
Resolution for a Temporal Logic of Robustness (Extended
Version)

Clare Dixon1 and John C. McCabe-Dansted2

1 Department of Computer Science, University of Liverpool,
Liverpool, L69 3BZ, UK
clare@csc.liv.ac.uk

2 School of Computer Science and Software Engineering
The University of Western Australia, Australia

john@csse.uwa.edu.au

Abstract. The logic RoCTL* is an extension of the branching time temporal logic CTL* to rep-
resent robustness and reliability in systems. New operators are introduced dealing with obligation
(where no failures occur) and robustness (where at most one additional failure occurs). The only
known decision procedure for the temporal logic of robustness RoCTL* involves a reduction to the
non-elementary QCTL* logic. Here we propose a CTL like restriction of RoCTL*, termed RoCTL,
and investigate its application and complexity. We show that the fragment of RoCTL without
the robust and prone operators, RoCTL−, can be translated into CTL. We provide a satisfiabil-
ity preserving translation for RoCTL− into CTL. By applying a known resolution calculus to the
resulting formulae we obtain a resolution calculus for RoCTL− and show that the complexity of
satisfiability of RoCTL− is EXPTIME.

1 Introduction

The RoCTL* logic [11] is an extension of CTL* introduced to represent issues relating to robustness and
reliability in systems. It does this by explicitly representing success and failure relations in the underlying
model structures and using these to define an obligatory operator and a robustly operator (and their duals
permissible and prone). The obligatory operator specifies how the systems should behave by quantifying
over paths in which no failures occur. The robustly operator specifies that something must be true on the
current path and on all paths that deviate from the current path that have at most one more failure than
the current path. This notation allows phrases such as “even with n additional failures” to be built up
by chaining n simple unary operators together. One of the strengths of RoCTL* is its ability to express
contrary-to-duty [9] obligations, which can be difficult for some Deontic logics.

Unfortunately the only known decision procedure for RoCTL* involves a reduction to QCTL* [11]
which is non-elementary to decide. We therefore study a CTL like restriction, termed RoCTL. We show
the fragment without robust and prone operators (termed RoCTL−) can be translated into CTL. For
RoCTL− we propose a translation into CTL thus allowing us to use a known CTL resolution based
decision procedure [2, 18] to carry out RoCTL− proofs. The translation into CTL is shown to increase
the length of the formula linearly and using this we show that the complexity of satisfiability for RoCTL−

is EXPTIME. RoCTL− is still reasonably expressive. For example it can still be used to express certain
contrary-to-duty obligations.

RoCTL can express any statement that can be expressed in CTL, and can additionally use a robustly
or obligatory operator (or their duals permission and prone) in place of the all paths operator. The
robustly operator quantifies over paths that deviate from the current path. As this set of paths depends
on the current path, the robustly operator is not a state formula.

This paper provides proof procedures for RoCTL−, a sub-logic of RoCTL∗, via a satisfiability pre-
serving translation into CTL. Decision procedures have been developed for the branching time temporal
logic CTL based on resolution [2, 18] and tableau [8, 1]. The success and failure relations in the RoCTL
model structures are represented by introducing a new proposition viol such that if viol holds in a state
it represents following a failure relation, and if it doesn’t hold it represents following a success relation.
At the root or initial state viol may or may not hold.

This paper is structured as follows. In Section 2 we present the syntax and semantics of RoCTL with
some examples formulated in RoCTL provided in Section 3. The syntax and semantics of CTL and a
normal form for CTL (known as SNFCTL) are provided in Section 4. In Section 5 we give translations

from RoCTL− formulae into CTL. In Section 6 we provide examples of how to carry out the translation
of RoCTL− formulae into the normal form. In Section 7 we provide details of the resolution calculus for
CTL. In Section 8 we provide examples of the translation and application of the resolution rules applied
to translated RoCTL− formulae. In Section 9 we show that the translation preserves satisfiability and in
Section 10 provide results relating to the complexity of the translation. We provide concluding remarks
and mention related work in Section 11.

2 Syntax and Semantics of RoCTL

This follows that in [11] except it is restricted to RoCTL.
RoCTL extends CTL by adding the following path operators:

– Oϕ (obligatory): a deontic operator, denoting that ϕ holds on every failure-free path;
– Pϕ (permissible): a deontic operator, denoting that ϕ holds on some failure free path;
– Nϕ (robust): denoting that ϕ holds on the current path and on any path that differs from this path

by a single deviating event;
– 4ϕ (prone): denoting that ϕ holds on the current path or on a path that differs from this path by

a single deviating event;

to the CTL path operators:

– Aϕ (all paths): a CTL path operator, denoting that ϕ holds on every path;
– Eϕ (some path): a CTL path operator, denoting that ϕ holds on some path.

Formulae are constructed from a set prop = {p, q, r, . . .} of primitive propositions. The language of
RoCTL contains true and false and the standard propositional connectives ¬ (not), ∨ (or), ∧ (and) and
⇒ (implies). For the temporal dimension we take the usual [12] set of future-time temporal connectivesg(next), ♦ (sometime or eventually), (always), U (until) and W (unless or weak until). Each of
these must be paired with a path operator.

The set of well-formed formulae of RoCTL, wff, is defined as follows:

– false, true and any element of prop is in wff;
– if ϕ and ψ are in wff and H ∈ {A,E,O,P,N,4} then the following are in wff:

¬ϕ ϕ ∨ ψ ϕ ∧ ψ ϕ⇒ ψ
H♦ϕ H ϕ H gϕ H(ϕU ψ) H(ϕW ψ)

The set of state formulae of RoCTL, is defined as follows:

– false, true and any element of prop is in the set of state formulae;
– if ϕ and ψ are state formulae and H ∈ {A,E,O,P} then the following are also state formulae:

¬ϕ ϕ ∨ ψ ϕ ∧ ψ ϕ⇒ ψ
H♦ϕ H ϕ H gϕ H(ϕU ψ) H(ϕW ψ)

RoCTL− is the fragment of RoCTL without the robustly (N) and prone (4) operators. Hence all
well-formed RoCTL− formulae are state formulae.

A RoCTL structure, M , is a 4-tuple 〈A, s→, f→, α〉 such that

– A is a set of states;
– s→ is a serial, binary success relation over A;
–

f→ is a binary failure relation over A;
– α is a valuation (a map from A to the powerset of propositional variables).

Let→ be an abbreviation for s→ ∪ f→. A fullpath is an infinite sequence of states σ = 〈w0, w1, w2, . . .〉
such that for all i > 0 (wi, wi+1) ∈→. Let σ>i be the fullpath wi, wi+1, . . ., let σi be wi and σ6i be
w0, . . . wi.

Definition 1. A fullpath is failure free if and only if for all i ∈ N we have wi
s→ wi+1. Let SF (w) be

the set of fullpaths in M starting at state w and S(w) be the set of all failure free fullpaths in M starting
with w.

Definition 2. For two fullpaths σ and π, π is an i-deviation from σ if and only if σ6i = π6i and
π>i+1 ∈ S(πi+1). π is a deviation from σ if there exists a non-negative integer i such that π is an i-
deviation from σ. A function δ from a fullpath to a set of fullpaths is defined as: π is a member of δ(σ)
if and only if π is a deviation from σ where σ and π are fullpaths.

Let σ6i be a finite path and π be a fullpath such that σi = π0. We denote the path formed from
following σ6i and then π by 〈σ6i : π〉.

The semantics of RoCTL formulae are defined on a fullpath σ = 〈w0, w1, . . .〉 in a RoCTL structure
M as follows. Recall σi = wi so σ0 = w0.

