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Abstract. We introduce an extension-based semantics for value-based ar-
gumentation frameworks (vafs) that provides a counterpart to the re-
cently proposed ideal semantics in standard – i.e. value–free – argumen-
tation frameworks. A significant motivation for this so-called “uncon-

tested semantics” is as a mechanism with which to refine the nature of
objective acceptance: thus the set of uncontested arguments are not only
considered justified irrespective of the value ordering endorsed by any
audience but, in addition, collectively constitute a self-defending and
internally consistent collection of beliefs within the framework. In this
way the rationale underpinning objectively accepted arguments which
fall outside this uncontested set must involve audience related features.
In this paper we formalise the concept of uncontested arguments in
vafs, present a number of features distinguishing ideal and uncontested
semantics, and analyse some basic complexity-theoretic issues.
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Introduction

The value-based argumentation model introduced by Bench-Capon [3] has proven
to be an important approach with which to examine processes of practical rea-
soning and the rationale supporting why parties favour certain beliefs over al-
ternatives, e.g. [16,4,1,2]. This model builds on the seminal approach to abstract
argumentation pioneered by Dung [8] wherein a number of formalisations of the
concept of “collection of justified beliefs” are proposed in terms of criteria defined
on subsets of arguments in an abstract argumentation framework (af). Two im-
portant classifications have been considered in terms of Dung’s basic acceptability
semantics: credulous acceptance – an argument is justified if it belongs to at least
one admissible (i.e. self-defending and internally consistent) set of arguments; and
sceptical acceptance – an argument is justified if it belongs to every maximal such
set (or preferred extension in Dung’s terminology). In recent work Dung, Mancar-
ella and Toni [9,10] advance a new classification, ideal acceptance, under which
an argument has not only to be sceptically accepted but also contained within an
admissible set of sceptically accepted arguments.

In this paper we propose and examine an analogue of “ideal acceptability”
tailored to value-based argumentation: the term uncontested acceptability being



used as a general descriptor. Thus, as discussed in [4, pp. 50–51], the concept of
credulous acceptance in afs is similar to Bench-Capon’s notion of subjective ac-
ceptability in vafs; and that of sceptical acceptance akin to objective acceptability
in vafs.1 In informal terms, an argument is considered to be uncontested if it is
both objectively acceptable and contained in an admissible set in the standard
sense of Dung [8], of objectively acceptable arguments. A significant motivation
for the concept of uncontested acceptance derives from the rationale underpinning
arguments, p, which are objectively accepted but are not uncontested, a status
which can be interpreted in the following way: although the argument p is con-
sidered justified irrespective of the value priorities endorsed by an audience, the
reasons and supporting cases differ between distinct audiences. As a very simple
example consider the vaf of Fig. 1(a).
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Figure 1. Different audiences accept z for different reasons

The argument z is objectively accepted since it is in the preferred extension
({x, z}) resulting for the audience that regards value A as more important than
value B – the vaf of Fig. 1(b); and in the preferred extension {y, z} deriving from
the remaining audience which holds the opposite view, for which the relevant
vaf is that shown in Fig. 1(c). The argument z, however, is not uncontested:
{z} does not form an admissible set. Overall the two different audiences have
distinct rationalisations for accepting z: the audience preferring A to B accepts z

by reason of “although z is attacked by the argument y, because we also accept
x we can accept z since x attacks y”; the audience preferring B to A, however,
regards z as indisputable and requires no further support to justify its acceptance.

After reprising the basic notions of Dung’s argumentation frameworks and
Bench-Capon’s vaf development of these in Section 1 we continue in Section 2
by formally defining the concept of uncontested acceptability in vafs. The rela-
tionship between this and the ideal semantics of Dung et al. [9,10] is examined in
Section 2.1. One of our principal aims concerns complexity-theoretic analysis of
uncontested semantics so that Section 3 presents a number of results regarding

1The parallel between credulous/subjective and sceptical/objective derives from the former
being phrased in terms of “there exists S such that” (for suitable structures S) and the latter
in terms of “for all S such that”. Aside from this syntactic similarity, however, the related
semantics give rise to very different behaviours, cf. [4, Thm. 12]



both decision problems and the construction of uncontested sets in vafs. Further
work and conclusions are discussed in Section 4.

1. Preliminaries: afs and vafs

The following concepts were introduced in Dung [8].

Definition 1 An argumentation framework (af) is a pair H = 〈X ,A〉, in which X
is a finite set of arguments and A ⊆ X×X is the attack relationship for H. A pair
〈x, y〉 ∈ A is referred to as ‘y is attacked by x’ or ‘x attacks y’. The convention
of excluding “self-attacking” arguments is assumed, i.e. for all x ∈ X , 〈x, x〉 6∈ A.
For R, S subsets of arguments in the af H(X ,A), we say that s ∈ S is attacked
by R – written attacks(R, s) – if there is some r ∈ R such that 〈r, s〉 ∈ A. For
subsets R and S of X we write attacks(R, S) if there is some s ∈ S for which
attacks(R, s) holds; x ∈ X is acceptable with respect to S if for every y ∈ X that
attacks x there is some z ∈ S that attacks y; S is conflict-free if no argument in
S is attacked by any other argument in S.

