basis of the logic is very intuitive, corresponding
to discrete steps in an execution sequence with an identified starting state and an infinite (linear)
execution.

• The logic contains the core elements for describing the behaviour of basic dynamic execution.
For example, it contains three main descriptive elements: a declarative description of the current
state; an imperative description of transitions that might occur between the current and the next
states; and a description of situations that will occur at some, indeterminate, state in the future.

Thus, using this logic, we are able to describe the behaviour of an agent now, in transition to the
next moment in time and at some time in the future.

• The basic set of concepts within SNF are sufficient as more complex temporal properties can be
translated into SNF [20]. Thus, a general temporal specification can be given and transformed
into a set of rules of this basic form.

As we shall see in §4, of particular importance, both in the representation of dynamic behaviour and
in the execution of such temporal formulae, is the simplicity of the logic. We will not provide a more
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detailed description of the temporal logic used, nor of the exact transformations used in our approach
(for a more detailed description, see [20]).

3.4 Representing Individual Agents

The basic elements of our approach, namely agents, each comprise two elements: an interface definition
and an internal definition. The definition of which messages an agent recognises, which messages an
agent may itself produce, and what parameters the agent has, is provided by the interface definition, for
example

searcher
in: new_search, add_resources, terminate
out: found, need_resources

Here, {new_search, add_resources, terminate} is the set of messages that the ‘searcher’
agent recognises, while {found, need_resources} is the set of messages the agent is able to pro-
duce. We will say little more about such interface definitions in this article — they mainly come into
play within multi-agent scenarios [32, 22]. The key element we are concerned with is the agent’s in-
ternal definition, which is given directly as a set of SNF formulae. As an example of a simple set of
formulae which might be part of the searcher agent’s description, consider the following.

start ⇒ ¬searching
new_search ⇒ ♦searching

(searching ∧ new_search) ⇒ h(found ∨ need_resources)

Here, searching is false at the beginning of time and whenever new_search is true (for example,
if a new_search message has just been received), a commitment to eventually make searching
true is given. Similarly, whenever both new_search and searching are true, then either found or
need_resources will be made true in the next moment in time.

3.5 Executing Temporal Agent Descriptions

One way to ensure that agents are implemented according to their logical semantics, and also provide a
clear link between the agent theory and the agent specification, is to directly execute the temporal logic
specification [19]. This move towards executable logic specifications further narrows the gap between
the actual implementation of the language and the theory underlying the system. In our case, execution
of a formula, ϕ, of a logic, L, means constructing a model, M, for ϕ, i.e. M |=L ϕ. Thus, during
execution, we are attempting to construct a model for the formula corresponding to the specification
(i.e. the set of SNF rules)

So, we have that temporal logic formulae (i.e. SNF rules) are used to specify agents and are directly
executed in order to implement these agents. For this to be successful, we must be sure that the execu-
tion algorithm implements temporal logic formulae correctly. To do this, we use the imperative future
paradigm [2]. Here, a forward-chaining process is employed, using information about both the history
of the agent’s execution and its current set of rules in order to constrain its future execution.

The key element in this form of execution is the sometime operator, ‘♦’, which is used to represent
basic temporal indeterminacy. When a formula such as ‘♦ϕ’ is executed, the system must attempt to en-
sure that ϕ eventually becomes true. As such eventualities might not be able to be satisfied immediately,
a record of the outstanding eventualities must be kept, so that they can be re-tried as execution proceeds.
(As we will see later, this record is implemented as an ordered list.) The standard heuristic used is to
attempt to satisfy, at each state, as many eventualities as possible, starting with the oldest outstanding
eventuality [2]. A slightly more detailed execution algorithm is given below (see also [2, 22]).

Here, the execution mechanism attempts to build a model for a set of SNF clauses comprising Initial,
Step, and Eventuality subsets, as follows.
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1. Make a (consistent) choice of assignments for propositional symbols in the Initial set of clauses;
label this as S0 and let E0 =< >.