M,σ |= p iff p ∈ prop and p ∈ α(σ0)
M,σ |= ¬ϕ iff M,σ 6|= ϕ

M,σ |= ϕ ∧ ψ iff M,σ |= ϕ and M,σ |= ψ
M,σ |= gϕ iff M,σ>1 |= ϕ
M,σ |= ϕ iff ∀i ∈ N,M, σ>i |= ϕ
M,σ |=♦ϕ iff ∃i ∈ N,M, σ>i |= ϕ

M,σ |= ϕU ψ iff ∃i ∈ N s.t. M,σ>i |= ψ and ∀j ∈ N s.t. j < i, M, σ>j |= ϕ
M,σ |= ϕW ψ iff M,σ |= ϕ or M,σ |= ϕU ψ
M,σ |= Aϕ iff ∀π ∈ SF (σ0) M,π |= ϕ
M,σ |= Oϕ iff ∀π ∈ S(σ0) M,π |= ϕ
M,σ |= Nϕ iff M,σ |= ϕ and ∀π ∈ δ(σ) M,π |= ϕ

The definitions for other Boolean operators are as we would expect from classical logic. The semantics
of other operators can be derived via equivalent formulae where Eϕ ≡ ¬A¬ϕ, Pϕ ≡ ¬O¬ϕ and 4ϕ ≡
¬N¬ϕ. We say that a RoCTL formula ϕ is satisfiable if and only if for some structure M and some path
σ, M,σ |= ϕ.

In the following let a literal be a proposition or a negated proposition.

3 RoCTL Examples

In this section we provide some problems formulated in RoCTL. Examples 2 and 3 have been adapted
from the RoCTL* examples in [11].

Example 1. A heart beat link should remain connected, but if the link becomes disconnected, it should
remain disconnected. This contrary-to-duty obligation can be formalised in RoCTL if the second obliga-
tion is stronger than the first, for example as follows:

O c ∧O A gO (¬c⇒ A ¬c)

In this example c is used to represent the system remaining connected. Thus O c represents “It is
obligatory that it will always be the case that the system is connected.”

Example 2. In the coordinated attack problem we have two generals A and B. General A wants to
organise an attack with B. A communication protocol will be presented such that a coordinated attack
will occur if no more than one message is lost.

We use the following proposition symbols for i = A,B:

– si general i sends a message;
– ri general i receives a message;
– fi general i commits to an attack.

Below we list requirements of the system, giving the informal English requirements of the system on
the right, and the formalization of those requirements on the left.

A (sA ⇒ O grB): If A sends a message, B should receive it at the next step (and will receive the
message if no failure occurs).

A (¬sA ⇒ ¬E grB): If A does not send a message now, B will not receive a message at the next
step.

A (fA ⇒ A fA): If A commits to an attack, A cannot withdraw.
A (fA ⇒ ¬sA): If A has committed to an attack it is too late to send messages.
A (¬fAW rA): A cannot commit to an attack until A has received a message (from B).
A(¬rAW sB): A cannot receive a message until B sends one.

Similar constraints to the above also apply to B. Below we add a constraint requiring A to be the general
planning the attack.

A (¬sBW rB): General B will not send a message until B has received a message.

No protocol exists to satisfy the original coordination problem, since an unbounded number of messages
can be lost. Here we only attempt to ensure correct behaviour if one or fewer messages are lost.

A (sA U rA): General A will send plans until a response is received.
A (rA ⇒ fA): Once general A receives a response, A will commit to an attack.
A (¬rBW (rB ∧ (sB ∧A gsB ∧A gA gfB))): Once general B receives plans, B will send two mes-

sages to A and then commit to an attack.

Having the formal statement of the policy above and the semantics of RoCTL we may want to prove,
for example that the policy ϕ̂ is consistent and that it implies correct behaviour even if a single failure
occurs:

ϕ̂⇒ O N♦(fA ∧ fB) .

Example 3. We have a cat that does not eat the hour after it has eaten. If the cat bowl is empty we
might forget to fill it. We must ensure that the cat never goes hungry, even if we forget to fill the cat
bowl one hour. At the beginning of the first hour, the cat bowl is full. We have the following variables:

b “The cat bowl is full at the beginning of this hour”
d “This hour is feeding time”

We can translate the statements above into RoCTL statements:

1. A (d⇒ A g¬d): If this hour is feeding time, the next is not.
2. A ((d∨¬b)⇒4 g¬b): If it is feeding time or the cat bowl was empty, a single failure may result

in an empty bowl at the next step
3. A ((¬d ∧ b) ⇒ A gb): If the bowl is full and it is not feeding time, the bowl will be full at the

beginning of the next hour.
4. O N (d⇒ b): It is obligatory that, even if a single failure occurs, it is always the case that the

bowl must be full at feeding time.
5. b: The cat bowl starts full.

Having the formalised the policy it can be proven that the policy is consistent and that the policy implies
O N O gb, indicating that the bowl must be filled at every step (in case we forget at the next step),
unless we have already failed twice. The formula A O gb ⇒ O N (d⇒ b) can also be derived,
indicating that following a policy requiring us to always attempt to fill the cat bowl ensures that we will
not starve the cat even if we make a single mistake. Thus following this simpler policy is sufficient to
discharge our original obligation.

4 CTL

CTL [6] is a branching time temporal logic which is the fragment of CTL∗ [7] such that every path
operator is paired with a temporal operator. Well formed formulae of CTL are constructed from the
same elements as RoCTL but without the operators O, P, N and 4.

– false, true and any element of prop is in wff;
– if ϕ and ψ are in wff and H ∈ {A,E} then the following are in wff:

¬ϕ ϕ ∨ ψ ϕ ∧ ψ ϕ⇒ ψ
H♦ϕ H ϕ H gϕ H(ϕU ψ) H(ϕW ψ)

CTL formulae are interpreted over structuresM such thatM = 〈S, R, L〉 where S is a set of states,
R is a binary relation, and L is a valuation (a map from S to the powerset of propositional variables). A
fullpath, σ, over R, is a sequence of states σ = 〈w0, w1, w2, . . .〉 such that for all i > 0, (wi, wi+1) ∈ R.
Using the same terminology as for RoCTL. where SF (w) is the set of fullpaths in M starting at state
w, the semantics of CTL formulae are as follows. We omit the semantics for Boolean operators as they
are standard.

M, σ |= gϕ iff M, σ>1 |= ϕ
M, σ |= ϕ iff ∀i ∈ N,M, σ>i |= ϕ
M, σ |=♦ϕ iff ∃i ∈ N,M, σ>i |= ϕ
M, σ |= ϕU ψ iff ∃i ∈ N s.t. M, σ>i |= ψ and ∀j ∈ N s.t. j < i, M, σ>j |= ϕ
M, σ |= ϕW ψ iff M, σ |= ϕ or M, σ |= ϕU ψ
M, σ |= Aϕ iff ∀π ∈ SF (σ0) M, π |= ϕ
M, σ |= Eϕ iff ∃π ∈ SF (σ0) M, π |= ϕ

CTL formulae are evaluated over CTL structures and do not have the O or N operator, otherwise the
semantics of CTL are the same as the semantics for RoCTL defined above.

4.1 A Normal Form for CTL

Next we present a normal form for CTL known as SNFCTL. Any CTL formula ϕ can be translated into
this normal form giving ϕ′ such that ϕ is satisfiable if and only if ϕ′ is satisfiable [18]. For the purposes
of the normal form we introduce a symbol start such that start holds only at the initial moment in
time.

Some clauses are labelled by indices ind which are taken from a set Ind. Formulae in SNFCTL are of
the general form A

∧
i Ci where each Ci is known as a clause and must be one of the following forms.

start ⇒
r∨

b=1

lb (an initial clause)

true ⇒
r∨

b=1

lb (a global clause)

g∧
a=1

ka ⇒ A g r∨
b=1

lb (an A step clause)

g∧
a=1

ka ⇒ E g r∨
b=1

lb〈ind〉 (a E step clause)

g∧
a=1

ka ⇒ A♦l (an A sometime clause)

g∧
a=1

ka ⇒ E♦l〈ind〉 (a E sometime clause)

Here ka, lb, and l are literals, 〈ind〉 is an index that is present on E step clauses and on E sometime
clauses. This index indicates a particular next relation and arises, for example, from the translation of
formulae such as E(ϕU ψ). During the translation to the normal form such formulae are translated into
several E step clauses and a E sometime clause (which ensures that ψ must actually hold). To indicate
that all these clauses refer to the same path they are annotated with an index. The outer ‘A ’ operator
that surrounds the conjunction of clauses is usually omitted. Similarly, for convenience the conjunction
is dropped and we consider just the set of clauses Ci.

