
Characterising and Matching Iterative and Recursive Agent
Interaction Protocols

Tim Miller
Dept. of Computer Science and Software Eng.

University of Melbourne
Victoria, 3010, Australia

tmiller@unimelb.edu.au

Peter McBurney
Department of Computer Science

University of Liverpool
Liverpool, L69 7ZF, UK

mcburney@liverpool.ac.uk

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Languages

Keywords
multi-agent systems, interaction protocols, characterisation

ABSTRACT
For an agent to intelligently use specifications of executable
protocols, it is necessary that the agent can quickly and cor-
rectly assess the outcomes of that protocol if it is executed.
In some cases, this information may be attached to the spec-
ification; however, this is not always the case. In this pa-
per, we present an algorithm for deriving characterisations of
protocols. These characterisations specify the preconditions
under which the protocol can be executed, and the outcomes
of this execution. The algorithm is applicable to definitions
with infinite iteration, and recursive definitions that termi-
nate. We prove how a restricted subset of non-terminating
recursive protocols can be characterised by rewriting them
into equivalent non-recursive definitions before characteri-
sation. We then define a method for matching protocols
from their characterisations. We prove that the complexity
of the matching method is less than for methods such as a
depth-first search algorithm. Our experimental evaluation
confirms this.

1. INTRODUCTION
Research into interaction protocols for multi-agent sys-

tems is focused mainly on the documentation of interaction
protocols, which specify the set of possible interactions for a
protocol in which agents engage. Agent developers use these
specifications to hard-code the interactions of agents. We
identify three significant disadvantages with this approach:
1) it strongly couples agents with the protocols they use
— something which is unanimously discouraged in software
engineering — requiring agent code to change with every

Cite as: Characterising and Matching Iterative and Recursive AgentIn-
teraction Protocols, T. Miller and P. McBurney,Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May,
10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

change in a protocol; 2) agents can only interact using pro-
tocols that are known at design time, a restriction that seems
out of place with the goals of agents being intelligent and
adaptive; and 3) agents cannot compose protocols at run-
time to bring about more complex interactions, restricting
them to protocols that have been specified by human de-
signers — again, this seems out of place with the goals of
agents being intelligent and adaptive.

Executable protocols for goal-directed agents are often
specified using action languages [8, 13]. Such languages tend
to provide support for specifying actions with preconditions
and postconditions, and allow actions to be composed to
create more complex behaviour. For agents to become in-
telligent and adaptable, it is desirable that agents learn new
protocols from each other, and are able reason about the
outcomes of new protocols.

Miller and McBurney [9] have specified a set of rules for
producing characterisations of protocols. A characterisation
contains information about the precondition under which a
protocol is applicable, and the postconditions that are possi-
ble if that protocol is executed. The weakness of the rules is
that they did not consider iterative or recursive definitions.
In this paper, we build on Miller and McBurney’s work.

Section 4 presents an algorithm for characterising exe-
cutable protocols specified in an action language (defined
in Section 2) — so called, first-class protocols [7]. This al-
gorithm is applicable to iterative protocols, and recursively-
defined protocols that terminate. Characterisations are ex-
pressed in the form of theorems in propositional dynamic
logic [5], a logic for reasoning about the behaviour of pro-
grams. In Section 5, we prove that a restricted subset of
non-terminating protocols can be characterised using this
algorithm by replacing the recursion with iteration, allowing
the application of the characterisation algorithm. Section 6
defines and verifies a method for matching protocols from
their characterisations. That is, given a protocol library,
with each protocol annotated with its characterisation, an
agent can determine which protocols in the library achieve
a given goal. Section 7 proves that the complexity of this
method is less than a depth-first search algorithm, and dis-
cusses experimental evaluation that confirms this.

2. SPECIFYING PROTOCOLS
In this section, we present a brief overview of a generic

action language that can be used to define a state transition
system. This language is defined to suit our purposes, but is
general enough to ensure the results of the paper have wide
applicability to other languages, such as that in [13]. We

also discuss a logic for reasoning about outcomes of protocols
specified in this language.

2.1 Action Languages
We assume that the language used to model protocols is

an action language. The language should support atomic
actions (messages sent between agents), sequencing, and
choice. The language we describe also supports recursion.

Specifications manipulate a state, which is set of positive
literals. These literals may represent the environment, or
more likely, a shared set of commitments or norms. Each
action (atomic protocol) is specified as a triple containing a
precondition, an action identifier, and a postcondition. We
represent this using the format:

ψ
p
−→ ψ′,

in which ψ is the precondition, p the action identifier, and
ψ′ the postcondition. The action p can be performed only
if ψ holds in the current state. The precondition and post-
conditions are propositions that are made up positive and
negative literals, and conjunction of propositions. The ac-
tion identifier is a positive literal. In the case of protocols,
the action identifier specifies the message that is sent be-
tween agents, as well as the sender and receiver. We will
use φ and ψ subscripted with numbers (e.g. φ0) to repre-
sent propositions, p, q, and r to represent positive literals,
¬p to represent the negative literal of p, and ∧ as the con-
junction operator, which represents a set of literals. The ⊇
operator represents entailment; that is, φ ⊇ ψ holds if and
only if the literals in φ are a superset of the literals in ψ.