2. Given Si and Ei , proceed to construct Si+1 and Ei+1 as follows.

(a) let C = {F | (P ⇒ hF ) ∈ Step and Si |= P}
i.e., C represents the Step constraints on Si+1

(b) let Ei+1 = Eî 〈V | (Q ⇒ ♦V ) ∈ Eventuality and Si |= Q〉
i.e., Ei+1 is the previous list of outstanding eventualities, extended with all the new eventu-
alities generated in Si

(c) for each V ∈ Ei+1, starting at the head of the list, Ei+1,
if (V ∧ C ) is consistent, then let C = (V ∧ C ) and remove V from Ei+1

(d) choose an assignment consistent with C and label this Si+1

(e) loop check:
if the pair (Si+1,Ei+1) has occurred identically in the previous N states and Ei+1 is non-
empty then fail and backtrack to a previous choice point (if no previous choice points are
available, terminate the execution).

(f) go to (2)

Thus, the execution mechanism is allowed to backtrack. As the agent has a range of non-deterministic
choices, it can, if it finds a contradiction, backtrack to a previous choice point and continue executing
but on the basis of a different choice. Note that the bound, N , is generated from the size of the formula
being executed.

The execution of basic temporal specifications of the above form allows us to specify and imple-
ment a variety of dynamic behaviours. In particular, it allows us to develop both reactive and planning
behaviours and, by allowing concurrent activities within an individual agent, we are able to represent
behaviour that is a combination of these aspects. Thus, agents can react immediately to certain stimuli,
but can be carrying out a longer term planning process in the background.

3.6 Examples

Reaction Rules. An agent can contain a range of transition rules representing reactive situations, such
as

low_fuel ⇒ halert
detect_object ⇒ hrecord_object

Note that a response occurs here in the next step of the agent and so a variety of immediate responses
can be represented. As well as being useful for reactive architectures in Distributed AI and multi-agent
systems, such rules can be used as part of more traditional applications, such as process control.

Planning Rules. We are also able to represent simple planning activities, for example by

problem ⇒ ♦plan
plan ⇒ hannounce_solution

which states that at some time in the future the agent will have generated a plan to solve a particular
problem and, when it does, the agent will inform others than a solution has been found. An agent might
construct the plan, using ♦plan, as above, but adding clauses constraining the production of the plan.
For example, if we are to attempt to plan ♦paper_completed, then we might have pre-conditions
such as text_completed and bibliography_completed, and so might require

¬text_completed ⇒ h¬paper_completed
¬bibliography_completed ⇒ h¬paper_completed
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which state that paper_completed cannot be achieved if either of the distinct preconditions text_completed
and bibliography_completed have not been achieved. These preconditions might themselves be
turned into subgoals with

¬paper_completed ⇒ ♦text_completed
¬paper_completed ⇒ ♦bibliography_completed

meaning that if the paper is not yet completed, then♦bibliography_completed and♦text_completed
are subgoals.

Aside: planning and reaction

Thus, as above, we can attempt to utilise the deductive and backtracking aspects of the system in order
to achieve the construction of a plan (a further option may be to utilise meta-level control features [2]).
Note, however, that when agents are part of an open multi-agent system, backtracking past the broadcast
of a message is not allowed [18, 23]. This allows agents to carry out search through backtracking
internally, but avoids the problem of attempting to rollback actions in a distributed system. Thus, once
an agent has broadcast a message, it has effectively committed its execution to that choice. Because
of this, the designer must be careful when developing systems comprising both planning and reaction
aspects as the planning rules might call for search to continue, while the reaction rules might call for an
immediate communication.

Again, there are a number of approaches that could be adopted here. One is to, when we require an
agent that has both planning and reactive capabilities, spawn a separate ‘planning’ agent which carries
out the planning activity in parallel with the original agent. The original agent acts reactively to its en-
vironment, having spawned the planning agent, but once the planning agent has succeeded in producing
a plan the original agent is at liberty to act upon it. An alternative approach is for the user to specify
the agent in such a way that it only commits to an execution path (i.e. via broadcast communication)
once the search for a solution to the planning problem has terminated. Here, agent execution is typically
characterised as periods of internal (backtracking) computation, interleaved with communication events.

4 Representing and Executing Deliberation

We will now extend the basic execution approach to handle the key property of being able to reason
about, and manipulate, goals. As remarked above, this deliberative activity is the central aspect of
rational agents. Not only are such agents able to generate, and attempt to achieve, their own goals, they
are also able to modify how subsequent goals are attempted, depending on the situation. To some extent,
we have seen this in the planning examples in the previous section. It is this ability to control when and
how goals are attempted that captures the form of deliberation we are interested in.