CTL formulae are interpreted over structuresM such thatM = 〈S, R, L〉 where S is a set of states,
R is a binary relation, and L is a valuation (a map from S to the powerset of propositional variables). As
SNFCTL formulae contain indices we extend CTL structures (see [18]) M to be M = 〈S, R, L, [],w〉,
where S, R and L are as previously, w ∈ S and [] : Ind → (S × S) and for every ind ∈ Ind, [ind] is a
total functional relation such that if (wi, wi+1) ∈ [ind] then (wi, wi+1) ∈ R. An infinite path σ〈ind〉 is an
infinite sequence of states w0, w1, w2, . . . such that for all i > 0, (wi, wi+1) ∈ [ind]. The semantics of

SNFCTL is then defined as shown below as an extension of the semantics of CTL defined earlier.

M, σ |= start iff σ0 = w
M, σ |= E gψ〈ind〉 iff ∃π〈ind〉 ∈ SF (σ0) s.t. M, π

〈ind〉
>1 |= ψ

M, σ |= E ψ〈ind〉 iff ∃π〈ind〉 ∈ SF (σ0) s.t. ∀i ∈ N,M, π
〈ind〉
>i |= ψ

M, σ |= E♦ψ〈ind〉 iff ∃π〈ind〉 ∈ SF (σ0) s.t. ∃i ∈ N, and M, π
〈ind〉
>i |= ψ

M, σ |= EϕU ψ〈ind〉 iff ∃π〈ind〉 ∈ SF (σ0) s.t. ∃i ∈ N and M, π
〈ind〉
>i |= ψ

and ∀j ∈ Nj < i,M, π
〈ind〉
>j |= ϕ

M, σ |= EϕW ψ〈ind〉iff ∃π〈ind〉 ∈ SF (σ0), s.t. M, σ |= E ϕ〈ind〉 or
M, σ |= EϕU ψ〈ind〉

A set of SNFCTL clauses C are said to be satisfied in a model M if for each Ci ∈ C, M, w0 |= Ci

where w0 is the root node of the model M.

5 Translating RoCTL− into CTL

Next we provide a satisfiability preserving translation of RoCTL− into CTL. Without loss of generality
we assume that the RoCTL− formula to be translated into CTL is in negation normal form; it is simple
to show that we may convert any RoCTL− formula into negation normal form by pushing negations
through to atoms using standard equivalences (see e.g. [8, 11]).

We replace temporal subformulae in the scope of other temporal operators by new propositions and
add new formulae enforcing that the replaced subformulae hold when the new proposition is satisfied
everywhere in the RoCTL structure. This reduces the nesting of the temporal operators in the original
formula so that they aren’t in the scope of any other temporal operator. The newly added formulae will
have the replaced temporal formulae in the scope of the A operators. In the resulting formulae we
also replace subformulae that are not literals in the scope of permissible and obligatory operators by
new propositions again adding formulae enforcing the replaced subformulae hold when the new propo-
sition is satisfied. This means that formula involving permissible and obligatory operators only apply to
literals rather than complex subformulae. Finally we apply the translation, τ to non-CTL formulae. As
RoCTL− formulae are interpreted in structures with two types of relation, success and failure, during
the translation we introduce a new propositional variable viol which holds in states wj+1 in the CTL

model structures which correspond to states wj+1 in the RoCTL model structures where (wj , wj+1) ∈ f→.
Other new propositions are introduced to re-name complex subformulae as described above. First we
introduce some definitions.

Definition 3. The depth of a RoCTL− formula, ϕ, denoted depth(ϕ) is defined as follows where H ∈
{A,E,O,P} and ϕ, ψ are RoCTL− formulae.

depth(p) = 0 where p ∈ prop
depth(¬ϕ) = depth(ϕ)
depth(ϕ ∧ ψ) = depth(ϕ ∨ ψ) = depth(ϕ⇒ ψ) = max(depth(ϕ), depth(ψ))
depth(H gϕ) = depth(H ϕ) = depth(H♦ϕ) = 1 + depth(ϕ)
depth(HϕU ψ) = depth(HϕW ψ) = 1 +max(depth(ϕ), depth(ψ))

In the following we assume that Boolean combinations involving true and false are simplified using the
usual equivalences.

Translation of RoCTL− Formulae into CTL

Let the original RoCTL− formula (in negation normal form) be ϕ and let ϕR = true.

1. In ϕ repeatedly replace sub-formulae with main operator A,E,O,P of depth 1, ψ , in the scope of
another temporal operator by a new proposition ti until depth(ϕ) 6 1 and let ϕR = ϕR ∧A (ti ⇒
ψ).

2. For any subformula of ϕ or ϕR where H ∈ {O,P}, of the following forms H gψ1, H ψ1, H♦ψ1,
Hψ1 U ψ2, Hψ1W ψ2, where ψ1 (respectively ψ2) is not a literal, replace ψ1 (respectively ψ2) by a
new proposition tj and conjoin A (tj ⇒ ψ1) (respectively A (tj ⇒ ψ2)) to ϕR.

3. Apply the translation τ to ϕ ∧ ϕR ∧A E g¬viol where τ is defined as follows.

τ(ϕ) = ϕ for any CTL formula ϕ
τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ) if either ϕ or ψ is not a CTL formula
τ(ϕ ∨ ψ) = τ(ϕ) ∨ τ(ψ) if either ϕ or ψ is not a CTL formula

τ(A (l⇒ ϕ)) = A (l⇒ τ(ϕ)) if l is a literal and ϕ is not a CTL formula

τ(P gl) = E g(¬viol ∧ l)
τ(P l) = l ∧E gE (¬viol ∧ l)
τ(P♦l) = l ∨E gE(¬violU (¬viol ∧ l))

τ(Pl1 U l2) = l2 ∨ (l1 ∧E gE((¬viol ∧ l1)U (¬viol ∧ l2)))
τ(Pl1W l2) = l2 ∨ (l1 ∧E gE((¬viol ∧ l1)W (¬viol ∧ l2)))

τ(O gl) = A g(viol ∨ l)
τ(O l) = l ∧A gA((viol ∨ l)W viol)
τ(O♦l) = l ∨A gA♦(l ∨ viol)

τ(Ol1 U l2) = l2 ∨ (l1 ∧A gA((viol ∨ l1)U (viol ∨ l2)))
τ(Ol1W l2) = l2 ∨ (l1 ∧A gA((viol ∨ l1)W (viol ∨ l2)))

6 Example Translations

In this section we show how to translate some examples from RoCTL− into CTL. First we consider
the heart beat example from Section 3 and then translate a simple unsatisfiable formula using both
permissible and obligatory operators.

6.1 Heartbeat Example

We show how to translate the heart beat example (Example 1 from Section 3) into CTL. As we assume
the problem is in negation normal form let

ϕ = O c ∧O A gO (c ∨A ¬c) .

First (step 1) we rename nested temporal subformulae and obtain

ϕ = O c ∧O t3

and
ϕR = A (t3 ⇒ A gt2)∧

A (t2 ⇒ O (c ∨ t1))∧
A (t1 ⇒ A ¬c).

Next (step 2) we replace the disjunction below O in A (t2 ⇒ O (c ∨ t1)) by t4 to obtain

A (t2 ⇒ O t4)
A (t4 ⇒ (c ∨ t1)).

Next we apply τ as follows.
τ(O c ∧O t3∧
A (t3 ⇒ A gt2)∧
A (t2 ⇒ O t4)∧
A (t4 ⇒ (c ∨ t1))∧
A (t1 ⇒ A ¬c)∧
A E g¬viol)

= τ(O c) ∧ τ(O t3)∧
A (t3 ⇒ A gt2)∧
A (t2 ⇒ τ(O t4))∧
A (t4 ⇒ (c ∨ t1))∧
A (t1 ⇒ A ¬c)∧
A E g¬viol

The translation τ applied to these subformulae is as follows.

