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Abstract

In this paper, we present a resolution-based calculus R
≻,S

CTL
for Computational Tree Logic (CTL)

as well as details about an implementation of that calculus in the theorem prover CTL-RP. The

calculus R
≻,S

CTL
requires a transformation of an arbitrary CTL formula to an equi-satisfiable clausal

normal form formulated in an extension of CTL with indexed formulae. The calculus itself consists

of a set of resolution rules which can be used as the basis for an EXPTIME decision procedure for

the satisfiability problem of CTL.

We give a formal semantics for the clausal normal form, provide proofs for the soundness and

completeness of the resolution rules, discuss the complexity of decision procedure based on R
≻,S

CTL
,

and present an approach to implementing the calculus R
≻,S

CTL
using first-order techniques.

1 Introduction

Temporal logic is considered an important tool in many different areas of Artificial Intelligence and

Computer Science, including for example the specification and verification of concurrent and distributed

systems [10, 17, 23]. Computational Tree Logic (CTL) [9] is a branching-time temporal logic whose

underlying model of time is a choice of possibilities branching into future. CTL uses the path quantifiers

A (for all paths) and E (for some path) and each temporal operator, 2 (always in the future), # (at the

next moment in time), U (until), etc, must be paired with a path quantifier. For example, A2ϕ means

on all paths ϕ always holds. There are many important applications that can be represented and verified

in CTL such as digital circuit verification [10], analysis of real time and concurrent systems [23], etc. A

range of model checking algorithms [8, 10, 18] as well as proof methods have been developed for CTL.

The main proof methods for CTL are based on automata [15], resolution [5], and tableaux [2, 14, 25]. In

this paper, we define a resolution-based calculus R
≻,S
CTL for CTL and its implementation in the theorem

prover CTL-RP. The calculus R
≻,S
CTL consists of a number of so-called step and eventuality resolution

rules that operate on a clausal normal form for CTL.
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R
≻,S
CTL is designed in order to allow the use of classical first-order resolution techniques to implement

the rules of the calculus. We take advantage of this fact in the development of our prover CTL-RP which

uses the first-order theorem prover SPASS as a basis for the implementation of R
≻,S
CTL.

The rest of the paper is organised as follows. We first present the syntax and semantics of CTL in

Section 2 and then the calculus R
≻,S
CTL is presented in Section 3, followed by a proof of its soundness and

completeness and a discussion of termination and complexity. Section 4 discusses our approach to the

implementation of the calculus R
≻,S
CTL using first-order resolution techniques. In Section 5, we provide a

comparison between a related resolution calculus for CTL [5] and our calculus R
≻,S
CTL, and demonstrate

the improvements of our calculus. Finally, conclusions are drawn in Section 7.

2 Syntax and semantics of CTL

In this paper, we use the syntax and semantics of CTL introduced by Clarke and Emerson in [13].

The language of CTL is based on the following symbols.

1. A set of atomic propositions PPL.

2. Propositional constants, true and false, and boolean operators, ∧,∨,⇒,⇔ and ¬ (∧ and ∨ are

associative and commutative).

3. Temporal operators 2 (always in the future), # (at the next moment in time), 3 (eventually in

the future), U (until), and W (unless).

4. Path quantifiers A (for all future paths) and E (for some future path).

5. CTL operators A#,E#,A2,E2,A3,E3,AU ,EU ,AW and EW .

The set of formulae of CTL is inductively defined as follows.

1. true and false are CTL formulae;

2. all atomic propositions in PPL are CTL formulae;

3. if ϕ and ψ are CTL formulae, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⇒ ψ), (ϕ ⇔ ψ), A2ϕ, A3ϕ,

A#ϕ, A(ϕU ψ), A(ϕW ψ), E2ϕ, E3ϕ, E#ϕ, E(ϕU ψ), and E(ϕW ψ).

Formulae of CTL over PPL are interpreted in model structures, M = 〈S,R,L〉, where

• S is a set of states ;

• R is a total binary accessibility relation over S; and

• L : S → 2PPL is an interpretation function mapping each state to the set of atomic propositions

true at that state.
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M may be viewed as a labelled, directed graph with node set S, arc set R and nodes labels given by

L.

An infinite path χsi
is an infinite sequence of states si, si+1, si+2, . . . such that for every j, j >

i, (sj , sj+1) ∈ R. Informally, χsi
is an infinite path starting from state si.

We inductively define a satisfaction relation |= between a pair consisting of a model structure M and

a state si in S, and a CTL formula as follows:

〈M, si〉 |= true

〈M, si〉 6|= false

〈M, si〉 |= p iff p ∈ L(si) for an atomic proposition p ∈ PPL

〈M, si〉 |= ¬ϕ iff 〈M, si〉 6|= ϕ

〈M, si〉 |= (ϕ ∨ ψ) iff 〈M, si〉 |= ϕ or 〈M, si〉 |= ψ

〈M, si〉 |= (ϕ ∧ ψ) iff 〈M, si〉 |= ϕ and 〈M, si〉 |= ψ

〈M, si〉 |= (ϕ⇒ ψ) iff 〈M, si〉 6|= ϕ or 〈M, si〉 |= ψ

〈M, si〉 |= (ϕ⇔ ψ) iff 〈M, si〉 |= (ϕ⇒ ψ) and 〈M, si〉 |= (ψ ⇒ ϕ)

〈M, si〉 |= A#ψ iff for every path χsi
, 〈M, si+1〉 |= ψ

〈M, si〉 |= E#ψ iff there exists a path χsi
, 〈M, si+1〉 |= ψ

〈M, si〉 |= A(ϕU ψ) iff for every path χsi
, there exists a state sj ∈ χsi

〈M, sj〉 |= ψ

and for all states sk ∈ χsi
, if i 6 k < j then 〈M, sk〉 |= ϕ

〈M, si〉 |= E(ϕU ψ) iff there exists a path χsi
such that there exists a state sj ∈ χsi

〈M, sj〉 |= ψ

and for all states sk ∈ χsi
, if i 6 k < j then 〈M, sk〉 |= ϕ

In addition, we use the following equivalences to define the semantics of other temporal operators.

A3ϕ ≡ A(trueU ϕ) E3ϕ ≡ E(trueU ϕ)

A2ϕ ≡ ¬E3¬ϕ E2ϕ ≡ ¬A3¬ϕ

A(ϕW ψ) ≡ ¬E(¬ψ U (¬ϕ ∧ ¬ψ)) E(ϕW ψ) ≡ ¬A(¬ψ U (¬ϕ ∧ ¬ψ))

A CTL formula ϕ is valid, written |= ϕ, iff for every model structure M and every state s ∈ M ,

M, s |= ϕ. A CTL formula ϕ is satisfiable, iff for some model structure M and some state s ∈ M ,

M, s |= ϕ, and unsatisfiable otherwise. A model structure M such that ϕ is true at some state s ∈M is

called a model of ϕ.

The satisfiability problem of CTL is known to be EXPTIME-complete [9, 13, 14].

In [13], Emerson provides a generalized semantics of CTL which defines the semantics relative to a

more general structure M ′ = 〈S,X,L〉, where S and L are defined in Section 2, and X ⊆ Sω is a family

of infinite computation sequences (fullpaths) over S.

In general the set X can be arbitrary. However, Emerson also defines three properties of X which

commonly hold if X is meant to model infinite computation sequences:
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Suffix Closure If s0s1s2 . . . ∈ X , then the suffix s1s2 . . . ∈ X .

Fusion Closure If x1sy1, x2sy2 ∈ X , then x1sy2 ∈ X where x1 and y1 are prefixes of paths and y1,

y2 ∈ X .

Limit Closure If x1y1, x1x2y2, x1x2x3y3, . . . are all elements of X , where x1, x2, x3 are prefixes of

paths and y1, y2, y3 ∈ X , then the infinite path x1x2x3 . . ., which is the limit of the prefixes

x1, x1x2, x1x2x3, . . . is also in X . In short, if it is possible to follow a path arbitrarily long, then

it can be followed forever. (See an example in Figure 1)

x1

y1x2

y2x3

y3x4

Figure 1: Limit Closure

As it turns out, if X is suffix, fusion, and limit closed, then the generalized semantics is identical to

the semantics defined at the beginning of this section. Emerson defines a set X to be R-generable iff there

exists a total binary relation R on S such that a sequence s0s1s2 . . . ∈ X iff for every i, (si, si+1) ∈ R.

Then X is R-generable iff it is limit closed, fusion closed and suffix closed.

3 R
≻,S
CTL: A refined resolution calculus for CTL

Our clausal resolution calculus R
≻,S
CTL for CTL is based on, but not identical to, the resolution calculus in

[5, 7]. The calculus R
≻,S
CTL requires arbitrary CTL formulae to be transformed into a clausal normal form.

The calculus itself consists of eight step resolution rules, two eventuality resolution rules and two rewrite

rules. The calculus can be used as the basis for an EXPTIME decision procedure for the satisfiability

problem of CTL.

3.1 Normal form

Our calculus R
≻,S
CTL operates on formulae in a clausal normal form called Separated Normal Form with

Global Clauses for CTL, denoted by SNFg
CTL. Separated Normal Form (SNF) was originally introduced

for Propositional Linear Time Temporal Logic (PLTL) [16] and then extended to various other temporal

logics including CTL [5].
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The language of SNFg
CTL clauses is defined over an extension of CTL in which we label certain formulae

with an index ind taken from a countably infinite index set Ind. To improve the readability of clauses,

we introduce an operator precedence which allow us to reduce the number of parentheses required. We

associate each operator with one of the following six precedence groups. Two operators in the same group

have the same precedence. Higher precedence operators are applied before lower precedence operators.

(i) is highest; (vi) is lowest. (i)A#,E#,A3,E3,A2,E2,AU ,EU ,AW ,EW ,E#〈ind〉,E3〈LC(ind)〉,

E2〈LC(ind)〉, EU 〈LC(ind)〉, EW 〈LC(ind)〉; (ii)¬; (iii)∧; (iv)∨; (v)⇒ and (vi)⇔. Then the language of

SNFg
CTL clauses consists of formulae of the following forms.

A2(start⇒
∨k

j=1mj) (initial clause)

A2(true⇒
∨k

j=1mj) (global clause)

A2(
∧n

i=1 li ⇒ A#
∨k

j=1mj) (A-step clause)

A2(
∧n

i=1 li ⇒ E#
∨k

j=1mj〈ind〉) (E-step clause)

A2(
∧n

i=1 li ⇒ A3l) (A-sometime clause)

A2(
∧n

i=1 li ⇒ E3l〈LC(ind)〉) (E-sometime clause)

where k ≥ 0, n > 0, start is a propositional constant, li (1 ≤ i ≤ n), mj (1 ≤ j ≤ k) and l are literals,

that is atomic propositions or their negation and ind is an element of Ind. A clause which is either

an initial, a global, an A-step, or an E-step clause is also called a determinate clause. Note that the

right-hand side of an E-sometime or an A-sometime clause only contains a single literal. This property

simplifies the formulation of the eventuality resolution rules. As all clauses are of the form A2(P ⇒ D)

we often simply write P ⇒ D instead. The formula A3(¬)l is called an A-eventuality and the formula

E3(¬)l〈LC(ind)〉 is called an E-eventuality. We call a clause which is either an initial, a global, an A-step,

or an E-step clause a determinate clause. In the remainder of this paper, two concepts, a set of SNFg
CTL

clauses and a conjunction of SNFg
CTL clauses, are interchangeable.

To provide a semantics for SNFg
CTL, we extend model structures 〈S,R,L〉 to 〈S,R,L, [ ], s0〉 where

s0 is an element of S and [ ] : Ind → 2(S×S) maps every index ind ∈ Ind to a successor function [ind]

which is a total functional relation on S and a subset of R, that is, for every s ∈ S, there exists only

one state s′ ∈ S, (s, s′) ∈ [ind] and (s, s′) ∈ R. We extend [ ] to expressions of the form LC(ind) by

defining [LC(ind)] = [ind]∗, i.e. [LC(ind)] is the reflexive and transitive closure of [ind]. The semantics
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of SNFg
CTL is then defined below as an extension of the semantics of CTL defined in Section 2.

〈M, si〉 |= start iff si = s0

〈M, si〉 |= E#ψ〈ind〉 iff there exists s′ ∈ S such that (si, s
′) ∈ [ind] and 〈M, s′〉 |= ψ

〈M, si〉 |= E3ψ〈LC(ind)〉 iff there exists sj ∈ S such that (si, sj) ∈ [LC(ind)] and 〈M, sj〉 |= ψ

〈M, si〉 |= E2ψ〈LC(ind)〉 iff for every sj ∈ S, (si, sj) ∈ [LC(ind)] implies 〈M, sj〉 |= ψ

〈M, si〉 |= E(ϕU ψ)〈LC(ind)〉 iff there exists sj ∈ S such that (si, sj) ∈ [LC(ind)] and 〈M, sj〉 |= ψ

and for every sk ∈ S with sk 6= sj , if (si, sk) ∈ [LC(ind)] and

(sk, sj) ∈ [LC(ind)] then 〈M, sk〉 |= ϕ

〈M, si〉 |= E(ϕW ψ)〈LC(ind)〉 iff 〈M, si〉 |= E2ϕ〈LC(ind)〉 or 〈M, si〉 |= E(ϕU ψ)〈LC(ind)〉

The semantics of the remaining operators is analogous to that given previously but in the extended

model structure 〈S,R,L, [ ], s0〉.

Because the first step of our transformation from a CTL formula ϕ into a set T of SNFg
CTL clauses

defined later in Section 3.2 will add a CTL operator A2 around ϕ and introduce a constant start,

which is only true at the state s0, into T , our definitions of a valid formula, a satisfiable formula and

a unsatisfiable formula is slightly different from Emerson’s definitions. A SNFg
CTL formula ϕ is valid,

written |= ϕ, iff for every model structure M = 〈S,R,L, [ ], s0〉,M, s0 |= ϕ. A SNFg
CTL formula ϕ is

satisfiable, iff for some model structure M = 〈S,R,L, [ ], s0〉,M, s0 |= ϕ, and unsatisfiable otherwise. A

model structure M = 〈S,R,L, [ ], s0〉 such that ϕ is true at the state s0 ∈M is called a model of ϕ.

Figure 2 and Figure 3 depict the model structure satisfying the formulae E#p〈ind1〉 and E3p〈LC(ind1)〉,

respectively.

p

E#p〈ind1〉

ind1 ind2

Figure 2: An ind example

ind2

ind2

ind1 ind2

E3p〈LC(ind1)〉

p

ind1

ind1

Figure 3: An LC(ind) example
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The last three formulae for which we have stated a semantics in the definition above, namely

E2ψ〈LC(ind)〉, E(ϕU ψ)〈LC(ind)〉 and E(ϕW ψ)〈LC(ind)〉, do not occur in SNFCTL clauses. We give their

semantics because they appear in the process of transforming a CTL formula to a set of SNFCTL clauses

which we explain in Section 3.2. Therefore, their semantics is required for the correctness proof of the

transformation.

3.2 Transformation from CTL into SNF
g
CTL

We have defined a set of transformation rules which allows us to transform an arbitrary CTL formula

into an equi-satisfiable set of SNFg
CTL clauses. The transformation rules are similar to those in [5, 16],

but modified to allow for global clauses.

Let nnf denote a method which transforms an arbitrary CTL formula into its negation normal form

by pushing negations ‘inwards’. Let simp be a method which simplifies an arbitrary CTL formula by

exhaustive application of the following simplification rules,

(ϕ ∧ true) −→ ϕ (ϕ ∧ false) −→ false

(ϕ ∨ true) −→ true (ϕ ∨ false) −→ ϕ

¬true −→ false ¬false −→ true

where ϕ is a CTL formula and ∨ and ∧ are commutative and associative, plus the following rules which

are based on the equivalences in [13]. P ∈ {A,E} and ∗ ∈ {#,2,3}.

P ∗ false −→ false P ∗ true −→ true

P(ϕU false) −→ false P(ϕU true) −→ true

P(falseU ϕ) −→ ϕ P(trueU ϕ) −→ P3ϕ

P(ϕW false) −→ P2ϕ P(ϕW true) −→ true

P(falseW ϕ) −→ ϕ P(trueW ϕ) −→ true

We start the transformation of an arbitrary CTL formula ϕ into the set SNFg
CTL(ϕ) with the set

T0 = {A2(start ⇒ p),A2(p ⇒ simp(nnf (ϕ)))}, where p is a new proposition that does not occur in

ϕ. We then construct a sequence T0, T1, . . . , Tn of formulae such that for every i, 0 ≤ i < n, Ti+1 =

(Ti \ {ψ}) ∪ Ri, where ψ is a formula in Ti not in SNFg
CTL and Ri is the result of applying a matching

transformation rule to ψ. Moreover, for every i, 0 ≤ i < n, Ti contains at least one formula not in SNFg
CTL

while all formulae in Tn are in SNFg
CTL. We assume that throughout the transformation formulae are

kept in negation normal form.
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Note that for each rule of Trans containing a proposition p, p represents a new proposition which

does not occur in Ti while we apply the rule to ψ ∈ Ti. Let

• q, q1, q2, q3 be atomic propositions,

• D be a disjunction of literals (possible consisting of a single literal), and

• ϕ,ϕ1 and ϕ2, be CTL formulae.

The definition of the rule set Trans :

• Index introduction rules:

Trans(1) q ⇒ E#ϕ −→ q ⇒ E#ϕ〈ind〉

Trans(2) q ⇒ E ∗ ϕ −→ q ⇒ E ∗ ϕ〈LC(ind)〉 where ∗ ∈ {3,2}.

Trans(3) q ⇒ E(ϕ1 ∗ ϕ2) −→ q ⇒ E(ϕ1 ∗ ϕ2)〈LC(ind)〉 where ∗ ∈ {U , W }.

ind is a new index.

• Boolean rules:

Trans(4) q ⇒ ϕ1 ∧ ϕ2 −→











q ⇒ ϕ1

q ⇒ ϕ2

Trans(5) q ⇒ ϕ1 ∨ ϕ2 −→











q ⇒ ϕ1 ∨ p

p⇒ ϕ2

if ϕ2 is not a literal or a disjunc-

tion of literals.

Trans(6) q ⇒ D −→ true⇒ ¬q ∨D

• Temporal operator rules:

Trans(7) q ⇒ X ∗ ϕ −→











q ⇒ X ∗ p

p⇒ ϕ
if ϕ is not a literal or a disjunc-

tion of literals.

X∗ ∈ {A#,E#〈ind〉}

Trans(8) q ⇒ X ∗ ϕ −→











q ⇒ X ∗ p

p⇒ ϕ
if ϕ is not a literal.

X∗ ∈ {A2,A3,E2〈LC(ind)〉,E3〈LC(ind)〉}

8



Trans(9) q ⇒ X(ϕ1 ∗ ϕ2) −→











q ⇒ X(p ∗ ϕ2)

p⇒ ϕ1

if ϕ1 is not a literal.

X∗ ∈ {AU ,AW ,EU 〈LC(ind)〉,EW 〈LC(ind)〉}

Trans(10) q ⇒ X(ϕ1 ∗ ϕ2) −→











q ⇒ X(ϕ1 ∗ p)

p⇒ ϕ2

if ϕ2 is not a literal.

X∗ ∈ {AU ,AW ,EU 〈LC(ind)〉,EW 〈LC(ind)〉}

Trans(11) q1 ⇒ A2q2 −→











q1 ⇒ q2 ∧ p

p⇒ A#(q2 ∧ p)

Trans(12) q1 ⇒ E2q2〈LC(ind)〉 −→











q1 ⇒ q2 ∧ p

p⇒ E#(q2 ∧ p)〈ind〉

Trans(13) q1 ⇒ A(q2 U q3) −→























q1 ⇒ q3 ∨ (q2 ∧ p)

p⇒ A#(q3 ∨ (q2 ∧ p))

q1 ⇒ A3q3

Trans(14) q1 ⇒ E(q2 U q3)〈LC(ind)〉 −→























q1 ⇒ q3 ∨ (q2 ∧ p)

p⇒ E#(q3 ∨ (q2 ∧ p))〈ind〉

q1 ⇒ E3q3〈LC(ind)〉

Trans(15) q1 ⇒ A(q2W q3) −→











q1 ⇒ q3 ∨ (q2 ∧ p)

p⇒ A#(q3 ∨ (q2 ∧ p))

Trans(16) q1 ⇒ E(q2W q3)〈LC(ind)〉 −→











q1 ⇒ q3 ∨ (q2 ∧ p)

p⇒ E#(q3 ∨ (q2 ∧ p))〈ind〉

Here we provide a proof to show our transformation is terminating, allows only a polynomial bounded

number of rule applications and preserves satisfiability.