4.1 Deliberation Examples

To motivate further the need for deliberation, let us consider two simple examples.

Vehicle Navigation. First, we examine a simple agent navigating a vehicle. The agent has

• information about the local terrain

• information concerning target destinations

• motivations, such as to get to a destination, to avoid obstacles, to continue moving until a destina-
tion is reached, etc...
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The agent must dynamically deliberate over (possibly conflicting) goals in order to decide what actions
(for example, movement) to take and, based on its current state, generate new goals (for example to add
a new destination) or revise its current goals

Dining and Wishing. As a second example, consider a ‘human-like’ agent wants to eat lunch, sleep
and be famous and so generates all these as goals. The agent keeps trying to be famous, but realises that
it is does not know how to achieve this and so chooses to try one of its other goals. Thus, the agent then
tries to satisfy the goal of eating lunch but realises that the subgoal of making lunch must be achieved
first. Consequently, the agent generates a goal to make lunch and attempts this next.

And so on. The agent must change between its goals dynamically in order to produce the required
behaviour.

4.2 Deliberation via Dynamic Goal Ordering

As we can see from the above examples, goals must be manipulated in quite flexible ways. We intend
to achieve deliberation via re-ordering goals within the temporal execution mechanism.

Recall that, in the basic execution framework, there is a fixed strategy for implementing eventual-
ities (for example ‘♦g’), namely to attempt to satisfy the oldest outstanding eventuality first. In the
algorithm above, this involves keeping a list of outstanding eventualities (called Ei ), attempting them in
order and always adding new eventualities to the end of this list. Since we want to provide significant
additional flexibility in the manipulation of eventualities, we now add the possibility of re-ordering this
goal/eventuality list between execution steps.

Since the implementation is provided within Prolog, the definition of such a goal re-ordering func-
tion is relatively simple. All we need to do is to provide a function that transforms the list of outstanding
eventualities remaining from a state into another list for use in the next state. Such a function obviously
takes the original list of eventualities as an argument and produces a new list of eventualities. However,
the function can take many other arguments, for example the history of the execution so far, and so such
functions can be very powerful. Further details and examples are provided in §5, but to summarise,
we have a user-defined strategy/function for deciding which eventualities to attempt first/next, by the
repeated use of, for example,

Ei+1 = priority_function(Ei ,History) .

4.3 Comparison with BDI Deliberation

Since the BDI approach is the predominant mechanism for representing rational agents and describing
deliberation within these agents, it is informative to compare our approach with the BDI one [21].

Since its inception, many real-world agent-based systems have been based upon the BDI phi-
losophy [34], most notably the Procedural Reasoning System (PRS) [30], but also systems such as
dMARS [36, 13] and INTERRAP [17] and high-profile applications such as Air Traffic Control [48] and
Space Probe Monitoring [44]. In addition, there are a number of extensions of Java [31] incorporat-
ing aspects of the BDI approach (typically the architectural rather than theoretical), such as the JACK
language [33].

The BDI model of rational agency [49] is an agent framework whereby individual rational agents
are described in terms of their “mental attitudes” of Belief, Desire and Intention (BDI). Belief is used
to represent the information state of an agent, while the other two characterise the agent’s motivational
state. The difference between desires and intentions is really in the way they are used — desires are
longer term motivations for the agent, while intentions are really the goals the agent is currently tackling.

In BDI systems, for example the PRS [48], deliberation consists of two aspects: deciding which
desires will become intentions; and deciding how to achieve those intentions. We can capture this via
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this involves two functions:

intentions = deliberate1 (desires, information)
actions = deliberate2 (intentions, information)

Here, deliberate1 effectively decides which desires to examine first (as intentions), while deliberate2
decides which intentions to actively pursue. Both functions also examine the information the agent has
about the world, its plans, previous goals, etc.

In our approach, desires and intentions are both represented by eventualities. As we will see later,
we can treat eventualities differently depending on whether we see them as long-term, or immediate,
goals. Thus, we see it as a very natural (though Bratman [9] takes a different view) mechanism for
representing both intentions and desires to use temporal eventualities. These are required to be satisfied
eventually (if consistent), can be conflicting (for example ♦ϕ and ♦¬ϕ is not inconsistent), and the
execution must manipulate them in order to generate future execution.

