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Abstract

Interaction protocols are seen a promising approach to coordination in multi-agent systems.

However, many practitioners view agent interaction protocols as rigid specifications that are

defined a priori, and hard-coded their agents with a set of protocols known at design time —

a restriction that is out of place with the goals of agents being intelligent and adaptive. To

achieve the full potential of multi-agent systems, we believe that it is important that multi-

agent interaction protocols are treated first-class computational entities in systems. That

is, exist at runtime in systems as entities that can be referenced, inspected, composed, and

shared, rather than as abstractions that emerge from the behaviour of the participants. We

use the term first-class protocol to refer to such protocols. We propose a framework, called

RASA, which regards protocols as first-class entities. Rather than having hard-coded decision

making mechanisms for choosing their next move, agents can inspect the protocol specification

at runtime to do so. In this paper, we present a logic; that is, a syntax, semantics, and proof

system, that is part of the RASA framework, which is used to document the outcomes of

first-class protocols, so that agents can maintain a library of protocols, each annotated with

their meaning, and can quickly and correctly assess which protocol best achieves their goals.

Keywords: multi-agent systems, agent interaction protocols, dynamic logic

1 Introduction

Research into multi-agent systems aims to promote autonomy and intelligence into software agents.
Intelligent agents should be able to interact socially with other agents, and adapt their behaviour
to changing conditions. Despite this, research into interaction in multi-agent systems is focused
mainly on the documentation of interaction protocols, which specify the set of possible interactions
for a protocol in which agents engage. Agent developers use these specifications to hard-code the
interactions of agents. We identify three significant disadvantages with this approach: 1) it strongly
couples agents with the protocols they use — something which is unanimously discouraged in
software engineering — therefore requiring agent code to changed with every change in a protocol;
2) agents can only interact using protocols that are known at design time, a restriction that
seems out of place with the goals of agents being intelligent and adaptive; and 3) agents cannot
compose protocols at runtime to bring about more complex interactions, therefore restricting them
to protocols that have been specified by human designers — again, this seems out of place with
the goals of agents being intelligent and adaptive.
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We propose a framework, called RASA, which regards protocols as first-class entities. These
first-class protocols are documents that exists within a multi-agent system, in contrast to hard-
coded protocols, which exist merely as abstractions that emerge from the messages sent by the
participants. To promote decoupling of agents from the protocols they use, we propose a formal,
executable language for protocol specification. This language consists of a process algebra, used to
specify the messages that can be sent. The rules governing under which conditions messages can be
sent, and the effects that sending messages has on a system are specified using constraints. Rather
than a protocol specification being just a sequence of arbitrary tokens, each message contains
a meaning represented as a constraint. Instead of hard-coding the process of message sending,
designers can implement goal-directed agents that reason about the effect of the messages they
send and receive, and can choose the course of action that best achieves their goals. Agents
able to reason about protocols can therefore learn of new protocols at runtime, making them
more adaptable, for example, by being able to interact with new agents that insist on using
specific protocols. The RASA language also allows protocols to be composed to bring about more
complex interactions. The RASA protocol specification language and its operational semantics
are presented in an earlier paper [16].

A major goal of research into first-class protocols is for agents to maintain a library of interaction
protocols, and to be able to select the protocol that best suits the goals that it wants to achieve.
For this, agents must be able to quickly and correctly determine the outcomes that can result for
an interaction protocol, and compare protocols in their library.

In this paper, we present a logic for RASA, which allows agents and designers to annotate protocols
with information about their outcomes; that is, what the protocol achieves. Agent annotate the
protocols in their library with formulae in this logic, which can then help determine which protocol
best suits the goals that it wants to achieve at particular times. The sub-protocols that make
up a protocol can also be annotated, allowing the agent to use the annotations to calculate the
path of interaction that best suits its goals. Annotations are derived directly from the protocol
specification, although we note that other annotations would be possible, for example, annotations
which document whether a protocol is secure. We note that this logic is not used to define the
behaviour of protocols, but merely for reasoning about their outcomes.

The outline of this paper is as follows. In what remains of this section, we define our notion of
“first-class protocol”. In Section 2 and present an overview of the RASA framework, including
the syntax and denotational semantics of the RASA protocol specification language. Section 3
presents the language syntax and semantics of the logic used to for annotation and reasoning.
Section 4 presents a deductive proof system for this logic, which is used to prove properties about
RASA protocols, and to define valid annotations. Section 6 discusses conclusions and future work.

1.1 First-Class Protocol — A Definition

Our notion of first-class protocol is comparable to the notion of first-class object/entity in pro-
gramming languages [25]. That is, a first-class protocol is a referencable, sharable, manipulatable
entity that exists as a runtime value in a multi-agent system. From the definition of a first-class
protocol, participating agents should be able to inspect the definition to learn the rules and effects
of the protocol by knowing only the syntax and semantics of the language, and the ontology used
to describe rules and effects.

To this end, we define four properties that constitute a first-class protocol language:

• Formal: The language must be formal to eliminate that possibility of ambiguity in the
meaning of protocols, to allow agents to reason about them using their machinery, and to
allow agents to pass and store the protocol definitions as values.
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• Meaningful: The meaning of messages must be specified by the protocol, rather than simply
specifying arbitrary communication actions whose semantics are defined outside the scope of
the document. Otherwise, one may encounter a communicative action of which they do not
know the definition, rendering the protocol useless.

• Inspectable/executable: Agents must be able to reason about the protocols at runtime in order
to derive the rules and meaning of the protocol, so that they can determine the messages
they will send that best achieve their goals, and compare the rules and effects of different
protocols.

• Dynamically composable: If an agent does not have access to a protocol that helps to achieve
its goals, then it should be able to compose new protocols that do at runtime, possibly from
existing protocols. This new protocol must also form a first-class protocol in its own right.

We emphasise here that first-class does not equal global. By global, we mean languages that specify
the protocol from a global view of the interaction, rather than from the view of the individual
participants. Therefore, languages such as AgentUML and FSM-based languages are not first-class,
as is commonly commented, even though they are global. AgentUML is not meaningful (although
one could adapt it quite easily to make it meaningful), and the composability at runtime could
also be difficult, if possible at all. FSM approaches could also add meaning, but the authors are
not aware of any current FSM approaches that are executable and support dynamic composition.

2 The RASA Framework

To achieve the full vision of multi-agent systems, we believe it is necessary to treat protocols as
first-class entities. The RASA framework was designed to allow us to study first-class protocols,
and the types of comments we can make about them. Our idea, along with other researchers
working in this area, is to have goal-directed agents with access to libraries of first-class protocols.
If an agent would like a service offered by another, they can negotiate a protocol to use. If an agent
would like to interact with another to achieve a particular goal, it can search its protocol library
to find the protocol that best achieves its goals. If no such protocol exists, runtime composition
may provide an alternative.

The RASA specification language was designed as an example of the minimal operators that
would be required for a successful first-class protocol specification language. First presented in
[16], along with its operational semantics, the language uses constraint languages and process
algebra to specify interaction protocols. In this section, we briefly present the language, and its
denotational semantics, which we use in subsequent sections.

2.1 Modelling Information

Communication in multi-agent systems is performed across a universe of discourse. Agents send
messages expressing particular properties about the universe. We assume that these messages refer
to variables, which represent the parts of the universe that have changing values, and use other
tokens to represent relations, functions, and constants to specify the properties of these variables
and how they relate to each other.