We start by showing that the first step of our transformation preserve satisfiability.

Lemma 1 If a set of clauses T is satisfiable in a model M = 〈S,R,L, [ ], s0〉, p is a proposition not

occurring in T and a model M ′ = 〈S,R,L′, [ ], s0〉 is identical to M except that p occurs in L′ with an

arbitrary truth value assignment in each state of M ′, then T is also satisfiable in M ′.

Proof. By the inductive definition of the semantics of SNFg
CTL, the truth value assignments to proposi-
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tions not occurring in T do not influence whether T is satisfiable in a model. Therefore, T is satisfiable

in M ′. ⊓⊔

Lemma 2 A CTL formula ϕ is satisfiable iff the set of formulae {A2(start ⇒ p),A2(p ⇒ ϕ)} is

satisfiable.

Proof. Assume {A2(start⇒ p),A2(p⇒ ϕ)} is satisfiable in a model M = 〈S,R,L, [ ], s0〉 at the state

s0, i.e. M, s0 |= A2(start ⇒ p) ∧A2(p ⇒ ϕ). From the semantics of ⇒,A2,∧, M, s0 |= (start ⇒

p) ∧ (p ⇒ ϕ). From the semantics of ⇒,∧, M, s0 |= start ⇒ ϕ. Because start holds at s0, M, s0 |= ϕ.

Thus, if {A2(start⇒ p),A2(p⇒ ϕ)} is satisfiable, so is ϕ.

Assume ϕ is satisfiable in a model M = 〈S,R,L, [ ], s0〉 at the state s0, i.e. M, s0 |= ϕ. Let M ′ =

〈S,R,L′, [ ], s0〉 be identical to M except that p holds only at s0. From the semantics of start,⇒,A2,

M ′, s0 |= A2(start ⇒ p). From Lemma 1, M ′, s0 |= ϕ. From the semantics of ⇒,A2, M ′, s0 |=

A2(p⇒ ϕ). From the semantics of ∧, M ′, s0 |= A2(start⇒ p) ∧A2(p⇒ ϕ). Thus, if ϕ is satisfiable,

so is {A2(start⇒ p),A2(p⇒ ϕ)}. ⊓⊔

The first transformation rule we consider is the rule Trans(1).

Lemma 3 If a set of clauses T is satisfiable in a model M = 〈S,R,L, [ ], s0〉, the index ind is not in

the set of indices Ind(T ) occurring in T and a model M ′ = 〈S,R,L, [ ]′, s0〉 is identical to M except that

[ind] is an arbitrary function for each state of M ′, then T is also satisfiable in M ′.

Proof. By the inductive definition of the semantics of SNFg
CTL, the successor function [ind] such that

ind 6∈ Ind(T ), does not influence whether T is satisfiable in a model. Therefore, T is satisfiable in M ′.⊓⊔

Lemma 4 If ψ → Ri by an application of Trans(1), then Ti = ∆ ∪ {ψ} is satisfiable iff Ti+1 = ∆ ∪Ri

is satisfiable.

Proof. Let Ind(Ti) be the set of indices occurring in Ti. Let ψ be A2(q ⇒ E#ϕ), then Ri is A2(q ⇒

E#ϕ〈ind〉), where ind 6∈ Ind(Ti).

Assume a model M = 〈S,R,L, [ ], s0〉 satisfies Ti+1 at the state s0 ∈ S, i.e. M, s0 |= ∆ ∧A2(q ⇒

E#ϕ〈ind〉). From the semantics of ∧, M, s0 |= ∆ and M, s0 |= A2(q ⇒ E#ϕ〈ind〉). From the semantics

of A2, M, s0 |= ∆ and for every path χs0
and every state sj ∈ χs0

,M, sj |= q ⇒ E#ϕ〈ind〉. From the

semantics of ⇒,∨ and E#〈ind〉, M, s0 |= ∆ and for every path χs0
and every state sj ∈ χs0

,M, sj |= ¬q

or there exists a state s′ such that (sj , s
′) ∈ [ind] and M, s′ |= ϕ. From the semantics of E#, M, s0 |= ∆

and for every path χs0
and every state sj ∈ χs0

,M, sj |= ¬q or M, sj |= E#ϕ. Therefore, from the

semantics of ∨,⇒,∧,A2, we obtain M, s0 |= ∆ ∧A2(q ⇒ E#ϕ). Thus, if Ti+1 is satisfiable, then so is

Ti.

Next we prove the ‘if’ part. Assume a model M = 〈S,R,L, [ ], s0〉 satisfies Ti at the state s0 ∈ S,

i.e. M, s0 |= ∆ ∧ A2(q ⇒ E#ϕ). We can obtain that M, s0 |= ∆ and for every path χs0
and every
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state sj ∈ χs0
,M, sj |= ¬q or there exists a path χsj

, there exists a state s′ ∈ χsj
such that (sj , s

′) ∈ R

and M, s′ |= ϕ using a similar approach to that in the paragraph above. A model M ′ = 〈S,R,L, [ ]′, s0〉

is identical to M except (sj , s
′) ∈ [ind]. From the semantics of E#〈ind〉, for every path χs0

and every

state sj ∈ χs0
,M ′, sj |= ¬q or M ′, sj |= E#ϕ〈ind〉. From the semantics of ∨,⇒,A2, M ′, s0 |= A2(q ⇒

E#ϕ〈ind〉). Moreover, Lemma 3 shows that M ′, s0 |= ∆. Therefore, from the semantics of ∧, M ′, s0 |=

∆ ∧A2(q ⇒ E#ϕ〈ind〉). Thus, if Ti is satisfiable, then so is Ti+1. ⊓⊔

The next rule we consider is the rule Trans(4).

Lemma 5 If ψ → Ri by an application of Trans(4), then Ti = ∆ ∪ {ψ} is satisfiable iff Ti+1 = ∆ ∪Ri

is satisfiable.

Proof. Assume Ti = ∆∧A2(q ⇒ ϕ1 ∧ϕ2) is satisfiable in a model structure M = 〈S,R,L, [ ], s0〉 at the

state s0 in M . Based on the semantics of the various operators, we have that

〈M, s0〉 |= ∆ ∧A2(q ⇒ ϕ1 ∧ ϕ2)

iff 〈M, s0〉 |= ∆ ∧A2((q ⇒ ϕ1) ∧ (q ⇒ ϕ2))

iff 〈M, s0〉 |= ∆ and for each future path χs0
, for each sj ∈ χs0

, 〈M, sj〉 |= q ⇒ ϕ1 and 〈M, sj〉 |= q ⇒ ϕ2

iff 〈M, s0〉 |= ∆ ∧A2(q ⇒ ϕ1) ∧A2(q ⇒ ϕ2) ⊓⊔

Now the rule we consider is the rule Trans(6), which is not one of the transformation rules that can

be found in [5, 7].

Lemma 6 If ψ → Ri by an application of Trans(6), then Ti = ∆ ∪ {ψ} is satisfiable iff Ti+1 = ∆ ∪Ri

is satisfiable.

Proof. A2(q ⇒ D) is obviously equivalent to A2(true⇒ ¬q∨D) as q ⇒ D is propositionally equivalent

to true⇒ ¬q ∨D. Therefore, Ti is actually equivalent to Ti+1. ⊓⊔

The next rule we consider is the rule Trans(7).

Lemma 7 If ψ → Ri by an application of Trans(7), then Ti = ∆ ∪ {ψ} is satisfiable iff Ti+1 = ∆ ∪Ri

is satisfiable.

Proof. We only prove the lemma for ψ = q ⇒ A#ϕ as the proof for ψ = q ⇒ E#ϕ〈ind〉 is analogous.

We first show the ‘if’ part. Assume Ti+1 is satisfiable in a model structure M = 〈S,R,L, [ ], s0〉,

i.e.〈M, s0〉 |= ∆ ∧A2(q ⇒ A#p) ∧A2(p ⇒ ϕ) iff (a) M, s0 |= ∆ and (b) for each path χs0
, for each

sj ∈ χs0
〈M, sj〉 |= ¬q or for each path χsj

, 〈M, sj+1〉 |= p and (c) for each path χs0
, for each sk ∈ χs0

〈M, sk〉 |= p⇒ ϕ.

According to (b), if q holds at the state sj, then A#p must hold at the state sj and for each path

χsj
, p must hold at the state sj+1 with (sj , sj+1) ∈ R. Furthermore, by (c) we know ϕ must hold at the
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state sj+1 and therefore A#ϕ holds at the state sj and so does q ⇒ A#ϕ. From the semantics of A2

and (a), we obtain 〈M, s0〉 |= ∆ ∧A2(q ⇒ A#ϕ). Therefore, if Ti+1 is satisfiable, so is Ti.

Next, we prove the ‘only if’ part. Assume that Ti is satisfiable in a model structureM = 〈S,R,L, [ ], s0〉

at the state s0, i.e.M, s0 |= ∆ ∧A2(q ⇒ A#ϕ). We define a model structure M ′ to be a model struc-

ture identical to M except that p is true at a state si iff ϕ is true at si. By the definition of M ′, we

have that A2(p ⇔ ϕ) holds in M ′, that is, 〈M ′, s0〉 |= A2(p ⇔ ϕ). Furthermore, as q ⇒ A#ϕ is

true at a state si in M ′ iff q ⇒ A#ϕ is true at si in M , A2(q ⇒ A#ϕ) is satisfiable in M ′, that is,

〈M ′, s0〉 |= A2(q ⇒ A#ϕ). From 〈M ′, s0〉 |= A2(q ⇒ A#ϕ) and the semantics of ⇒, ∨ and A2, for

each future path χs0
, for each state sj ∈ χs0

, 〈M ′, sj〉 |= ¬q or 〈M ′, sj〉 |= A#ϕ. From the semantics

of A#, for each future path χs0
, for each state sj ∈ χs0

, 〈M ′, sj〉 |= ¬q or for each future path χsj
,

〈M ′, sj+1〉 |= ϕ. From 〈M ′, sj+1〉 |= ϕ and 〈M ′, s0〉 |= A2(p ⇔ ϕ), we obtain 〈M ′, sj+1〉 |= p. So, for

each future path χs0
, for each state sj ∈ χs0

, 〈M′, sj〉 |= ¬q or 〈M ′, sj〉 |= A#p. Therefore, from the

semantics of ∨, ⇒ and A2, 〈M ′, s0〉 |= A2(q ⇒ A#p) and from Lemma 1, M ′, s0 |= ∆. Thus, if Ti is

satisfiable, so is Ti+1. ⊓⊔

Lemma 8 If ψ → Ri by an application of Trans(11), then Ti = ∆∪ {ψ} is satisfiable iff Ti+1 = ∆∪Ri

is satisfiable.

Proof. Assume Ti is satisfiable in M = 〈S,R,L, [ ], s0〉 at the state s0, i.e. M, s0 |= ∆∧A2(q1 ⇒ A2q2).

Let M ′ = 〈S,R,L′, [ ], s0〉 be identical to M except that M ′, s |= p iff M ′, s |= A2q2, for every state

s in S. From Lemma 1, M ′, s0 |= ∆ ∧A2(q1 ⇒ A2q2). From the semantics of A2,⇒,∧, we obtain

M ′, s0 |= A2(q1 ⇒ q2 ∧ p) ∧A2(p ⇒ A#(q2 ∧ p)). From the semantics of ∧, M ′, s0 |= ∆ ∧A2(q1 ⇒

q2 ∧ p) ∧A2(p⇒ A#(q2 ∧ p)). We proved that if Ti is satisfiable, so is Ti+1.

Next we prove the ‘if’ part. Assume Ti+1 is satisfiable in M = 〈S,R,L, [ ], s0〉 at the state s0,

i.e. M, s0 |= ∆ ∧ A2(q1 ⇒ q2 ∧ p) ∧ A2(p ⇒ A#(q2 ∧ p)). From the semantics of A2,⇒,A# and

M, s0 |= A2(p ⇒ A#(q2 ∧ p)), we obtain M, s0 |= A2(p ⇒ A2q2). From the semantics of ⇒,A2 and

M, s0 |= A2(q1 ⇒ q2∧p), we obtain M, s0 |= A2(q1 ⇒ A2q2). From the semantics of ∧ and M, s0 |= ∆,

we obtain M, s0 |= ∆ ∧A2(q1 ⇒ A2q2). Thus, if Ti+1 is satisfiable, so is Ti. ⊓⊔

Corollary 1 If Ti+1 is obtained by an application of a transformation rule ψ → Ri, then Ti is satisfiable

iff Ti+1 is satisfiable.

Proof. We have proved that Trans(1, 4, 6, 7, 11) preserve satisfiability in Lemma 4, 5, 6, 7, and 8, respec-

tively.

The proofs for Trans(2, 3) are analogous to Lemma 4; the proof for Trans(5) is analogous to Lemma 5;

the proofs for Trans(8− 10) are analogous to Lemma 7; the proofs for Trans(12− 16) are analogous to

Lemma 8. ⊓⊔
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Theorem 1 Let ϕ be an arbitrary CTL formula and Tn be a set of SNFg
CTL clauses obtained from

T0 = {A2(start ⇒ p),A2(p ⇒ simp(nnf(ϕ)))} by a sequence of applications of our transformation

rules. Then ϕ is satisfiable iff Tn is satisfiable.

Proof. We prove this by induction over the length of the sequence T0, T1, . . . , Tn constructed by a sequence

of applications of the transformation rules.

For the base case, in [13] the author shows the functions simp and nnf preserve equivalence. By

Lemma 2, ϕ is satisfiable iff T0 is satisfiable.

For the induction step, by Corollary 1, Ti is satisfiable iff Ti+1 is satisfiable. Therefore, ϕ is satisfiable

iff Tn is satisfiable. ⊓⊔

Theorem 2 Let ϕ be an arbitrary CTL formula and Tn be a set of SNFg
CTL clauses obtained from

T0 = {A2(start ⇒ p),A2(p ⇒ simp(nnf(ϕ)))} by a sequence of applications of our transformation

rules. Then the set of indices Ind(Tn) occurring in Tn is finite.

Proof. We observe that the number of E path quantifiers in ϕ and T0 is finite and the only three

transformation rules which introduce new indices are Trans(1− 3). Each rule can be applied exactly

once to a particular occurrence of an unindexed E path quantifier. Thus, there exists a one-to-one

mapping between E path quantifiers in T0 and indices in Tn and the set Ind(Tn) is finite. ⊓⊔

Definition 1 [Length of a CTL formula]

The length of a CTL formula ϕ is the number of path quantifiers plus the number of the occurrences of

propositions and constants in ϕ.

Definition 2 [Size of a set of formulae (clauses)]

The size of a set T of formulae (clauses) is the sum of the length of each formula (clause) in T .

Lemma 9 A transformation of an arbitrary CTL formula ϕ into a set Tn of SNFg
CTL clauses can be

done by a linearly bounded number of applications of our transformation rules.

Proof. From the definition of the transformation procedure, a transformation of a CTL formula ϕ into

a set Tn of SNFg
CTL clauses is a sequence T0, T1, . . . , Tn of formulae such that

• T0 = {A2(start⇒ p),A2(p⇒ simp(nnf(ϕ)))}, where p is a new proposition, and

• for every i, 0 ≤ i < n, Ti+1 = (Ti \ ψ) ∪ Ri such that ψ ⇒ Ri by application of one of the

transformation rules and

• for every i, 0 ≤ i < n, Ti contains at least one formula not in SNFg
CTL and all the formulae in Tn

are in SNFg
CTL.
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Let the size of T0 be m.

For Trans(1− 3), each rule can be applied exactly once to a particular occurrence of an unindexed

E path quantifier in T0. Thus, the number of applications of each rule is bounded by m.

Each application of Trans(11) removes one A2 operator at a time and no other rules generate A2

operators. Obviously, the number of applications of Trans(11) is bounded by m. Also the number of

applications of Trans(12− 16) is bounded by m for the same reason.

Next, consider Trans(7). Each application of Trans(7) removes an occurrence of A#ϕ1 or E#ϕ2〈ind〉,

where ϕ1 and ϕ2 are not disjunctions of literals. But this case is different from the above, Trans(11− 16)

generate formulae containing A#ϕ1 or E#ϕ2〈ind〉. Since the number of applications of Trans(11− 16)

is bounded by m, therefore, the number of applications of Trans(7) is bounded by 6m+m = 7m, where

6m is the contribution from Trans(11− 16) and m is the contribution from T0.

The proofs for Trans(4 − 6, 8− 10) are analogous to the proof Trans(7). The number of application

of each rule is bounded by a linear number.

To transform any formula not in SNFg
CTL in T0, T1, . . . , Tn−1, we need to consider all the possible

forms which are not in SNFg
CTL, for example, q ⇒ A2ϕ3, q ⇒ ϕ4∧ϕ5, . . ., where ϕ3, ϕ4, ϕ5 are arbitrary

CTL formulae. The following table shows all the possible forms and the corresponding rules handling

them. (In the table below ψ1, ψ2, . . . , ψn are arbitrary CTL formulae, q is a proposition, and l is a literal.)

The possible form rule

q ⇒ ψ1 ∧ ψ2 ∧ . . . ∧ ψn 4

q ⇒ ψ1 ∨ ψ2 ∨ . . . ∨ ψn 5, 6

q ⇒ (¬)l 6

q ⇒ E#ψ1 1

q ⇒ E3ψ1 2

q ⇒ E2ψ1 2

q ⇒ E(ψ1 U ψ2) 3

q ⇒ E(ψ1W ψ2) 3

q ⇒ A#ψ1 7

The possible form rule

q ⇒ E#ψ1〈ind〉 7

q ⇒ A2ψ1 8, 11

q ⇒ E2ψ1〈LC(ind)〉 8, 12

q ⇒ A3ψ1 8

q ⇒ E3ψ1〈LC(ind)〉 8

q ⇒ A(ψ1 U ψ2) 9, 10, 13

q ⇒ E(ψ1 U ψ2)〈LC(ind)〉 9, 10, 14

q ⇒ A(ψ1W ψ2) 9, 10, 15

q ⇒ E(ψ1W ψ2)〈LC(ind)〉 9, 10, 16

As the table above shows our transformation rules cover all the possibilities and the number of

applications of each rules is bounded by a linear number, the whole transformation to ϕ can be done by

a linear bounded number of applications. ⊓⊔

Corollary 2 Let ϕ be an arbitrary CTL formula and Tn be the set of SNFg
CTL clauses obtained from

T0 = {A2(start⇒ p),A2(p⇒ simp(nnf(ϕ)))} by applications of our transformation rules. Then our

transformation procedure terminates.
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Proof. From Lemma 9, we know the number of applications of our transformation has an upper bound,

then our transformation of an arbitrary CTL formula into a set of SNFg
CTL clauses terminates. ⊓⊔

Theorem 3 Let ϕ0 be an arbitrary CTL formula and Tn be the set of SNFg
CTL clauses obtained from

T0 = {A2(start⇒ p),A2(p⇒ simp(nnf(ϕ0)))} by applications of our transformation rules. Then the

set Tn can be computed in polynomial time.

Proof. We use tree structures for the representation of CTL formulae. Then the cost of Trans(1− 3) is

obviously constant time.

For the rules Trans(4− 16), the proofs are very similar. So we only provide one, namely Trans(7)

as an example. In Trans(7) we first replace ϕ with p, then create the structure “p ⇒” and attach ϕ to

p ⇒. The manipulation of formulae in Trans(7) shows that it is a procedure requiring constant steps.

Similarly, the cost of the rest rules are constant time as well.

However, to determine which rule to be applied, we need to scan the current set of clauses Ti. Suppose

we use BFS method, then the cost is linear time in the size of the current set Ti. From all the rules,

we know for each application transforming from Ti to Ti+1, size of the set grows in a constant number.