Thus, if we identify both desires and intentions as eventualities, then the deliberate1 and deliberate2
functions effectively work on eventualities and this idea of deliberation fits very naturally with our view
of re-ordering lists of eventualities. Since the re-ordering function can be implemented by arbitrary
Prolog code, the re-ordering carried out can be very flexible.

In §4.4 we will consider a BDI-like example in more detail.

4.4 Performing Deliberation

In order to explain our approach to deliberation further, we will consider the “dining and wishing”
example from §4.1. As well as showing how the re-ordering of lists of eventualities using a priority
function can be useful, we will also show how such priority functions can be split further, for example
into re-ordering functions broadly corresponding to BDI deliberation.

Recall that, from this example, there are four goals that the agent has, captured within a list of
eventualities. For a comparison with the BDI approach, let us consider these as desires:

Desires = [♦be_famous,♦sleep,♦eat_lunch,♦make_lunch]

If we were to take the next step in the execution at this point, the eventualities would be attempted in
order, beginning with ♦be_famous. However, we wish to carry out some deliberation by re-ordering
the list before we go ahead with execution. So, before proceeding to (attempt to) build the next state
in the execution, we apply an ordering function. This might capture the view that we wish to ensure
that the most important goal appears first and, again appealing to BDI notation, we might view these as
intentions (remember, though, that they are all still just temporal eventualities):

Intentions = [♦be_famous,♦eat_lunch,♦sleep,♦make_lunch]

Thus, the ordering function exchanged ♦eat_lunch and ♦sleep. We can view the ordering function
as capturing deliberation from desires to intentions, characterising the agent’s view of what goals are
currently most important.

Given that ordering functions can use any information available in order to decide upon a new
ordering, we might apply a second such function assessing what plans are available to achieve the goals.
Thus, this function might re-order the list to the following list to be attempted.

Attempt = [♦make_lunch,♦eat_lunch,♦sleep,♦be_famous]

Thus, here ♦be_famous has been relegated to the end of the list since we do not have a plan capable
of achieving be_famous. The next most important goal was♦eat_lunch. However, a precondition for
achieving this is make_lunch and so ♦make_lunch is moved to the front of the list. And so on.

In this way, the original list of outstanding eventualities has been re-ordered based on various criteria
relevant to the agent. The subsequent list of eventualities is then used in the choice of the next state as
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normal. It is important to note that, in general, there is just one ordering function used between each
step in the execution. However, in the above example we have split this into two component functions in
order to emphasize the ability to capture BDI-like deliberation [21]. (Indeed, in [21], the two functions
were termed the desire priority function and intention priority function, respectively.)

We will next consider correctness questions that arise with the use of ordering/priority functions.

4.5 Correctness

Correctness of the basic execution mechanism, as described in §3.5, is given by the following result
when a set of SNF rules R is executed.

Theorem 4.1 ([2]) If a set of SNF rules, R, is executed using the above algorithm, then a model for R
will be generated if, and only if, R is satisfiable.

Note here that one of the crucial aspects is the proviso, given in part (2c) of the algorithm, that eventual-
ities are attempted in order according to their position in the list Ei . The standard approach, given in [2],
is that the list is ordered by age with the oldest outstanding eventuality occurring first. In the proof, this
ensures that no eventuality is outstanding infinitely, yet only attempted a finite number of times.

Once the eventuality ordering mechanism is extended to include arbitrary ordering functions, as in
§4.2, then a more general version of the above theorem is required.

Definition 4.1 (Fair Ordering Strategy) A fair ordering strategy is a mechanism for re-ordering lists of
eventualities between each execution step that ensures that if an eventuality is outstanding for an infinite
number of steps, then at some point in the execution that eventuality will continually be attempted.

Theorem 4.2 If a set of SNF rules, R, is executed using the above algorithm, with a fair ordering
strategy at step (2c), then a model for R will be generated if, and only if, R is satisfiable.

Thus, the fair ordering strategy restriction imposes a form of fairness on the choice mechanism. While
this proviso effectively means that we can potentially explore every possibility during execution, the
incorporation (in the algorithm) of a bound (N ) on the number of states that eventualities can remain
outstanding, together with the finite model property of the logic, ensures that all of the possible states in
the model will be explored if necessary.