Rather than devise a new language for expressing information, or using an existing language, we
take the approach that any constraint language can be used to model the universe of discourse,
provided that it has a few basic constants, operators and properties. This allows us to express
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and study a wider variety of protocols, such as those that use description logics [1], constraint
programming languages [22], or even predicate and modal logics [2]. It also permits us to use
different mechanisms for defining protocol meaning, such as norms and commitments.

Definition 2.1. Cylindric constraint system

We assume that the underlying communication language fits the definition of a cylindric constraint
system proposed by De Boer et al. [5]. They define a cylindric constraint system as a complete
algebraic lattice, 〈C,⊒,⊔, true, false, V ar,∃〉. In this structure, C is the set of atomic propositions
in the language, for example X ≤ Y , ⊒ is an entailment operator, true and false are the least and
greatest elements of C respectively, ⊔ is the least upper bound operator, V ar is a countable set
of variables, and ∃ is an operator for hiding variables. The entailment operator defines a partial
order over the elements in the lattice, such that c ⊒ d means that the information in d can be
derived from c. The shorthand c = d is equivalent to c ⊒ d and d ⊒ c. We will use L to refer to
the language, as well as the set of all constraints in the language; for example, c ∈ L.

A constraint is one of the following: an atomic proposition, c, for example, X = 1, where X is a
variable; a conjunction, φ ⊔ ψ, where φ and ψ are constraints; or ∃xφ, where φ is a constraint and
x ∈ V ar. We extend this notation by allowing negation on the right of an entailment operator,
for example, c ⊒ ¬d, which is equivalent to c 6⊒ d. Other propositional operators are then defined
from these: φ∨ψ =̂ ¬(¬φ∧¬ψ), φ→ ψ =̂ ¬φ∨ψ, and φ↔ ψ =̂ φ→ ψ∧ψ → φ. We will continue
to use the symbols φ and ψ to refer to constraints throughout this paper. We also use vars(φ) to
refer to the free variables that occur in φ; that is, the variables referenced in φ that are not hidden
using ∃.

We introduce a renaming operator, which we will write as [x/y], such that φ[x/y] means ‘replace
all references of y in φ with x’. The reader may have already noted that φ[x/y] is shorthand for
∃y(y = x ⊔ φ).

2.2 Modelling Protocols

The RASA protocol specification language is based on process algebras, and resembles languages
such as CSP [10]. However, we add the notion of state to the language. State is useful, because it
allows us to build up the meaning of protocols compositionally, for example, the effect of sending
two messages is the effect of sending the second in the state that results after sending the first.
The final outcome of the protocol is the end state. A detailed presentation of the specification
language, including operational semantics, is available in [16].

A protocol specification is a collection of protocol definitions of the format N(x, . . . , y) =̂ π, in
which N,x, . . . , y ∈ V ar, and π represents a protocol.

Let φ represent constraints defined in constraint language, c communication channels, N protocol
names, and x a sequence of variables. Protocol definitions adhere to the following grammar.

π ::= φ→ ǫ | φ
c.φ
−−→ φ | π;π | π ∪ π | N(x) | varφx·π

Protocols are defined using the two types of atomic protocol, and algebraic operators for building
up compound protocols from these. The first atomic action/protocol is the empty action: ψ → ǫ.
This specifies that if the precondition ψ is provable from the current state, then no message sending
is required.

The second atomic protocol is message sending, ψ
c(i,j).φm

−−−−−−→ ψ′. This is read as follows: if the
precondition, ψ, is provable (using ⊒) from the current state, then the agent i is permitted to send
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the message φm to agent j. The effect of this message on the state is specified by the postcondition,
ψ′. Omitting the prefix c(i, j) from a message template implies that φm is an action that must be
performed. In this paper, we omit (i, j) when we do not care who the sender and receiver of the
message is. We use the notion of inertia in calculating the new state from the postcondition; that
is, any variables in ψ′ are constrained by ψ′ in the new state, and any other variables in the state
are left unchanged. We allow agents to send the message φ′m, such that φ′m ⊒ φm, so that agents
can further constrain the values of the messages; thus, φm is only a template of the message. For
example, consider the following atomic protocol:

X ≥ Bid
c.bid(X)
−−−−−→ Bid = X.

in which the sender is bidding on an item, and Bid and X are variables. As part of the interaction,
the sender would like to instantiate X to its actual bid, for example, to 10. Therefore, it would
send the message bid(X) ⊔ X = 10, which constrains the message template by adding further
information; that is; that its bid is 10.

Compound protocols can be built up from these atomic protocols. If π1 and π2 are two protocols,
then the following are also protocols: the protocol π1;π2, which represents sequential concatenation,
such that π1 is executed, followed by π2; the protocol π1∪π2, which represents a choice between π1

and π2; and the protocol varψx ·π1, which is a protocol the same as π1, except that a local variable x
is available over the scope of π1, but with the constraints ψ on x remaining unchanged throughout
that scope. Any variable x already in the state is out of scope until π1 finishes executing. In
addition, RASA supports the referencing of protocols via their names. That is, for a protocol
definition N(x) =̂ π1, one can reference this from within another protocol using N(y), where
y ∈ V ar.

Using such a definition, one can express protocols as sets of possible interactions, in which interac-
tions are sequences of triples containing legal pre-states, messages, and post-states. This does not
permit us to express concurrency: two or more messages occuring at the same time. However, we
do not see this as a fatal problem with the language, because the concurrency of messages would
be difficult to verify in a system using first-class interaction protocols, so would not be useful.

A key feature of this language is that it has the same syntax and semantics at all dialogue levels.
Single messages are themselves protocols, and the syntax and semantics for composing two atomic
protocols is the same for composing two other composite protocols. Thus, individual utterances,
sequences of utterances, protocols, and combinations of protocols can all be reasoned-over, mod-
ified, composed and invoked by agents participating in an interaction using the same reasoning
mechanism.

Example 2.1. We present a small example of a simple interaction in which an agent, A, proposes
that another agent, B, commits to P , and B can accept or refuse this proposal.

The semantics of RASA is compositional, so it makes sense to present the protocol in a bottom-
up manner. First, we define the Prop protocol, an atomic protocol which models A sending the
proposal to B:

Prop(A,B, P ) =̂ true
c(A,B).propose(P )
−−−−−−−−−−−−→ prop(P )

The postcondition prop(P ) simply indicates that the current proposal is P . The Acc and Rej
protocols model B accepting or rejecting the proposal respectively:

Acc(A,B) =̂ prop(P )
c(B,A).accept(P )
−−−−−−−−−−−→ commit(B,A, P )

Rej(A,B) =̂ prop(P )
c(B,A).reject(P )
−−−−−−−−−−−→ true
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The notation commit(B,A, P ) is a constraint representing B’s commitment to perform P for the
creditor A.

Finally, we compose these three atomic protocols together into a composite protocol, which defines
the order that the messages must occur:

Prot(A,B, P ) =̂ Prop; (Acc ∪Ref)

This definition enforces the condition that the proposal must be sent by A before B can accept
or reject it, and that B can only send either an accept or reject, but not both. In addition, if the
path Prop;Acc is taken, then B is committed to P .

One can see that, provided an agent understands the meaning of commit(B,A, P ), such a protocol
can be reasoned about at runtime. Firstly, agent A decides to use this protocol because it calculate
that commit(B,A, P ) is an outcome. If B agrees to using the protocol, then, after it receives the
proposal, it can reason that accepting the proposal will lead to the state in which it is committed to
performing B. If it does not accept, then there is no change, so it can decide its reply by analysing
its goals and assessing their compatibility with the outcomes.