Thus, the current set Ti is linear in the size of T0. Then we conclude that each rule application needs

linear time in the size of T0.

From Lemma 9, Tn can be obtained in polynomial time. ⊓⊔

3.3 The clausal resolution calculus R
≻,S
CTL

The resolution calculus R
≻,S
CTL consists of two types of resolution rules, the step resolution rules, SRES1

to SRES8, and the eventuality resolution rules, ERES1 and ERES2, as well as two rewrite rules, RW1

and RW2.

Motivated by refinements of propositional and first-order resolution [4], we restrict the applicability

of step resolution rules by means of an atom ordering and a selection function.

An atom ordering for R
≻,S
CTL is a well-founded and total ordering ≻ on the set PPL. The ordering

≻ is extended to literals by identifying each positive literal p with the singleton multiset {p} and each

negative literal ¬p with the multiset {p, p} and comparing such multisets of atoms by using the multiset

extension of ≻. Doing so, ¬p is greater than p, but smaller than any literal q or ¬q with q ≻ p.

In this section, we assume that conjunctions and disjunctions of propositional literals do not contain

duplicate occurrences of the same literal, that is, the operators ∨ and ∧ are idempotent. We use false to

denote the empty disjunction and true to denote the empty conjunction. A literal l is (strictly) maximal

with respect to a propositional disjunction C iff for every literal l′ in C, l′ 6≻ l (l′ 6� l).

A selection function is a function S mapping every propositional disjunction C to a possibly empty

subset S(C) of the negative literals occurring in C. If l ∈ S(C) for a disjunction C, then we say that l

is selected in C.
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In the following presentation of the rules of R
≻,S
CTL, ind is an index, P and Q are conjunctions of

literals, C and D are disjunctions of literals, and l is a literal. If l is a negative literal ¬p, then ¬l denotes

the atomic proposition p.

SRES1

P ⇒ A#(C ∨ l)

Q⇒ A#(D ∨ ¬l)

P ∧Q⇒ A#(C ∨D)

SRES2

P ⇒ E#(C ∨ l)〈ind〉

Q⇒ A#(D ∨ ¬l)

P ∧Q⇒ E#(C ∨D)〈ind〉

SRES3

P ⇒ E#(C ∨ l)〈ind〉

Q⇒ E#(D ∨ ¬l)〈ind〉

P ∧Q⇒ E#(C ∨D)〈ind〉

SRES4

start⇒ C ∨ l

start⇒ D ∨ ¬l

start⇒ C ∨D

SRES5

true⇒ C ∨ l

start⇒ D ∨ ¬l

start⇒ C ∨D

SRES6

true⇒ C ∨ l

Q⇒ A#(D ∨ ¬l)

Q⇒ A#(C ∨D)

SRES7

true⇒ C ∨ l

Q⇒ E#(D ∨ ¬l)〈ind〉

Q⇒ E#(C ∨D)〈ind〉

SRES8

true⇒ C ∨ l

true⇒ D ∨ ¬l

true⇒ C ∨D

A step resolution rule, SRES1 to SRES8, is only applicable if one of the following two conditions is

satisfied:

(C1) if l is a positive literal, then l must be strictly maximal with respect to C and no literal is selected

in C ∨ l, and ¬l must be selected in D ∨ ¬l or no literal is selected in D ∨ ¬l and ¬l is maximal

with respect to D; or

(C2) if l is a negative literal, then l must be selected in C ∨ l or no literal is selected in C ∨ l and l is

maximal with respect to C, and ¬l must be strictly maximal with respect to D and no literal is

selected in D ∨ ¬l.

Note that these two conditions are identical modulo the polarity of l. If l in C ∨ l and ¬l in D∨¬l satisfy

condition (C1) or condition (C2), then way say that l is eligible in C ∨ l and ¬l is eligible in D ∨ ¬l.
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The rewrite rules RW1 and RW2 are defined as follows:

RW1
∧n

i=1mi ⇒ A#false −→ true⇒
∨n

i=1 ¬mi

RW2
∧n

i=1mi ⇒ E#false〈ind〉 −→ true⇒
∨n

i=1 ¬mi

where n ≥ 1 and each mi, 1 ≤ i ≤ n, is a literal.

The intuition of the eventuality resolution rule ERES1 below is to resolve an eventuality A3¬l, which

states that 3¬l is true on all paths, with a set of SNFg
CTL clauses which together, provided that their

combined left-hand sides were true, imply that 2l holds on (at least) one path.

ERES1

P † ⇒ E#E2l

Q⇒ A3¬l

Q⇒ A(¬(P †)W ¬l)

where P † ⇒ E#E2l represents a set ΛE2 of SNFg
CTL clauses

P 1
1 ⇒ ∗C

1
1 Pn

1 ⇒ ∗C
n
1

...
...

P 1
m1
⇒ ∗C1

m1
· · · Pn

mn
⇒ ∗Cn

mn

with each ∗ either being empty or being an operator in {A#} ∪ {E#〈ind〉 | ind ∈ Ind} and for every i,

1 ≤ i ≤ n,

(
∧mi

j=1 C
i
j)⇒ l (1)

and

(
∧mi

j=1 C
i
j)⇒ (

∨n
i=1

∧mi

j=1 P
i
j ) (2)

are provable. Furthermore, P † =
∨n

i=1

∧mi

j=1 P
i
j .

Conditions (1) and (2) ensure that the set ΛE2 of SNFg
CTL clauses implies P † ⇒ E#E2l.

Note that the conclusion of ERES1 is not stated in normal form. To present the conclusion of ERES1

in normal form, we use a new atomic proposition wA

¬l uniquely associated with the eventuality A3¬l.

Then the conclusion of ERES1 can be represented by the following set of SNFg
CTL clauses:

{wA

¬l ⇒ A#(¬l ∨ ¬(
∧mi

j=1 P
i
j ) | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨ ¬(
∧mi

j=1 P
i
j ) | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨ wA

¬l, w
A

¬l ⇒ A#(¬l ∨ wA

¬l)}.

The use of a proposition wA

¬l uniquely associated with the eventuality A3¬l is important for the ter-

mination of our procedure. If we were to use a new proposition each time we need to transform the

conclusion of an application of ERES1 into normal form, then even the repeated application of ERES1

to the same set of premises would lead to distinct sets of SNFg
CTL clauses as conclusion (which would also
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not be equivalent to each other or subsume each other). This in turn would mean that we could generate

an infinite number of SNFg
CTL clauses during a derivation. In contrast, the use of atomic propositions

uniquely associated with A-eventualities allows us to represent any resolvents by ERES1 using a fixed

set of propositions depending only on the initial set of clauses, i.e., n different A-eventualities in the

initial set of clauses require at most n new atomic propositions to represent resolvents by ERES1.

Similar to ERES1, the intuition underlying the ERES2 rule is to resolve an eventuality E3¬l〈LC(ind)〉,

which states that 3¬l is true on the path given by [LC(ind)], with a set of SNFg
CTL clauses which together,

provided that their combined left-hand sides were true, imply that 2l holds on the same path.

ERES2

P † ⇒ E#(E2l〈LC(ind)〉)〈ind〉

Q⇒ E3¬l〈LC(ind)〉

Q⇒ E(¬(P †)W ¬l)〈LC(ind)〉

where P † ⇒ E#(E2l〈LC(ind)〉)〈ind〉 represents a set Λind

E2
of SNFg

CTL clauses

P 1
1 ⇒ ∗C

1
1 Pn

1 ⇒ ∗C
n
1

...
...

P 1
m1
⇒ ∗C1

m1
· · · Pn

mn
⇒ ∗Cn

mn

with each ∗ either being empty or being an operator in {A#,E#〈ind〉} and for every i, 1 ≤ i ≤ n,

(
∧mi

j=1 C
i
j)⇒ l (3)

and

(
∧mi

j=1 C
i
j)⇒ (

∨n
i=1

∧mi

j=1 P
i
j ) (4)

are provable. Furthermore, P † =
∨n

i=1

∧mi

j=1 P
i
j .

Again, conditions (3) and (4) ensure that the set Λind

E2
of SNFg

CTL clauses implies the formula

P † ⇒ E#(E2l〈LC(ind)〉)〈ind〉.

Also, as for ERES1, the conclusion of ERES2 is not in normal form. This time we use an atomic

proposition wind
¬l uniquely associated with 3¬l〈LC(ind)〉 to represent the resolvent of ERES2 as the

following set of SNFg
CTL clauses:

{wind
¬l ⇒ E#(¬l ∨ ¬(

∧mi

j=1 P
i
j )〈ind〉 | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨ ¬(
∧mi

j=1 P
i
j ) | 1 ≤ i ≤ n}

∪ {true⇒ ¬Q ∨ ¬l ∨ wind
¬l ,

wind
¬l ⇒ E#(¬l ∨wind

¬l )〈ind〉}.

As for ERES1, the use of atomic propositions uniquely associated with E-eventualities allows us to
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represent any resolvents by ERES2 using a fixed set of atomic propositions depending only on the initial

set of clauses.

The expensive part of applying ERES1 and ERES2 is finding sets of step and global clauses which

can serve as premises for these rules, that is, for a given literal l stemming from some eventuality, to find

sets of SNFg
CTL clauses ΛE2, satisfying conditions (1) and (2), and Λind

E2
, satisfying conditions (3) and

(4). Such sets of SNFg
CTL clauses are also called E-loops in l and the formula

∨n
i=1

∧mi

j=1 P
i
j is called a

loop formula. Algorithms to find loops were first presented by Bolotov and Dixon in [6]. They define two

loop search algorithms, called A-loop search algorithm and E-loop search algorithm. An A-loop search

algorithm is not required for our calculus as an E-loop search algorithm is sufficient to find the premises

for both ERES1 and ERES2. Therefore, we only present an E-loop search algorithm here. In Section 5

we will discuss in more detail why an A-loop search algorithm is not required in our setting, while in

Section 4 we present in more detail how the E-loop search algorithm can be implemented.

The E-loop search algorithm makes use of the notion of merged clauses which is inductively defined

as follows. Any global clause, A-step clause, and E-step clause is a merged clause. If A1 ⇒ B1,

A2 ⇒ B2, A3 ⇒ A#B3, A4 ⇒ A#B4, A5 ⇒ E#B5〈ind〉, and A6 ⇒ E#B6〈ind〉 are merged clauses,

then so are (A1 ∧ A2) ⇒ (B1 ∧ B2), (A1 ∧ A4) ⇒ A#(B1 ∧ B4), (A1 ∧ A6) ⇒ E#(B1 ∧B6)〈ind〉,

(A3 ∧A4)⇒ A#(B3 ∧B4), (A3 ∧A6)⇒ E#(B3 ∧B6)〈ind〉, and (A5 ∧A6)⇒ E#(B5 ∧B6)〈ind〉.

E-loop search algorithm:

The algorithm takes as input a literal l, stemming either from an A-sometime clause Q⇒ A3¬l or from

an E-sometime clause Q ⇒ E3¬l〈LC(ind)〉, and a set T of SNFg
CTL clauses among which we search for

premises for the eventuality resolution rules. We assume the set T is saturated by step resolution, that

is, rules SRES1 to SRES8.

The algorithm proceeds as follows:

1. Search in T for all the clauses of the form Xj ⇒ l, Xj ⇒ A#l, and Xj ⇒ E#l〈ind〉. Assuming

there are m0 such clauses, we build the first node as follows:

H0 =
∨m0

j=0Xj

Simplify H0 using boolean simplification. If H0 ≡ true a loop is found, we return true and the

algorithm terminates. If H0 ≡ false (which can only be the case if m0 = 0), then no loop formula

can be found and we return false.

2. Given a node Hi, where i ≥ 0, build the next node Hi+1 by looking in T for merged clauses of the

form Aj ⇒ A#(Bj ∧ l) or Aj ⇒ E#(Bj ∧ l)〈ind〉 such that Bj ⇒ Hi is provable (in propositional
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logic). Assuming there are mi+1 such merged clauses, we build the node Hi+1 as follows:

Hi+1 =
∨mi+1

j=0 Aj

Simplify Hi+1 using boolean simplification.

3. Repeat the previous step until one of the conditions below is provable (in propositional logic).

(a) Hi+1 ≡ true. A loop formula has been found. We return true and the algorithm terminates.

(b) Hi+1 ≡ false (i.e., mi+1 = 0). No loop formula can be found. We return false and the

algorithm terminates.

(c) Hi ≡ Hi+1. A loop formula has been found. We return Hi+1 and the algorithm terminates.

If we try to resolve an E-sometime clause Q⇒ E3¬l〈LC(ind)〉, then the input set T to the E-loop search

algorithm consists of the set of all global and A-step clauses we currently have at our disposal plus all

E-step clauses with index ind . If we try to resolve an A-sometime clause Q ⇒ A3¬l, then the input

set T to the E-loop search algorithm consists of the set of all global, A-step clauses, and E-step clauses.

An important step in the algorithm is the task of “looking for merged clauses”, which is again non-

trivial. We will discuss this problem in more detail in Section 4.

A derivation from a set T of SNFg
CTL clauses by R

≻,S
CTL is a sequence T0, T1, T2, . . . of sets of clauses

such that T = T0 and Ti+1 = Ti ∪ Ri where Ri is a set of clauses obtained as the conclusion of the

application of a resolution rule to premises in Ti. A refutation of T (by R
≻,S
CTL) is a derivation from T

such that for some i ≥ 0, Ti contains a contraction. A derivation T0, . . . , Ti, . . . terminates iff either a

contradiction is derived or there is no set Ri of clauses derivable as the conclusion of an application of a

resolution rule to premises in Ti such that Ri 6⊆ Ti.

3.4 Properties of R
≻,S
CTL

The calculus R
≻,S
CTL is sound and complete. We first show that R

≻,S
CTL is sound.

Theorem 4 (Soundness of R
≻,S
CTL) Let T be a set of SNFg

CTL clauses. If there is a refutation of T by

R
≻,S
CTL, then T is unsatisfiable.

Proof. The soundness of SRES1 to SRES4, ERES1 and ERES2 has been established in [5]. So we only

need to prove the soundness of SRES5 to SRES8, RW1 and RW2.

Let T0, T1, . . . , Tn be a derivation from a set of SNFg
CTL clause T = T0 by the calculus R

≻,S
CTL. We will

show by induction over the length of the derivation that if T0 is satisfiable, then so is Tn.

For T0 = T , the claim obviously holds. Now, consider the step of the derivation in which we derive

Ti+1 from Ti for some i ≥ 0. Assume Ti is satisfiable and M = 〈S,R,L, [ ], s0〉 is a model structure

satisfying Ti.
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Assume A2(true⇒ C∨l) and A2(start⇒ D∨¬l) are in Ti. Let Ti+1 be obtained by an application

of SRES5 to A2(true ⇒ C ∨ l) and A2(start ⇒ D ∨ ¬l), i.e., Ti+1 = Ti ∪ {A2(start ⇒ C ∨ D)}.

We show that M also satisfies Ti+1. Consider an arbitrary state s ∈ S. If s is not s0, then obviously

〈M, s〉 |= start ⇒ C ∨ D because start is false at the state s. Assume the state s is s0. From

〈M, s〉 |= A2(true ⇒ C ∨ l) and 〈M, s〉 |= A2(start ⇒ D ∨ ¬l) and the semantics of A2, we obtain

〈M, s〉 |= true ⇒ C ∨ l and 〈M, s〉 |= start ⇒ D ∨ ¬l. From the semantics of true, ⇒ and start, we

obtain 〈M, s〉 |= C ∨ l and 〈M, s〉 |= D ∨ ¬l. As l and ¬l can not both be true at state s in M , we

conclude 〈M, s〉 |= C ∨D. As s is s0, then from the semantics of start we have 〈M, s〉 |= start⇒ C ∨D.

Since start ⇒ C ∨D holds in s0 and all other states, from the semantics of A2 we conclude 〈M, s〉 |=

A2(start⇒ C ∨D). Thus the model structure M satisfies Ti+1, Ti+1 is satisfiable and SRES5 is sound.

For rules SRES6 to SRES8, the proofs are analogous to that for SRES5.

Regarding RW1, from the semantics of A# and false we obtain that the formula A2(∧n
i=1Qi ⇒

A#false) is true iff A2(∧n
i=1Qi ⇒ false) is true. This formula is propositionally equivalent to A2(∨n

i=1¬Qi)

which in turn, by the semantics of ⇒ and true, is equivalent to A2(true ⇒ ∨n
i=1¬Qi). The proof for

RW2 is similar. ⊓⊔

Now we present the completeness proof for R
≻,S
CTL. First, we give a brief discussion of how our proof

proceeds. We introduce the idea of augmentation, which was originally developed for a resolution cal-

culus for PLTL [16]. Next, we create a finite directed graph, called a labelled behaviour graph, for an

augmented set of SNFg
CTL clauses. To create a CTL model structure for a set T of SNFg

CTL clauses from

a labelled behaviour graph for T , some nodes and some subgraphs of a labelled behaviour graph graph

for T cannot be involved. For instance, a node without any successor nodes in a labelled behaviour graph

cannot be used to construct a CTL model structure, as all paths in a CTL model structure are infinite.

To remove such nodes and subgraphs from a labelled behaviour graph, we define a set of deletion rules.

We call a labelled behaviour graph H a reduced labelled behaviour graph if it is obtained by exhaustively

applying deletion rules to H . We show that an augmented set T of SNFg
CTL clauses is unsatisfiable iff

its reduced labelled behaviour graph is empty. We also prove that each application of a deletion rule

corresponds to a derivation from T by R
≻,S
CTL. Therefore, if T is unsatisfiable, its reduced labelled be-

haviour graph Hred is empty and the sequence of application of the deletion rules, which reduce the

labelled behaviour graph for T to an empty Hred, can be used to construct a refutation in R
≻,S
CTL. In the

following, we show the detailed completeness proof.

Let T be a set of SNFg
CTL clauses obtained by applying the normal form transformation to a given

CTL formula. Recall from Section 3.3 an application of ERES1 or ERES2 to the set T may introduce

new propositions into T , but these propositions are uniquely associated with A3l and E3l〈LC(ind)〉

formulae occurring in T . For our completeness proof it is convenient to assume that certain clauses

21



associated with these new propositions are present in T right from the beginning, i.e. independent of

applications of ERES1 and ERES2. We adapt the augmentation procedure used in [16] for PLTL to

CTL to establish a relation between new atomic proposition introduced by an application of ERES1 or

ERES2 and eventualities associated with them.

Definition 3 [Augmentation]

Given a set of SNFg
CTL clause T , we construct an augmented set Ta as follows: the augmented set Ta is

the smallest set containing T and satisfying the following conditions:

• For every A-sometime clause in T , Q⇒ A3¬l, Ta contains the clauses

true ⇒ ¬Q ∨ ¬l ∨wA

¬l

wA

¬l ⇒ A#(¬l ∨ wA

¬l)

where wA

¬l is a new proposition uniquely associated with A3¬l.

• For every E-sometime clause in T , Q⇒ E3¬l〈LC(ind)〉, Ta contains the clauses

true ⇒ ¬Q ∨ ¬l ∨ wind
¬l ,

wind
¬l ⇒ E#(¬l ∨ wind

¬l )〈ind〉

where wind
¬l is a new proposition uniquely associated with E3l〈LC(ind)〉.

A proof that augmentation preserves satisfiability can be found in [5].

Given a set Ind of indices an ind-labelled graph H is an ordered pair H = (N,E), where N is the set

of nodes and E is the set of edges in H . An edge (n, ind, n′) ∈ E is a directed edge from a node n ∈ N

to a node n′ ∈ N labelled with a label ind ∈ Ind . (When the label on the edge is not important, we also

use (n, n′) to denote an edge, which means the label can be any index in Ind .)

Definition 4 [ind-reachable node in a graph]

Given a set Ind of indices, an ind-labelled graph (N,E), and a node n ∈ N , a node n′ ∈ N is ind-

reachable from n iff there exists an edge (n, ind, n′) ∈ E or there exists an edge (n′′, ind, n′) ∈ E and n′′

is ind-reachable from n.

Definition 5 [reachable node in a graph]

Given a graph (N,E) and a node n ∈ N , a node n′ ∈ N is reachable from n iff there exists an edge

(n, n′) ∈ E or there exists an edge (n′′, n′) ∈ E and n′′ is reachable from n.