So, the question remains: are typical ordering functions fair ordering strategies, or is this constraint
too restrictive? We should first note that the basic strategy of ordering the list of eventualities in terms
of the oldest outstanding eventuality does, indeed, correspond to a fair ordering strategy.

Lemma 1 The strategy of re-ordering the list of eventualities in terms of the oldest outstanding eventu-
alities is a fair ordering strategy.

Proof. Essentially this follows since, if an eventuality remains outstanding but unsatisfied, it will even-
tually be attempted an infinite number of times. All eventualities earlier in the list would either be sat-
isfied (and so be removed from the head of the list) or would also remain unsatisfied infinitely. In the
latter case, these earlier eventualities would not stop the eventuality in question being attempted.

4.6 A simplified approach: using ‘prefer’ functions

In general, if we are to implement a function for ordering a list (for example, a list of eventualities),
then we must have a predicate for comparing elements within the list. Typically, this is a version of
‘<’ over the type of elements in the list. Rather than defining the ordering function explicitly, or even
providing a full definition of ‘<’, the approach taken in [32] is to simply define the ‘<’ predicate for
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selected pairs. In this case the ‘<’ predicate is actually called ‘prefer ’ and such preference statements
occur explicitly within the specification rather than as part of the implementation. Thus, for the example
above, we might have

prefer(be_famous,make_lunch),
prefer(be_famous,eat_lunch),
prefer(make_lunch,eat_lunch) .

The execution mechanism then uses this information to re-order the list of eventualities at each step.
This approach has a number of advantages. It is simple and direct — the specifier need not write

Prolog ordering functions and, indeed, the implementation need not be in Prolog at all (the implemen-
tation used in [32] is in Java!). However, with this simplicity comes problems. Although the three
prefer relationships above are enough to re-order the ‘desires’ list in our example into the final list of
‘attempts’, there is no guarantee that any set of prefer relationships will indeed produce a unique linear
order. This is not so much of a problem if, as in [32], we are prepared to accept any ordering consistent
with the preferences. However, what if there is no consistent ordering, as in the following.

prefer(be_famous,make_lunch),
prefer(eat_lunch,be_famous),
prefer(make_lunch,eat_lunch)

In [32], little is done about this as it is seen as the responsibility of the specifier to ensure consistency.
However, in a more comprehensive approach, further analysis of the preference structures would be
carried out.

For the moment, however, we will return to the explicit definition of ordering functions, and will next
consider the practical implementation of various deliberation strategies, returning to the question of
whether such ordering functions are fair, in the sense above.

5 Practical Deliberation

5.1 Prolog Implementation

The system is implemented in Prolog, using techniques from [2, 21]. While we will not go into detail
here, we just note that the algorithm from §3.5 is essentially the one implemented. Within this, the most
interesting part for us is the re-ordering of eventualities between states. This is implemented simply by
calling the following predicate.

priority_function(Name, History, Goals_Before, Goals_After)

To ensure that something happens, even if the user does not provide a specific priority function, a default
function is provided which does not change the ordering.

priority_function(default, _, Goals, Goals).

5.2 Running Example

In order to consider various ordering functions, including their definition and effects, we will just work
with one simple example. This is the specification of a very minimal planetary rover agent, called
rover. This has a very simple behaviour. It is able to detect various aspects of its environment, for
example water or minerals, and is able to invoke actions to explore these sensed areas. The (very) basic
agent description is as follows (we use a little first-order notation to improve readability).
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rover
in: detect

out: explore
rules: detect(X) ⇒ ♦explore(X)

true ⇒ g(¬explore(mineral)∨¬explore(water))
start ⇒ ¬explore(mineral) ∨ ¬explore(water)

Thus, the rover agent receives sensor inputs and generates exploration goals accordingly. The above
behaviour states that, if a sensor input is received then it is a goal of the agent to investigate that aspect
at some point in the future. The second and third rules ensure that the agent can not explore two aspects
simultaneously.

In the following, we will use the same basic agent, together with the same inputs, but will describe
the effect when the internal deliberation is modified (by changing the priority function). Generally, we
would expect detect events to occur rarely but, in order to consider the deliberative behaviour of this
autonomous agent in extremis, we ensure that such detection events occur very often.