Actions can be composed to make a compound protocols
specifications. If α and β are both protocols, then the se-
quential composition α; β represents the protocol in which
α executes fully, followed by β. The starting state of β
is the end state of α. The choice α ∪ β represents a non-
deterministic choice between the two protocols, in which the
participants must execute α or β, but not both. The iter-
ation α∗ represents zero or more iterations of α. The test
operator, ψ?, represents the protocol that does nothing, but
can execute only if ψ holds. We will use α, β, and γ to
represent protocols.

Specifications consist of a set of definitions of the form
N(x) b= α, in which N is a name, and x a variable list. Pro-
tocols can be referenced via their names in other protocols.
We will omit the variables for brevity. Using this, α∗ be-
comes shorthand for the name N , in which N b= true?∪α;N .

2.2 Propositional Dynamic Logic
Propositional dynamic logic (PDL) can be used to reason

about this language. PDL is used to represent the charac-
terisations of protocols.

Given a protocol α, the proposition [α]φ specifies that
the proposition φ holds in every final state of the protocol
α. This logic extends the propositional logic on which the
action language is built by the addition of this operator.

We can define a second operator 〈α〉φ, which means that
φ holds for at least one final state of α. This can be defined
using the shorthand 〈α〉φ iff ¬[α]¬φ. That is, φ holds in
some outcome if φ does not hold in all outcomes. This im-
plies the law of excluded middle: ¬φ is true only if φ cannot
be proved.

A deductive proof system for this logic can be defined
using the following axioms:

[ψ?]φ ↔ ψ → φ

[ψ
p
−→ ψ′]φ ↔ ψ † ψ′ → φ

[α;β]φ ↔ [α][β]φ
[α ∪ β]φ ↔ [α]φ ∧ [β]φ
[N]φ ↔ [α]φ if N b= α

and an inference rule for modus ponens. In the second axiom,
the † operator defines overriding. That is ψ † ψ′ defines
the proposition that results by combining ψ and ψ′ while
removing all literals whose negation occurs in ψ′.

The final axiom above is sound, but incomplete for re-
cursive definitions, because the unfolding of N will occur
an infinite number of times. Instead, we use an induction
inference rule, based on Scott induction [12]:

[N]φ ⊢ [α]φ
where N b= α

[N]φ

This rule states that, to prove [N]φ, first try to prove
that [α]φ is valid under the assumption that [N]φ. If this is
provable, then it must be that [N]φ. The assumption that
[N]φ is the inductive step, and prevents the proof from being
infinite.

The idea behind this rule is straightforward to show. Con-
sider the protocol

N b= ψ
p
−→ ψ′ ∪ φ

q
−→ φ′;N .