τ(O c) = c ∧A gA((viol ∨ c)W viol)
τ(O t3) = t3 ∧A gA((viol ∨ t3)W viol)
τ(O t4) = t4 ∧A gA((viol ∨ t4)W viol)

The final set of CTL formulae is as follows.

c ∧A gA((viol ∨ c)W viol)∧
t3 ∧A gA((viol ∨ t3)W viol)∧
A (t3 ⇒ A gt2)∧
A (t2 ⇒ (t4 ∧A gA((viol ∨ t4)W viol)))∧
A (t4 ⇒ (c ∨ t1))∧
A (t1 ⇒ A ¬c)∧
A E g¬viol

6.2 Permissible/Obligatory Formula

Consider the formula P ¬q ∧ OpU q which is unsatisfiable. As both steps 1 and 2 of the algorithm
cannot be applied as there are no nested temporal formulae and formulae in the scope of the obligatory
and permissible operators are literals we only have to apply τ .

τ(P ¬q ∧OpU q
∧A E g¬viol)

= τ(P ¬q) ∧ τ(OpU q)
∧A E g¬viol

= ¬q ∧E gE (¬viol ∧ ¬q)∧
q ∨ (p ∧A gA((viol ∨ p)U (viol ∨ q)))∧
A E g¬viol

7 Resolution for CTL

The following resolution calculus for CTL was presented in [18] and has been shown to be sound, complete
and terminating [18]. The resolution rules presented are split into three groups, initial resolution, step
resolution and temporal resolution. The first two types of resolution are variants of classical resolution.
Temporal resolution, however, is an extension allowing the resolution between formulae such as p with
♦¬p on the same path.

Initial, global or step clauses may be resolved together as follows where in the following P and Q are
conjunctions of literals and F and G are disjunction of literals.

[IRES1]
start⇒ (F ∨ l)
start⇒ (G ∨ ¬l)
start⇒ (F ∨G)

[IRES2]
start⇒ (F ∨ l)
true⇒ (G ∨ ¬l)
start⇒ (F ∨G)

[SRES1]
P ⇒ A g(F ∨ l)
Q⇒ A g(G ∨ ¬l)

(P ∧Q)⇒ A g(F ∨G)

[SRES2]
P ⇒ E g(F ∨ l)〈ind〉
Q⇒ A g(G ∨ ¬l)

(P ∧Q)⇒ E g(F ∨G)〈ind〉

[SRES3]
P ⇒ E g(F ∨ l)〈ind〉
Q⇒ E g(G ∨ ¬l)〈ind〉

(P ∧Q)⇒ E g(F ∨G)〈ind〉

[SRES4]
true⇒ (F ∨ l)
Q⇒ A g(G ∨ ¬l)
Q⇒ A g(F ∨G)

[SRES5]
true⇒ (F ∨ l)
Q⇒ E g(G ∨ ¬l)〈ind〉
Q⇒ E g(F ∨G)〈ind〉

[SRES6]
true⇒ (F ∨ l)
true⇒ (G ∨ ¬l)
true⇒ (F ∨G)

Simplification and subsumption rules are also applied. Once a contradiction within a state is found,
the following rules can be used to generate extra global constraints.

[SRES7]
Q⇒ A gfalse

true⇒ ¬Q [SRES8]
Q⇒ E gfalse〈ind〉

true⇒ ¬Q

During temporal resolution the aim is to resolve one of the sometime clauses, Q⇒ H♦l (where H is
A or E), with a set of clauses that together imply ¬l along the same path, for example a set of clauses
that together have the effect of P ⇒ E g(E ¬l〈ind〉)〈ind′〉.

[ERES1]
P ⇒ E g(E ¬l〈ind〉)〈ind′〉
Q⇒ A♦l
Q⇒ A(¬P W l)

[ERES2]
P ⇒ E g(E ¬l〈ind〉)〈ind〉
Q⇒ E♦l〈ind〉
Q⇒ E(¬P W l)〈ind〉

In each case the resolvent ensures that once Q has been satisfied, meaning that the eventuality ♦l
must be satisfied on some or all paths, the conditions for triggering a -formula are not allowed to
occur, i.e., either P must be false at every future moment or must be false until the eventuality (l) has
been satisfied. It may be surprising that resolving a A-formula with a E-formula in ERES1 results in a
A-formula. This is because the eventuality l must appear on all paths so similarly the resolvent will also
hold on all paths. Formulae of the form E g(E ¬l〈ind〉)〈ind′〉 are constructed from the conjunction of
one or more step or global clauses, for example a⇒ E g(a∧¬l)〈ind〉. Similarly the resolvent is rewritten
into several step or global clauses labelled where appropriate by 〈ind〉. For more details see [18].

The calculus terminates when either no new resolvents are derived, or false is derived in the form of
either start⇒ false or true⇒ false.

8 Resolution Examples

Next we translate the examples from Section 6 into normal form and show how to apply the resolution
rules to the resulting SNFCTL clauses. To save space we abbreviate the names of the resolution rules
IRES1 to I1, SRES1 to S1 and ERES1 to E1 etc. New propositions introduced during the translation to
normal form are denoted by ri.

8.1 Example: Permissible/Obligatory Formula

Consider the formula P ¬q ∧ OpU q which is unsatisfiable. Previously we saw that translating this
into CTL gave

¬q ∧E gE (¬viol ∧ ¬q)∧
q ∨ (p ∧A gA((viol ∨ p)U (viol ∨ q)))∧
A E g¬viol

Translating into SNF we obtain the following where clauses 1–6 are from the first two conjuncts, 7–15
from the third conjunct and clause 16 from the final conjunct.

1. start⇒ ¬q
2. start⇒ r0
3. r0 ⇒ E gr2〈ind1〉
4. r2 ⇒ E gr2〈ind2〉
5. true⇒ ¬r2 ∨ ¬viol
6. true⇒ ¬r2 ∨ ¬q
7. start⇒ q ∨ r3
8. true⇒ ¬r3 ∨ p
9. r3 ⇒ A gr4

10. true⇒ ¬r4 ∨ viol ∨ q ∨ p
11. true⇒ ¬r4 ∨ viol ∨ q ∨ r5
12. r4 ⇒ A♦r6
13. true⇒ ¬r6 ∨ viol ∨ q
14. r5 ⇒ A g(viol ∨ q ∨ p)
15. r5 ⇒ A g(viol ∨ q ∨ r5)
16. true⇒ E g¬viol〈ind3〉

The proof continues as follows.

17. true⇒ ¬r6 ∨ ¬r2 ∨ q [5, 13, S6]
18. true⇒ ¬r6 ∨ ¬r2 [6, 17, S6]
19. r2 ⇒ E g¬r6〈ind2〉 [4, 18, S5]

The clauses 4 and 19 together give r2 ⇒ E g(E ¬r6〈ind2〉)〈ind2〉 to which we can apply temporal
resolution with clause 12 obtaining r4 ⇒ A¬r2W r6. Rewriting this into SNFCTL we obtain the clauses
20 and others.

20. true⇒ (¬r4 ∨ r6 ∨ ¬r2) [4, 12, 19, E1]
21. r3 ⇒ A g(r6 ∨ ¬r2) [9, 20, S4]
22. r3 ⇒ A g(viol ∨ q ∨ ¬r2) [13, 21, S4]
23. r3 ⇒ A g(q ∨ ¬r2) [5, 22, S4]
24. r3 ⇒ A g(¬r2) [6, 23, S4]
25. r0 ∧ r3 ⇒ E g(false)〈ind1〉 [3, 24, S2]
26. true⇒ ¬r0 ∨ ¬r3 [25, S8]
27. start⇒ ¬r0 ∨ q [7, 26, I2]
28. start⇒ ¬r0 [1, 27, I1]
29. start⇒ false [2, 28, I1]

As we have derived start⇒ false the set of clauses and therefore the original formula is unsatisfiable.