Definition 6 [labelled behaviour graph]
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Let T be a set of SNFg
CTL clauses and Ind(T ) be the set of indices occurring in T . If Ind(T ) is empty,

then let Ind(T ) = {ind}, where ind is an arbitrary index in Ind. Given T and Ind(T ), we construct a

finite directed graph H = (N,E), called a labelled behaviour graph for T .

A node n = (V,EA, EE) in H is a triple, where V,EA, EE are constructed as follows. Let V be a

valuation of propositions occurring in T . Let EA be a subset of {l | Q⇒ A3l ∈ T } and EE be a subset

of {l〈LC(ind)〉 | Q ⇒ E3l〈LC(ind)〉 ∈ T }. Informally EA and EE contain eventualities that need to be

satisfied either in the current node or some node reachable from the current node.

To define the set of edges E of H we use the following auxiliary definitions. Let n = (V,EA, EE) be a

node in N . Let RA(n, T ) = {D | Q⇒ A#D ∈ T, and V |= Q}. Note if V does not satisfy the left-hand

side of any A-step clause (i.e. RA(n, T ) = ∅), then there are no constraints from A-step clauses on the

next node of the node n and any valuation satisfies RA(n, T ). Let Rind(n, T ) = {D | Q⇒ E#D〈ind〉 ∈ T

and V |= Q}. Let Rg(T ) = {D | true⇒ D ∈ T }.

Let functions EvA(V, T ) and EvE(V, T ) be defined as EvA(V, T ) = {l | Q ⇒ A3l ∈ T and V |= Q}

and EvE(V, T ) = {l〈LC(ind)〉 | Q⇒ E3l〈LC(ind)〉 ∈ T , and V |= Q}, respectively.

Let functions UnsatA(EA, V ) and Unsatind(EE , V ) be defined as UnsatA(EA, V ) = {l | l ∈ EA and

V 6|= l} and Unsatind(EE , V ) = {l〈LC(ind)〉 | l〈LC(ind)〉 ∈ EE and V 6|= l}, respectively.

Then E contains an edge labelled by ind from a node (V,EA, EE) to a node (V ′, E′
A, E

′
E) iff V ′ satisfies

the set RA(n, T )∪Rind(n, T )∪Rg(T ), E′
A = UnsatA(EA, V )∪ EvA(V ′, T ) and E′

E = Unsatind(EE , V )∪

EvE(V ′, T ).

Let R0(T ) = {D | start ⇒ D ∈ T }. Then the node (V,EA, EE), where V satisfies the set R0(T ) ∪

Rg(T ), EA = EvA(V, T ) and EE = EvE(V, T ), is an initial node of H . The labelled behaviour graph for

an augmented set of SNFg
CTL clauses T is the set of nodes and edges reachable from the initial nodes.

Example 1 [labelled behaviour graph]

For the augmented set of SNFg
CTL clauses below, the labelled behaviour graph is shown in Figure 4.

1. start ⇒ ¬q

2. start ⇒ p

3. true ⇒ p ∨ q

4. p ⇒ A#p

5. q ⇒ E#¬p〈1〉

6. p ⇒ E3q〈LC(2)〉

7. true ⇒ ¬p ∨ q ∨w2
q (added by augmentation)

8. w2
q ⇒ E#(q ∨ w2

q)〈2〉 (added by augmentation)

Definition 7 [Path from a node n to a node n′ through a graph]
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A path from a node n1 to a node nn in a graph is a sequence of nodes n1, n2, . . . , nn such that

(n1, n2), (n2, n3), . . . , (nn−1, nn) are the edges of the graph.

Definition 8 [Shortest path from a node n to a node n′ through a graph]

A shortest path from a node n to a node n′ in a graph is a path from the node n to the node n′ with

the least number of edges amongst all the paths from the node n to the node n′.

Definition 9 [Distance]

Given a graph (N,E), if a node n′ ∈ N is reachable from another node n ∈ N , the distance from n

to n′ is the number of edges in a shortest path from n to n′.

Definition 10 [ind-distance]

Given a graph (N,E), if a node n′ ∈ N is ind-reachable from a node n ∈ N , the ind-distance from

n to n′ is the number of edges in a shortest path such that every edge in it is labelled by ind.

Lemma 10 Let T be an augmented set of SNFg
CTL clauses and let H = (N,E) be the labelled behaviour

graph for T . If H contains an edge from a node n = (V,EA, EE) ∈ N to a node n′ = (V ′, E′
A, E

′
E) ∈ N

such that l ∈ E′
A then either there exists a clause Q⇒ A3l ∈ T such that V ′ |= Q or l ∈ EA and V 6|= l.

Proof. From the construction of the labelled behaviour graph, we knowE′
A = UnsatA(EA, V )∪EvA(V ′, T ).

Therefore, if l ∈ E′
A, then l is from either UnsatA(EA, V ) or EvA(V ′, T ). For the first case, l must be in

EA and V 6|= l. For the latter, there exists a clause Q⇒ A3l ∈ T such that V ′ |= Q. ⊓⊔⊓⊔

Lemma 11 Let T be an augmented set of SNFg
CTL clauses and let H = (N,E) be the labelled behaviour

graph for T . For every node n = (V,EA, EE) in H if l ∈ EA and V 6|= l then V |= wA

l .

Proof. From Lemma 10 if an edge from a node n′ = (V ′, E′
A, E

′
E) to a node n = (V,EA, EE) such that

l ∈ EA exists in H then either there exists a clause Q ⇒ A3l ∈ T such that V |= Q or l ∈ E′
A and
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Figure 4: A labelled behaviour graph
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V ′ 6|= l. Thus, by induction l ∈ EA is originally generated from a node where Q holds. The proof is by

induction on the length of the shortest path from a node n′′ = (V ′′, E′′
A, E

′′
E) such that there exists a

clause Q⇒ A3l ∈ T and V ′′ |= Q to the node n.

In the base case the length is zero, i.e. n = n′′ and therefore V |= Q and by construction we obtain

l ∈ EA. By augmentation we know true ⇒ ¬Q ∨ l ∨ wA

l ∈ T . By assumption l ∈ EA and V 6|= l, hence

V |= wA

l .

Otherwise assume the lemma holds for nodes n′ such that the distance from a node n′′, where V ′′ |= Q,

to the node n′ is m and we prove it holds for those n = (V,EA, EE) with (n′, ind, n) ∈ E, ind ∈ Ind(T ).

By assumption l ∈ EA and V 6|= l. From the inductive hypothesis we have V ′ |= wA

l . By augmentation

we have wA

l ⇒ A#(wA

l ∨ l) ∈ T . Thus by construction we have V |= wA

l . ⊓⊔⊓⊔

Lemma 12 Let T be an augmented set of SNFg
CTL clauses and let H = (N,E) be the labelled behaviour

graph for T . If H contains an edge from a node n = (V,EA, EE) ∈ N to a node n′ = (V ′, E′
A, E

′
E) ∈ N

such that l〈LC(ind)〉 ∈ E
′
E then either there exists a clause Q ⇒ E3l〈LC(ind)〉 ∈ T such that V ′ |= Q or

l〈LC(ind)〉 ∈ EE and V 6|= l.

Proof. From the construction of the labelled behaviour graph, we know that E′
E = Unsatind(EE , V ) ∪

EvE(V ′, T ). Therefore, if l〈LC(ind)〉 ∈ E
′
E , then l〈LC(ind)〉 is from either Unsatind(EE , V ) or EvE(V ′, T ).

For the first case, l〈LC(ind)〉 must be in EE and V 6|= l. For the latter, there exists a clause Q ⇒

E3l〈LC(ind)〉 ∈ T and V ′ |= Q. ⊓⊔⊓⊔

Lemma 13 Let T be an augmented set of SNFg
CTL clauses and H = (N,E) be the labelled behaviour

graph for T . If for every node n = (V,EA, EE) in H such that l〈LC(ind)〉 ∈ EE and V 6|= l then V |= wind
l .

Proof. The proof proceeds in analogy of the proof of Lemma 11 and uses the fact that T contains the

clause wind
l ⇒ E#(wind

l ∨ l)〈ind〉. ⊓⊔⊓⊔

Lemma 14 Let T be an augmented set of SNFg
CTL clauses and let T ′ be a set of SNFg

CTL clauses

obtained from T by adding any combination of initial, A-step, E-step or global clauses which only involve

propositions and indices occurring in T . Then the labelled behaviour graph H ′ = (N ′, E′) of T ′ is a

subgraph of the labelled behaviour graph H = (N,E) of T .

Proof. This is established by induction on the length of the shortest path from an initial node to a node

in H ′. For the base case, where the length of the path is zero, we show that any initial node in H ′ is an

initial node in H .

As T ′ has been constructed by adding an combination of initial, A-step , E-step and global clauses

to T , we have R0(T ) ⊆ R0(T
′) and Rg(T ) ⊆ Rg(T

′). Take any initial node n0 = (V0, EA0
, EE0

) in H ′.

By Definition 6, V0 must satisfy R0(T
′) ∪ Rg(T

′). As R0(T ) ⊆ R0(T
′) and Rg(T ) ⊆ Rg(T

′) then V0
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must also satisfy R0(T ) ∪Rg(T ). As the set of A- and E-sometime clauses in T and T ′ is the same. V0

satisfies the left hand side of the same A- and E-sometime clauses in T and T ′ the sets EA0
and EE0

will be the same in both graphs. By Definition 6 n0 is also an initial node in H .

Next we assume that every node ni = (Vi, EAi
, EEi

), where the length of the shortest path in H ′

from an initial node to ni is m, is in H . We show that every node ni+1 = (Vi+1, EAi+1
, EEi+1

) in H ′

with an incoming edge (ni, ind, ni+1) ∈ E′, ind ∈ Ind(T ) is also in H .

Vi+1 satisfiesRA(ni, T
′)∪Rind(ni, T

′). Thus Vi+1 also satisfiesRA(ni, T )∪Rind(ni, T ), asRA(ni, T ) ⊆

RA(ni, T
′) and Rind(ni, T ) ⊆ Rind(ni, T

′). As we have already proved that Rg(T ) ⊆ Rg(T
′), so Vi+1

must also satisfy Rg(T ) as well. Furthermore as no change has been made to any A- or E-sometime

clause in T , every eventuality outstanding from ni or triggered by ni+1 will be the same in both graphs.

Thus ni+1 is also present in H as is the edge (ni, ind, ni+1).

The proof that all the edges in H ′ are also in H is analogous to the proof above for nodes.

Therefore, N ′ ⊆ N,E′ ⊆ E and H ′ ⊆ H . ⊓⊔⊓⊔

Definition 11 [Terminal node]

A node n in a labelled behaviour graph for T is a terminal node iff there exists an index ind ∈ Ind(T )

such that no edges labelled with ind depart from n.

Note that in the labelled behaviour graph shown in Figure 4, the two nodes on the right-hand side

of the graph are terminal nodes as they do not have any outgoing edges labelled with the index 1.

Definition 12 [ind-labelled terminal subgraph for l〈LC(ind)〉]

For a labelled behaviour graph (N,E) for T , a subgraph (N ′, E′) is an ind-labelled terminal subgraph

for l〈LC(ind)〉 of (N,E) iff

(ITS1) N ′ ⊆ N and E′ ⊆ E;

(ITS2) for all nodes n, n′ ∈ N and edges (n, ind′, n′) ∈ E, n′ ∈ N ′ and

(n, ind′, n′) ∈ E′ iff n ∈ N ′ and ind = ind′; and

(ITS3) for every node n = (V,EA, EE) ∈ N ′, l〈LC(ind)〉 ∈ EE and V |= ¬l.

Definition 13 [Terminal subgraph for l]

For a labelled behaviour graph (N,E) for T , a subgraph (N ′, E′) is a terminal subgraph for l of (N,E)

iff

(TS1) N ′ ⊆ N and E′ ⊆ E;
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(TS2) for every node n ∈ N ′ there exists some index ind ∈ Ind(T ) such that for all edges

(n, ind, n′) ∈ E, n′ ∈ N ′ and (n, ind, n′) ∈ E′; and

(TS3) for every node n = (V,EA, EE) ∈ N ′, l ∈ EA and V |= ¬l.

Figure 5 and Figure 6 show examples of an ind-labelled terminal subgraph for q〈LC(2)〉 and a terminal

subgraph for q, respectively. (In both cases we assume the set of indices in the clause set for these labelled

behaviour graphs is {1, 2}.)

Lemma 15 Given a labelled behaviour graph H = (N,E) and a node n = (V,EA, EE) ∈ N , if, for every

eventuality l〈LC(ind)〉 ∈ EE, l〈LC(ind)〉 can be satisfied in n or in some node ind-reachable from n, then

n is not in any ind-labelled terminal subgraph H ′ = (N ′, E′) for l〈LC(ind)〉 of H.

Proof. Let H ′ = (N ′, E′) be an arbitrary ind-labelled terminal subgraph for some arbitrary eventuality

l〈LC(ind)〉 of H . Proving this lemma is equivalent to proving that if n ∈ N ′, then l〈LC(ind)〉 cannot be

satisfied in n nor in any nodes ind-reachable from n in H . Assume that n ∈ N ′. According to property

(ITS2), all nodes which are ind-reachable from n are also in N ′. By property (ITS3), for every node

n′ = (V ′, E′
A, E

′
E) ∈ N ′, l〈LC(ind)〉 ∈ E′

E and l is not satisfied in n′. Therefore, l〈LC(ind)〉 cannot be

satisfied in n nor in any node ind-reachable from n in H . ⊓⊔⊓⊔

Definition 14 [Reduced labelled behaviour graph]

Given a labelled behaviour graph H = (N,E) for an augmented set of SNFg
CTL clauses T , the reduced

labelled behaviour graph Hred for T is the result of exhaustively applying the following deletion rules to

H .

1. If n ∈ N is a terminal node with respect to an index in Ind(T ), then delete n and every edge into

or out of n.

2. If there is an ind-labelled terminal graph (N ′, E′) of H such that ind ∈ Ind(T ), then delete every

node n ∈ N ′ and every edge into or out of nodes in N ′.
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Figure 5: A 2-labelled terminal subgraph for q〈LC(2)〉
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3. If there is a terminal graph (N ′, E′) of H with respect to some indices in Ind(T ), then delete every

node n ∈ N ′ and every edge into or out of nodes in N ′.

Lemma 16 An augmented set of SNFg
CTL clauses T is unsatisfiable if and only if its reduced labelled

behaviour graph H is empty.

Proof. We start by showing the ‘if’ part. If T is satisfiable, then it has a CTL model structure M =

〈S,R,L, [ ], s0〉. We construct a labelled behaviour graph H = (N,E) for T and inductively define a

mapping h from M to H . Let PT be the set of atomic propositions occurring in T . As the CTL model

structure M satisfies the clause set T , L(s0) must satisfy R0(T )∪Rg(T ), which means there must be an

initial node n0 = (V0, EA0
, EE0

) in H , where V0 = L(s0)∩PT , EA0
= EvA(V0, T ) and EE0

= EvE(V0, T ),

and we define h(s0) = n0.

Next, we assume that h(si) = ni = (Vi, EAi
, EEi

) is in H and (si, si+1) ∈ [ind]. As the CTL model

structure M satisfies T , L(si+1) must satisfy RA(ni, T ) ∪Rind(ni, T ) ∪Rg(T ), which means there must

be a node ni+1 = (Vi+1, EAi+1
, EEi+1

) in H , where Vi+1 = L(si+1) ∩ PT , EAi+1
= EvA(Vi+1, T ) ∪

UnsatA(EAi
, Vi), EEi+1

= EvE(Vi+1, T ) ∪ Unsatind(EEi
, Vi), and we define h(si+1) = ni+1. By the

construction of the behaviour graph, the edge (h(si), ind, h(si+1)) is in H . Therefore, for every state

s ∈ S, the node h(s) is in H and for every pair (si, si+1) ∈ R, i > 0, the edge (h(si), h(si+1)) is in H .

We define NM as the set {h(s) | s ∈ S} and EM as the set {(h(si), ind, h(si+1)) | (si, si+1) ∈

[ind], ind ∈ Ind(T ), si, si+1 ∈ S}. It is obvious that NM ⊆ N and EM ⊆ E. We define the subgraph

HM of H to be (NM , EM ). Although a CTL model structure is infinite, H and HM are finite graphs

because the number of nodes in H and HM is bounded by 2np

× 2nA

× 2nE

, where np, nA and nE are

the numbers of atomic propositions, A-eventualities and E-eventualities in T , respectively.

We will show that neither of the deletion rules given in Definition 14 is applicable to HM . Since

every state s in a CTL model structure has successors and in particular an ind-successor for each index

ind ∈ Ind(T ), by the construction of HM , deletion rule (1) is not applicable to HM .

To prove that deletion rule (2) is not applicable to HM , we need first to show that for every node

h(s) = n = (V,EA, EE) in HM , if l ∈ EA, then M, s |= A3l. The proof can be done by induction on a

1,2
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Figure 6: A terminal subgraph for q
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path χsi
= si, si+1, si+2, . . . in M such that there exists a clause A2(Q⇒ A3l) ∈ T with M, si |= Q.

For the base case, we have h(si) = ni = (Vi, EAi
, EEi

), l ∈ EAi
, A2(Q⇒ A3l) ∈ T , and M, si |= Q.

By the semantics of ⇒ and A2, we obtain M, si |= A3l.

For the induction step, we have the hypothesis that h(si+j) = ni+j = (Vi+1, EAi+j
, EEi+j

), l ∈ EAi+j

and M, si+j |= A3l. By the equivalence A3l ≡ l ∨ A#A3l shown in [13], we obtain M, si+j |=

l ∨ A#A3l. For the node h(si+j+1) = ni+j+1 = (Vi+j+1, EAi+j+1
, EEi+j+1

), we know l ∈ EAi+j+1
=

EvA(Vi+j+1 , T ) ∪ UnsatA(EAi+j
, Vi+j). If l is from EvA(Vi+j+1 , T ), then there must exist a clause

A2(Q′ ⇒ A3l) ∈ T and Vi+j+1 |= Q′. By the definition of the mapping h, M, si+j+1 |= Q′. Therefore,

by the semantics of ⇒ and A2, M, si+j+1 |= A3l. Otherwise l must be from UnsatA(EAi+j
, Vi+j). By

the definition of the function UnsatA, Vi+j |= ¬l. By the mapping h, M, si+j |= ¬l. Therefore, by the

semantics of ∨,A# and (si+j , si+j+1) ∈ R, we obtain M, si+j+1 |= A3l.

The proof that for every node h(s) = n = (V,EA, EE) in HM , if l〈LC(ind)〉 ∈ EE , then M, s |=

E3l〈LC(ind)〉 can be done in analogy.

Assume node n = (V,EA, EE) is in an ind-labelled terminal subgraph for l〈LC(ind)〉 ofH and h(s) = n.

By Definition 12, we know l〈LC(ind)〉 ∈ EE . So M, s |= E3l〈LC(ind)〉. By Lemma 15, l does not hold on

any the possible paths labelled with ind departing from n. By our mapping h, l does not hold on the

actual path M used. Therefore, we have M, s 6|= E3l〈LC(ind)〉. That is a contradiction implying that

there are no nodes in an ind-labelled terminal subgraph for l〈LC(ind)〉 of H and deletion rule (2) is not

applicable to HM .

The proof for deletion rule (3) is analogous to the proof for deletion rule (2) and deletion rule (3) is

also not applicable to HM . As HM is a subgraph of H and no deletion rules are applicable to HM , the

labelled behaviour graph H for T cannot be reduced to an empty graph.

We now show the ‘only if’ part. Assume that the reduced labelled behaviour graph H = (N,E) of

T is non-empty, then we show how to construct a CTL model structure M = 〈S,R,L, [ ], s0〉 from H

satisfying T .

First we define some additional notation that will be used later.

Let M = 〈S,R,L, [ ], s0〉 be a CTL model structure.

• By P (s0, ind) we denote a path in M consisting of an infinite sequence s0, s1, s2, . . . of states such

that s0, s1, s2, . . . ∈ S and for every i ≥ 0, (si, si+1) ∈ [ind], and ind ∈ Ind(T ). Alternatively, we

view P (s0, ind) as an infinite sequence (s0, s1), (s1, s2), . . . of pairs of states.