2.3 Denotational Semantics

To define a denotational semantics for the RASA protocol specification language, we adopt an
approach similar to the semantics Van Eijk et al. give for observable behaviour of their unnamed
agent programming language [26]. They present observable behaviour of the set of sequences of
actions performed by an agent or system of agents, paired with the resulting states of the system
after each sequence. We define the semantics of the RASA language in a similar manner.

Definition 2.2. Observable Behaviour

We define a trace of observable behaviour as a triple, in which the first element of the triple rep-
resents the pre-state of the protocol, the second element represents a sequence of communications
across channels, and the third element represents the state resulting after that sequence of com-
munications. The observable behaviour of a RASA protocol is defined as the set containing all
traces of observable behaviour allowed by the protocol rules.

Following the terminology of Van Eijk et al., we call a sequence of communications a history. The
set of all histories for a language, L, is denoted as HL. Using this, we define the set of observable
behaviour for the language L as ℘(L+ ×HL+

×L+), in which ℘ represents the power set function,
and L+ represents L \ {false}.

Definition 2.3. Compositional, Denotational Semantics

The semantics of RASA protocols is defined as a function [[D,π]] ∈ Env → ℘(L+ ×HL+
× L+),

in which D is the set of declarations in which the protocol π is evaluated, and Env is a function
from names to sets of histories, Env ∈ Name → ℘(L+ ×HL+

× L+), used for mapping protocol
reference names to their semantics. We omit D whenever it is not used. So, the semantics is a
function that takes a protocol definition and an environment, returning the observable behaviour
of that protocol definition within that environment.

Formally, the denotational, compositional semantics of protocols, represented as the function
[[D,π]], is defined as follows:
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[[ψ → ǫ]](e) =̂ {(φ, 〈〉, φ) | φ ⊒ ψ}

[[ψ
c.φm

−−−→ ψ′]](e) =̂ {(φ, 〈c.φ′m〉, φ′) | (φ ⊒ ψ) ∧ (φ′m ⊒ φm) ∧ φ′ = φ′m ⊔ φ⊕ ψ′}

[[π1;π2]](e) =̂ {(φ, h1
ah2, φ

′′) | (φ, h1, φ
′) ∈ [[π1]](e) ∧ (φ′, h2, φ

′′) ∈ [[π2]](e)}

[[π1 ∪ π2]](e) =̂ [[π1]](e) ∪ [[π2]](e)

[[varψx ·π]](e) =̂ {(φ, h,∃xφ
′ ⊔ ∃bxφ) | (∃xφ ⊔ ψ, h, φ′) ∈ [[π]](e) ∧ ∃bxφ

′ = ∃bx(∃xφ ⊔ ψ)}

[[D,N(x)]](e) =̂ [[N(y)]](e)[x/y] if N(y) =̂ π ∈ D

e(N) if N(x) ∈ dom(e)

µF if N(x) =̂ π ∈ D and N(x) /∈ dom(e)

where F (H) = [[D,π]](e † {N(x) 7→ H})
and µF is the least fixpoint of a function F
with respect to the partial order ⊆
i.e. µF = F (µF )

We briefly comment on these six definitions. The empty protocol, ǫ, is defined as a set containing
a single triple, in which there are no messages, and the pre- and post-state are the same. The
behaviour of this is undefined if ψ does not satisfy the state φ. An atomic protocol is defined as the
set of all triples, with the first element in the triple representing the set of constraints that satisfy
the precondition, the second element representing a message, and the third element representing
the resulting state. Recall from Section 2.2, that the message can be the constraint, φm, but
can also be a constraint, φ′m, that contains more information that φm, such that φ′m ⊒ φm. The
resulting state is φ ⊕ ψ′, further constrained by φ′m, in which ⊕ ∈ (L × L) → L is an overriding
function defined as φ⊕ ψ′ = ψ′ ⊔ ∃vars(ψ′)φ. Therefore, φ⊕ ψ′ defines a new constraint such that
the values of any free variables in φ are overridden with the values constrained by ψ′, while the
free variables in φ that are not otherwise in ψ′ maintain their pre-state values. ⊕ has binds tighter
than ⊔.

Any additional information placed in the message, φ′m must also apply to the resulting state. For
example, recall the protocol

X ≥ Bid
c.bid(X)
−−−−−→ Bid = X.

in which the sender bids on an item. If the sender constrains X in the message with X = 10, this
information needs to be shared with the postcondition so that Bid obtains the value 10 as well.
Therefore, in the semantics, we enforce the condition that constraint information must be shared
between the message and the postcondition: φ′ = φ′m ⊔ φ⊕ ψ′. In this example, the only solution
for Price in this constraint would be X = 10, therefore, the post-state is Bid = X⊔X = 10, which
reduces to Bid = 10 ⊔X = 10.

Sequential composition, π1;π2, of two protocols, π1 and π2, is defined as each history trace from π1

concatenated with each history trace from π2, with the post-state of π1 substituted as the pre-state
for π2, and the post-state of π2 being the post-state of the overall composition. Therefore, the
end state of a sequential composition is computed as the functional composition of the two end
states. A choice, π1∪π2, between two protocols, π1 and π2, is defined as the union of all observable
behaviour from π1 and π2.

Variable declaration is not a straightforward definition, so we take some time to discuss it. To
explain this definition, we first discuss the semantics that we want to give to varψx ·π. Firstly, we
want to execute π as normal, but within the context that there is a new variable x, constrained by
φ. In the case that x is a free variable in the protocol state, this occurrence of x must be hidden.
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Both during and after the execution of π, we do not want the constraints over the local variable
x to change. Finally, once π is executed, we want the local occurrence of x to be hidden, and the
previous free variable x and its constraints to be restored to the state.

To discuss how this definition achieves the above, it is best to start in the middle at (∃xφ⊔ψ, h, φ
′) ∈

[[π]](e). We execute the sub-protocol π from the state ∃xφ⊔ψ. Here, any free occurrences of variable
x in φ are hidden in case x is already a variable in this constraint. Once π is executed, we are left
with the post-state φ′. The condition ∃bxφ

′ = ∃bx(∃xφ ⊔ ψ) specifies that the constraints over x in
the post-state are equal to the constraints over x in the pre-state. Finally, we calculate the new
post-state of the entire protocol. We want to hide the local variable x and its constraints, so we
have ∃xφ

′, but we also want to re-introduce the previous variable x, so we conjoin this with ∃bxφ,
which specifies that we hide occurrences of all free variables in the pre-state, φ, except x. This
restores the variable x to the state, but with the constraints from the pre-state.

The semantics for a protocol reference is also not straightforward, due to the fact that we allow
recursive definitions; that is, protocol trees that reference themselves, or each other. Without
recursive definitions, the semantics would specify that a reference is replaced with its protocol
definition in D, and then renamed. However, for recursive definitions, we use fixpoints to define
the semantics. Defining such a semantics is not a straightforward task; fortunately, De Boer et al.
[5] have already solved most of this problem for us.

The definition is divided into three cases. Note that we assume some form of correctness in this
definition: that a name reference is a valid protocol name in D. If we remove this assumption, one
needs only to add a fourth case saying that the protocol is equivalent to some error state, but we
omit this. In the first case, the name, N , of the referenced protocol is in the set of declarations,
but the variables are mismatched. Therefore, the behaviour of N(x) is equivalent to N(y), but
with all references of x renamed to y. In the second case, N is in the environment, so we return the
semantics of N , denotes e(N), from that environment. In the third case, N(x) is in the definitions
with matching variables, but not in the environment. A function, F (H), is constructed, which
gives the semantics of the protocol π with the environment that is the same as e, but with e(N)
overridden with H. Then, least fixpoint of F , denoted µF , with regards to the partial order ⊆, is
the denoted value of N .