This protocol can be summarised using the following infi-
nite tree structure

•

}}{{
{

!!
CC

C

ψ′ φ′

~~~~
~

��
@@

@

ψ′ φ′

��~~
~

��
ψ′

in which the dashed arrow indicates that the unfolding of N
continues infinitely. In this tree, we can see that the only
terminating states are those at the nodes labelled ψ′. To
prove [N ]ψ′′, we need to prove that ψ′′ is satisfied in all
terminating states. To prevent the infinite unfolding, we
assume at the top level (the • node) that ψ′′ holds in every
end state below φ′, and prove this for the remaining end
states, of which there is only one: ψ′. One can see that
this is sound, because if we unfold N , the only terminating
states are the ψ′ states. These states are able to be deduced
directly from the finite definition of N , and the proof is
finite.

Miller and McBurney [10] have demonstrated soundness
and completeness of a proof system, including Scott induc-
tion, for a propositional dynamic logic over the RASA lan-
guage.

3. DEFINITIONS
For the rest of this paper, the term protocol will refer to a

protocol defined using the action language from Section 2.1
that does not have the stuckness property: a protocol is
stuck if and only if, at any point during the execution of the
protocol, the protocol has not terminated, and the specifi-
cation prevents any action from occurring; for example, all
of the preconditions of available actions do not hold.

The weakest precondition of a protocol is the weakest (or
most general) proposition from which a protocol cannot be-
come stuck. The maximal postcondition is the strongest



proposition that results from a protocol being executed un-
der its weakest precondition.

A goal is a state of the world that an agent would like to
bring about, or maintain. In this paper, we assume that a
goal is represented as a proposition in the underlying lan-
guage.

Given a goal, φG, and an initial state, ψI (the state of
the world from which an agent wants to achieve the goal –
generally the current state), a weak matching protocol is a
protocol, α, that achieves the goal φG from the initial state
ψI for at least one outcome. Formally:

ψI → 〈α〉φG

A strong matching protocol is a protocol that achieves a
goal for all outcomes, assuming that there exists at least
one outcome1. Formally:

ψI → [α]φG.

All strong matching protocols are also weak matching pro-
tocols. We distinguish between the two because an agent
would want a protocol that achieves its goal for at least one
outcome, but would likely prefer a protocol that achieves it
for all outcomes.

To find all matches for a goal φG from the state ψI , the
agent could simply use the PDL proof system discussed in
Section 2.2. That is, for every protocol α, if the proof ψI →
〈α〉φG is successful, then α is a weak match. For a large
protocol library, this is an expensive operation to perform
each time an agent wants to find a protocol that achieves a
certain goal. Instead, we summarise the preconditions and
outcomes of the protocol using characterisations, and then
search these. It is out hypothesis that this is more efficient
than performing a PDL proof for each protocol.

4. CHARACTERISING PROTOCOLS
Characterisations for a protocol are derivable directly from

the protocol specification itself. In this section, we present a
straightforward algorithm for characterising protocols, which
is based on symbolic execution. This algorithm can char-
acterise any iterative protocol, and any recursively defined
protocol that always terminates.

4.1 Representing Characterisations
Characterisations are represented as theorems in the logic

presented in Section 2.2. For example, the characterisation

ψ0 → [α]φ0

specifies that, if executed from any state that satisfies the
weakest precondition ψ0, the protocol α is guaranteed to
achieve the outcome φ0. Our goal is to characterise, for
each protocol in a protocol library, not the outcomes that it
achieves, but the outcomes of the paths of the protocol.

As an example, consider the protocol P ; (Q∪R), in which

P b= p
p
−→ p′, Q b= true

q
−→ q′, and R b= true

r
−→ r′. Fig-

ure 1 shows the abstract syntax tree of the protocol, and
the characterisations that we derive. This protocol contains
two paths: (1) P followed by Q; and (2) P followed by R.

Characterising paths, rather than entire protocols, is nec-
essary, otherwise our characterisation is incomplete. Con-
sider the protocol A ∪ B, in which A and B are defined as

1This assumption is subsumed by our assumption that a
protocol is free from stuckness.

p

P
��

p′

Q

����
��

� R

��
==

==
=

q′ r′

p→ [P ;Q](p′ ∧ q′)
p→ [P ;R](p′ ∧ r′)

Figure 1: An abstract syntax tree for a protocol,
and its characterisations.

A b= a
p
−→ a′ and B b= b

q
−→ b′. Our algorithm will generate

the characterisations a → [A]a′ and b → [B]b′. If we were
to merge these characterisations into one, we could write
a ∨ b → [A ∪ B](a′ ∨ b′). However, this loses vital infor-
mation: that of the relationship between a and a′, and the
relationship between b and b′. That is, a′ is only achiev-
able from a state in which a holds. One can not infer this
from the general characterisation, therefore, an agent could
conclude that a′ may achievable from b, which is not the
case.

4.2 Characterising Outcomes
A straightforward symbolic execution algorithm is used to

characterise paths.
Recall from Section 4.1, that protocols are characterised

by the outcomes of their paths. To do this, each path in
the protocol is symbolically executed, with the initial state
being its weakest precondition. When the algorithm reaches
the end of a path, the symbolic state that is left is the max-
imal postcondition of that path. The characterisation can
be derived from this maximal postcondition, the weakest
precondition, and the path.

The characterise function defines how to symbolically
execute a protocol. As inputs, it takes a protocol and a
proposition representing the current symbolic execution state.