• By P (s0, ∗) we denote a path in M consisting of an infinite sequence s0, s1, s2, . . . of states such

that s0, s1, s2, . . . ∈ S, and for every i ≥ 0, (si, si+1) ∈ R. Alternatively, we view P (s0, ∗) as an

infinite sequence (s0, s1), (s1, s2), . . . of pairs of states.

• By RP (sn) we denote a reverse path consisting of a finite sequence sn, sn−1, . . . , s0 of states such
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that sn, sn−1, . . . , s0 ∈ S, s0 is the root of M , and for every i, 0 ≤ i ≤ n− 1, (si, si+1) ∈ R.

To construct a CTL model structure M = 〈S,R,L, [ ], s0〉 from a reduced labelled behaviour graph

H = (N,E), if n = (V,EA, EE) ∈ N , let the function cs(n) return a state s such that L(s) = V .

In addition, we introduce several properties of M which are necessary and sufficient for M to satisfy

T .

(P1) L(s0) must satisfy R0(T ) ∪Rg(T ).

(P2) Every pair (si, si+1) ∈ R must satisfy the set of A-step, E-step and global clauses in T , that is

• L(si) and L(si+1) satisfy Rg(T );

• for every A-step clause P ⇒ A#Q ∈ T if L(si) satisfies P , then L(si+1) must satisfy Q;

• for every E-step clause P ⇒ E#Q〈ind〉 ∈ T if L(si) satisfies P and (si, si+1) ∈ [ind], then

L(si+1) must satisfy Q.

(P3) For every E-sometime clause P ⇒ E3l〈LC(ind)〉 ∈ T and every state s ∈ S, if M, s |= P , then the

path P (s, ind) must contain a state s′ ∈ S such that l ∈ L(s′).

(P4) For every A-sometime clause P ⇒ A3l ∈ T and every state s ∈ S, if M, s |= P , then every path

P (s, ∗) must contain a state s′ ∈ S such that l ∈ L(s′).

Now we inductively define the construction of a CTL model structure from a reduced labelled be-

haviour graph H and a mapping h from M to H .

The state s0 of M is given by s0 = cs(n0), where n0 is an arbitrary initial node in H , and we define

h(s0) = n0. By the construction of H , property (P1) holds for s0.

Suppose we have constructed the state si for M and RP (si) = si, si−1, . . . , s0. Then our task is

to choose for each index ind ∈ Ind(T ) a pair (si, si+1) ∈ [ind] for M . Assume h(si) = n and n has k

ind-successors {n1, n2, . . . , nk} (k > 0 as otherwise n would be a terminal node in H). Let SRP be a set

{sj | sj−1, sj ∈ RP (si), h(sj−1) = n, h(sj) ∈ {n1, n2, . . . , nk} and (sj−1, sj) ∈ [ind]}.

• if the set SRP is empty, then si+1 = cs(n1);

• else, let s ∈ SSP be the state such that the distance between si and s is the shortest among all the

distances between si and a state in SRP and h(s) = nm ∈ {n1, n2, . . . , nk}, 1 6 m 6 k, then

– si+1 = cs(nm+1), if m 6= k;

– si+1 = cs(n1), if m = k.
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By this algorithm, for an arbitrary path χs0
, if a node n is infinitely often used to construct states

s ∈ χs0
and the index ind is infinitely often used to construct the next states of s on χs0

, then ind-

successors of the node n are fairly chosen. This construction ensures that all eventualities will be satisfied

in M .

Following the instructions we provided and using a breadth-first order for the construction, from the

state s0, a CTL model structure M is constructed from H . By the construction of M and H , property

(P2) holds for M .

Now we prove the model structure M we constructed satisfies property (P3).

Assume the clause P ⇒ E3l〈LC(ind)〉 ∈ T and let s be an arbitrary state in S such that M, s |= P . We

need to show that the path P (s, ind) contains a state s′ such that l ∈ L(s′). Assume l does not hold on

P (s, ind), i.e. l 6∈ L(s′) for any state s′ ∈ P (s, ind). We know the path P (s, ind) is an infinite sequence,

whereas the set of nodes in H is finite, which implies that there are nodes {nt
1, n

t
2, . . . , n

t
k} ∈ H, k > 1 are

used infinitely often to construct the path P (s, ind). Then for 1 6 i 6 k, nt
i = (V t

i , EA
t
i, EE

t
i) and by our

assumption, V t
i |= ¬l and l〈LC(ind)〉 ∈ EE

t
i. By the way we construct M , we use all the ind-successors

of each node in {nt
1, n

t
2, . . . , n

t
k}. Thus, the set of nodes {nt

1, n
t
2, . . . , n

t
k} in H and all the ind-labelled

edges departing from those nodes form an ind-labelled terminal subgraph for l〈LC(ind)〉 of H . However,

H is a reduced labelled behaviour graph, so no ind-labelled terminal subgraph exists in H . We obtain

a contradiction. Therefore, l must hold on some state of the path P (s, ind) and property (P3) holds for

M .

The proof that property (P4) holds for M is analogous to the proof that property (P3) holds for

M . ⊓⊔⊓⊔

Lemma 17 If a set of initial and global clauses is unsatisfiable then there is a refutation using only step

resolution rules.

Proof. If a set T of initial and global clauses is unsatisfiable, then the set T ′ = {D | true ⇒ D ∈ T or

start⇒ D ∈ T } is unsatisfiable by the semantics of A2 and start.

The set T ′ only consists of propositional clauses. Therefore, it has a refutation by propositional

ordered resolution with selection using the same ordering and selection function as for R
≻,S
CTL. Then, we

can use step resolution rules SRES4, SRES5, and SRES8 on this set T to derive an empty clause, namely

either start⇒ false or true⇒ false. ⊓⊔⊓⊔

Lemma 18 If the unreduced labelled behaviour graph for an augmented set of SNFg
CTL clauses T is

empty then a contradiction can be obtained by applying step resolution rules to clauses in or derived from

T .

Proof. If the unreduced labelled behaviour graph is empty then from the definition of labelled behaviour

graph, there are no initial nodes, which means there does not exist a valuation V such that the right-
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hand sides of all initial and global clauses of T are true under V . Thus, the subset of T containing all

initial and global clauses in T is unsatisfiable and by Lemma 17 there exists a refutation of T using step

resolution rules SRES4, SRES5, and SRES8. ⊓⊔⊓⊔

Theorem 5 (Completeness of R
≻,S
CTL) If a set T of SNFg

CTL clauses is unsatisfiable, then T has a

refutation using the resolution rules SRES1 to SRES8, ERES1 and ERES2 and the rewrite rules RW1

and RW2.

Proof. Let T be an unsatisfiable set of SNFg
CTL clauses. The proof proceeds by induction on the sequence

of applications of the deletion rules to the labelled behaviour graph of T . If the unreduced labelled

behaviour graph is empty then by Lemma 18 we can obtain a refutation by applying step resolution

rules SRES4, SRES5 and SRES8.

Now suppose the labelled behaviour graph H is non-empty. The reduced labelled behaviour graph

must be empty by Lemma 16, so there must be a node that can be deleted from H .

Suppose there is a node n which would be subject to the first deletion rule in Definition 14. Then

n is a terminal node n = (V,EA, EE). Consider W = {D | P ⇒ A#D ∈ T and V |= P} ∪ {D′ | P ′ ⇒

E#D′
〈ind〉 ∈ T, ind ∈ Ind(T ), and V |= P ′} ∪ {D′′ | true ⇒ D′′ ∈ T }, where P, P ′′ are conjunctions of

literals whereas D,D′, D′′ are disjunctions of literals. By Definition 6, W must be unsatisfiable.

Given that W is a set of propositional clauses, it has a refutation by propositional ordered resolution

with selection using the same ordering and selection function as for R
≻,S
CTL. We prove that a clause

true ⇒ false, Q ⇒ A#false or Q ⇒ E#false〈ind〉, ind ∈ Ind(T ), where Q is a conjunction of literals

and satisfied by V , can be derived from T by SRES1 to SRES3 and SRES6 to SRES8. The proof

proceeds by induction over the length of the propositional refutation of W . In particular, given a

refutation N0, N1, . . . , Nn of W such that N0 = W and for every i, 1 6 i 6 n,Ni = Ni−1 ∪ {Ci}, where

Ci is a propositional clause derived from Ni−1 and Cn = false. We show that there exists a derivation

N ′
0, N

′
1, . . . , N

′
n such that N ′

0 = {P ⇒ A#D ∈ T and V |= P} ∪ {P ′ ⇒ E#D′
〈ind〉 ∈ T, ind ∈ Ind(T ),

and V |= P ′} ∪ {true ⇒ D′′ ∈ T } and for every i, 1 6 i 6 n,N ′
i = N ′

i−1 ∪ {C
′
i}, where C′

i is either

true ⇒ Ci, Pi ⇒ A#Ci with V |= Pi or Pi ⇒ E#Ci〈ind〉, ind ∈ Ind(T ) with V |= Pi. C′
n is either

true⇒ false, Pn ⇒ A#false or Pn ⇒ E#false〈ind〉, ind ∈ Ind(T ) with V |= Pn.

We prove the base case first. For the refutation ofW , ifN1 = W∪{C1}, then we showN ′
1 = N ′

0∪{C
′
1},

where C′
1 is the form of true ⇒ C1, P1 ⇒ A#C1 with V |= P1 or P1 ⇒ E#C1〈ind〉, ind ∈ Ind(T ) with

V |= P1 and derived by an application of one of the resolution rules SRES1 to SRES3 and SRES6 to

SRES8) from N ′
0. Suppose C1 = C2 ∨ C3 is derived from two clauses C2 ∨ l and C3 ∨ ¬l, then by

the construction of W we are able to find a clause G = P0 ⇒ A#(C2 ∨ l), P0 ⇒ E#(C2 ∨ l)〈ind〉 or

true ⇒ C2 ∨ l and G′ = P0 ⇒ A#(C3 ∨ ¬l), P0 ⇒ E#(C3 ∨ ¬l)〈ind〉 or true ⇒ C3 ∨ ¬l in N ′
0. Note

that if G and G′ are both E-step clauses, then the indices ind in them are identical. Depending on the

form of G and G′ we can distinguish the following cases.
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From G = P0 ⇒ A#C2 ∨ l

and G′ = P ′
0 ⇒ A#C3 ∨ ¬l

we can derive C′
1 = P0 ∧ P ′

0 ⇒ A#C2 ∨C3 by SRES1

From G = P0 ⇒ E#C2 ∨ l〈ind〉

and G′ = P ′
0 ⇒ A#C3 ∨ ¬l

we can derive C′
1 = P0 ∧ P ′

0 ⇒ E#C2 ∨ C3〈ind〉 by SRES2

From G = P0 ⇒ A#C2 ∨ l

and G′ = P ′
0 ⇒ E#C3 ∨ ¬l〈ind〉

we can derive C′
1 = P0 ∧ P ′

0 ⇒ E#C2 ∨ C3〈ind〉 by SRES2

From G = P0 ⇒ E#C2 ∨ l〈ind〉

and G′ = P ′
0 ⇒ E#C3 ∨ ¬l〈ind〉

we can derive C′
1 = P0 ∧ P ′

0 ⇒ E#C2 ∨ C3〈ind〉 by SRES3

From G = true⇒ C2 ∨ l

and G′ = P ′
0 ⇒ A#C3 ∨ ¬l

we can derive C′
1 = P ′

0 ⇒ A#C2 ∨C3 by SRES6

From G = P0 ⇒ A#C2 ∨ l

and G′ = true⇒ C3 ∨ ¬l

we can derive C′
1 = P0 ⇒ A#C2 ∨C3 by SRES6

From G = true⇒ C2 ∨ l

and G′ = P ′
0 ⇒ E#C3 ∨ ¬l〈ind〉

we can derive C′
1 = P ′

0 ⇒ E#C2 ∨ C3〈ind〉 by SRES7

From G = P0 ⇒ E#C2 ∨ l〈ind〉

and G′ = true⇒ C3 ∨ ¬l

we can derive C′
1 = P0 ⇒ E#C2 ∨ C3〈ind〉 by SRES7

From G = true⇒ C2 ∨ l

and G′ = true⇒ C3 ∨ ¬l

we can derive C′
1 = true⇒ C2 ∨ C3 by SRES8

where l is eligible in C2 ∨ l and ¬l is eligible in C3 ∨ ¬l for a given atom ordering and a given selection
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function S of R
≻,S
CTL as otherwise we would not have been able to derive C1 = C2∨C3 on the propositional

level using ordered resolution with selection given the ordering ≻ and the selection function S.

Because C1 = C2∨C3, C
′
1 is one of the clauses P0∧P ′

0 ⇒ A#C1, P0∧P ′
0 ⇒ E#C1〈ind〉, P0 ⇒ A#C1,

P ′
0 ⇒ A#C1, P0 ⇒ E#C1〈ind〉, P

′
0 ⇒ E#C1〈ind〉, or true⇒ C2 ∨C3. It is easy to see that since V |= P0

and V |= P ′
0, we have V |= P1. Further, in our cases above (SRES1 to SRES3 and SRES6 to SRES8)

cover all the possibilities to derive C′
1. Thus, if there exists a derived clause C1, then C′

1 can derived by

R
≻,S
CTL.

Next we prove the induction step. For the refutation N0, N1, . . . , Ni, Ni+1, . . . , Nn of W , if Ni+1 =

Ni ∪ Ci, then we show that N ′
i+1 = N ′

i ∪ {C
′
i}, where C′

i is the form of true ⇒ Ci, Pi ⇒ A#Ci with

V |= Pi or Pi ⇒ E#Ci〈ind〉, ind ∈ Ind(T ) with V |= Pi and derived by an application of one of the

resolution rules SRES1 to SRES3 and SRES6 to SRES8 from N ′
i . The proof proceeds in analogy to the

base case.

Thus, we have shown that we can derive a clause C′
n = Pn ⇒ A#false, Pn ⇒ E#false〈ind〉 or

true⇒ false from T . From Pn ⇒ A#false or Pn ⇒ E#false〈ind〉 we can obtain the clause true⇒ ¬Pn

in normal form using RW1 or RW2.

By Lemma 14, the labelled behaviour graph H ′ for N ′
n is a subgraph of H . In particular, every node

in H ′ has to satisfy ¬Pn or false. Obviously, the node n ∈ N does not satisfy this global clause and is

thus not a node in H ′.

Suppose the second (or third) deletion rule in Definition 14 is applicable to H . Then there must

exist an eventuality l〈LC(ind)〉 (or l), where l〈LC(ind)〉 (or l) is not satisfied in an ind-labelled terminal

subgraph for l〈LC(ind)〉 (or a terminal subgraph for l) of nodes ind-reachable (or reachable). We have

two cases depending on the type of terminal subgraphs:

• ind-labelled terminal subgraph for l〈LC(ind)〉. Let Q ⇒ E3l〈LC(ind)〉 be a clause in T and

H ′ = (N ′, E′) be an ind-labelled terminal subgraph for l〈LC(ind)〉 of the behaviour graph H . For

each n = (V,EA, EE) ∈ N ′, let F ⇒ E#G〈ind〉 be the conjunction of all global, A-step, E-step

clauses labelled with ind in T whose left-hand sides are satisfied by V . To show this is a loop in

¬l, we must check the following two conditions.

– For each n ∈ N ′, we must have |= G ⇒ ¬l. By Definition 6 every valuation V ′ satisfying G

must be a valuation of an ind-successor of the node n. By property (ITS2), all ind-successors

are in H ′. By property (ITS3), for every ind-successor n′ = (V ′, E′
A, E

′
E) of the node n,

V ′ |= ¬l, which implies |= G⇒ ¬l. As n is arbitrary, for all n ∈ N ′, we have |= G⇒ ¬l.

– For each n ∈ N ′ we must have |= G ⇒
∨

n∈N ′ F . Let {n1, n2, . . . , nk}, k > 1 be the set of

ind-successors of the node n. Let Fi ⇒ E#Gi〈ind〉 be the conjunction of all global, A-step

and E-step clauses labelled with ind in T whose left-hand sides are satisfied by Vi, where Vi
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is the valuation of the ind-successor ni = (Vi, EAi
, EEi

) of n. By Definition 6 every valuation

V ′ satisfying G must be a valuation of an ind-successor of the node n. Thus, for every

i, 1 6 i 6 k, Vi |= G. Since Vi |= Fi, we have Vi |= G ⇒ Fi. For all the valuation Vi,

|= G ⇒ F1 ∨ F2 ∨ . . . ∨ Fk. By property (ITS2), all ind-successors of n are in H ′, we have

{n1, n2, . . . , nk} ⊆ N ′ and |= G ⇒
∨

n∈N ′ F . As n is arbitrary, for all n ∈ N ′, we have

|= G⇒
∨

n∈N ′ F .

By the correctness of the loop search algorithm for CTL [6], we are able to use the set of conjunctions

of F ⇒ E#G〈ind〉 in an application of ERES2 with the eventuality l〈LC(ind)〉 occurring in Q ⇒

E3l〈LC(ind)〉 ∈ T . Let L be defined as

L =
∨

n∈N ′

F

Then T ′ = T ∪{wind
l ⇒ E#(¬L ∨ l)〈ind〉, true⇒ ¬Q∨¬L∨ l} is the result of adding the resolvents

derived by ERES2 to T . Note that for every node n = (V,EA, EE) in H ′, V |= L, V |= ¬l, and by

Lemma 13, V |= wind
l . Recall that through augmentation the set T contains clauses

wind
l ⇒ E#(l ∨ wind

l )〈ind〉

true ⇒ (¬Q ∨ l ∨ wind
l )

By Lemma 12 either there is an edge (n′, ind, n) ∈ E, where n′ = (V ′, E′
A, E

′
E) such that l〈LC(ind)〉 ∈

E′
E , V

′ |= ¬l or V |= Q, V |= ¬l. Therefore we must have V ′ |= wind
l by Lemma 13. So, for the

aforementioned resolvent wind
l ⇒ E#(¬L ∨ l)〈ind〉, V

′ satisfies wind
l but V does not satisfy (¬L∨ l).

Thus, the labelled behaviour graph for T ′ does not contain the edge (n′, ind, n). Moreover, by

Definition 6, the valuation of each predecessor of n must satisfy wind
l . Thus, all edges into n are not

in the labelled behaviour graph for T ′. Otherwise, for the latter, we have V |= Q, V |= L, V |= ¬l.

Now, n does not satisfy the aforementioned resolvent true ⇒ ¬Q ∨ ¬L ∨ l in T ′ and so n is not

a node in the labelled behaviour graph for T ′. Therefore, the labelled behaviour graph for T ′ is a

strict subgraph of that for T and by induction we assume that as T ′ has a refutation so must T .

• Terminal subgraph for l. The proof is analogous to the proof for ind-labelled terminal subgraphs

for l〈LC(ind)〉.

⊓⊔⊓⊔

Theorem 6 Any derivation from a set T of SNFg
CTL clauses by the calculus R

≻,S
CTL terminates.

Proof. Let T be constructed from a set P of n atomic propositions and a set Ind of m indices. Then the

number of SNFg
CTL clauses that can be constructed from P and Ind is finite. We can have at most 22n

initial clauses, 22n global clauses, 24n A-step clauses, m·24n E-step clauses, n·22n+1 A-sometime clauses,

and m ·n · 22n+1 E-sometime clauses. In total, there could be at most (m+ 1)24n + (m ·n+ n+ 1)22n+1
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different SNFg
CTL clauses. Any derivation from a set of SNFg

CTL clauses by the calculus R
≻,S
CTL will

terminate when either no more new clauses can be derived or a contradiction is obtained. Since there is

only a bounded number of different SNFg
CTL clauses, one of these two conditions will eventually be true.⊓⊔

Next we consider the complexity of R
≻,S
CTL.

Theorem 7 The complexity of a R
≻,S
CTL based decision procedure is in EXPTIME.