2.4 Shorthand Notation

We introduce additional operators that can be defined as shorthand in terms of the primitive
operators defined above. The most notable of these shorthand operators is equivalent to the
primitive iteration operator found in dynamic logics [9] and Kleene algebras [11], and is written
π∗. This defines a protocol that iterates over the sub-protocol π zero or more times. Formally, this
is defined as follows:

[[D,π∗]](e) =̂ [[D′, N ]](e) where D′ = D ∪ {N =̂ ǫ ∪ (π;N)}

That is, π∗ is equivalent to the protocol named N , where N is defined as a choice between the
empty protocol or the sequential composition of π followed by a recursive call to N .

We define this as a shorthand rather than a primitive because the class of protocols describable
using recursively definable protocols (via names) is a superset of those using iteration with no
names, which allows only regular protocols. Therefore, iteration is easily simulated using recursively
defined protocols.

Additional redundant operators found in dynamic logics and Kleene algebras can similarly be
defined, such as π+, which is defined as π;π∗. We also use an interleaving operator, ‖, which
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interleave that traces from two protocols. Such an operator can be expressed as a choice between
all possible interleavings. For the protocol true → ǫ, we omit the implication and simply write ǫ.

3 Protocol Entailment

So far in this paper, we have presented the RASA language for specifying protocols. Rules and
effects of protocols are specified using a constraint language, L. A constraint from L can be used
to represent the constraints on the current protocol state.

However, we see the advantages of a logic that can be used to specify the effects of composite
protocols; that is, the end states of entire protocols, rather than just atomic protocols. In this
section, we define such a logic — that is, a syntax, semantics, and proof system — which can be
used to annotate protocol specifications, as well as to reason about the effects that protocols have.

We view this logic as an instantiation of propositional dynamic logic (PDL) [9]. By instantiation,
we mean that we use RASA protocols in place of abstract programs, and constraints in place
of models in which predicates are interpreted. Operators used to compose complex programs in
PDL correspond to protocol composition operators in RASA, except for the test operator in PDL,
which we considered unnecessary in RASA because it can be represented using logical implication.
This logic is referred to as Lπ.

3.1 Protocol Outcomes and Annotation

The primary motivations for this logic are: (1) to annotate protocols with their outcomes; and (2)
to reason about the which paths of interaction within a protocol best achieve the agent’s goals.

Considering that a protocol is a tree-like structure, it seems that a modal logic containing an
modality for expressing properties of outcomes would be useful. For example, annotating the
head of a protocol with the formula �φ specifies that φ holds for every possible outcome of that
protocol. However, we feel that this is not expressive enough, especially to achieve our second goal.
For example, this says nothing about the intermediate states in the protocol, nor does it allow us
to say anything about the individual paths in the protocol, meaning that annotations offer little
support for agents deciding which paths best achieve their goals.

To overcome this weakness, our logic permits us to index the modal operator with the definition of
the protocol for which the property holds, in the same way that dynamic logic operators are indexed
with programs. So, for a protocol π, the formula [π]φ specifies that φ holds for every possible
outcome of π. This indexing allows us to express properties about paths and sub-protocols; for
example, for the protocol π1; (π2∪π3), we can express properties about the entire definition, as well
as the paths π1;π2 and π1;π3. In addition, it allows us to express properties about intermediate
states of the protocol, rather then only outcomes, by taking the intermediate state as the outcome
of one of the sub-protocols. That is, the [π1]φ specifies a property about the state after π1, but
before the choice π2 ∪ π3. Indexing with protocols is key to this, otherwise there is no way to
reference that the formula �φ is only referring to outcomes of the intermediate state.

A key reason for deriving the logic Lπ is to annotate protocols with their outcomes, including
both outcomes that they do achieve, and outcomes that they can possibly achieve. Although this
information can be derived from information in the protocol definitions, it is safe to assume that, at
runtime, the overhead of calculating outcomes is impractical for more than a handful of protocols,
therefore, we want to reduce the amount of calculation for agents as much as possible.

In other work [14], we have investigated methods for deriving annotations from protocol specifica-
tions, and for searching protocol libraries to find a protocol, using annotations on protocols, that
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achieves a stated goal. The proof system for Lπ, defined in Section 4, is used to prove that our
method for annotation is sound and complete.

3.2 Syntax of Lπ

In this section, we introduce the logic Lπ, which is used to reason about the outcomes of protocols.
Lπ is built on L, in that any constraint φ ∈ L is also in Lπ. To avoid ambiguity, we distinguish the
two languages by using the term predicate to refer to properties about protocols, while continuing
to use the term constraints to refer to a member of the language L. We use φ and ψ to represent
both predicates and constraints, however, we subscripts constraints with a number, that is φ0, to
indicate that the φ0 is in L, but not in Lπ.

The set of well-formed formulae of Lπ is defined by the following grammar:

φ ::= φ0 | φ ∧ φ | ¬φ | [π]φ

Each predicate of these forms are evaluated within a protocol state; that is, a constraint. In the
this grammar, φ0 is a constraint from L, and is true if it is entailed by the protocol state. ∧ and
¬ take on the usual meanings. The final branch of the grammar contains the interesting operator.
The meaning of the predicate [π]φ is as follows: at the current state of the protocol, if we were
to enter into the protocol π, then at every end state of the protocol π, φ would hold. We call
this protocol entailment (executing this protocol entails that a certain predicate will hold). This
operator is analogous to the same operator found in dynamic logic. Brackets are used to group
predicates, and similar to L, ¬ and [ ] bind tighter than ∧, therefore [π]φ ∧ ψ is equivalent to
([π]φ) ∧ ψ.

Protocol entailment therefore allows us to specify properties and to reason about possible future
outcomes of protocols, which gives us more flexibility and power than reasoning only about the
current state of protocols. However, we view these properties as side effects of protocols. That is,
they are not used to give definitions of protocols by constraining the outcomes, but instead specify
a property that holds for a set of possible future interactions given the current state. Therefore,
the truth of any formula [π]φ can be established directly from the definition of π itself.

3.3 Semantics of Lπ

Our logic is based on PDL, so we use standard terminology from dynamic logic to name our
structures. Predicates and constraints within our framework only have meaning when evaluated
within a model. A model is a pair (K, ψ0), in which K is the frame, and ψ0 is the state. A frame is
a pair (L,D), in which L is the set of possible states (in our case, all constraints), and D is the set
of definitions of named protocols. In PDL, one would say that D represents the meaning function,
which assigns meanings to atomic programs. However, because the meaning of an atomic protocol
is directly derivable from its definitions, our meaning functions are only functions from named
protocols to their definition, which can be atomic or compound. Using these definitions, K, ψ0 |= φ
means that ψ0 satisfies φ under D. Throughout this paper, we omit K because the context of L
and D is clear. If φ is true in every K and for every state φ0 ∈ L, then we write |= φ and say that
φ is valid. ψ0 6|= φ means that ψ0 does not satisfy φ. Using these definitions, the semantics of Lπ
is defined as follows:
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ψ0 |= φ0 where φ0 ∈ L iff ψ0 ⊒ φ0

ψ0 |= φ ∧ ψ iff ψ0 |= φ and ψ0 |= ψ

ψ0 |= ¬φ iff ψ0 6|= φ

ψ0 |= [π]φ iff ∀(ψ0, h, ψ
′
0) ∈ [[π]](∅) • ψ′

0 |= φ

We comment briefly on each of these definitions. For φ0 to be true within a model ψ0, it must
be entailed from ψ0 using ⊒. φ ∧ ψ is true within a model if and only if both φ and ψ are both
true within the model, while ¬φ is true if and only if φ is not. Finally, [π]φ is true if and only if,
starting from the model ψ0, for every end state, ψ′

0, of the protocol, π, φ holds. That is, for any
history of the protocol π, φ will hold in every end state of that history.