8.2 Heartbeat Example

After the translation into CTL we obtained the following formulae.

c ∧A gA((viol ∨ c)W viol)∧
t3 ∧A gA((viol ∨ t3)W viol)∧
A (t3 ⇒ A gt2)∧
A (t2 ⇒ (t4 ∧A gA((viol ∨ t4)W viol)))∧
A (t4 ⇒ (c ∨ t1))∧
A (t1 ⇒ A ¬c)∧
A E g¬viol

We can translate into SNFCTL as follows where clauses 1–7 represent the first two conjuncts, clauses
8–13 represent the third and fourth conjuncts, clause 14 represents the fifth conjunct, clauses 15–20
represent the sixth conjunct, clause 21 represents the seventh conjunct and clauses 22–24 represent the
eighth conjunct and clause 25 represents the last conjunct.

1. start⇒ c
2. start⇒ r0
3. r0 ⇒ A gr1
4. true⇒ ¬r1 ∨ viol ∨ c
5. true⇒ ¬r1 ∨ viol ∨ r2
6. r2 ⇒ A g(viol ∨ c)
7. r2 ⇒ A g(viol ∨ r2)
8. start⇒ t3
9. r0 ⇒ A gr3

10. true⇒ ¬r3 ∨ viol ∨ t3
11. true⇒ ¬r3 ∨ viol ∨ r4
12. r4 ⇒ A g(viol ∨ t3)
13. r4 ⇒ A g(viol ∨ r4)
14. t3 ⇒ A gt2
15. true⇒ ¬t2 ∨ t4
16. t2 ⇒ A gr5
17. true⇒ ¬r5 ∨ viol ∨ t4
18. true⇒ ¬r5 ∨ viol ∨ r6
19. r6 ⇒ A g(viol ∨ t4)
20. r6 ⇒ A g(viol ∨ r6)
21. true⇒ ¬t4 ∨ c ∨ t1
22. true⇒ ¬t1 ∨ r7
23. r7 ⇒ A gr7
24. true⇒ ¬r7 ∨ ¬c
25. true⇒ E g¬viol〈ind1〉

Whilst we may apply initial and step resolution between several clauses we will not be able to derive
a contradiction (deriving false) showing that this set of clauses is satisfiable. Note we cannot apply
temporal resolution as there are no sometime clauses in the set of clauses.

9 Properties of the Translation and RoCTL

Next we show that the transformation from RoCTL− to CTL is satisfiability preserving. We begin with
some definitions.

Definition 4. Let flat normal form be a Boolean combination of formulae of the form ϕ or A (l⇒ ϕ)
where either ϕ is a CTL formula such that depth(ϕ) 6 1 or ϕ is of the form HTl1 or Hl1Tl2 where H
is either obligatory or permissible, T is a temporal operator of suitable arity and l1, l2 are literals.

Lemma 1. Let ϕ be a RoCTL− formula and NNF (ϕ) be the translation of ϕ into negation normal
form. ϕ is satisfiable if and only if NNF (ϕ) is satisfiable.

Proof. It can be easily shown that ϕ can be translated into NNF (ϕ) by applying standard equivalences
which push negations through to propositions see for example [8, 11]. Thus ϕ is satisfiable if and only if
NNF (ϕ) is satisfiable.

Lemma 2. Let ϕ be a RoCTL formula in negation normal form and FLAT (ϕ) be the translation of ϕ
into flat normal form from applying steps 1 and 2. ϕ is satisfiable if and only if FLAT (ϕ) is satisfiable.

Proof. Note first that all well-formed RoCTL− subformulae of ϕ are state formulae. It is well known that
given a formula ϕ containing a subformula ψ which is a state formula (not in the scope of a negation) ϕ
is satisfiable if and only if ϕ′ ∧A (t⇒ ψ) is satisfiable where t is a new proposition and ϕ′ is ϕ where
the subformula ψ is replaced by t. See for example [5, 15].

Next we show that the translation τ is satisfiability preserving.

Lemma 3. Let ϕ be a RoCTL formula in flat normal form and τ(ϕ∧A A g¬viol) be the translation
of ϕ∧A A g¬viol into CTL. ϕ is satisfiable in an RoCTL model if and only if τ(ϕ∧A A g¬viol)
is satisfiable in a CTL model.

Proof. First we show if τ(ϕ∧A A g¬viol) is satisfiable then so is ϕ. Assume that τ(ϕ∧A A g¬viol)
is satisfiable on some path σ in a CTL structureM whereM = 〈S, R, L〉. We construct a RoCTL model
M and show it satisfies ϕ. We define M in terms of a new function CONS such that CONS(M) =

M = 〈A, s→, f→, α〉 where

– A = S
– s→= {(wi, wi+1) | (wi, wi+1) ∈ R and viol 6∈ L(wi+1)}
–

f→= {(wi, wi+1) | (wi, wi+1) ∈ R and viol ∈ L(wi+1)}
– α(wi) = L(wi)

As M, σ |= τ(ϕ ∧A A g¬viol) from the definition of τ , M, σ |= τ(ϕ) ∧A A g¬viol. By the
semantics of conjunctionM, σ |= τ(ϕ) and M, σ |= A A g¬viol. From the semantics of A for any
reachable state wi ∈ S there must be some wi+1 ∈ S such that (wi, wi+1) ∈ R and viol 6∈ L(wi+1). That
is for any reachable state we can construct a path π such that M, π>i |= ¬viol for all i > 1. From the
construction of M this means that the success relation must be serial required by RoCTL models.

Next we consider the different cases of ϕ.

– ϕ = P gl. Assume that τ(P gl) is satisfiable on path σ in a CTL model structure M = 〈S,R,L〉,
i.e. M, σ |= E g(¬viol ∧ l). We show M,σ |= P gl where M = CONS(M). In M from the
semantics of E and g there is a path π ∈ SF (σ0) such that σ0 = π0 and (π0, π1) ∈ R and
M, π>1 |= (¬viol∧ l). Additionally from the structure of the CTL models (see above) we can choose
π such that M, π>i |= ¬viol for all i > 1. From the semantics of conjunction M, π>1 |= ¬viol and
M, π>1 |= l. From the definition of the RoCTL structure M as M,π>1 |= ¬viol then (π0, π1) ∈ s→ and
M,π>1 |= l. Further, from how we have chosen π, M,π>i |= ¬viol for all i > 1 then (πi−1, πi) ∈

s→
and from the semantics of P and g, M,σ |= P gl as required.

– ϕ = P l. Assume that τ(P l) is satisfiable at some path σ in a CTL model structure M =
〈S,R,L〉, i.e. M, σ |= l ∧ E gE (¬viol ∧ l). We show M,σ |= P l where M = CONS(M).
In M from the semantics of conjunction M, σ |= l and M, σ |= E gE (¬viol ∧ l). In M from
the semantics of E and g there is a path π ∈ SF (σ0) such that σ0 = π0 and (π0, π1) ∈ R and
M, π>1 |= E (¬viol ∧ l). From the semantics of E and there is a path π′ ∈ SF (π1) such that
π1 = π′0 and (π′i, π

′
i+1) ∈ R for i > 0 and M, π′>i |= (¬viol ∧ l) for all i > 0. From the semantics

of conjunction for all i > 0, M, π′>i |= ¬viol and M, π′>i |= l. From the definition of the RoCTL
structure M , M,π′>i |= l for all i > 0 and as M,π′>i |= ¬viol for all i > 0 then (π′i, π

′
i+1) ∈ s→. Further

as M, π′>0 |= ¬viol, π1 = π′0 and (π0, π1) ∈ R in the CTL model we have (π0, π1) ∈ s→ and the path
〈π0 : π′〉 is failure free. RecallM, σ |= l so M,σ |= l and as σ0 = π0 then M, 〈π0 : π′〉 |= l, M,π′>i |= l
for all i > 0 and 〈π0 : π′〉 ∈ S(σ0) so from the semantics of P and M,σ |= P l as required.