Initially, this state is the weakest precondition of the path
that is being executed. characterise returns an character-
isation of the form ψI → [α]φG, in which ψI is the weakest
precondition, and φG the maximal postcondition.

characterise(ψ0
p
−→ ψ′

0, φ0) b=
if φ0 ∧ ψ0 ⊇ false then return {}

else return {φ0 ∧ ψ0 → [ψ0
p
−→ ψ′

0](φ0 ∧ ψ0) † (ψ′

0 ∧ p)}

characterise(α; β, φ0) b=
S := characterise(α, φ0)
for φ1 → [α]ψ1 ∈ S do

S′ := characterise(β, ψ1)
for φ2 → [β]ψ2 ∈ S′

do

R := R ∪ {φ2 † φ1 → [α;β]ψ2}
return R

characterise(α ∪ β, φ0) b=
return characterise(α, φ0) ∪ characterise(β, φ0)

characterise(ψ0?, φ0) b=
if φ0 ∧ ψ0 ⊇ false then return {}
else return{φ0 ∧ ψ0 → [ψ0?](φ0 ∧ ψ0)}

characterise(N, φ0) b=
if N b= α then return characterise(α, φ0)

characterise(α∗, φ0) b=

return characterise(true?, φ0) ∪ characterise(α, φ0)

With the exception of atomic and iterative protocols, the



characterisation algorithm is straightforward. Calculating
the characterisation for an atomic protocol is as follows: if
the symbolic state φ0 is compatible with the precondition
ψ0 – that is, their conjunction is satisfiable (does not en-
tail false) – then the precondition is their conjunction. If
they are incompatible, no characterisations are generated
because this represents a termination condition for the pro-
tocol. The maximal postcondition is simply the overriding
(denoted using the binary operator †) of the symbolic state
and precondition with the postcondition.

The iterative operator defines a protocol of infinite size:
α∗ can iterate of α an unbounded number of times. Unfold-
ing this an infinite number of times is not possible. Instead,
we calculate the fixed points of the protocol’s end states.
First, we break the protocol into two cases: the case in
which zero iterations occur, and the case in which one or
more iterations occur. The zero iteration case is equivalent
to true?. The postcondition for the one-or-more iterative
case is the just the postcondition of one iteration, and sim-
ilarly for the weakest precondition (see Theorem 4.2 later
in this section). Therefore, to characterise this, we simply
need to characterise α.

4.3 Termination, Soundness, and Complete-
ness

The characterise function defined in this section termi-
nates when applied to any protocol that terminates, pro-
vided that the underlying proposition system is over a finite
domain. It will not terminate for a non-terminating proto-
col. The algorithm is also sound and complete.

Theorem 4.1. For terminating protocol α, and finite propo-
sition domain, the function characterise will terminate un-
der the protocol’s weakest precondition.

Proof. For non-recursive protocols, recursive calls to char-
acterise are made only on sub-protocols, and name refer-
ences will only be unfold once (because there is no recursion
in the protocol). Therefore the algorithm terminates.

For recursive protocols that terminate, there are a finite
number of terminating paths, which are each of a finite
length. The characterise algorithm uses weakest precondi-
tions as the initial states, of which there are a finite number.
With a finite number of paths executed on a finite number
of inputs, the algorithm will terminate.

For each definition of characterise, soundness and com-
pleteness follow directly from the definition of the protocol
specification language, with the exception of iterative pro-
tocols. We prove the soundness of the iterative case here.
Characterisation of iterative protocols relies on the following
theorem.

Theorem 4.2. If ψ0 is the weakest precondition of α,
then the following holds: ψ0 → [α]φ iff ψ0 → [α;α∗]φ

Proof. The right-to-left case holds by noting that all
outcomes in α are a subset of the outcomes in α;α∗. For the
left-to-right case, if ψ0 holds, then 1 iteration of α will result
in φ. At this point, one of two properties hold: ¬(φ→ ψ0),
or φ→ ψ0; that is, either the precondition holds, or it does
not. If the former, then α cannot iterate again, because ψ0

is its weakest precondition, and the precondition is not sat-
isfied. Therefore, the postcondition is φ. If the latter, then
α can either terminate, leaving the postcondition as φ, or

it can iterate again. If it iterates again, we know that the
result will be φ, because ψ0 holds, and we know from the
premise that α preserves φ under its weakest precondition.
Therefore, the resulting postcondition is φ. Applying this
argument inductively, we see that the strongest postcondi-
tion of α;α∗ is φ.

For the case of α∗ (Theorem 4.2 considers only α;α∗), we
note that the zero iteration case is equivalent to true?, which
can always be executed and never changes the state.

5. CHARACTERISATION OF RECURSIVE
PROTOCOLS

The difficulty of characterising recursive protocols is the
infinite unfolding of name references. The approach for deal-
ing with this in Section 4 is of limited use, because it cannot
handle recursive, non-terminating protocols, and it requires
the unfolding of name references an unknown number of
times, which can quickly exhaust memory.

The approach taken in this section is to characterise recur-
sive protocols by re-writing them into a form that removes
the recursion; that is, removing name references, such that
the abstract syntax tree is finite. For example, consider a
protocol definition of the form N b= ǫ ∪ (α;N). The defi-
nition of N is equivalent to α∗ (directly from the definition
of ∗). The characterise algorithm can then be used to
characterise N .

Definition 5.1. Choice Normal Form. We say that a
protocol is in choice normal form if and only if it is a choice
between one or more protocols that do not contain other
choice protocols. That is, for a protocol α ∪ . . . ∪ αn, each
of α to αn does not contain a choice. This is analogous to
disjunctive normal form in Boolean logic.

Theorem 5.1. Any protocol can be reduced to choice nor-
mal form.

Proof. Any protocol that fits our definition from Sec-