We will simply run the above program for 8 states. In order to proceed, the execution requires a list
of inputs representing sets of literals to be consumed at each execution step:

[ {detect(mineral), detect(water)}
{detect(mineral), detect(water)}
{detect(mineral), detect(water)}
{detect(mineral)}
{detect(water)}
{ }
{ }
{ } ]

We now examine what happens under various priority functions (i.e. under various deliberation strate-
gies).

5.3 Alternative Deliberation Strategies

Default strategy. The default ordering strategy, ‘default’, leaves the order of eventualities un-
changed. Thus, in executing the rover program with the above input, we get the following output
(re-formatted for readability).

**State 0: [detect(mineral), detect(water)]
Commitments: []

**State 1: [detect(mineral), detect(water), explore(mineral)]
Commitments: [sometime explore(water)]

**State 2: [detect(mineral), detect(water), explore(water)]
Commitments: [sometime explore(mineral)]

**State 3: [detect(mineral), explore(mineral)]
Commitments: [sometime explore(water)]

**State 4: [detect(water), explore(water)]
Commitments: [sometime explore(mineral)]

**State 5: [explore(mineral)]
Commitments: [sometime explore(water)]
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**State 6: [explore(water)]
Commitments: []

**State 7: []
Commitments: []

Here, we see the ‘detect’ inputs in each state which are received from the environment. In addition,
we can see that various commitments, i.e. outstanding eventualities, are subsequently generated.

So, in state 0, the agent receives both detect(mineral) and detect(water) and so gener-
ates goals ♦explore(mineral) and ♦explore(water) for state 1 onwards (note that pred-
icates not mentioned in the state are assumed to be false). As there is no particular ordering on
these, an arbitrary choice will be made and explore(mineral) is made true in state 1. Since
explore(water) can not now be made true, the goal ♦explore(water) remains as a commit-
ment for the next state (i.e. it is the only element in the list of commitments). However, in state 1,
detect(mineral) is again received and so ♦explore(mineral) is added to the list of eventu-
alities to be satisfied in state 2. Since the default approach is to not re-order this list, and since the list is
ordered by age (currently♦explore(water) is ahead of♦explore(mineral) in the list), then
at state 2 ♦explore(water) is satisfied by making explore(water) true. And so on. Thus,
we see that with the default strategy, there is a fair organisation of eventuality satisfaction, effectively
alternating between explore(water) and explore(mineral) in cases when both need to be
satisfied.

Simply Fair strategy. The ‘simply fair’ strategy explicitly captures a minimal form of fairness based
upon whether eventualities were satisfied in the previous state. Thus, the Prolog code defining the
‘simply_fair’ function is as follows.

priority_function(simply_fair, _, [], []).

priority_function(simply_fair, LastState,
[sometime G | Rest], [sometime G | Att]) :-

member(G, LastState), !,
priority_function(simply_fair, LastState, Rest, AttRest),
append(AttRest, [sometime G], Att).

priority_function(simply_fair, LastState,
[sometime G | Rest], [sometime G | Att]) :-

priority_function(simply_fair, LastState, Rest, Att).

Essentially, this checks if any eventuality in the list to be satisfied has already been satisfied in the
previous state. If it has, then that eventuality is moved to the end of the list. Eventualities that have not
been satisfied in the last state are not re-ordered by this.

Now, if we execute the above program, but this time using the ‘simply_fair’ priority function,
we get the following output.

**State 0: [detect(mineral), detect(water)]
Commitments: []

**State 1: [detect(mineral), detect(water), explore(mineral)]
Commitments: [sometime explore(water)]

**State 2: [detect(mineral), detect(water), explore(water)]
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Commitments: [sometime explore(mineral)]

**State 3: [detect(mineral),explore(mineral)]
Commitments: [sometime explore(water)]

**State 4: [detect(water), explore(water)]
Commitments: [sometime explore(mineral)]

**State 5: [explore(mineral)]
Commitments: [sometime explore(water)]

**State 6: [explore(water)]
Commitments: []

**State 7: []
Commitments: []

Notice how this gives the same sequence of outputs as the “built in” ordering in the default example.
This shows that, within Prolog, we can code a simple ordering function that does retain fairness. We
also note that this ordering is a fair ordering strategy in the sense of Definition 4.1.