Proof. Assume a set of SNFg
CTL clauses is constructed from a set P of n propositions and a set Ind of m

indices. The cost of deciding whether a step resolution rule can be applied to two determinate clauses

is A = 4n+ 1 in the worst case, provided we can compute S(C) in linear time and compute literal and

indices, if they both have one, in constant time. From the proof of Theorem 6, we know the number

of determinate clauses is at most B = 22n + 22n + 24n +m · 24n. Therefore, to naively compute a new

clause from an application of some step resolution rule, we might need to look at C = B(B−1)
2 pairs of

two clauses and the associated cost is (C · A). Moreover, to decide whether the resolvent is a new clause

or not, we need to compare the resolvent with at most B clauses and the cost is D = B · (A+4n2). In the

worst case where each pair of clauses generates a resolvent but the resolvent already exists and only the

last pair of clauses gives a new clause, to gain a new clause from an application of some step resolution

rule, the complexity is of the order (C · A ·D), that is, EXPTIME.

To compute a new clause from an application of some eventuality resolution rule, the complexity

depends on the complexity of the so-called CTL loop search algorithm which computes premises for the

eventuality resolution rules [6]. The CTL loop search algorithm is a variation of the PLTL loop search

algorithm [11] which has been shown to be in EXPTIME and we can show that the complexity of the CTL

loop search algorithm from [6] is also in EXPTIME. Since a new clause is produced by an application of

either step resolution or eventuality resolution, the complexity of generating a new clause is of the order

EXPTIME. According to the proof of Theorem 6, there can be at most (m+1)24n +(m ·n+n+1)22n+1

different SNFg
CTL clauses. Therefore, the complexity of saturating a set of SNFg

CTL clauses and thereby

deciding its satisfiability is in EXPTIME. ⊓⊔

4 Implementation

To implement an efficient theorem prover for the calculus R
≻,S
CTL is a non-trivial job. Besides the effort

to implement all the resolution rules, the effort to implement many techniques to prune search space for

R
≻,S
CTL, for example reduction, subsumption and so on, are also required. Currently there are many state

of the art first-order theorem provers, which have already implemented aforementioned techniques in

many ways. Moreover, in [20] authors presented a method to bridge PLTL to first-order logic and used

an existing first-order theorem prover to construct a prover for PLTL. The two facts above inspired us
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to adopt an approach to implement the calculus R
≻,S
CTL and reuse those highly refined first-order prover

to build our own prover for CTL.

First, we transform all SNFg
CTL clauses except A-sometime clauses and E-sometime clauses into

first-order clauses. Then we are able to use first-order ordered resolution with selection to emulate step

resolution. A and E-sometime clauses cannot be translated to first-order logic. Therefore, we continue

to use the rules ERES1 and ERES2 for inferences with A- and E-sometime clauses, respectively, and use

the loop search algorithm presented in Section 3.3 to find suitable premises for these rules. We utilise

first-order ordered resolution with selection to perform the task of “looking for merged clauses” in the

loop search algorithm and we compute the results of applications of the eventuality resolution rules in

the form of first-order clauses.

4.1 Preliminaries of first-order ordered resolution with selection

We introduce several necessary notions before we start, following their definition in [4].

Let F, P and V be three pairwise disjoint (countable) sets. The elements of F are called function

symbols, the elements of P predicate symbols, and the elements of V variables. Each element of F and P

is associated with an arity n ∈ N0. The pair (F,P) is a signature.

A term is either a variable or an expression f(t1, . . . , tn) where f is a function symbol of arity n and

t1, . . . , tn are terms. For a term t = f(t1, . . . , tn) the terms t1, . . . , tn are called the arguments of t. Let

T(F,V) denote the set of all terms built from function symbols in F and variables in V. A term is ground

if it does not contain variables, i.e., it is an element of T(F, ∅).

The depth dp(t) of a term is inductively defined as (i) if t is a variable or a constant then dp(t) = 1,

and (ii) if t = f(t1, . . . , tn), then dp(t) = 1 + max({dp(ti) | 1 ≤ i ≤ n}).

An atom is an expression p(t1, . . . , tn) where t1, . . . , tn are terms in T(F,V) and p is a predicate

symbol of arity n in P. A literal is an expression A (a positive literal) or ¬A (a negative literal) where

A is an atom. For a literal L = (¬)p(t1, . . . , tn) the terms t1, . . . , tn are the arguments of L. A literal

is ground if all its arguments are ground. The depth dp(L) of a literal L = (¬)p(t1, . . . , tn) is given by

max({dp(ti) | 1 ≤ i ≤ n}) if the arity of p is greater than zero, and dp(L) = 0 otherwise.

A first-order clause C = L1 ∨ . . . ∨ Ln is a multiset of literals with variables implicitly assumed to

be universally quantified. A subclause D of a clause C is a sub-multiset D of C. A strict subclause

D of a clause C is a subclause of C not identical to C. The depth dp(C) of a clause C is given by

max({dp(L) | L ∈ C}) if C is non-empty, and dp(C) = 0 otherwise.

We assume that the notions of a substitution, a most general unifier, an instance, etc, are defined in

the usual way.

A condensation Cond(C) of a clause C is a minimal subclause of C which is also an instance of it.

A clause C is condensed if there exists no condensation of C which is a strict subclause of C. Note that
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the condensation Cond(C) of a clause C is either identical to C or is a strict subclause of C which is a

factor of C and which makes C redundant according to the definition of redundancy we give below.

An atom ordering ≻FOL is a well-founded, total ordering on ground atoms. For two non-ground atoms

A and B we define A ≻FOL B if Aσ ≻FOL Bσ for all ground instances Aσ and Bσ. As for the propositional

case, the ordering ≻FOL is extended to literals by identifying each positive literal p with the singleton

multiset {p} and each negative literal ¬p with the multiset {p, p} and comparing such multisets of first-

order atoms by using the multiset extension of ≻FOL. Also, the notion of a (strictly) maximal literal with

respect to a clause C is again defined as in the propositional case. Finally, the multiset extension of the

literal ordering ≻FOL induces an ordering ≻FOL on ground clauses.

A selection function SFOL assigns to each clause C a possibly empty set of occurrences of negative

literals in C. If C is a clause, then the literals in SFOL(C) are called selected.

The resolution calculus R
≻FOL,SFOL

FOL is parameterised by an atom ordering ≻FOL and a selection function

SFOL, and consists of the following two inference rules:

• Ordered resolution with selection

C ∨A ¬B ∨D

(C ∨D)σ

where

1. σ is the most general unifier of A and B.

2. No literal is selected in C and Aσ is strictly ≻FOL-maximal with respect to Cσ. (We say that

A is eligible in C ∨A for the substitution σ.)

3. ¬B is selected in ¬B ∨D or no literal is selected in D and ¬Bσ is ≻FOL-maximal with respect

to Dσ. (We say that ¬B is eligible in ¬B ∨D for the substitution σ.)

• Ordered positive factoring with selection

C ∨A ∨B

(C ∨A)σ

where

1. σ is the most general unifier of A and B.

2. No literal is selected in C and Aσ is ≻FOL-maximal with respect to Cσ.

Given a set N of clauses and a clause C, then C is redundant in N if for all ground substitutions σ there

exist clauses C1, . . . , Cn, n ≥ 0, in N and ground substitutions σj such that C1σ1, . . . , Cnσn |= Cσ and

Cσ ≻FOL Ciσi for every i, 1 ≤ i ≤ n.

A set N is saturated (up to redundancy) with respect to R
≻FOL,SFOL

FOL if all clauses that can be derived

by an application of the rules of R
≻FOL,SFOL

FOL to non-redundant premises in N are either contained in N
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or else are redundant in N .

For a set N0 of clauses, a derivation from N0 is a sequence of clause sets N0, N1, . . ., where for every

i, i ≥ 0, Ni+1 = Ni ∪ {C} and C is derived by applying a R
≻FOL,SFOL

FOL inference rule to premises in Ni, or

Ni+1 = Ni \ {C} and C is redundant in Ni. A derivation N0, N1, . . . is a refutation (of N0) if for some

i, 0 ≤ i, Ni contains the empty clause. We say a derivation N0, N1, . . . from N0 terminates if for some

i, 0 ≤ i, Ni is saturated up to redundancy. A derivation N0, N1, . . . is fair if every clause C that can be

deduced from non-redundant premises in the limit N∞ =
⋃

j

⋂

k≤j Nk is contained in some set Nj .

R
≻FOL,SFOL

FOL is a sound and complete refutation calculus [4]: for a set of clauses N0 and fair derivation

N0, N1, . . . from N0, N0 is unsatisfiable iff the clause set
⋃

j Nj contains the empty clause. Furthermore,

if for some i ≥ 0, Ni is saturated up to redundancy, then N0 is unsatisfiable iff Ni contains the empty

clause.

4.2 Representing determinate SNF
g
CTL clauses as first-order clauses

In order to represent every determinate SNFg
CTL clause by a first-order clause we uniquely associate

every propositional variable p with a unary predicate symbol Qp. Besides these predicate symbols we

assume that our first-order vocabulary includes a countably infinite set of variables x, y, . . . , a constant

0, a binary function symbol app, and for every ind ∈ Ind a constant sind.

The constant 0 represents the state s0 ∈ S in an extended model structure M = 〈S,R,L, [ ], s0〉,

while a constant sind represents [ind]. The variables x and y quantify over states in M , and the variable

s quantifies over the successor functions [ind] with ind ∈ Ind.

The first-order atom Qp(x), represents that p holds at a state x, while Qp(0) represents that p holds

at the state s0.

The first-order term app(s, x) represents the state resulting from the application of the successor

function s to the state x, while app(sind, x) represents the state resulting from the application of the

successor function [ind] to the state x. Then the first-order atoms Qp(app(s, x)) and Qp(app(sind, x))

represent that p holds at states app(s, x) and app(sind, x), respectively.

Finally, for a disjunction of propositional literals C = (¬)p0 ∨ . . .∨ (¬)pn, let ⌈C⌉(t), where t is term,

denote the first-order clause (¬)Qp0
(t) ∨ . . . ∨ (¬)Qpn

(t).

We are then able to represent every initial, global, A-step and E- step clause Γ by a first-order clause

⌈Γ⌉ as follows:

1. An initial clause start⇒ C is represented by ⌈C⌉(0)

2. A global clause true⇒ C is represented by ⌈C⌉(x)

3. An A-step clause P ⇒ A#C is represented by ⌈¬P ⌉(x) ∨ ⌈C⌉(app(s, x))

4. An E-step clause P ⇒ E#C〈ind〉 is represented by ⌈¬P ⌉(x) ∨ ⌈C⌉(app(sind, x))
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Note that it is possible for C to be empty in an A-step clause P ⇒ A#C or an E-step clause P ⇒

E#C〈ind〉. In the calculus R
≻,S
CTL, such clauses are subject to the rewrite rules RW1 and RW2, and would

both be replaced by the global clause true ⇒ ¬P . We see that in our first-order representation of

determinate SNFg
CTL clauses, for an empty clause C, the SNFg

CTL clauses P ⇒ A#C, P ⇒ E#C〈ind〉,

and true ⇒ ¬P all have the same representation, namely, ⌈¬P ⌉(x). Thus, on the first-order level, the

rewrite rules RW1 and RW2 are superfluous.

4.3 Implementing step resolution

The representation of determinate SNFg
CTL[4] clauses by first-order clauses allows for all our step reso-

lution rules to be implemented using the ordered first-order resolution with selection calculus presented

in Section 4.1.

To this end, we have to define the atom ordering and selection function on the first-order level in

such a way that they mirror their definition on the propositional level.

Regarding the first-order atom ordering, note that our signature only contains unary predicate sym-

bols. Let ≻ be a propositional atom ordering. Then we allow ≻FOL to be any ground first-order atom

ordering such that Qq(s) ≻FOL Qp(t) if

(i) dp(s) > dp(t); or

(ii) dp(s) = dp(t) and q ≻ p.

According to this definition, lifted to the non-ground level, we have

Qw(app(sind′app(sind, x), )) ≻FOL Qp(app(sind, x)) ≻FOL Qq(x),

for any predicate symbols Qp, Qq, Qw, and constants sind′ and sind, and

Qq(app(sind, x)) ≻FOL Qp(app(sind, x))Qq(x) ≻FOL Qp(x)

provided q ≻ p.

Regarding the first-order selection function SFOL, we use the close correspondence between determine

SNFg
CTL clauses and their first-order representation to define SFOL as follows:

1. A literal⌈¬l⌉(0) is selected in ⌈C⌉(0) by SFOL iff ¬l is selected by S in C;

2. A literal ⌈¬l⌉(x) is selected in ⌈C⌉(x) by SFOL iff ¬l is selected in C by S;

3. A literal ⌈¬l⌉(app(s, x)) is selected in[4] ⌈¬P ⌉(x)∨⌈C⌉(app(s, x)) by SFOL, with C being non-empty,

iff ¬l is selected in C by S;
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An application of SRES2

P ⇒ E#(C ∨ l)〈ind〉

Q⇒ A#(D ∨ ¬l)
P ∧Q⇒ E#(C ∨D)〈ind〉

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈¬P ⌉(x) ∨ ⌈C⌉(app(sind, x)) ∨Ql(app(sind, x))
⌈¬Q⌉(y) ∨ ⌈D⌉(app(z, y)) ∨ ¬Ql(app(z, y))
Cond(⌈¬P ⌉(x) ∨ ⌈¬Q⌉(x) ∨ ⌈C⌉(app(sind, x)) ∨ ⌈D⌉(app(sind, x)))

where the definition of ≻FOL and SFOL ensures that Ql(app(sind, x)) and ¬Ql(app(z, y)) are both
eligible in their respective clauses for the substitution σ.

Figure 7: Emulating SRES2 inferences in first-order logic

An application of SRES3

P ⇒ E#(C ∨ l)〈ind〉

Q⇒ E#(D ∨ ¬l)〈ind〉

P ∧Q⇒ E#(C ∨D)〈ind〉

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈¬P ⌉(x) ∨ ⌈C⌉(app(sind, x)) ∨Ql(app(sind, x))
⌈¬Q⌉(y) ∨ ⌈D⌉(app(sind, y)) ∨ ¬Ql(app(sind, y))
Cond(⌈¬P ⌉(x) ∨ ⌈¬Q⌉(x) ∨ ⌈C⌉(app(sind, x)) ∨ ⌈D⌉(app(sind, x)))

where the definition of ≻FOL and SFOL ensures that Ql(app(sind, x)) and ¬Ql(app(sind, y)) are both
eligible in their respective clauses for the substitution σ. Note that Ql(app(sind, x)) and
Ql(app(sind′ , y)) are only unifiable if ind = ind′.

Figure 8: Emulating SRES3 in first-order logic

4. A literal ⌈¬l⌉(app(sind, x)) is selected in ⌈¬P ⌉(x) ∨ ⌈C⌉(app(sind, x)) by SFOL, with C being non-

empty, iff ¬l is selected in C by S.

There is one more complication that we need to overcome. In the case of SNFg
CTL clauses, we have made

the simplifying assumption that the conjunctions and disjunctions of propositional literals occurring

in these clauses do not contain duplicate occurrences of the same literals, thus avoiding the need for

factoring inference rules in our calculus. For example, resolving two global clauses Γ1 = true ⇒ ¬p ∨ q

and Γ2 = true⇒ p∨q simply results in Γ3 = true⇒ q. However, for first-order clauses we have followed

the definition of clauses as multisets of first-order literals. Thus, resolving ⌈Γ1⌉ = ¬Qp(x) ∨Qq(x) with

⌈Γ2⌉ = Qp(x) ∨Qq(x) results in Qq(x) ∨Qq(x), which is not identical to ⌈Γ3⌉ = Qq(x).

To eliminate this mismatch, we require that on the first-order level all clauses are kept in condensed

form, that is, every first-order clauses C is replaced by its condensation Cond(C). In our example, we

have Cond(Qq(x) ∨Qq(x)) = Qq(x) = ⌈Γ3⌉.

We are then able to establish the following correspondence between R
≻,S
CTL inferences on determinate

SNFg
CTL clauses and R

≻FOL,SFOL

FOL inferences on their first-order representation.
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An application of SRES7

true⇒ C ∨ l
Q⇒ E#(D ∨ ¬l)〈ind〉

Q⇒ E#(C ∨D)〈ind〉

where l is eligible in C ∨ l
and ¬l is eligible in D∨¬l

can be emulated by the following inference using ordered resolution with selection

⌈C⌉(x) ∨Ql(x)
⌈¬Q⌉(y) ∨ ⌈D⌉(app(sind, y)) ∨ ¬Ql(app(sind, y))
Cond(⌈¬Q⌉(y) ∨ ⌈C⌉(app(sind, y)) ∨ ⌈D⌉(app(sind, y)))

where the definition of ≻FOL and SFOL ensures that Ql(x) and ¬Ql(app(sind, y)) are both eligible in
their respective clauses for the substitution σ.

Figure 9: Emulating SRES7 in first-order logic

Theorem 8 Let ≻ and S be an atom ordering and selection function, respectively, for R
≻,S
CTL and let

≻FOL and SFOL be a corresponding atom ordering and a corresponding selection function, respectively, for

R
≻FOL,SFOL

FOL . Let Γ1 and Γ2 be two determinate SNFg
CTL. Then a determinate clause Γ3 is derivable from

Γ1 and Γ2 by SRES1 to SRES8 in R
≻,S
CTL iff there exists a clause C derivable from ⌈Γ1⌉ and ⌈Γ2⌉ by

R
≻FOL,SFOL

FOL such that ⌈Γ3⌉ is a condensation of C.

Proof. Our definition of SFOL and ≻FOL ensures that there is a one-to-one correspondence between eligible

literals in determinate SNFg
CTL clauses and eligible literals in the first-order representation of these

clauses.

Therefore, we can show that for any inference by SRES1 to SRES8 there is a corresponding inference

by R
≻FOL,SFOL

FOL . Figures 7, 8 and 9 show this relationship for inferences by SRES2, SRES3 and SRES7.

The relationship for the inferences by the remainder of step resolution rules is analogous.

Now, we show that, provided we keep first-order clauses in condensed form, R
≻,S
CTL does not allow

additional inferences which do not have a correspondence by SRES1 to SRES8.

As we know a determinate clause is either an initial Ci, a global Cg, an A-step CA or an E-step

clause CE , we can distinguish ten different types of inference, CiCg,CiCA, CiCE , CgCA, CgCE , CACE ,

CiCi, CgCg, CACA and CECE . SRES1 to SRES8 maps themselves to eight types except CiCA and

CiCE , which implies that it is not allow to have inferences between an initial clause and an A-step

clause or an E-step clause.

For the type of inference of CiCA, consider the four cases:

Case 1

(Qq(0) ∨ . . .) is transformed from an initial clause

(. . .∨ ¬Qq(app(s, x)) ∨ . . .) is transformed from an A-step clause

Qq(0) and ¬Qq(app(s, x)) do not unify;
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Case 2

(Qq(0) ∨ . . .) is transformed from an initial clause

(. . .∨ ¬Qq(x) ∨ (¬)Qp(app(s, x)) ∨ . . .) is transformed from an A-step clause

¬Qq(x) is not eligible in this clause: Condition (i) in the definition of≻FOL ensures that (¬)Qp(app(s, x))σ ≻FOL

Qq(x)σ for any substitution σ and SFOL is defined in such a way that ¬Qq(x) is not selected.

Case 3

( ¬Qq(0) ∨ . . .) is transformed from an initial clause

(. . .∨ Qq(app(s, x)) ∨ . . .) is transformed from an A-step clause

¬Qq(0) and Qq(app(s, x)) do not unify;

Case 4

( ¬Qq(0) ∨ . . .) is transformed from an initial clause

(. . .∨ Qq(x) ∨ (¬)Qp(app(s, x)) ∨ . . .) is transformed from an A-step clause

Qq(x) is not eligible in this clause: Condition (i) in the definition of≻FOL ensures that (¬)Qp(app(s, x))σ ≻FOL

Qq(x)σ for any substitution σ and SFOL only select negative literals.

For inference of CiCE , the proof is analogous. Therefore, R
≻FOL,SFOL

FOL disallows types of inference of

CiCA and CiCE .

Further, all inferences by SRES1 to SRES8 involve only literals on the right-hand sides of determinate

clauses. The we prove inferences of R
≻FOL,SFOL

FOL do so as well. It is again the atom ordering ≻FOL and the

selection function SFOL which guarantee that requirement.