tion 2 can be reduced to choice normal form by using the
property of sequential composition distributing over choice:

α; (β ∪ γ) ≡ (α;β) ∪ (α; γ),
and commutative and associate rules. Names are not un-
folded when re-writing into choice normal form. Iteration
operators are pushed inwards over choice protocols using

(α ∪ β)∗ ≡ α∗; (β;α∗)∗,
which is an axiom direct from Kleene algebras [6].

Definition 5.2. Linear choice normal form. We say that
a protocol definition, N b= α ∪ . . . ∪ αn is in linear choice
normal form if and only if α ∪ . . . ∪ αn is in choice normal
form, and both of the following hold:

1. for all protocols in {α, . . . , αn}, there is at most, one
reference to N ; and

2. for at least one protocol in {α, . . . , αn}, there is no
reference to N .

This means that 1) there exists only one recursive call in
each branch of that protocol; and 2) at least one branch does
not contain a recursive call, and is therefore guaranteed to
terminate.

It is our theorem that any protocol in linear choice nor-
mal form can be characterised by removing the recursive
calls, and replacing them with equivalent non-recursive def-
initions.



Theorem 5.2. For protocols of the format N b= α∪β;N ; γ,
in which the definition is in linear choice normal form, the
following formula holds:

[N ]φ iff [α ∪ (β+;α; γ+)]φ,

in which + defines non-empty iteration; that is, α+ ≡ α;α∗.

Proof. From PDL, we know that a program of the form
α∪(β;N ; γ) is equivalent to a program of the form βn;α; γn,
which represents a set of programs: for all n ≥ 0, execute β
exactly n times, then execute α, and then execute γ exactly
n times. It is known that such a program is not expressible
in PDL [5].

However, for the purpose of characterisation, we can bring
protocols of such form back into the class of PDL programs
by using the results on iterative protocols from Section 4.

If we divide protocols of the form βn;α; γn into the cases
in which n = 0 and n > 0, then we get the following:

α ∪ (βn+1;α; γn+1),

assuming that α0 ≡ ǫ, and using the property ǫ;α ≡ α ≡
α; ǫ.

From Theorem 4.2, we know that characterising α+ is
equivalent to characterising α, and that the number of iter-
ations of α is not relevant to its strongest postcondition. If
this is the case, then the number of iterations in the expres-
sion βn+1 is not relevant either, so we can characterise βn+1

by characterising β, and similarly for γn+1.

Discussion Point. An obvious question is how useful the
above theorem is, because it is applicable only to a restricted
class of protocols.

All protocols can be re-written into choice normal form
(Theorem 5.2). This leaves us with the two classes that
do not fit into Definition 5.2, and cannot be re-written: 1)
those protocols in which one of the branches is non-linear,
for example, N ;N ;α; and 2) those protocols in which ALL
paths fail to terminate.

The outcomes of protocols in class 2 are unable to be char-
acterised in any case because all paths fail to, and therefore
have no outcomes. This does not imply that such protocols
are worthless, but just that other types of characterisation
may be required. That leaves us with protocols in class 1:
non-linear recursive branches. Our theorem does not apply
to these protocols, and these will be considered in future
work. However, we have not identified a protocol with this
property in the multi-agent systems literature, which leads
us to believe our theorem has wide applicability.

We note that, while Theorem 5.2 assumes a protocol def-
inition of the form N b= α∪ (β;N ; γ), any protocol in linear
choice normal form can be expressed in this way. That is,
α may be a choice protocol itself that contains a reference
to N , however, as long as one of the branches of that proto-
col terminates, this is still in linear choice normal form, and
Theorem 5.2 still holds. The protocols α, β and γ are not
restricted to be actions; they can be compound protocols.

The recursive branch, β;N ; γ, is expressive enough to han-
dle head or tail recursion. For example, to handle tail recur-
sion, simply substitute ǫ in for β and note that ǫ;α ≡ α.

6. MATCHING PROTOCOLS VIA CHARAC-
TERISATIONS

Recall the definitions of weak and strong matches from
Section 3. In this section, we present methods for identify-

ing weak and strong matching protocols using their charac-
terisations.

6.1 Strong Matching
The relation for a strong match is more straightforward

than for a weak match. To prove that a protocol, α, is
a strong match for goal φG and initial state ψI , one must
prove the following:

∀a ∈ chrs(α) • strong match(a, ψI , φG)

in which strong match is defined as the relation

strong match(ψ0 → [α]φ0, ψI , φG) ↔
ψI ⊇ ψ0 → φ0 ⊇ φG

and chrs returns the set of all characterisations for a proto-
col. The above states that, given a set of outcome charac-
terisations for a protocol, if for all of these outcomes, when
the initial state satisfies the precondition, the postcondition
satisfies the goal state, then we have a strong match.

The implication (→) in this definition states that we only
care about the paths in which the precondition is satisfied
because the other paths cannot be executed, so are not rele-
vant to the agent’s ability to achieve the goal from the initial
state.

Theorem 6.1. The strong matching method is sound and
complete.

Proof. For soundness, if, for all paths (characterisations),
the weakest precondition is satisfied by the initial state, and
the outcome satisfy the goal, then it must be that all out-
comes of all paths satisfy the goal. To show completeness,
we note that, for any true formula, φI → [α]φG, it holds that
φI must satisfy the precondition, ψ0, and that the maximal
postcondition, φ0, must satisfy φG.

6.2 Weak Matching
Recall from Section 2.2 that 〈α〉φ is defined as shorthand

for ¬[α]¬φ. Using this symmetry, we define weak matching
as:

¬∀a ∈ chrs(α) • strong match(a, ψI ,¬φG).