One can see that, given a model ψ0 and constraints φ0 and φ′0, the truth of ψ0 |= φ0 ∧ φ′0 is
equivalent to the truth of ψ0 ⊒ φ0 ⊔ φ′0, and the truth of ψ0 |= ¬φ0 is equivalent to the truth of
ψ0 ⊒ ¬φ0.

3.4 Shorthand Notation

Standard logical operators such as disjunction (∨), implication (→), and equivalence (↔) are
defined for protocol entailment predicates using ¬ and ∧. In the true spirit of modal and dynamic
logic, we introduce a dual to the [ ] operator: 〈 〉. Used in the same context as its dual, 〈π〉φ means,
at the current state of the protocol, if we were to enter into the protocol π, then for at least one
end state of the protocol π, φ would hold. The semantics for this is defined as follows:

ψ0 |= 〈π〉φ iff ∃(ψ0, h, ψ
′
0) ∈ [[π]](∅) • ψ′

0 |= φ

However, like many other modal operators, this primitive definition is not required to give a
semantics. Instead, the 〈 〉 operator can be defined in terms of the [ ] operator, as follows:

ψ0 |= 〈π〉φ iff ψ0 |= ¬[π]¬φ

That is, φ is true for at least one end state of the protocol π if and only if it is not the case that
¬φ is true at all end states of the protocol π. This shorthand definition can be easily shown to be
equivalent to the primitive definition. Expanding ¬[π]¬φ gives us the following:

ψ0 |= ¬∀(ψ0, h, ψ
′
0) ∈ [[π]](∅) • ψ′

0 |= ¬φ

We know from first-order logic axioms that ∀x •P (x) ⇐⇒ ¬∃x • ¬P (x), so substituting the above
into this equivalence gives us the following:

ψ0 |= ¬¬∃(ψ0, h, ψ
′
0) ∈ [[π]](∅) • ψ′

0 6|= ¬φ

Eliminating the double negation, this is trivially equivalent to the primitive definition of 〈〉.

Example 3.1. Recall the specification from Example 2.1, in which an agent requests that another
agent commits to some action. If we assume that the constant self refers to an agents representation
of itself, then the following specifes that, if the the agent accepts the request, it is committed to it:

S = self → [Acc]commit(self , A, P )

In the case of the entire protocol, this is not the case for every outcome. However, it is the case
for at least one – the one in which the agent accepts a bid. This can be represented using the
following formula:
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S = self → 〈Prot〉commit(self , A, P )

Therefore, if an agent has a goal of having P performed, but cannot perform P itself, it can match
the above annotation with its goal, and use this protocol to request that another agent performs
P . The other participant, when it has the choice of rejecting or accepting the request, can use
the annotation on the Acc sub-protocol to calculate that, it it accepts, it will be committed to
performing P .

While these examples are somewhat trivial, one can see that, for any protocols with more than
a handful of interactions, or a protocol library containing more than a handful of definitions,
documenting outcomes is useful.

3.5 Expressiveness

We have already briefly discussed the expressiveness of this logic in Section 3.1, but here we discuss
expressiveness again now that we have introduced the syntax and semantics of the language. For
this, we consider a protocol as a tree, like a game tree, in which nodes represent states, arcs
represent messages, and brances of more than one arc represent choices.

For any collection of nodes in a tree, the logic allows us to specify a property that holds for all
of those nodes. This property is also specified in the logic. This is straightforward to show. If φ
is the property one wishes to express, and {n1, . . . , nm} the collection of nodes about which one
wants to specify that φ holds, then one can specify that φ holds at each of these nodes by taking
taking the path to each node as a sequential composition, and expressing that φ holds at the end
of each of these compositions. For example, to specify that φ holds in every node of π1; (π2 ∪ π3)
(that is, φ is an invariant of the protocol), one would write

φ ∧ [π1]φ ∧ [π1;π2]φ ∧ [π1;π3]φ.

One shortfall of the logic is that it does not allow us to express the number of percentage of end
states for which a property holds, but only that it holds for all, at least one, or none. Using the
definition of a constraint system in Section 2 means that this is not possible, because some con-
straints systems may permit reasoning over infinite domains, for example, the integers. Therefore,
the number of possible instantiations of a message (recall that agents are permitted to constrain
the message template in a protocol), and as a result, the number of possible outcomes, may be
uncountable. This is an unfortunate restriction, but one which allows us to consider a greater
number of constraint systems.

We also note that one cannot express properties about the messages that are sent. This is a
deliberate omission from the logic, because we are interested only in documenting outcomes of
protocols. Additional operators that consider which messages are possible in a protocol could be
added, however, for goal-directed agents using first-class protocols, we do not believe they are of
great interest, because the meaning of the message is specified by its relative post-state.

4 Proof System for Lπ

In this section, we define a deductive proof system for Lπ. By this, we mean that we present
axioms and inference rules for Lπ, and prove that this system is sound and complete with respect
to the semantics defined in Section 3. This proof system allows us to prove statements made in Lπ,
which is useful for proving properties about protocols, and for proving that annotations derived
for protocols are sound, as in [14].
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We write ψ0 ⊢ φ to indicate that φ is provable in the state ψ0 in this proof system, in which the
state ψ0 is in L. This is constrast to the usual reading, which would be that φ is true in all models
that ψ0 holds. Our models are made up of a frame and a state, and we believe that proofs and
annotations would be made with respect to eiter a particular frame or all frames, therefore we
prefer the interpretation that ψ0 represents the current state. ψ ⊢ φ, where ψ is not in L, would
unambiguously represent the standard reading because ψ cannot be a state. We use ⊢ φ to indicate
that φ is provable in all models in this proof system (φ is a theorem).

The proof system is defined such that, every proof of a predicate in Lπ reduces to a proof in L. That
is, every proof of the form ψ0 ⊢ φ reduces to a proof of the form ψ0 ⊒ φ0. This is a useful result
because it implies that, given the entailment operator for L, ⊒, and the above axioms, agents can
prove properties about protocols without other machinery. It also means that automated support
for proving predicates of Lπ would be straightforward to implement, depending on the support
available for proving properties of L.

4.1 Axiomatisation of Lπ

Because we have not specified a particular underlying constraint language, we cannot provide a
complete set of axioms. Instead, we state simply that any axioms of L are also axioms in our proof
system. However, we do assume that the underlying constraint language satisfies the properties
of a lattice, as described by De Boer et al. [5], so we assume several axioms over L, such as De
Morgan’s laws and the law of double negation, et cetera, and also that L is sound and complete.