– ϕ = P♦l. Assume that τ(P♦l) is satisfiable on some path σ in a CTL model structure M =
〈S,R,L〉, i.e.M, σ |= l ∨E gE(¬violU (¬viol ∧ l)). We show M,σ |= P♦l where M = CONS(M).
InM from the semantics of disjunction eitherM, σ |= l orM, σ |= E gE(¬violU (¬viol∧l)). For the
former M, σ |= l and additionally from the structure of the CTL models (see above) we can choose
some π such that σ0 = π0 so M, π |= l and and M, π>i |= ¬viol for all i > 1. From the definition
of the RoCTL structure M , M,π |= l and as M,π>i |= ¬viol for all i > 1 then (πi, πi+1) ∈ s→ for
i > 0 and π ∈ S(σ0) so from the semantics of P and ♦, M,σ |= P♦l as required. Next consider
the latter, i.e. M, σ |= E gE(¬violU (¬viol ∧ l)). In M from the semantics of E and g there is
a path π ∈ SF (σ0) such that σ0 = π0 and (π0, π1) ∈ R and M, π>1 |= E(¬violU (¬viol ∧ l)).
From the semantics of E and U there is a path π′ ∈ SF (π1) such that π1 = π′0 and for some j,
M, π′>j |= (¬viol ∧ l) and for all 0 6 i < j, M, π′>i |= ¬viol. Additionally from the structure of
the CTL models (see above) we can choose π′ such that M, π>j+k |= ¬viol for all k > 1. Hence
from the semantics of conjunction and our choice of path M, π′>i |= ¬viol for all i > 0. From the
definition of the RoCTL structure M , M,π′>i |= ¬viol for all i > 0 and (π′i, π

′
i+1) ∈ s→. Further as

M, π′>0 |= ¬viol, π1 = π′0 and (π0, π1) ∈ R in the CTL model we have (π0, π1) ∈ s→ in the RoCTL
model and the path 〈π0 : π′〉 is failure free. Recall for some j we haveM, π′>j |= l so M,π′>j |= l and
as σ0 = π0 and 〈π0 : π′〉 ∈ S(σ0) from the semantics of P and ♦ M,σ |= P♦l as required.

– ϕ = Pl1 U l2. Assume that τ(Pl1 U l2) is satisfiable on some path σ in a CTL model structure
M = 〈S,R,L〉, i.e. M, σ |= l2 ∨ (l1 ∧ E gE((¬viol ∧ l1)U (¬viol ∧ l2))). We show M,σ |= P11 U l2
where M = CONS(M). In M from the semantics of disjunction either M, σ |= l2 or M, σ |= (l1 ∧

E gE((¬viol∧l1)U (¬viol∧l2))). For the formerM, σ |= l2 and additionally from the structure of the
CTL models (see above) we can choose some π such that σ0 = π0 soM, π |= l2 andM, π>i |= ¬viol
for all i > 1. From the definition of the RoCTL structure M , M,π |= l2 and (πi, πi+1) ∈ s→ for all
i > 0 so π ∈ S(σ0) and from the semantics of P and U , M,σ |= Pl1 U l2 as required. Next consider
the latter, i.e.M, σ |= (l1∧E gE((¬viol∧l1)U (¬viol∧l2))). InM from the semantics of conjunction
M, σ |= l1 andM, σ |= E gE((¬viol∧ l1)U (¬viol∧ l2)). InM from the semantics of E and gthere
is a path π ∈ SF (σ0) such that σ0 = π0 and (π0, π1) ∈ R andM, π>1 |= E((¬viol∧ l1)U (¬viol∧ l2)).
From the semantics of E and U there is a path π′ ∈ SF (π1) such that π1 = π′0 and for some j,
M, π′>j |= (¬viol ∧ l2) and for all 0 6 i < j, M, π′>i |= ¬viol ∧ l1. Additionally from the structure
of the CTL models (see above) we can choose π′ such that M, π>j+k |= ¬viol for all k > 1. Hence
from the semantics of conjunction and our choice of path M, π′>i |= ¬viol for all i > 0. From the
definition of the RoCTL structure M , for all i > 0, (π′i, π

′
i+1) ∈ s→. Further as M, π′>0 |= ¬viol,

π1 = π′0 and (π0, π1) ∈ R in the CTL model we have (π0, π1) ∈ s→ in the RoCTL model and the path
〈π0 : π′〉 is failure free. Recall for some j we have M, π′>j |= l2 so M,π′>j |= l2 and for all 0 6 i < j,
M, π′>i |= l1 so M,π′>i |= l1. Also M,σ |= l1 and as σ0 = π0 then M,π |= l1. As σ0 = π0, the path
〈π0 : π′〉 ∈ S(σ0) so from the semantics of P and U , M,σ |= Pl1 U l2 as required.

– ϕ = Pl1W l2. This is similar to the case for Pl1 U l2.
– ϕ = O gl. Assume that τ(O gl) is satisfiable on path σ in a CTL model structure M = 〈S,R,L〉,

i.e.M, σ |= A g(viol∨ l). We show M,σ |= O gl where M = CONS(M). InM from the semantics
of A and g for all paths π ∈ SF (σ0) such that σ0 = π0 and (π0, π1) ∈ R, M, π>1 |= (viol ∨ l).
Additionally from the structure of the CTL models (see above) we can choose a π′ such that π1 = π′0
and M, π>i |= ¬viol for all i > 1. From the semantics of disjunction either M, π>1 |= viol or
M, π>1 |= l. Thus for any path π if M, π>1 |= ¬viol then M, π>1 |= l. From the definition of the
RoCTL structure M ifM, π>1 |= ¬viol then (π0, π1) ∈ s→ and M,π>1 |= l. Also we can find some π′

such that π1 = π′0 and M, π′>i |= ¬viol for i > 1. Hence in M then (πi, πi+1) ∈ s→ for i > 0 and for
path 〈π0 : π′〉 such that if M, π |= ¬viol and π′ is as previously defined 〈π0 : π′〉 ∈ S(σ0) and from
the semantics of O and gM,σ |= O gl as required.

The other cases for obligatory paired with different temporal operators are similar to the above cases.
Next we show if ϕ is satisfiable on path σ in an RoCTL model M = 〈A, s→, f→, α〉 then τ(ϕ ∧

A A g¬viol) is satisfiable in a CTL model. We construct CTL model M from M show it satisfies
τ(ϕ ∧ A A g¬viol). We define M in terms of a function CONS2 such that CONS2(M) = M =
〈S,R,L〉 where

– S = A

– R = s→ ∪ f→
– L(wi) = α(wi) ∪ viol iff (wi, wi+1) ∈ f→
– L(wi) = α(wi) iff (wi, wi+1) ∈ s→
– L(w0) = α(wi) iff there is no wi such that (wi, w0) ∈ s→ ∪ f→

As M,σ |= ϕ, let CONS2(M) = M and we show M,σ |= τ(ϕ ∧A A g¬viol). By the definition of
τ we must show M,σ |= τ(ϕ) and M,σ |= A A g¬viol. Regarding the latter as s→ is serial in any
RoCTL model M we must have that for any state wi there is some wi+1 such that (wi, wi+1) ∈ s→. Thus
by the definition of CONS2 for any fullpath π, M, π>1 |= ¬viol and M, π |= E g¬viol. As π could
be any path then M, σ |= A E g¬viol as required. Next we show M,σ |= τ(ϕ) by considering the
different cases of ϕ.

– ϕ = P gl. Assume that P gl is satisfiable on path σ in an RoCTL model structure M = 〈A, s→
,

f→, α〉, i.e. M,σ |= P gl. We show M, σ |= τ(P gl), i.e. M, σ |= E g(¬viol ∧ l) where M =
CONS2(M). From the semantics of P and g there must be a path π such that π ∈ S(σ0) and
M,π>1 |= l. As π ∈ S(σ0) then we have then (πi, πi+1) ∈ s→ for all i > 0 and from the definition
of the CTL structure M, M, π>i |= ¬viol for i > 1. Also M, π>1 |= l and from the semantics of
conjunctionM, π>1 |= ¬viol∧l. From the definition ofM and as path π ∈ S(σ0) we have π ∈ SF (σ0)
so M, σ |= E g(¬viol ∧ l).