This is equivalent to:

∃a ∈ chrs(α) • ¬(ψI ⊇ ψ0 → φ0 ⊇ ¬φG)
≡ ∃a ∈ chrs(α) • ψI ⊇ ψ0 ∧ φ0 ⊇ φG

It is straightforward to see that this captures our require-
ments for a weak match: at least one characterisation (path
in the protocol) can be executed and satisfies the goal.

7. EVALUATION
In this section, we prove that the time complexity of our

method is less than using a depth-first search algorithm to
match a goal. First, we perform a theoretical complexity
analysis that proves this. Second, we perform an experi-
mental analysis to confirm the complexity analysis.

7.1 Theoretical Analysis
To study the complexity, we treat protocols as trees, as

in Figure 1. Similarly, we treat characterisations as trees,
but only of depth 1, with each characterisation forming one
branch. Figure 2(a) illustrates the tree format for the pro-

tocol φ0
m1−−→ φ1; (φ1

m2−−→ φ2 ∪ φ1
m3−−→ φ3) and its charac-

terisations.



φ0

φ0⇒m1

��

φ0

α1;α2

����
��

��
��

��
�

α1;α3

��
66

66
66

66
66

6

φ1

φ1⇒m2

~~||
||

| φ1⇒m3

  
BB

BB
B

φ2 φ3 φ1 † φ2 φ1 † φ3

(a) (b)

Figure 2: (a) A tree representation of a protocol;
and (b) A tree representation of the characterisa-
tions of the protocol. For characterisations, the tree
will always be of depth 1.

A protocol is mapped to a tree by taking the abstract syn-
tax tree (AST) of the structure. Nodes represent states, and
edges represent the message templates. To map a protocol
to its AST, the weakest precondition of the protocol forms
the root node, choice protocols are represented by branches
in the tree, and sequential compositions are represented as
concatenation of paths down the depth of the tree.

A set of characterisations is mapped to a forest structure
by mapping each characterisation to a single tree with two
nodes and an edge: the root node being the precondition
of the annotation, the edge being the protocol, and the leaf
node being the most general outcome. Several trees with
the same root node can form a tree with one root node.
Figure 2(b) illustrates this.

One can see that the number of characterisation is equiva-
lent to the number of paths throughout the protocol, there-
fore, the protocol AST and the characterisation tree both
have the same number of end nodes. As the length of the
paths in the protocol increase, the height of the protocol
AST increases, while the height of the annotation tree re-
mains the same: exactly one.

Using these tree structures, we can now simplify our prob-
lem to the analysis of a depth-first search algorithm. The
problem is slightly different to the standard analysis of depth-
first search because the goal states must be located at the
leaf nodes.

We consider the expensive operations in this search to be
the following:

1. the operation that checks whether a goal is satisfied by
an end state or a precondition is satisfied by the start
state (entailment); and

2. the operation that traverses a vertex in the tree (e.g.
applying an axiom in a theorem prover). The end state
of a protocol cannot be assessed until the entire path
has been evaluated, so the total cost of this for an
entire tree is the number of edges, e.

The total number of paths through a protocol is denoted
n, and this is equivalent to the number of end states and the
number of characterisations.

In this section, we compare our matching method with
that of a depth-first search (DFS) algorithm. We choose a
DFS because this is an alternative way to match a goal, and
the complexity would be similar to that of using a theorem
prover or model checking to find a matching protocol, as
both theorem provers and model checkers would need to
assess the same edges nodes as a DFS algorithm.

Time complexity

Case DFS Matching

Method

Strong
matching

Average e+2n
n−m+1

2n
n−m+1

Worst e+ 2n 2n

Weak
matching

Average e+2n
m+1

2n
m+1

Worst e+ 2n 2n

Table 1: Average and worst-case complexities for
matching a protocol again a goal using DFS and our
matching method.

7.1.1 Finding Strong and Weak Matches
The time complexities of finding strong and weak matches

using both methods are shown in Table 1. In this section,
we prove these complexities.

Theorem 7.1. The worst-case complexities of both strong
and weak matching are e+2n for DFS and 2n for our match-
ing method.

Proof. For either method, the worst case complexity for
weak and strong matching are equivalent. In the worst case,
the entire tree will have to be searched, which has complexity
e+2n, in which e is the number of vertices in the AST, and
n is the number of paths in the tree. The expression 2n
is derived because we must check the precondition of each
path, as well as the outcome, so for each of the n paths, two
entailment operations are required.

The complexity of a complete traversal of a characterisa-
tion tree is 2n, in which n is the number of characterisations.
Again, we must check both the precondition and outcome
of all paths, but in this case, the vertices are not relevant,
because all are of a constant height (one).

With the height of every path in a characterisation tree
being one, we may consider not using a tree at all, and re-
placing this with a list of characterisations. The advantage
of using a tree is that some characterisations will share pre-
conditions. Each precondition is evaluated once, so we can
avoid repeated evaluations by using a tree. However, to sim-
plify our analysis, we do not consider this case, and instead
assume a list of characterisations.

From an asymptotic view, the worst case time complexity
for matching a protocol takes time complexity O(e+ n) for
DFS, and O(n) using our matching method.

Theorem 7.2. The average case complexity for weak match-
ing is e+2n

m+1
for DFS, and 2n

m+1
for our matching method; and

the average case for strong matching is e+2n
n−m+1

for DFS, and
2n

n−m+1
for our matching method.

Proof. The average case complexity is slightly more com-
plicated than the worst case because we have to consider