Simply Unfair strategy. Finally, we define a deliberately ‘unfair’ strategy (called ‘simply_unfair’)
that prioritises the goal♦explore(mineral) over the goal♦explore(water). Rather than re-
producing the code again, we note that the list is re-ordered so that if ♦explore(water) is before
♦explore(mineral) in the list, then it is subsequently moved to after ♦explore(mineral).

In running the above program using this unfair priority function, we get

**State 0: [detect(mineral), detect(water)]
Commitments: []

**State 1: [detect(mineral), detect(water), explore(mineral)]
Commitments: [sometime explore(water)]

**State 2: [detect(mineral), detect(water), explore(mineral)]
Commitments: [sometime explore(water)]

**State 3: [detect(mineral), explore(mineral)]
Commitments: [sometime explore(water)]

**State 4: [detect(water), explore(mineral)]
Commitments: [sometime explore(water)]

**State 5: [explore(water)]
Commitments: []

**State 6: []
Commitments: []

**State 7: []
Commitments: []

Notice how, in the first 3 states, explore(mineral)was made true even though♦explore(water)
was outstanding. Thus, if detect(mineral) were received continuously, then explore(water)
would never be satisfied.
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Notice how this ordering strategy is not a fair ordering, as defined in Definition 4.1 and so correctness
of the temporal execution is not guaranteed by Theorem 4.2.

6 Conclusions

In this article we have considered, at a foundational level, a key aspect of autonomous systems, namely
the deliberation that occurs within individual autonomous components. In particular, we have provided a
relatively simple framework for representing the goals than an agent has, and for subsequently executing
these goals. Using this approach, we have shown that by re-ordering the list of outstanding goals, we
can produce deliberative agent behaviour. We also consider correctness and implementation aspects,
emphasizing the simplicity, yet flexibility, of the approach. The simplicity concerns not only the logical
theory, which is much less elaborate than corresponding BDI approaches, but also the implementation.
The fact that the user can supply arbitrary ordering functions (in Prolog) provides a very high degree of
flexibility.

We will next mention related work, followed by our future work in this area.

6.1 Related Work

While a wide variety of logical theories, purporting to represent agents, have been proposed few, if
any, have provided the basis for an agent programming language. Exceptions include languages such
as 3APL [12], April [41] and AgentSpeak [46, 6], and the early work on Agent-Oriented Program-
ming [53, 56].

BDI theory [48, 49] provides a popular basis for describing agent-based systems, while the BDI
architecture [50] provide a model for deliberation. Although such systems have been successfully used
in a number of areas, the link between implementations and the BDI agent theory is often tenuous.
Consequently, the formalisation of deliberation [10] and the link from high-level specifications to their
low-level realisation are required and several works on deliberation in a BDI framework have been
produced, for example [11, 52]. However, there are few papers combining theoretical basis, direct
implementation aspects, and strong links between, such as we provide in this article.

6.2 Future Work

Our long term goal with this work is the provision of a formal framework for the specification, animation
and development of distributed multi-agent systems. By basing our work on a simple temporal logic,
for which there are already a variety of proof methods, we have already outlined an approach to the
specification and verification of multi-agent systems [27].

We have not been primarily concerned with multi-agent aspects here. However, we wish to have
multiple agents of the type described in this article, asynchronously executing, and communicating via
broadcast message-passing [18, 22]. Broadcast message-passing is a natural communication mechanism
to consider as it not only matches the logical view of computation that we utilise, but it is very flexible
within distributed computer systems [4, 7] and distributed AI [54].

As well as the notion of individual deliberating agents, we are also exploring stronger structuring
mechanisms through the ‘groups’ extension [24, 40]. This not only restricts the extent of an object’s
communications, but also provides an extra mechanism for the development of strategies for organisa-
tions. In particular, this provides the basis for agent cooperation, competition and interaction.

Finally, as we move towards more expressive temporal notations, particularly first-order temporal
logic, and consider multi-agent scenarios, so retaining the completeness of the execution mechanism
becomes more difficult. A central part of future work is to examine such expressive extensions with
respect to practical deliberation.
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