– ϕ = P l. Assume that P l is satisfiable on path σ in an RoCTL model structure M = 〈A, s→
,

f→, α〉, i.e. M,σ |= P l. We show M, σ |= τ(P l), i.e. M, σ |= l ∧ E gE (¬viol ∧ l) where

M = CONS2(M). From the semantics of P and there must be a path π such that π ∈ S(σ0)
and M,π>i |= l for i > 0. As π ∈ S(σ0) then we have then (πi, πi+1) ∈ s→ for all i > 0 and from
the definition of the CTL structure M, M, π>i |= ¬viol for i > 1. Also as M,π>i |= l for i > 0
and from the definition of the CTL structure M, M, π>i |= l for i > 0. In particular, M, π>0 |= l
and M, π>i |= l for i > 1. From the semantics of conjunction M, π>i |= ¬viol ∧ l for i > 1.
Thus from the semantics of E and , M, π>1 |= E ¬viol ∧ l. From the semantics of E and g
M, π |= E gE ¬viol∧ l and as π ∈ S(σ0) then π ∈ SF (σ0) andM, σ |= E gE ¬viol∧ l. Further
asM, π |= l and π0 = σ0 thenM, σ |= l. From the semantics of conjunctionM, σ |= l∧E gE ¬viol
as required.

– ϕ = P♦l. Assume that P♦l is satisfiable on path σ in an RoCTL model structure M = 〈A, s→, f→, α〉,
i.e. M,σ |= P♦l. We show M, σ |= τ(P♦l), i.e. M, σ |= l ∨ E gE(¬violU (¬viol ∧ l)) where
M = CONS2(M). From the semantics of P and ♦ there must be a path π such that π ∈ S(σ0) and
there exists some j > 0 such that M,π>j |= l. As π ∈ S(σ0) then (πi, πi+1) ∈ s→ for all i > 0 and
from the definition of the CTL structureM,M, π>i |= ¬viol for i > 1. First assume that j = 0, i.e.
M,π |= l and as π0 = σ0 and l is a literal then M,σ |= l. From the definition of the CTL structure
M, M, σ |= l. Next assume that j > 1, i.e. there exists some j > 1 such that M,π>j |= l. From
the definition of the CTL structure M, there exists some j > 1 such that M, π>j |= l. As we have
shown that M, π>i |= ¬viol for i > 1 from the semantics of conjunction there exists some j > 1
such that M, π>j |= ¬viol ∧ l and M, π>i |= ¬viol for 1 6 i < j. From the semantics of E and U ,
M, π>1 |= E¬violU (¬viol ∧ l). From the semantics of E and gM, π |= E gE(¬violU (¬viol ∧ l)).
As π ∈ S(σ0) then π ∈ SF (σ0) and M, σ |= E gE(¬violU (¬viol ∧ l)). We have examined the
two possible cases either M, σ |= l or M, σ |= E gE¬violU (¬viol ∧ l) and by the semantics of
disjunction M, σ |= l ∨E gE(¬violU (¬viol ∧ l)) as required.

– ϕ = Pl1 U l2. Assume that Pl1 U l2 is satisfiable on path σ in an RoCTL model structure M = 〈A, s→
,

f→, α〉, i.e. M,σ |= Pl1 U l2. We show M, σ |= τ(Pl1 U l2), i.e. M, σ |= l2 ∨ (l1 ∧ E gE((¬viol ∧
l1)U (¬viol ∧ l2))) where M = CONS2(M). From the semantics of P and U there must be a path
π such that π ∈ S(σ0) and there exists some j > 0 such that M,π>j |= l2 and M,π>i |= l1 for
0 6 i < j. As π ∈ S(σ0) then (πi, πi+1) ∈ s→ for all i > 0 and from the definition of the CTL
structure M, M, π>i |= ¬viol for i > 1. First assume that j = 0, i.e. M,π |= l2 and as π0 = σ0

and l2 is a literal then M,σ |= l2. From the definition of the CTL structure M, M, σ |= l2. Next
assume that j > 1, i.e. there exists some j > 1 such that M,π>j |= l2 and M,π>i |= l1 for 0 6 i < j.
From the definition of the CTL structure M, there exists some j > 1 such that M, π>j |= l2
and M, π>i |= l1 for 0 6 i < j. As we have shown that M, π>i |= ¬viol for i > 1 from the
semantics of conjunction there exists some j > 1, M, π>j |= ¬viol ∧ l2 and M, π>i |= ¬viol ∧ l1
for 1 6 i < j. From the semantics of E and U , M, π>1 |= E(¬viol ∧ l1)U (¬viol ∧ l2). From the
semantics of E and g, M, π |= E gE((¬viol ∧ l1)U (¬viol ∧ l2)). As π ∈ S(σ0) then π ∈ SF (σ0)
and M, σ |= E gE((¬viol ∧ l1)U (¬viol ∧ l2)). We have examined the two possible cases either
M, σ |= l2 or M, σ |= E gE(¬viol ∧ l1)U (¬viol ∧ l2) and by the semantics of disjunction M, σ |=
l2 ∨E gE((¬viol ∧ l1)U (¬viol ∧ l2)) as required.

– ϕ = Pl1W l2. This is similar to the case for Pl1 U l2.
– ϕ = O gl.

Assume that O gl is satisfiable on path σ in an RoCTL model structure M = 〈A, s→, f→, α〉, i.e.
M,σ |= O gl. We showM, σ |= τ(O gl), i.e.M, σ |= A g(viol∨ l) whereM = CONS2(M). From
the semantics of O and g for all paths π such that π ∈ S(σ0) then M,π>1 |= l. As π ∈ S(σ0)
then we have then (πi, πi+1) ∈ s→ for all i > 0 and from the definition of the CTL structure M,

M, π>i |= ¬viol for i > 1. For any π′ ∈ SF (σ0) such that (π′0, π
′
1) ∈ f→ from the definition of

the CTL structure M, M, π′>1 |= viol. Thus for all paths π ∈ SF (σ0) either (π0, π1) ∈ s→ and

M,π>1 |= l or (π0, π1) ∈ f→ and M,π>1 |= viol. From the definition of the CTL structure M, for all
paths π ∈ SF (σ0) either M, π>1 |= ¬viol and M, π>1 |= l or M, π>1 |= viol. From the semantics
of disjunction for all paths π ∈ SF (σ0) M, π>1 |= viol ∨ l and from the semantics of A and g,
M, σ |= A g(viol ∨ l).

The other cases for obligatory paired with different temporal operators are similar to the above cases.

Theorem 1. Let ϕ be a RoCTL− formula and TRAN(ϕ) be the translation of ϕ into CTL. ϕ is satis-
fiable if and only if TRAN(ϕ) is satisfiable.

Proof. Let TRAN(ϕ) = τ(ϕ′ ∧ A A g¬viol) where ϕ′ is the translation of ϕ into negation normal
form and then into flat normal form. From Lemma 1 and 2 we can translate any RoCTL− formula ϕ
into ϕ′ into negation normal form and then flat normal form such that ϕ is satisfiable if and only if ϕ′

is satisfiable. Finally in Lemma 3 we show that for some ϕ′ in flat normal ϕ′ is satisfiable if and only if
τ(ϕ′ ∧A A g¬viol) is satisfiable.