that the search does not have to assess the entire tree. In
the case of a weak match, the search will terminate once a
match is found. In the case of a strong match, the search
will terminate once a single path is shown not to hold.

If only one end state satisfies the goal, then the average
complexity is e+2n

2
for DFS and n for matching, because we



would have to search half of the tree on average to find a
match. For multiple matches, the complexity analysis is less
straightforward.

Assume that m end states satisfy the goal, where 0 ≤ m ≤
n. For any individual end state, the probability of that end
state satisfying the goal is m

n
. For a weak match, the average

number of nodes we will have to search to find a match is
therefore 1

m+1/n+1
, which is just n+1

m+1
. The total number

that need to be assessed is n+1/m+1

n+1
, or 1

m+1
. Therefore,

the time complexity is e+2n
m+1

for DFS, and 2n
m+1

for matching.
This is consistent with the worst-case complexity, which is
when m = 0.

For a strong match, the probability of a path being non-
matching is n−m

n
. Calculating the average case for a strong

match is the same as for a weak match, except we substitute
n − m for m. Therefore, we obtain a time complexity of

e+2n
n−m+1

for DFS, and 2n
n−m+1

for matching. Again, this is
consistent with the worst-case complexity when m = n.

From an asymptotic view, we know that m ≤ n, so the
worst case time complexity for matching a protocol takes
time complexity O(e + n) for a DFS, and O(n) using our
matching method.

The results from Theorems 7.1 and 7.2, tell us the asymp-
totic complexities of both methods increase in linear time
with the number of end states, or exponentially related to
the size of the protocol (for example, given an average height,
h, and average branching factor, b, we have that n = bh, so
n increases exponentially).

7.1.2 Deriving Characterisations
Using DFS to match protocols against a goal does not

require any pre-processing, whereas our matching method
first requires us to characterise the protocol. The time com-
plexity for this is straightforward: we have to symbolically
execute the entire protocol, so it is the same as the worst-
case time complexity of DFS: e+2n. However, we note that
the expensive operations for this algorithm are different than
for matching; instead of performing an entailment to see if a
goal holds at an end state, we calculate the strongest post-
condition, and propagate this information back up the tree.
As a result, we may wish to use different variables to distin-
guish this; for example, f + 2c, in which f is the number of
edges, and c the number of end states.

To assess whether our method of characterisations and
matching is useful, we have to assess the impact of character-
isations. While characterisations have to be calculated only
once for every protocol, matching may be done an indefinite
number of times. However, given that the characterisation
algorithm is the worst-case coverage of the protocol tree,
as is DFS, it is only worth using our method if we expect
matching to be performed, on average, more than once per
protocol. This assumes that the complexity of the various
expensive operations is the same; that is, e ≈ f and c ≈ n.

One additional advantage of our method is that the char-
acterisation can be performed “off line”.

7.2 Experimental Evaluation
The complexity results from Section 7.1 compare the the-

oretical complexity of our method with that of DFS. How-
ever, the average case complexity is based on the number
of end states that match in the protocol. Furthermore, the
complexity is simplified by treating an entire path as one

calculation, whereas in practice, as path is only evaluated if
the precondition holds true. In this section, we discuss an
experimental evaluation that compares our method with a
DFS algorithm.

7.2.1 The Experimental System
The characterisation algorithm from Section 4, the match-

ing method from Section 6, and a PDL proof system (Sec-
tion 2.2) have been implemented using Prolog. For the un-
derlying language, we have used the CLP bounds solver, an
integer constraint solver with variables, although we aimed
for the implementation to be general enough to support most
constraint solvers.

7.2.2 The Experiment
To experiment with the system, we implemented a random

protocol generator. First, a set of constraints is generated,
then, a protocol of a random height is generated, using the
constraints as preconditions and postconditions of atomic
protocols. The protocol is then characterised. Using these
characterisations, the two methods were applied (DFS and
our matching method), while recording the time complexity.
We varied the height of the protocols incrementally from 1
to 20. In total, we generated 100 random protocols of each
height.

The independent variable in the experiment is the method
being used to match protocols: a DFS algorithm, or our
matching method. The dependent variables measured were:
1) the average time taken for each method to check for
strong and weak matches; 2) the average number of infer-
ences performed by Prolog by each method for strong and
weak matches; 3) the average number of entailment oper-
ations performed for strong and weak matches. The con-
stants were the protocols on which the experiments were
performed, and the initial and goal states.

A strong match was simulating by searching for the goal
true, while a weak match was simulated by searching for a
random goal that was present in the set of characterisations.

7.2.3 Results
Figure 3 shows the execution time for the three algo-

rithms: depth-first search for strong matching, our match-
ing method for strong matching, and our characterisation
method. The x-axis is the number of end states in the pro-
tocol (n). The graphs for number of entailment operations
and number of inferences are similar, so are omitted. The
results for weak matching are also similar, except the weak