In addition to the axioms for L, we propose the following additional set of axiom schemas for the
proof system:

(i) [π](φ ∧ ψ) ↔ [π]φ ∧ [π]ψ (conjunction axiom)

(ii) [ψ0 → ǫ]φ ↔ ψ0 → φ (empty protocol axiom)

(iii) [ψ0
c.φm

−−−→ ψ′
0]φ ↔ ψ0 → (φm ⊔ ψ′

0 → φ)[y/x] (atomic protocol axiom)
where x = vars(φm ⊔ ψ′

0) and
y fresh

(iv) [π1;π2]φ ↔ [π1][π2]φ (sequential comp. axiom)

(v) [π1 ∪ π2]φ ↔ [π1]φ ∧ [π2]φ (choice axiom)

(vi) [varψ0

x ·π]φ ↔ x0 = x ∧ ψ0 → [π](x0 = x→ φ) (local variable axiom)1

(vii) [N(x)]φ ↔ [π[x/y]]φ (protocol name axiom)
where N(y) =̂ π

Theorem 4.1. Given any φ in Lπ, φ can be reduced to φ0 in L, using the axioms, such that
ψ0 |= φ ⇐⇒ ψ0 |= φ0 for any ψ0

Proof. This can be proved using induction over the structure of φ. We assume that the axioms are
valid theorems of Lπ, which is discussed further in Theorem 4.2.

There are two base cases for the induction: [ψ0 → ǫ]φ and [ψ0
c.φm

−−−→ ψ′
0]φ. Axioms 4.1(ii) and

4.1(iii) respectively can be applied from left to right, removing the [ ] operators. Applying the
induction hypothesis to φ in both cases yields a result that is in L.

1For simplicity, we assume that x and x0 are fresh variables — that is, they are not free variables in the model.

If this is not the case, x must be renamed to a fresh variable on the right-hand side of the equivlance, and a fresh

name must be used for x0.
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For the cases of sequential composition, choice, and variable declaration, one can apply Ax-
ioms 4.1(iv)-(vi) respectively, from left to right. Protocols form a finite tree structure, and these
axioms break each proof into their child trees until we are left only with the empty and atomic
protocols (the base cases). The only tricky step is for name references, which can introduce cycles
when Axiom 4.1(vii) is applied. In this case, the axiom is only applied if this has not been already,
otherwise it is removed.

Finally, we are left with the cases of conjunction and negation. Using the induction hypothesis,
reduce the arguments in these cases to constraints, and then replace ∧ with ⊔, which is equivalent.
Negation is given the same semantics in both languages, so leave this as is. �

This is a useful result, because it shows that, given any predicate, φ, a proof of φ can be reduced to
a proof of a constraint. This means that an agent can prove properties about protocol entailments
using only the axioms and the constraint solver. It also has implications regarding the completeness
of Lπ.

4.2 Rules of Inference

In addition to the axioms, the system includes two inference rules; that of modus ponens:

if ψ0 ⊢ φ and ψ0 ⊢ φ→ ψ then ψ0 ⊢ ψ

which states that if φ is provable in ψ0, and if φ→ ψ is provable in ψ0, then one can infer that ψ
is provable in ψ0; and that of necessitation:

if ⊢ φ then ⊢ [π]φ

which states that if φ holds in every model, then it must also hold at every end state representing
a model in any protocol π. Dynamic logics, such as that defined by Harel et al. [9], generally
contain a generalisation inference rule, and this rule is trivially valid in Lπ, however, taking into
account Theorem 4.1, it is unnecessary because [π]φ can be reduced to a constraint in L.

These rules are sound with respect to the logic. Modus ponens is trivially justified, and necessita-
tion is justified by noting that if ⊢ φ, then φ is true in every model, including any end state of any
protocol.

4.3 Soundness and Completeness of Lπ

A logic is sound is any predicate that is provable in it, is true. A logic is complete if any true
predicate, is provable.

Theorem 4.2. Lπ is sound and complete

Proof. We claim that our logic is sound and complete with respect to the semantics of Lπ. Taking
the above definition of sound, it follows that our logic is sound if we cannot prove any predicate
that it is not true, therefore, in our axiomatic system, soundness is demonstrated by proving that
each of the axioms are theorems. Appendix A contains such a proof.

Our logic is complete if we can prove any true predicate in our logic. A completeness proof for Lπ
is quite straightforward, because we have built the logic on a constraint system, which we assume
is sound and complete.
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To prove completeness, we have to demonstrate that there exists a proof for any true predicate.
To do this, we use Theorem 4.1, which states that every predicate in Lπ can be reduced to a
constraint in L, such that ψ0 |= φ ⇐⇒ ψ0 |= φ0 for any ψ0. Taking this result into account, and
our assumption that L is complete, we can construct a proof for φ by reducing it to a constraint,
and proving the constraint using the entailment operator of L. The soundness of the logic ensures
that the reduction is correct, so the proof is also correct. Theorem 4.1 states that the reduction
holds for any predicate, so there exists a proof for any true predicate, and therefore, our logic is
complete. �

4.4 Additional Theorems and Relation to PDL

Dynamic logics, such as the propositional dynamic logic defined by Harel et al. [9], contain addi-
tional axioms that are not reflected in the Lπ axioms. These axioms are omitted from the RASA
proof system because they can be derived from the minimal set of axioms and inference rules of
Lπ. The following theorem states that the following PDL axioms missing in the axiomatisation of
Lπ are theorems of Lπ.

Theorem 4.3. The following forumlae are valid theorems of Lπ:

(i) [π](φ→ ψ) → [π]φ→ [π]ψ

(ii) φ ∧ [π][π∗]φ ↔ [π∗]φ

(iii) φ ∧ [π∗](φ→ [π]φ) → [π∗]φ

Proof. See the extended technical report version of this paper [15]. �

This is a useful result because, having shown that all of the axioms of PDL are valid theorems in
Lπ, any provable theorem of PDL is also a provable theorem of Lπ.

5 Related Work

As far as the author are aware, there has been no work to date regarding annotation or selection
of first-class protocols. There has, however, been much work done on interaction languages, and
first-class protocol languages.

Process algebras, such as CSP [10], CCS [17], and the π-calculus [18] have been used to model
processes and their interactions. While the combination of processes can form the basis of a
protocol specification, these languages have no notion of state, so cannot specify protocol meaning,
and meaning is important to goal-directed agents. Languages such as Object-Z/CSP [24], which
mixes process algebras with state-based languages, are often too heavy for designers and agents
alike.

There are a handful of languages that have been used for first-class protocol specification. Various
authors have had success with approaches based on Petri Nets [6] and on declarative specification
languages [7, 8, 28], as well as an algebraic language similar to RASA called the Lightweight
Coordination Calculus [21]. [13] presents a detailed comparison of these languages, including
RASA, so we do not cover this here.

Viroli and Ricci [27] propose a method for formalising operating instructions for use on mediat-
ing coordination artifacts. Sequences of operation instructions resemble our first-class protocols,
however their language does not provide the necessary constructs to document the meaning of
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protocols. In addition, as Viroli and Ricci explicitly comment that their goals are to provide a
methodology for environment-based coordination, rather than to provide a general approach to
agent interaction semantics.

De Boer et al. [3] present a language with similar syntax, semantics, and assumptions about
underlying languages. However, like many interaction modelling languages, the interaction is
emergent from the model of the participants, rather than being first class.

Serrano et al. [23] describe a multi-agent programming framework in which interactions are repre-
sented by first-class objects. These objects assert some control over message passing at runtime to
guide the interaction. However, this requires the identification of roles at design time, and appears
to force participating agents to implement certain interfaces, which we explicitly aim to prevent.

There is also work related to protocol composition in the agent communications literature. McBur-
ney and Parsons [12] propose a formalism for composing dialogue game protocols, which enables
similar types of composition, but over a more restricted class of protocols. Reed et al. [20] present
a framework which allows agents to assign meanings to messages at run-time, and thus, indirectly,
to create new interaction protocols.