10 Complexity

We consider the increase in size of a formula in the translation from RoCTL− formulae to CTL.
First we define the length “len” of a formula ϕ as follows.

len(H gϕ) = len(H ϕ) = len(H♦ϕ) = 1 + len(ϕ)
len(HϕU ψ) = len(HϕW ψ) = 1 + len(ϕ) + len(ψ)
len(ϕ ∧ ψ) = 1 + len(ϕ) + len(ψ)
len(ϕ ∨ ψ) = 1 + len(ϕ′) + len(ψ′)
len(ϕ⇒ ψ) = 1 + len(ϕ′) + len(ψ′)
len(¬ϕ) = 1 + len(ϕ)
len(p) = len(true) = len(false) = 1

where H ∈ {A,E,O,P}, and p is a proposition.
We assume that ϕ is is negated normal form.

Lemma 4. Let ϕ be an RoCTL− formula in negated normal form and ϕ′ be its translation into flat
normal form via steps 1 and 2 of the algorithm. The length of ϕ′ is at most 7× len(ϕ) + 1, i.e. len(ϕ′) 6
7× len(ϕ) + 1

Proof. Consider the replacement of any subformula ψ in ϕ by the new proposition t, i.e. ϕ is rewritten as
ϕ′ which is ϕ with ψ replaced by t and ϕ′R = ϕR∧A (t⇒ ψ). We have len(ϕ′) = len(ϕ)− len(ψ)+ len(t)
and len(ϕ′R) = len(ϕR) + 1 + len(A (t ⇒ ψ)) = len(ϕR) + 1 + 3 + len(ψ) and so len(ϕ′ ∧ ϕ′R) =
len(ϕ) − len(ψ) + 1 + len(ϕR) + 1 + 3 + len(ψ) + 1 = len(ϕ) + len(ϕR) + 6. There are at most len(ϕ)
subformulae we could replace hence we obtain a maximum length of 7× len(ϕ) + 1.

Lemma 5. Let ϕ be an RoCTL− formula in flat normal form. The length of its translation into CTL,
τ(ϕ), is at most 14× len(ϕ), i.e. len(τ(ϕ)) 6 14× len(ϕ)

Proof. Only subformulae of the form HTl1 or Hl1Tl2 where H is P or O and T is a temporal operator
will increase the length of τ(ϕ). By inspection the translations that increase the length the most are for
τ(Pl1 U l2) and τ(Pl1W l2) where len(τ(Pl1 U l2) = len(τ(Pl1 U l2)) = 14. As there are at most len(ϕ)
formulae of this form the len(τ(ϕ)) 6 14× len(ϕ).

Lemma 4 and 5 together show that the complexity of the translation results in a linear increase in
length of the formula.

Theorem 2. The complexity of satisfiability of RoCTL− formulae is EXPTIME.

Proof. Lemma 4, Lemma 5 and Theorem 1 show a satisfiability preserving translation into CTL which
increases the length of the formula linearly. As the complexity of satisfiability of CTL is known to be
EXPTIME [8] then the complexity of satisfiability of RoCTL− formulae is EXPTIME.

11 Conclusions and Related Work

This paper has presented RoCTL−, a CTL like restriction of RoCTL*, and its translation into CTL. Thus
a resolution decision procedure based on this normal form can be applied to obtain a decision procedure
for RoCTL−. The translation has been shown to be satisfiability preserving. RoCTL− includes not
only the usual path and temporal operators of CTL but also allows deontic operators quantifying over
successful paths. Examples demonstrating the expressiveness of this logic have been presented.

Whilst we haven’t considered full RoCTL* but a CTL-like restriction we have shown that useful
systems and properties can still be expressed in the restricted logic. Similarly we note that CTL is still

expressive enough for many real world uses (see e.g. [4]). A related branching time logic, PCTL [13],
which uses probabilities to represent reliability, also does not extend to the full CTL* logic. PCTL has
demonstrated its usefulness as part of the PRISM tool [14].

Although we can decide RoCTL* via QCTL*, it is important to find a more efficient decision pro-
cedure as QCTL* does not have an elementary decision procedure [17, 10]. Here we show that the
translation from RoCTL− into CTL produces a linear increase in the length of the formula. Hence, the
results in this paper provide a way to apply practical resolution based methods for CTL to RoCTL−.
Given the translation into CTL is linear and that the complexity of satisfiability of CTL is EXPTIME
we can conclude that RoCTL− can be decided in EXPTIME. As with CTL*, RoCTL includes non-state
formulae. This makes us believe that it is unlikely that we will be able to translate all of RoCTL into
CTL.

As well as other approaches to deontic logics and robustness using temporal logics, for example [13,
3], related work includes resolution proof methods for CTL be found in [2, 18]. Tableaux based methods
have also been developed for CTL see for example [8, 1] and for bundled CTL* [16].

Further work includes applying RoCTL to other examples and extending the translation to deal with
a larger subset of RoCTL* if possible. Another avenue to explore is to apply the techniques developed in
this paper to extend Reynolds tableau decision procedure for bundled CTL* (BCTL*) in [16] to handle
obligation operators. We are also interested in developing resolution calculi for CTL*. We will also seek
axiomatizations of RoCTL and RoCTL*.

References

1. P. Abate, R. Goré, and F. Widmann. One-Pass Tableaux for Computation Tree Logic. In Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, volume 4790 of LNCS, pages 32–46. Springer, 2007.

2. A. Bolotov. Clausal Resolution for Branching-Time Temporal Logic. PhD thesis, Dept. of Computing and
Mathematics, Manchester Metropolitan University, 2000.

3. J. Broersen, F. Dignum, V. Dignum, and J.-J.Ch.Meyer. Designing a deontic logic of deadlines. In A. Lomus-
cio and D. Nute, editors, DEON, volume 3065 of Lecture Notes in Computer Science, pages 43–56. Springer,
2004.

4. S.D. Das. Formal verification of queue flow-control through model-checking, 1998. http://www.

freepatentsonline.com/EP0915426.html.
5. E. Emerson and A. Sistla. Deciding Full Branching Time Logic. Information and Control, 61:175 – 201,

1984.
6. E. A. Emerson and E. M. Clarke. Using Branching Time Temporal Logic to Synthesize Synchronization

Skeletons. Science of Computer Programming, 2(3):241–266, 1982.
7. E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching Versus Linear

Time. In Proceedings of the 10th ACM Symposium on Principles of Programming Languages, pages 127–140,
1983.

8. E. A. Emerson and J. Y. Halpern. Decision Procedures and Expressiveness in the Temporal Logic of Branch-
ing Time. Journal of Computer and System Sciences, 30(1):1–24, February 1985.

9. J.W. Forrester. Gentle murder, or the adverbial samaritan. The Journal of Philosophy, 81(4):193–7, April
1984.

10. T. French. Bisimulation quantifiers for modal logics. PhD thesis, School of Computer Science and Software
Engineering, University of Western Australia, 2006.

11. T. French, J.C. McCabe-Dansted, and M. Reynolds. Temporal Logic of Robustness. In B. Konev and
F. Wolter, editors, Proceedings of the 6th International Symposium of the Frontiers of Combining Systems,
volume 4720 of Lecture Notes in Artificial Intelligence, pages 193–205. Springer, 2007.

12. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The Temporal Analysis of Fairness. In Proceedings of the
Seventh ACM Symposium on the Principles of Programming Languages, pages 163–173, Las Vegas, Nevada,
January 1980.

13. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of Computing,
6(5):512–535, 1994.

14. M.Z. Kwiatkowska. Model checking for probability and time: from theory to practice. In LICS, pages 351–.
IEEE Computer Society, 2003.

15. D. A. Plaisted and S. A. Greenbaum. A Structure-Preserving Clause Form Translation. Journal of Symbolic
Computation, 2(3):293–304, September 1986.

16. M. Reynolds. A Tableau for Bundled CTL*. J Logic Computation, 17(1):117–132, 2007.
17. A. P. Sistla, M. Vardi, and P. Wolper. The Complementation Problem for Büchi Automata with Applications

to Temporal Logic. Theoretical Computer Science, 49:217–237, 1987.
18. L. Zhang, U. Hustadt, and C. Dixon. A Refined Resolution Calculus for CTL. In Automated Deduction—

CADE-22, LNAI, pages 245–260. Springer, 2009.