matches take less for DFS and our matching method, and
much the same for characterisation.

One can see from these graph that our matching method
is a more efficient way of matching compared to depth-first
search, and the time difference between the two increases
linearly with the number of end states. This confirms our
theoretical analysis from Section 7.1.

The other interesting thing to note is that, for the ran-
domly generated protocol, the relations discussed at the end
of Section 7.1 that e ≈ f and c ≈ n do not hold. For these
protocols, it appears that the actual complexity of charac-
terisation is approximately 4 times that of the depth-first
search, so a protocol would need to be matched at least 4
times for the characterisation to pay off.

8. RELATED AND FUTURE WORK



 0

 1

 2

 3

 4

 5

 6

 7

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

T
im

e 
(m

ill
is

ec
on

ds
)

End States

DFS
Matching

Characterisation

Figure 3: Execution time in milliseconds for strong
matching using the three algorithms: depth-first
search, our matching method, and our characteri-
sation algorithm; plotted against the number of end
states

In this paper, we have presented a method for characteris-
ing protocols, and a method for matching a protocol against
a given goal, using those characterisations. We considered
iterative and terminating recursive protocols, and presented
an algorithm for characterising these. We prove that a re-
stricted subset of recursive protocols (including some non-
terminating protocols) can be re-written into an equivalent
non-recursive form using iteration, so that the characterisa-
tion algorithm could be used. Theoretical and complexity
analysis demonstrates that, for matching a protocol against
a goal, our matching method is more efficient than a depth-
first search, although the initial characterisation is more ex-
pensive.

Bussman et al. [1] discuss characterisation and match-
ing of agent interaction protocols. Their approach charac-
terises properties other than outcomes, such as number of
participants and number of joint commitments. The match-
ing is performed by developers at design time, rather than
by agents at runtime. Clement and Durfee [2] present a
method for characterising precondition and postconditions
of hierarchical task network plans. However, they do not
discuss characterising iterative or recursive plans. Plan-
ning and temporal projection methods [4, 11] are similar
to our techniques, however, they aim to construct a plan
that achieves a goal from a specific start state, whereas we
aim to characterise the preconditions and postcondition of
a given protocol.

Our concept of protocol libraries is similar to plan li-
braries, such as those found in many BDI and goal-oriented
agent framework, such the Procedural Reasoning System [3].
However, plan preconditions and postconditions are typi-
cally specified manually, rather than calculated, and a plan
matches if the postcondition unifies with the goal, rather
than entailing it. However, we believe our characterisation
method can be easily adapted to automatically calculate
plan preconditions and postconditions.

The research reported here is an important step towards

achievement of the vision of intelligent, goal-directed soft-
ware agents able to decide at run-time which communica-
tions protocols to use. In other work, we are investigating
how protocol libraries can be stored and searched for effi-
cient protocol matching.

9. REFERENCES
[1] S. Bussmann, N. Jennings, and M. Wooldridge. Re-use

of interaction protocols for agent-based control
applications. In Agent-Oriented Software Engineering
III, volume 2585 of LNCS, pages 73–87, 2002.

[2] B. Clement and E. Durfee. Theory for coordinating
concurrent hierarchical planning agents using
summary information. In Proceedings of the 16th
National Conference on Artificial Intelligence, pages
495–502. AAAI, 1999.

[3] M. P. Georgeff and A. L. Lansky. Reactive reasoning
and planning. In Proceedings of the 6th National
Conference on Artificial Intelligence, pages 677–682,
1987.

[4] S. Hanks and D. McDermott. Nonmonotonic logic and
temporal projection. Artificial Intelligence,
33(3):379–412, 1987.

[5] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
MIT Press, Cambridge, MA, USA, 2000.

[6] D. Kozen. On Kleene algebras and closed semirings. In
B. Rovan, editor, Proceedings of Mathematical
Foundations of Computer Science, volume 452 of
LNCS, pages 26–47. Springer, 1990.

[7] J. McGinnis and T. Miller. Amongst first-class
protocols. In A. Artikis, G. O’Hare, K. Stathis, and
G. Vouros, editors, Engineering Societies in the Agents
World VIII, volume 4995 of LNAI, pages 208–223,
2007.

[8] T. Miller and P. McBurney. Using constraints and
process algebra for specification of first-class agent
interaction protocols. In G. O’Hare, A. Ricci,
M. O’Grady, and O. Dikenelli, editors, Engineering
Societies in the Agents World VII, volume 4457 of
LNAI, pages 245–264, 2007.

[9] T. Miller and P. McBurney. Annotation and matching
first-class agent interaction protocols. In L. Padgham,
D. Parkes, J. P. Mueller, and S. Parsons, editors,
Proceedings of the Seventh International Conference
on Autonomous Agents and Multi-Agent Systems,
pages 805–812, Estoril, Portugal, May 2008.

[10] T. Miller and P. McBurney. Propositional dynamic
logic for reasoning about first-class agent interaction
protocols. Computational Intelligence, 2010.
(Forthcoming).

[11] H. Prendinger and G. Schurz. Reasoning about action
and change: A dynamic logic approach. Journal of
Logic, Language, and Information, 5(2):209–245, 1996.

[12] D. Scott and J.W. de Bakker. A theory of programs:
Notes of an IBM Vienna seminar, 1969. Unpublished.

[13] P. Yolum and M. P. Singh. Reasoning about
commitments in the event calculus: An approach for
specifying and executing protocols. Annals of
Mathematics and AI, 42(1–3):227–253, 2004.