Propositional dynamic logic (PDL) [9] is clearly related to our work. We view the Lπ logic as an
instantiation of PDL, as discussed in Section 3. However, there has been some work using PDL to
specify interaction protocols. PDL has been extended [19] with belief and intention modal operators
to define a language, PDL-BI, for modelling agent interaction. PDL has also been used directly as
a protocol specification language [4]. The main difference between this work and our approach is
that we use an instantiation of PDL for annotation and reasoning about protocols constructed in
the RASA language, in which the protocol definitions themselves provide the allowed behviour,
while the work in [19] and [4] define a protocol as a collection of PDL predicates, which would
make them difficult to use as first-class protocol languages, especially PDL-BI, which is based
on ungrounded BDI logic. Other modal and temporal logics [2] that discuss future outcomes are
related, but none of these support protocol (or programs) referencing in the way that PDL and Lπ
do.

6 Conclusions and Further Work

In this paper, we present a logic, Lπ, for reasoning about and annotating protocols in RASA, a
framework for executable protocol specification. This logic is built upon the protocol specification
language, and an underlying constraint language. Lπ contains a language, semantics, and deductive
proof system. Proofs in Lπ can be reduced to proofs in the underlying constraint language, meaning
that agents can discharge proofs about protocols themselves using the axioms of the proof language
and the entailment operator of constraint language. This result is useful for agents when composing
new protocols from existing ones. The logic Lπ is an instantiation of propositional dynamic logic,
which is useful because it allows us to take advantage of a collection of sound work on dynamic
logic.

By treating interaction protocols as first-class entities, RASA permits protocols to be dynamically
inspected, referenced, composed, and shared by ever-changing collections of agents engaged in
interaction. The task of protocol selection and invocation may thus be undertaken by agents
rather than agent-designers, acting at run-time rather than at design-time. Frameworks such as
this will be necessary to achieve the full vision of multi-agent systems.

Before such visions are realised, significant further work is required. We aim to identify the
conditions that must hold for two protocols to be composed; for example, π1;π2 is only a valid
composition if the precondition of π2 is enabled by the postcondition of π1. The logic presented in
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this paper can be used to verify that such properties hold for protocols. In addition, meta-protocols
are needed that allow agents to propose and negotiate which protocols are to be used, and suitable
protocols for doing so will be investigated. To develop and test these ideas, we plan a prototype
implementation in which agents negotiate the exchange of information using protocols specified
using the RASA framework.
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A Soundness Proof for Lπ

In this appendix, we prove that the proof system for Lπ is sound. That is, we prove that, for any
predicate φ in Lπ, if φ is provable in state ψ0, then φ is true in state ψ0:

ψ0 ⊢ φ =⇒ ψ0 |= φ

Soundness is proved by showing that each of the axioms proposed in Section 4 is valid, except for
the assumed axioms for L, for which the axioms are already assumed to be valid.

Definition A.1. Upward Closure of Constraints

Throughout this proof, we make use of the following shorthand. For a constraint φ0, we define
the upward closure of that constraint, written ↑φ0, as being every constraint from which φ0 can be
proven using the entailment relation of L. This is defined as follows:

↑φ0 = {ψ0 ∈ L | ψ0 ⊒ φ0}

Therefore, ψ0 ∈ ↑φ0 iff ψ0 ⊒ φ0. For example, if we assume that the possible values of the variable
Price range over the natural numbers, the upward closure of the constraint Price ≤ 10 would be
any constraint in which the possible values of Price are between 0 and 10 inclusive. Therefore,
Price ≤ 9, Price ∈ [0..5], and Price = 0 are all members of the upward closure of Price ≤ 10.

Theorem A.1. Lπ is sound

Proof. To prove the soundness of Lπ, we prove that each of the axioms in the proof system is valid.

Axiom (i) |= [π](φ ∧ ψ) ↔ [π]φ ∧ [π]ψ

First, we prove the equivalence from right to left. That is, we prove [π]φ ∧ [π]ψ → [π](φ ∧ ψ).
Consider arbitrary start and end states ψ0 and ψ′

0 of protocol π. From the premise, we know that
ψ′

0 |= φ and ψ′
0 |= ψ. From the definition of ∧, we know that ψ′

0 |= φ ∧ ψ. Because ψ′
0 is an

arbitrary end state, then this must be true for all end states, therefore, ψ0 |= [π](φ ∧ ψ). ψ0 is
arbitrary, so this holds for every state.

Now, we prove the equivalence from left to right. That is, we prove [π](φ ∧ ψ) → [π]φ ∧ [π]ψ.
Consider arbitrary start and end states ψ0 and ψ′

0 of protocol π. From the premise, we know that
ψ′

0 |= φ ∧ ψ. From the definition of ∧, we know that ψ′
0 |= φ and ψ′

0 |= ψ. Because ψ′
0 is an

arbitrary end state, then this must be true for all end states, therefore, ψ0 |= [π]φ and ψ0 |= [π]ψ,
which is equivalent to ψ0 |= [π]φ ∧ [π]ψ. ψ0 is arbitrary, so this holds for every state.

Axiom (ii) |= [ψ0 → ǫ]φ ↔ ψ0 → φ

From the definition of [[ψ0 → ǫ]], we can see that the post-state of the protocol is the same as the
pre-state, provided that ψ0 holds. Therefore, if a predicate, φ, holds at the current state, φ will
also hold after ǫ, and vice-versa. If ψ0 does not hold, then [ψ0 → ǫ]φ trivially holds because the
set of end states is empty, and ψ0 → φ trivially holds because its premise is false.

Axiom (iii) |= [ψ0
c.φm

−−−→ ψ′
0]φ ↔ ψ0 → (φm ⊔ ψ′

0 → φ)[y/x]

To prove this, we break up the equivalence into two cases: all models in which ψ0 holds; and all
models in which ψ0 does not hold.

19



Case ψ0 does not hold: If ψ0 does not hold in the current model, then [ψ0
c.φm

−−−→ ψ′
0]φ is trivially

true, because the precondition of the protocol is not enabled, and therefore the set of histories is
empty. Similarly, if ψ0 does not hold, ψ0 → (. . .) is trivially true.

Case ψ0 holds: Firstly, we expand the definition of the left-hand side:

∀(φ1, h, φ
′
1) ∈ {(φ0, c.φ

′
m, φ

′
0) | (φ0 ⊒ ψ0) ∧ (φ′m ⊒ φm) ∧ φ′0 = φ′m ⊔ φ0 ⊕ ψ′

0} • φ
′
1 |= φ

So, to prove that [ψ0
c.φm

−−−→ ψ′
0]φ, we must prove that for every end-state, φ′1, such that φ′1 and the

refined message φ′m entail φm and φ0 ⊕ ψ′
0 respectively, φ′1 satisfies φ, which, using the induction

hypothesis, is equivalent to proving φ from φ′1. We are proving this only for models in which ψ0

holds, so, this, combined with the above, allows us to rewrite this as follows:

∀φ0, φ
′
m, φ

′
0 ∈ L •

(
φ0 ⊒ ψ0 ∧ φ

′
m ⊒ φm ∧ φ′0 = φ0 ⊕ ψ′

0

)
→ φ′0 ⊢ φ

Using the one-point rule on the equality φ′0 = φ0 ⊕ ψ′
0, this is trivially equivalent to the following:

∀φ0, φ
′
m ∈ L •

(
φ0 ⊒ ψ0 ∧ φ

′
m ⊒ φm

)
→ φ0 ⊕ ψ′

0 ⊢ φ

Before we continue, we first prove the following lemma, which states that if every refinement, φ′0,
of a constraint, φ0, satisfies a certain property, then φ0 also satisfies that property, and vice-versa.