For example,

Case 5

( ¬Qq(x) ∨ (¬)Qq1
(app(s, x)) ∨ . . .) is transformed from an A-step clause

(. . .∨ Qq(x) ∨ (¬)Qq2
(app(s, x)) ∨ . . .) is transformed from an A-step clause

Qq(x) is not eligible in this clause: Condition (i) in the definition of≻FOL ensures that (¬)Qq2
(app(s, x))σ ≻FOL

Qq(x)σ for any substitution σ and SFOL only select negative literals.

Case 6

( ¬Qq(x) ∨ (¬)Qq1
(app(sind, x)) ∨ . . .) is transformed from an E-step clause

(. . .∨ Qq(x) ∨ (¬)Qq2
(app(sind, x)) ∨ . . .) is transformed from an E-step clause

Qq(x) is not eligible in this clause: Condition (i) in the definition of≻FOL ensures that (¬)Qq2
(app(s, x))σ ≻FOL

Qq(x)σ for any substitution σ and SFOL only select negative literals.
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1 procedure eres(T, C)

2 // T is a saturated set of determinate clauses

3 // C is a sometime clause Q⇒ A3¬l or Q⇒ E3¬l〈LC(ind)〉

4 begin

5 if C is an A-sometime clause then

6 SOS := {D | D is a global or step clause in T};
7 else if C is an E-sometime clause then

8 SOS := {D | D is a global, A-step, or E-step clause with the index ind in T};
9 end if

10 i := 0;

11 H−1(x) := true;
12 do

13 Goals := {ls(x) ∨ ¬Ql(app(s, x)) ∨ ¬Hi−1(x)σ}, where σ = {x← app(s, x)};
14 T1 := resolution sos(SOS, Goals);

15 T2 := {G(x) | G(x) ∨ ls(x) ∈ T1 and depth(G(x)) ≤ 1};
16 Hi(x) := ¬(

∧

T2);
17 if Hi(x) is equivalent to true then

18 return eresolvent(C, true);
19 else if Hi(x) is equivalent to false then

20 return ∅
21 else if Hi(x) is equivalent to Hi−1(x) then

22 return eresolvent(C, Hi(x));

23 end if

24 i := i+1;

25 while (T2 6= ∅)
26 end

Figure 10: eres : A loop search implementation using first-order resolution

Proofs for other situations are analogous. Therefore, R
≻FOL,SFOL

FOL does not allow an inference resolving

literals from left-hand sides of determinate clauses. Finally, condensation ensures that the ordered

factoring with selection rule of R
≻FOL,SFOL

FOL is not applicable.

This establishes the desired one-to-one correspondence between inferences by SRES1 to SRES8 and

inferences by R
≻FOL,SFOL

FOL . ⊓⊔

4.4 Implementing eventuality resolution

To implement the eventuality resolution rules ERES1 and ERES2, we will need to augment a first-order

theorem prover with an implementation of the E-loop search algorithm defined in Section 3.3. Figure 10

shows the pseudocode for the implementation of this algorithm in our prover CTL-RP.

The procedure eres takes as input a set T of determinate clauses, which we assume to be saturated

under the step resolution rules SRES1 to SRES8 and the rewrite rules RW1 and RW2, and a A-sometime

clause or E-sometime clause C. As stated in Section 3.3, if C is an A-sometime clause Q⇒ A3¬l, then

the loop search algorithm considers all global, A-step clauses, and E-step clauses in T , while if C is an

E-sometime clause Q ⇒ E3¬l〈LC(ind)〉, then the loop search we try to resolve an E-sometime clause

algorithm considers all global, A-step clauses, all E-step clauses with index ind in T . Lines 5 to 9 of

our algorithm implement this case distinction and store the set of clauses that needs to be considered
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1 procedure eresolvent(C, Hi(x))

2 // C is a sometime clause Q⇒ A3¬l or Q⇒ E3¬l〈LC(ind)〉

3 // Hi(x) = ¬
∧n

i=1Gi(x) is a loop formula

4 begin

5 if Hi(x) = true then

6 Gi(x) := false;
7 end if

8 if C is an A-sometime clause then

9 resolvents := {⌈¬Q⌉(x) ∨ ¬Ql(x) ∨Gi(x) | 1 ≤ i ≤ n} ∪
{¬QwA

¬l
(x)∨¬Ql(app(s, x))∨Gi(x)σ | 1 ≤ i ≤ n, σ = {x← app(s, x)}}∪

{⌈¬Q⌉(x) ∨ ¬Ql(x) ∨QwA

¬l
(x),

¬QwA

¬l
(x) ∨ ¬Ql(app(s, x)) ∨QwA

¬l
(app(s, x))};

10 else if C is an E-sometime clause then

11 resolvents := {⌈¬Q⌉(x) ∨ ¬Ql(x) ∨Gi(x) | 1 ≤ i ≤ n} ∪
{¬Qwind

¬l
(x) ∨ ¬Ql(app(sind, x)) ∨Gi(x)σ | 1 ≤ i ≤ n,

σ = {x← app(sind, x)}} ∪
{⌈¬Q⌉(x) ∨ ¬Ql(x) ∨Qwind

¬l
(x),

¬Qwind
¬l

(x) ∨ ¬Ql(app(sind, x)) ∨Qwind
¬l

(app(sind, x))};
12 end if

13 return resolvents;

14 end

Figure 11: The eresolvent procedure

in a set SOS. The main part of the algorithm, lines 12 to 25, consists of a loop in which we construct a

sequence of formulae H−1(x), H0(x), H1(x), . . . until one of the three termination conditions is satisfied:

(a) if Hi(x) is equivalent to true, then we use the procedure eresolvent to return the resolvents for C and

the loop true (lines 17 and 18); (b) if Hi(x) is equivalent to false, then no loop can be found and we

return the empty set of resolvents (lines 19 and 20); (c) if Hi(x) is equivalent to Hi−1(x), then we again

use the procedure eresolvent to return the resolvents for C and the loop Hi(x) (line 21 and 22). Line 13

to 16 deal with the construction of the formula Hi(x) for the current index i. Recall from Section 3.3

that to construct Hi, we need to look for merged clauses Aj ⇒ A#(Bj ∧ l) or Aj ⇒ E#(Bj ∧ l)〈ind〉

such that Bj ⇒ Hi−1 (or, equivalently, A#Bj ⇒ A#Hi−1). To do so, we construct a set of goal clauses

Goals with each clause containing the literal ¬Ql(app(s, x)), the first-order representation of A#¬l and

a disjunct from ¬Hi−1(app(s, x)), the first-order representation of A#Hi−1. When trying to prove these

goal clauses using the clauses in SOS, all newly derived clauses of depth one or less would be the first-

order representations of the Aj ’s that we look for. To make it easier to identify newly derived clauses,

we add a literal ls(x), where ls is a new unary predicate symbol, to each of the goal clause. As there

are no negative occurrences of ls(x) in SOS, ls(x) occurs in all clauses derived from our goal clauses.

In Figure 10, line 13 constructs the goal clauses, line 14 calls the resolution sos procedure to saturate

SOS ∪ Goals using a set of support strategy, line 15 collects all newly derived clauses of depth one or

less from the saturated set using the literal ls(x) to identify newly derived clauses, and, finally, line 16

computes Hi(x).
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The following example illustrates how our implementation of the loop search algorithm works. The

set T consists of the three SNFg
CTL clauses a⇒ A#l, b⇒ A#l, and a⇒ #a〈ind〉 and we are looking for

a loop in ¬l. The first-order representation of these clauses is given by

(1) ¬Qa(x) ∨Ql(app(s, x))

(2) ¬Qb(x) ∨Ql(app(s, x)))

(3) ¬Qa(x) ∨Qa(app(sind, x)))

For our atom ordering we use a lexicographic path ordering based on the precedence app > Ql > Qa >

Qb > sind > ls and a selection function which returns the empty set for every clause, i.e. no literals are

selected in any clause.

In the following description of resolution derivations, [G] indicates a goal clause that has been added to

T , [n,R,m] indicates a resolvent of the clauses labelled (n) and (m), and [n,C] indicates the condensation

of the clause labelled (n).

During the first iteration of the main loop of eres, the set of goal clauses consists of the single clause

ls(x) ∨ ¬Ql(app(s, x)) and resolution sos conducts the following inferences:

[G] (4) ls(x) ∨ ¬Ql(app(s, x))

[1, R, 4] (5) ls(x) ∨ ¬Qa(x)

[2, R, 4] (6) ls(x) ∨ ¬Qb(x)

[3, R, 5] (7) ls(app(sind, x)) ∨ ¬Qa(x)

Of these clauses, only clauses (5) and (6) contribute to the construction of H0(x) (see lines 15 and 16 of

the eres) and we obtain H0(x) = Qa(x)∨Qb(x). As H0(x) does not satisfy any of the three termination

conditions, the main loop of eres will be executed a second time. This time, we have two goal clauses,

clauses (8) and (9) below:

[G] (8) ls(x) ∨ ¬Ql(app(s, x)) ∨ ¬Qa(app(s, x))

[G] (9) ls(x) ∨ ¬Ql(app(s, x)) ∨ ¬Qb(app(s, x))

[1, R, 8] (10) ls(x) ∨ ¬Qa(x) ∨ ¬Qa(app(s, x))

[1, R, 9] (11) ls(x) ∨ ¬Qa(x) ∨ ¬Qb(app(s, x))

[2, R, 8] (12) ls(x) ∨ ¬Qb(x) ∨ ¬Qa(app(s, x))

[2, R, 9] (13) ls(x) ∨ ¬Qb(x) ∨ ¬Qb(app(s, x))

[3, R, 10] (14) ls(x) ∨ ¬Qa(x) ∨ ¬Qa(x)

[14, C] (15) ls(x) ∨ ¬Qa(x)

[3, R, 12] (16) ls(x) ∨ ¬Qb(x) ∨ ¬Qa(x)

[3, R, 15] (17) ls(app(sind, x)) ∨ ¬Qa(x)

As the condensed clause (15) makes clause (14) redundant and clause (15) also subsumes clause (16),

of all the clauses in the saturated set, only clause (15) contributes to the construction of H1(x) and we
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1 procedure resolution prover(N)
2 begin

3 Wo := ∅; Us := taut(sub(N));
4 while (Us 6= ∅ and ⊥ 6∈ Us)

5 (Given,Us) := choose(Us);
6 Wo := Wo ∪ {Given};
7 New := res(Given,Wo)∪ fac(Given);
8 New := taut(sub(New));
9 New := sub(sub(New,Wo),Us);

10 Wo := sub(Wo,New);
11 Us := sub(Us,New)∪ New;
12 end

13 output();

14 end

Figure 12: A simple resolution prover [26]

obtain H1(x) = Qa(x). Again, H1(x) does not satisfy any of the three termination conditions, and a

third iteration of the main loop is eres is required. There is only one goal clause, clause (18).

[G] (18) ls(x) ∨ ¬Ql(app(s, x)) ∨ ¬Qa(app(s, x))

[1, R, 18] (19) ls(x) ∨ ¬Qa(x) ∨ ¬Qa(app(s, x))

[2, R, 18] (20) ls(x) ∨ ¬Qb(x) ∨ ¬Qa(app(s, x))

[3, R, 19] (21) ls(x) ∨ ¬Qa(x) ∨ ¬Qa(x)

[21, C] (22) ls(x) ∨ ¬Qa(x)

[3, R, 22] (23) ls(app(sind, x)) ∨ ¬Qa(x)

Again, the condensed clause (22) makes clause (21) redundant and only clause (22) remains to contribute

to the construction of H2(x). We obtain H2(x) = Qa(x) which is equivalent to H1(x). Thus, the third

termination condition of eres is satisfied (line 21) and the eresolvent procedure, shown in Figure 11, will

return the appropriate resolvents.

We are now in the position to formulate the correspondence between derivations by R
≻,S
CTL and deriva-

tions by R
≻FOL,SFOL

FOL supplemented by the eresolvent procedure and to state the correctness of this ap-

proach to implementing R
≻,S
CTL.

Let T be a set of SNFg
CTL clauses such that T det is the set of all determinate clauses in T and T ev is

the set of all eventuality clauses in T . Let ⌈T det⌉ denote the set {⌈Γ⌉ | Γ ∈ T det} of first-order clauses

representing the determinate clauses in T det .

Then a R
≻,S
CTL-emulating derivation from T by R

≻FOL,SFOL

FOL is a sequence N0, N1, N2, . . . of sets of first

order clauses such that N0 = ⌈T det⌉ and for every i, i ≥ 0, Ni+1 = N1∪{C} where C is the condensation

of a clause derived by applying the ordered resolution with selection rule of R
≻FOL,SFOL

FOL with an atom

ordering ≻FOL and selection function SFOL corresponding to ≻ and S, respectively, to premises in Ni,

or Ni+1 = N1 ∪ R where R is eres(Ni,Γ) for some eventuality clauses Γ in T ev . A R
≻,S
CTL-emulating

refutation of T by R
≻FOL,SFOL

FOL is a R
≻,S
CTL-emulating derivation N0, N1, . . . from T by R

≻FOL,SFOL

FOL such that
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for some i ≥ 0, Ni contains the empty clause.

Theorem 9 Let T be a set of SNFg
CTL clauses. Then T has a refutation by R

≻,S
CTL iff there is a R

≻,S
CTL-

emulating refutation of T by R
≻FOL,SFOL

FOL .

Proof. Let T0, T1, . . . be a refutation of T = T0 by R
≻,S
CTL where we restrict applications of ERES1 and

ERES2 to loop formulae that can be found by a CTL equivalent of our loop search algorithm.

First, we establish that this restriction is still complete. Basically our loop search algorithm in

Figure 10 is almost same as the original loop search algorithm in Section 3.3. The only difference is that

we provide implementations for the following two tasks in the original loop search algorithm.

(i) “Search in Ti for all the clauses of the form Xj ⇒ l, Xj ⇒ A#l, and Xj ⇒ E#l〈ind〉.”

(ii) “looking in Ti for merged clauses of the form Aj ⇒ A#(Bj ∧ l) or Aj ⇒ E#(Bj ∧ l)〈ind〉 such that

Bj ⇒ Hi is provable (in propositional logic).”

Thus, we only need to prove the correctness of our implementation for those two tasks.

For task (i), we simply insert a new clause ls(x) ∨ ¬Ql(app(s, x)), which is equivalent to an A-step

clause ¬ls⇒ A#¬l. By Theorem 8, we just need to prove that there exist clauses of the form Xj ⇒ l,

Xj ⇒ A#l, or Xj ⇒ E#l〈ind〉 in Ti iff by adding ¬ls ⇒ A#¬l into Ti and applying step resolution

of R
≻,S
CTL for a certain atom ordering ≻ and a certain selection function S to Ti, we can find clauses

¬ls ∧ Xj ⇒ false, ¬ls ∧ Xj ⇒ A#false, or ¬ls ∧ Xj ⇒ E#false〈ind〉 in Ti ∪ R, where R is the set of

resolvents.

If Γ = Xj ⇒ A#l ∈ Ti, then ¬ls ⇒ A#¬l is added into Ti. By SRES1, for an arbitrary atom

ordering ≻ and arbitrary selection function S we can derive ¬ls∧Xj ⇒ A#false. This result obviously

holds when Γ = Xj ⇒ l and Γ = Xj ⇒ E#l〈ind〉.

For the other direction, if a clause Γ = ¬ls ∧Xj ⇒ A#false is found in Ti ∪ R, then Γ is not from

Ti because the atom ls does not occur in Ti before ¬ls⇒ A#¬l is added. Thus Γ must be derived from

an application of some step resolution rule of R
≻,S
CTL for certain ≻ and S and one of the premise of this

application must be ¬ls ⇒ A#¬l. Therefore, the other premise in Ti must be Xj ⇒ A#l or Xj ⇒ l.

The result obviously holds when Γ = ¬ls ∧Xj ⇒ false and Γ = ¬ls ∧Xj ⇒ E#false〈ind〉.

For task (ii), the proof is analogous. By the completeness of loop search algorithm for CTL [5], our

version of the loop search algorithm is complete as well.

We show by induction over the R
≻,S
CTL refutation that we can construct a R

≻,S
CTL-emulating derivation

N0, N1, . . . from T such that for every i, i ≥ 0, Ni = ⌈T det
i ⌉. The base case, where we consider T = T0

is trivial, as by definition N0 = ⌈T det
0 ⌉. For the induction step, we have to consider whether Ti+1 is

derived from Ti by adding the resolvent of a step resolution inference or the results of an application of

an eventuality resolution rule. In the first case, Theorem 8 to establish the required correspondence. In
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1 procedure main(ϕ)

2 // ϕ is a CTL formula

3 begin

4 N := transform to fol(transform to snf (simp(nnf (ϕ))));
5 New := {C | C is a determinate clause in N};
6 ST := {C | C is a sometime clause in N};
7 SOS := ∅;
8 do

9 New := reduction mrr(New);

10 SOS := resolution sos(SOS, New);

11 New := ∅;
12 if (⊥ 6∈ SOS) then

13 foreach A-sometime clause and E-sometime clause C in ST

14 G := eres(SOS, C);

15 if (G 6= ∅) then

16 New := New ∪ G;

17 end if

18 end for

19 New := sub(New, SOS);

20 end if

21 while (⊥ 6∈ SOS and New 6= ∅)
22 output();

23 end

Figure 13: The main procedure of CTL-RP

the second case, since we use essentially the same loop search algorithms, thus the eresolvent procedure

in Figure 11 will find a first-order representation of the same loop formula and return the first-order

representation of the same result.

Therefore, if Ti contains a contradiction for some i ≥ 0, then Ni contains the empty clause as

Ni = ⌈T det
i ⌉. The R

≻,S
CTL-emulating derivation N0, N1, . . . from T that we have just constructed is a

refutation.

The proof for the reverse direction of the theorem is analogous. ⊓⊔

4.5 The main procedure of our implementation

The architecture of our resolution theorem prover for CTL is dictated by the differentiation that we

have to make between sometime clauses, which are subject to the eventuality resolution rules ERES1

and ERES1, implemented by the procedure eres, and determinate clauses, which are subject to the step

resolution rules, implemented by ordered resolution with selection. There are two possibilities how these

two can be integrated.

The first possibility is to treat eres as just another inference rule besides the resolution (and factoring)

rule of first-order resolution. To illustrate this approach, consider the main procedure of a simple first-

order resolution provers [26] as shown in Figure 12. In this procedure, choose(N) selects and removes

a clause from a clause set N , fac(C) is the set of all factors derivable from a clause C, res(C,N) is
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the set of all resolvents derivable between a clause C and a set of clauses N , taut(N) is the result

of exhaustive tautology elimination to N , sub(N) returns the set N after exhaustive application of

subsumption deletion, and sub(N,M) returns all clauses inN not subsumed by clauses inM . To integrate

eres we could simply replace line 7 with a case distinction: if Given is the first-order representation of

a determinate clause, then let New be the set of all condensed resolvents between Given and Wo under

ordered resolution with selection; if Given is a sometime clause, then let New be the result of applying

eres to the set of first-order representations of determinate clauses in Us∪ Wo, i.e. all currently available

determinate clauses, and Given. However, eres assumes that the set of clauses it is given is already

saturated and that only inferences between this set and the goal clauses constructed in eres are required,

otherwise not all loop formulae might be found. But Us∪Wo is not saturated as inferences between clauses

in Us have not been computed yet. So, we would need to saturate Us∪Wo within eres itself, which obviously

leads to repeated inferences as resolution prover will continue to saturate Us∪ Wo independently of eres.

Thus, this would not be an efficient approach.

The second possibility is to perform the saturation of determinate clauses first before we try to apply

eres. This obviously ensures that eres receives a saturated set of determinate clauses as input. But since

each application of eres to a sometime clause may derive new determinate clauses, we will have to re-

iterate the overall saturation process with these new clauses. This gives rise to the algorithm for the main

procedure of CTL-RP shown in Figure 13. The procedure takes a CTL formula ϕ as input and transforms

ϕ into a set N of SNFg
CTL clauses in first-order representation by computing the negation normal form

of ϕ using nnf and performing boolean and CTL simplifications, including tautology removal, using

simp, then transforming the resulting CTL formula into an equi-satisfiable set of SNFg
CTL clauses using

transform to snf , and finally giving these clauses a first-order representation using transform to fol (line

4). We split N into the set New of first-order representations of determinate clauses and the set ST of

sometime clauses (lines 5 and 6). As we will repeatedly saturate a set of clauses, a set of support strategy

is used, with the initial set of support SOS being empty (line 7).