Lemma A.2. ∀φ′0 ∈ ↑φ0 • φ
′
0 ⊢ ψ ⇐⇒ φ0 ⊢ ψ

Proof. The universal quantification is expanded to the following:

φ′0 ⊢ ψ and φ′′0 ⊢ ψ and φ′′′0 ⊢ ψ and . . .

for each constraint in the upward closure of φ. From the definitions in De Boer et al. [5], we know
that this is equivalent to the following:

φ′0 ∨ φ
′′
0 ∨ φ′′′0 ∨ . . . ⊢ ψ

From the definition of upward closure, φ′0∨φ
′′
0∨φ

′′′
0 ∨. . . is equivalent to φ0, and therefore φ0 ⊢ ψ. �

Using Lemma A.2, we can remove the quantification of the predicate above:

φm ⊔ ψ0 ⊕ ψ′
0 ⊢ φ

Using the deduction theorem, we know that φ ⊢ ψ is equivalent to ⊢ φ → ψ. However, we cannot
replace the above ⊢ with →, because φm ⊔ ψ0 ⊕ ψ′

0 ⊢ φ contains free variables that may be part
of other predicates, especially ψ0, which we assume holds for this part of the proof. Therefore, we
rename all variables inside the brackets, denoted x, with fresh variables, y, before substituting ⊢
with →:

(φm ⊔ ψ0 ⊕ ψ′
0 → φ)[y/x]

Combining the two cases of ψ0 holding and not holding respectively, we have the following equiv-
alence:

[ψ0
c.φm

−−−→ ψ0]φ ↔ ψ0 ∨ (ψ0 ∧ (φm ⊔ ψ0 ⊕ ψ′
0 → φ)[y/x])

Which, using the definition of →, is equivalent to the following:

[ψ0
c.φm

−−−→ ψ0]φ ↔ ψ0 → (φm ⊔ ψ0 ⊕ ψ′
0 → φ)[y/x]
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Finally, we are left with something that resembles our axiom, with the exception that we have
ψ0⊕ψ

′
0 on the right-hand side, rather than just ψ′

0. Recall that ψ0⊕ψ
′
0 is a constraint representing

all of the information from ψ′
0, plus the information about the variables in ψ0 that are not in ψ′

0.
Therefore, for the implication ψ0 → (φmψ0 ⊕ ψ′

0 → φ), any constraint about a variable x in φ
must either come from ψ′

0, or from ψ0. If it comes from ψ0, the variable is not referenced in ψ′
0,

then it will hold from the premise ψ0. For example, consider ψ0 ⊢ ψ0 ∧ ψ′
0 → φ. Therefore,

omiting ψ0 would hold anyway. However, recall that we renamed all variables inside the brackets
on the right-hand side so that all were fresh, therefore, this would not be the case. So, instead of
renaming each of them, we rename only those in φm and ψ′

0, as is specified by the side condition
of Axiom 4.1(iii), leaving us with the following:

[ψ0
c.φm

−−−→ ψ0]φ ↔ ψ0 → (φm ⊔ ψ′
0 → φ)[y/x]

In this, any information about a variable x that holds for φ will either come from φm ⊔ ψ′
0 and

therefore be renamed, or it will come from ψ0 and not be renamed, but will hold from the conditions
in ψ0. Therefore, we conclude that this axiom is valid.

Axiom (iv) |= [π1;π2]φ ↔ [π1][π2]φ

First, we prove the equivalence from right to left. That is, we prove [π1][π2]φ→ [π1;π2]φ. Consider
arbitrary start and end states ψ0 and ψ′

0 of protocol π1. From the semantics of π1;π2, we know that
π2 is evaluated under ψ′

0. From the premise, we know that ψ′
0 |= [π2]φ for all such ψ′

0, therefore,
ψ0 |= [π1;π2]φ. Since ψ0 is arbitrary, this holds for all states.

Now, we prove the equivalence from left to right. That is, we prove [π1;π2]φ→ [π1][π2]φ. Consider
arbitrary start and end states ψ0 and ψ′′

0 of protocol π1;π2. Take any intermediate state, ψ′
0, on

any branch of the protocol π1;π2. Let π′ be the sub-protocol that remains to be executed at this
state. We know that ψ′

0 |= [π′]φ holds at this point because φ holds at every end point of π1;π2,
and π′ is a sub-protocol of this. If this holds for all arbitrary intermediate states, then it must
hold for the end states of π1, which are intermediate states of π1;π2. At every end state of π1, the
sub-protocol that remains to be executed is π2, and therefore ψ′

0 |= [π2]φ holds at all end states of
π1. Therefore, we conclude that ψ0 |= [π1][π2]φ. Since ψ0 is arbitrary, this holds for all states.

Axiom (v) |= [π1 ∪ π2]φ ↔ [π1]φ ∧ [π2]φ

From the compositional semantics defined in Section 2.3, the set of histories resulting from a
protocol choice is the union of the histories of both protocols. Therefore, the left hand side of
this axiom is represented as ∀ψ0 ∈ [[π1]] ∪ [[π2]] . . ., and the right hand side as ∀ψ0 ∈ [[π1]] . . . and
∀ψ0 ∈ [[π2]] . . .. From the definition of the set union operator, we know that a ∈ A ∪B if and only
if a ∈ A and a ∈ B, therefore, this demonstrates that the histories of the two predicate about are
equivalent, and therefore any predicate that holds for all end states of one will hold for the other.

Axiom (vi) |= [varψ0

x ·π]φ ↔ x0 = x ∧ ψ0 → [π](x0 = x→ φ)

Recall from the semantics, that variable declarations introduce a new variable with constraint, but
that also that the variable can already be in the state. For simplicity, in this proof, we assume
that the variable x is fresh. If this is not the case, x must be renamed to a fresh variable.

This axiom is explained as follows. In the protocol varψ0

x ·π, the constraints on x remain unchanged

during the execution of π, and otherwise varψ0

x ·π executes in the same manner as π. Therefore,

we say that φ holds for every end state in varψ0

x ·π if and only if it holds in every end state of
π in which the contraints on x do not change. To model x not changing, we introduce a fresh
variable x0, and specify that x0 = x before the execution of π. We know that π does not change
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the value of x0 (it is a fresh variable), so after executing π, the constraints on x0 remain as before.
Therefore, the cases in which x0 = x in the end are equivalent to x remaining unchanged.

First, we prove the equivalence from left to right. Consider any end state, ψ′
0, of varψ0

x ·π. We
know that ψ′

0 |= φ. We also know that the same path and end state must exist for π, because π is

the same as varψ0

x ·π, except it does not maintain the constraints on x throughout, therefore, the

paths and end states in varψ0

x ·π must be a subset of those in π. Clearly, ψ′
0 |= x0 = x, because x0

is fresh and therefore not changed by π, therefore ψ′
0 |= x0 = x→ φ.

Now, we prove right to left. If we consider that φ is true in all end states of π in which x remains
unchanged, then it must be that φ holds in any end state of varψ0

x ·π, because x remains unchanged
by the semantics of variable declarations.

Axiom (vii) |= [N(x)]φ ↔ [π[x/y]]φ where N(y) =̂ π

This axiom is trivially true from the definition of [[N(x)]] and from N(y) =̂ π.

The proof that each of the axioms is valid demonstrates that Lπ is sound. �
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