We then enter the main loop of the procedure which will be repeated until either the empty clause

has been derived or we cannot derive any new clauses. Within the main loop we first simplify New

using matching replacement resolution [22] (line 9) which we found to be an effective reduction in early

experiments with CTL-RP. We then saturate the set New with respect to the current set of support SOS

using the procedure resolution sos and the resulting set of clauses becomes the new set of support (line

10). If we have not derived the empty clause yet, then we try to apply eres to each of the sometime

clauses (lines 13 to 18). The union of all the resolvents generated by applications of eres becomes the

set of new clauses New. Some of these resolvents may be redundant, in particular, if applications of eres

in a previous iteration of the loop have already been successful, i.e. have produced a non-empty set of

resolvents. Therefore, we eliminate clauses from New which are subsumed by clauses in SOS (line 19).
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1 procedure resolution sos(SOS, N)

2 // SOS is a saturated set of first-order clauses

3 // N is a non-saturated set of first-order clauses

4 begin

5 while (N 6= ∅ and ⊥ 6∈ N)

6 (Given,N) := choose(N);
7 SOS := SOS ∪ {Given};
8 New := cond(ores(Given, SOS));

9 New := sub(sub(New, SOS), N);

10 SOS := sub(SOS, New);

11 N := sub(N, New) ∪ New;

12 end

13 if ⊥ ∈ N then

14 SOS := SOS ∪ {⊥};
15 end if

16 return SOS;

17 end

Figure 14: The resolution sos procedure

The procedure resolution sos is shown in Figure 14. The procedure takes as input a set of clauses

SOS which is assumed to be saturated and not to contain a contradiction, and a set of clauses N. It

returns the saturation of SOS ∪ N. The procedure is a minor variation of the simple resolution prover

resolution prover in Figure 12, with the set SOS taking the place of the set Wo of worked-off clauses.

Thus, while resolution prover starts with an empty set of worked-off clauses to which we add clauses

chosen from N, and from derived clauses, one by one, here we start with the potentially non-empty set

SOS to which we add clauses chosen from N, and from derived clauses. In addition, we require the use

of ordered resolution with selection: ores(C,N) is the set of all resolvents derivable between a clause

C and a set of clauses N by the ordered resolution with selection rule, cond(N) is the set of clauses

{Cond(C) | C ∈ N}, where N is a set of determinate clauses.

4.6 CTL-RP

Our resolution theorem prover for CTL, CTL-RP, is based on the first-order resolution prover SPASS

3.0 [24, 27]. The main procedure of SPASS provides the implementation of resolution sos and all the in-

ference and redundancy elimination rules for first-order ordered resolution with selection. To this we have

added our own implementations of the procedures nnf , simp, transform to snf , and transform to fol

that are required to transform a given CTL formula into a set of first-order representations of determi-

nate clauses and a set of sometime clauses, and we have added implementations of the procedures main ,

eres and eresolvent .

51



TRES1
P † ⇒ A#A2l

q ⇒ A3¬l

q ⇒ A(¬P †W ¬l)

TRES2
P † ⇒ A#A2l

q ⇒ E3¬l〈LC(ind)〉

q ⇒ E(¬P †W¬l)〈LC(ind)〉

where P † is a disjunction of conjunctions of literals and l and q are literals.

Figure 15: Redundant eventuality resolution rules

5 Related work

R
≻,S
CTL is based on Bolotov’s resolution calculus for CTL [5]. For instance, the use of indices to translate

into the normal form was introduced in [5]. However, no formal interpretation was given for indices and

no formal semantics stated for SNFg
CTL. In this paper, we provide a formal semantics for SNFg

CTL.

Compared to the definition of SNFCTL in [5], we use an additional type of clauses, namely global

clauses. Our definition of SNFg
CTL provides several advantages over [5]. Firstly, global clauses inevitably

occur as a result of inferences by step resolution rules. For example, from m1 ⇒ A#l and m2 ⇒ A#¬l

we can derive m1 ∧ m2 ⇒ A#false, while from m1 ⇒ E#l〈ind〉 and m2 ⇒ E#¬l〈ind〉 we can derive

m1 ∧m2 ⇒ E#false〈ind〉. Both m1 ∧m2 ⇒ A#false and m1 ∧m2 ⇒ E#false〈ind〉 are transformed into

a global clause true⇒ ¬m1 ∨ ¬m2 by RW1 and RW2, respectively.

As the normal form in [5] does not allow for such clauses, in the approach taken in [5] such global

clauses must further be rewritten into equivalent pairs of an initial clause and an A-step clause as follows:

true⇒
∨k

j=1mj −→











start⇒
∨k

j=1mj

true⇒ A#
∨k

j=1mj

where each mj, 1 ≤ j ≤ k, is a literal. For the same reason, in [5] the rewrite rules RW1 and RW2

will each produce two clauses, whereas in R
≻,S
CTL the analogous rewrite rules produce only one. Thus,

one obvious advantage of allowing global clauses is that compared to [5] we will have fewer clauses

transformed from the original CTL formula and generated by resolution.

Secondly, global clauses also inevitably occur as a result of inferences in an implementation of step

resolution via first-order resolution as described in the previous section. Thus, removing global clauses

via rewriting would require additional implementation effort in this approach. Furthermore, the main

disadvantage of the introduction of global clauses, namely the need for the additional step resolution

rules SRES5 to SRES8 that allow to resolve on global clauses, disappears. All step resolution rules map

onto the rule for ordered first-order resolution.

Another difference to [5] is the approach taken in our completeness proof. The proof in [5] relates the

application of deletion rules on a CTL tableau to a sequence of resolution steps. Then, completeness of

the resolution calculus follows from the completeness of the tableau construction and deletion process.

To show completeness of our calculus R
≻,S
CTL we construct a graph known as a labelled behaviour graph.
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This is an extension of the concept of a behaviour graph used in [16] for proving completeness of a clausal

resolution for PLTL and related to the concept of a labelled behaviour graph used [12]. However, our

labelled behaviour graph has differences in construction to capture the semantics of indices in SNFg
CTL.

We believe our completeness proof through a behaviour graph demonstrates a closer relationship between

the application of resolution rules and deletions in the labelled behaviour graph. Moreover, it is relatively

easy to generate a CTL model structure from a non-empty reduced labelled behaviour graph. Hence,

we could potentially use the labelled behaviour graph construction to generate counter models given

failed proofs. Our labelled behaviour graph can be easily extended to be used for a completeness proof

of resolution calculi for the combination of CTL and other logics, for example, the combination of CTL

and modal logic KD45 [12].

Furthermore, in the resolution calculus for CTL presented in [5, 12] step resolution is not constrained

by an ordering and a selection function. Therefore, the step resolution rules in [5, 12] allow for con-

siderably more, and superfluous, inferences. In addition, this earlier resolution calculus contains four

eventuality resolution rules, TRES1 to TRES4, where ERES1 and ERES2 correspond to TRES3 and

TRES4. The other two eventuality resolution rules are given below in Figure 15. Using our completeness

proof we can prove that the two eventuality resolution rules TRES1 and TRES2 in [5, 12] are redundant.

We give a brief explanation why this is the case. Informally note that the only difference between

TRES1 and ERES1 is their first premise. For TRES1, it is P † ⇒ A#A2l and for ERES1, it is

P † ⇒ E#E2l. In [5, 12], A#A2l is called an A-loop and E#E2l is called an E-loop. According to

the semantics of CTL, A#A2l ⇒ E#E2l, meaning if there exists an A-loop, there must be an E-loop

as well. So, whenever we can apply TRES1 (TRES2), ERES1 (ERES2) is applicable as well. More

formally, in our completeness proof we only identify two types of subgraphs where some eventuality

can not be fulfilled, namely, ind-labelled terminal subgraphs and terminal subgraphs. Both are E-loops

according to the definition in [5] and the deletion of both types of subgraphs correlates to applications

of ERES1 or ERES2. Thus, no further inference rules are required showing that TRES1 and TRES2

are redundant. Considering that the eventuality resolution rules are computationally very expensive, we

gain a significant improvement here.

Finally, complexity of the method is not discussed in [5]. In this paper, we prove that a decision

procedure based on R
≻,S
CTL is of the order EXPTIME.

6 Performance of CTL-RP

Besides CTL-RP, there only seems to be one other CTL theorem prover, namely a CTL module for the

Tableau Workbench (TWB) [1].

The Tableau Workbench is a generic framework for building automated theorem provers for arbitrary
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a, b ¬a, b

¬a,¬ba,¬b

Representation of this state transition
system in CTL

(a ∧ b)
A2(a ∧ b ⇒ A#((¬a ∧ b) ∨ (¬a ∧ ¬b)))
A2(a ∧ b ⇒ E#(〈(〉¬a ∧ b)))
A2(a ∧ b ⇒ E#(〈(〉¬a ∧ ¬b)))

A2(¬a ∧ b ⇒ A#((¬a ∧ b) ∨ (¬a ∧ ¬b)))
A2(¬a ∧ b ⇒ E#(〈(〉¬a ∧ b)))
A2(¬a ∧ b ⇒ E#(〈(〉¬a ∧ ¬b)))

A2(¬a ∧ ¬b ⇒ A#(¬a ∧ b))

Figure 16: A state transition system

Property Status CTL-RP TWB
1. A#(¬E3(〈LC(a)〉 ∧ b)) Valid 0.06s 23.79s
2. A2(A(aU ¬a)) Valid 0.02s 25.84s
3. A2(a ∨ b) Not Valid 0.01s 0.85s
4. A2(E#¬〈b〉) Valid 0.03s 46.95s
5. E(bU ¬b) Valid 0.01s 2.95s

Figure 17: Performance on finite state transition system properties

propositional logics which provides a general architecture and a high-level language which allows users

to specify tableau rules and provers based on these rules. It provides a number of pre-defined provers for

a wide range of logics, for example, propositional logic, linear-time temporal logic and CTL. Regarding

CTL, it implements a so-called one-pass tableau calculus for this logic which results in double-EXPTIME

decision procedure [2]. Therefore the complexity this CTL decision procedure is higher than the com-

plexity of CTL-RP, which is EXPTIME. It should note that the prime aim of TWB is not efficiency.

There is no established way to evaluate the performance of CTL decision procedures nor is there a

repository or random generator of CTL formulae that one might use for such an evaluation. We have

therefore created four sets of benchmark formulae ourselves that we have used to compare CTL-RP

version 00.09 with TWB version 3.4. The comparison was performed on a Linux PC with an Intel Core

2 CPU@2.13 GHz and 3G main memory, using the Fedora 9 operating system.

The first set of benchmark formulae, CTL-BF1, consist of eight well-known equivalences between

temporal formulae taken from [13].

54



Figure 18: Performance on eight ‘textbook’ CTL formulae

CTL equivalence CTL-RP TWB

1. A2p ≡ ¬E3¬p 0.008s 0.005s

2. E2p ≡ ¬A3¬p 0.008s 0.004s

3. E#(p ∨ q) ≡ E#p ∨E#q 0.005s 0.005s

4. A#p ≡ ¬E#¬p 0.004s 0.006s

5. E(pU q) ≡ q ∨ (p ∧E#E(pU q)) 0.049s 0.005s

6. A(pU q) ≡ q ∨ (p ∧A#A(pU q)) 0.068s 0.005s

7. E3p ≡ E(true U p) 0.010s 0.008s

8. A3p ≡ A(true U p) 0.010s 0.008s

The CTL equivalences themselves and the CPU time required by TWB and CTL-RP to prove each

of them is shown in Figure 18. Both system easily prove each of the equivalence in less then 0.1 seconds,

however, with TWB being significantly faster on two of the formulae.

For the second set of benchmark formulae, CTL-BF2, we have created a small finite state transition

system and formalised it in CTL as shown in Figure 16. We have then defined five properties, each given

by a CTL formula, that one might try to establish for this state transition system, and each benchmark

formula in the second set is an implication stating that the CTL specification of the finite state system

implies one of these properties. Figure 17 shows the five properties, their validity status with respect

to the finite state transition system, and the CPU time in second required by TWB and CTL-RP to

establish that status. CTL-RP outperforms TWB by a factor of about 1000 on two of the benchmark

formulae and by a factor of 100 for the remaining three benchmark formulae in CTL-BF2.

The third set of benchmarks, CTL-BF3, generalises the idea underlying CTL-BF2. Instead of using

a specification of a finite state system and properties that we have ‘crafted’ ourselves, we use randomly

generates ones. In particular, let a state specification be a conjunction of literals li, 1 ≤ i ≤ 4, with

each li being an element of {ai,¬ai}. Let a transition specification be a CTL formula in the form

A2(s ⇒ A#(
∨n

i=1 si)) or A2(s ⇒ E#(
∨n

i=1 si)), where n is a randomly generated number between 1

and 3, and s and each si, 1 ≤ i ≤ n is a randomly generated state specification. Furthermore, let a
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Figure 19: Performance on the third set of benchmark formulae CTL-BF3

property specification be a CTL formula of the form ∗(
∨n

i=1 si), where ∗ is a randomly chosen element

of {A#,E#,A2,E2,A3,E3,AU ,EU }, n is a randomly generated number between 1 and 2, and

each si, 1 ≤ i ≤ n, is a randomly generated state specification. CTL-BF3 consists of one hundred

formulae with each formula being a conjunction (set) of 30 transition specifications and 5 property

specifications. Figure 19 shows a graph indicating the CPU in seconds required by TWB and CTL-RP

to establish the satisfiability or unsatisfiability of each benchmark formula in CTL-BF3. For CTL-RP,

each of the 100 benchmark formulae was solved in less than one CPU second. TWB, on the other hand,

required more time for most of benchmark formulae and was not able to solve 21 of the benchmark

formulae in less than 200 CPU seconds each, which was the time limit we have given to both provers.

The results on the CTL-BF3 show that CTL-RP can provide a proof for each benchmark formula in a

reasonable time with the vast majority of formulae being solved in less than 0.50 seconds. In contrast,

the performance of TWB is much more variable, with a high percentage of formulae not being solved.

The last set of benchmarks CTL-BF4 is based on a real world problem. We have specified a network

protocol, the Alternating Bit Protocol (ABP) [21] in CTL and specified and verified three of its properties

by CTL-RP and TWB. The Alternating Bit Protocol involves two participants, namely a Transmitter

and a Receiver. The Transmitter wants to send messages in a reliable way to the Receiver through an

unreliable communication channel. To this end, the Transmitter appends to each message a control bit.

We assume that for the first message the Transmitter sends, it will use the control bit 0. The Transmitter

will repeatedly send the message including the control bit until it receives an acknowledgement from the

Receiver with the same control bit. The Transmitter will then complement the control bit and start

transmitting the next message including the new control bit.

This behaviour of Transmitter and Receiver can be described by finite state transitions systems as the

ones shown in Figure 20. If the Transmitter is in its initial state s0, then it attaches the control bit 0 to the

current message and sends it to the Receiver. It will stay in state s0, i.e. follow the transition labelled

56



Transmitter

Receiver

¬tr0

s0 tr1

tr0
¬tr1

s1

¬rr1 ¬rr0

i
rr0

¬rr0

a0 a1

rr0

rr1

Figure 20: A model for ABP

¬tr0 , until it receives an acknowledgement with control bit 0, in which case it follows the transition

labelled tr0 to state s1. The behaviour of the Transmitter in state s1 is identical to its behaviour in

state s0, but with the control bit 1 taking the place of control bit 0.

If the Receiver is in its initial state i, then it will stay in state i, i.e. follow the transition labelled

¬rr0 , until it receives a message with control bit 0. It will then follow the transition labelled rr0 to state

a0. In state a0, the Receiver will send an acknowledgement with control bit 0 to the Transmitter. It will

then stay in state a0, i.e. follow the transition labelled ¬rr1 until it receives a message with control bit

1. It then follows the transition labelled rr1 to state a1. The behaviour of the Receiver in state a1 is

identical to its behaviour in state a0, but with the control bit 1 taking the place of control bit 0.

To represent the behaviour of Transmitter and Receiver in CTL, we associate a propositional variable

with every state and every positive transition label in the two finite state transition systems. Then the

initial condition of the Transmitter can be described by the CTL formula

s0 ∧ ¬tr0 ∧ ¬tr1

and the transitions of the Transmitter are represented by the following CTL formulae.

A2(s0 ∧ ¬tr0⇒ A#s0)

A2(s0 ∧ tr0⇒ A#s1)

A2(s1 ∧ ¬tr1⇒ A#s1)

A2(s1 ∧ tr1⇒ A#s0)
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Moreover, the following formulae ensure that at any moment, the Transmitter can only be at one state.

A2(s0 ∨ s1)

A2(s0⇒ ¬s1)

A2(s1⇒ ¬s0)

In analogy, the initial condition of the Receiver is described by

i ∧ ¬rr0 ∧ ¬rr1

and the transitions of the Receiver are represented by the following CTL formulae.

A2(i ∧ ¬rr0 ⇒ A#i)

A2(i ∧ rr0⇒ A#a0)

A2(a0 ∧ ¬rr1 ⇒ A#a0)

A2(a0 ∧ rr1⇒ A#a1)

A2(a1 ∧ ¬rr0 ⇒ A#a1)

A2(a1 ∧ rr0⇒ A#a0)

Again, we impose additional constrains to ensure that at any moment, the Receiver can only be in one

state.

A2(i ∨ a0 ∨ a1)

A2(i⇒ ¬a0 ∧ ¬a1)

A2(a0⇒ ¬i ∧ ¬a1)

A2(a1⇒ ¬i ∧ ¬a0)

In addition, we specify that the Transmitter and the Receiver will always eventually be successful in

transmitting their messages.

A2(s0⇒ A3rr0)

A2(s1⇒ A3rr1)

A2(a0⇒ A3tr0)

A2(a1⇒ A3tr1)

Finally, we have to specify the properties that we want to establish. We want to prove that the Receiver

is initially in state i and remains in that state until it transits to state a0. Once in state a0 it will remain

there until it transits to state a1. In analogy, once in state a1 the receiver remains in that state until it
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transits to state a0. These three properties are given by the following CTL formulae:

1. A(iU a0)

2. A2(a0⇒ A(a0U a1))

3. A2(a1⇒ A(a1U a0))

The set CTL-BF4 consists of three formulae with each formula being an implication stating that the

conjunction (set) of CTL formulae specifying Transmitter and Receiver implies one of the three properties

above.

While CTL-RP was able to establish the validity of each of the three benchmark formulae as indicated

in the table below, TWB did not terminate within 20 hours of CPU time.

Property CTL-RP TWB

1 1.39s -

2 192.86s -

3 326.02s -

7 Conclusion

Currently, there are many non-classical logics for which sound and complete calculi are known, however,

implementations of these calculi are lacking. This applies even to such a well-known and well-established

logic as Computational Tree Logic. One explanation is the considerable effort that is required to im-

plement a reasonably efficient theorem prover for these logics. The approach we took is that we first

develop a resolution calculus for the non-classical logic we are interested in and then build a bridge to

first-order resolution which allows us to re-use existing first-order theorem provers.

Previously, this approach has been successfully applied to linear-time temporal logic [19]. In this

paper, we construct a bridge from CTL to first-order logic.

We define a new normal form SNFg
CTL for CTL and give a formal semantics for it. We provide

an improved clausal resolution calculus R
≻,S
CTL for CTL and show the EXPTIME complexity of a CTL

decision procedure based on R
≻,S
CTL. Furthermore, we present a new completeness proof with a different

approach from [5]. The proof also shows that some eventuality resolution rules in [5], which are the most

costly rules of the calculus, are redundant. We provide a new technique to implement step resolution rules

via ordered first-order ordered resolution with selection and describe an algorithm for the eventuality

resolution rules of our calculus. This makes our calculus useful from both a theoretical and a practical

perspective. Using the methods we propose in this paper, we utilise an existing, efficient automated

resolution theorem prover for first-order logic, SPASS, to implement our CTL theorem prover CTL-RP.

In future, we intend to extend our approach to logics closely related to CTL including, for example,

alternating-time temporal logic [3].
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