A conflict-free set S is admissible if every y ∈ S is acceptable w.r.t S; S is
a preferred extension if it is a maximal (with respect to ⊆) admissible set; S is
a stable extension if S is conflict free and every y 6∈ S is attacked by S; S is an
ideal extension ([9,10]) of H if S is admissible and a subset of every preferred
extension of H.

An af, H is coherent if every preferred extension in H is also a stable exten-
sion. H is cohesive2 if its maximal ideal extension coincides with the intersection
of all preferred extensions of H.

For S ⊆ X ,

S− =def { p : ∃ q ∈ S such that 〈p, q〉 ∈ A}
S+ =def { p : ∃ q ∈ S such that 〈q, p〉 ∈ A}

An argument x is credulously accepted if there is some preferred extension
containing it; x is sceptically accepted if it is a member of every preferred exten-
sion.

Bench-Capon [3] develops the concept of “attack” from Dung’s model to take
account of values.

Definition 2 A value-based argumentation framework (vaf), is defined by a triple
H(V) = 〈H(X ,A),V , η〉, where H(X ,A) is an af, V = {v1, v2, . . . , vk} a set of
k values, and η : X → V a mapping that associates a value η(x) ∈ V with each
argument x ∈ X .

An audience for a vaf 〈X ,A,V , η〉, is a binary relation R ⊂ V × V whose
(irreflexive) transitive closure, R∗, is asymmetric, i.e. at most one of 〈v, v′〉,
〈v′, v〉 are members of R∗ for any distinct v, v′ ∈ V. We say that vi is preferred

2The term cohesive is introduced in Dunne [11] although the property described had been
raised in the original work of Dung et al. [9,10].



to vj in the audience R, denoted vi ≻R vj, if 〈vi, vj〉 ∈ R∗. We say that α is a
specific audience if α yields a total ordering of V.

For an audience, R, there will, generally, be a number of specific audiences
consistent with R∗. The notation, χ(R) is used to describe the set of all such
specific audiences, i.e.

χ(R) =def { α : ∀ v, v′ ∈ V 〈v, v′〉 ∈ R∗ ⇒ v ≻α v′ }

Following, [4, p. 40], the audience R = ∅ is called the universal audience by reason
of χ(∅) containing every specific audience.

A standard assumption from [3] which we retain in our subsequent development
is the following:
Multivalued Cycles Assumption (mca)
For any simple cycle of arguments in a vaf, 〈X ,A,V , η〉, – i.e. a finite sequence
of arguments y1y2 . . . yiyi+1 . . . yr with y1 = yr, |{y1, . . . , yr−1}| = r − 1, and
〈yj , yj+1〉 ∈ A for each 1 ≤ j < r – there are arguments yi and yj for which
η(yi) 6= η(yj).

In less formal terms, this assumption states every simple cycle in H(V) uses
at least two distinct values.

Using vafs, ideas analogous to those introduced in Defn. 1 are given by
relativising the concept of “attack” using that of successful attack with respect
to an audience. Thus,

Definition 3 Let 〈X ,A,V , η〉 be a vaf and R an audience. For arguments x, y in
X , x is a successful attack on y (or x defeats y) with respect to the audience R
if: 〈x, y〉 ∈ A and it is not the case that η(y) ≻R η(x).

Replacing “attack” by “successful attack w.r.t. the audience R”, in Defn. 1 yields
definitions of “conflict-free”, “admissible set” etc. relating to value-based systems,
e.g. S is conflict–free w.r.t. to the audience R if for each x, y in S it is not the
case that x successfully attacks y w.r.t. R. It may be noted that a conflict-free
set in this sense is not necessarily a conflict-free set in the sense of Defn. 1: for x

and y in S we may have 〈x, y〉 ∈ A, provided that η(y) ≻R η(x), i.e. the value
promoted by y is preferred to that promoted by x for the audience R.

The concept of successful attack w.r.t. an audience R, leads to the following
notation as a parallel to the sets S− and S+. Given 〈X ,A,V , η〉, S ⊆ X and an
audience R ⊂ V × V ,

S−
R =def { p : ∃ q ∈ S such that 〈p, q〉 ∈ A and 〈η(q), η(p)〉 6∈ R∗}

S+
R =def { p : ∃ q ∈ S such that 〈q, p〉 ∈ A and 〈η(p), η(q)〉 6∈ R∗}

Bench-Capon [3] proves that every specific audience, α, induces a unique
preferred extension within its underlying vaf: for a given vaf, H(V), we use
P (H(V), α) to denote this extension: that P (H(V), α) is unique and can be con-
structed efficiently, is an easy consequence of the following fact, implicit in [3].

Fact 1 For any vaf, H(V)(〈X ,A,V , η〉) (satisfying mca) and specific audience
α, the framework induced by including only attacks in the set Aα given by A \
{〈x, y〉 : η(y) ≻α η(x)} is acyclic.



Proof: Suppose the contrary and let y1y2 . . . yr (with yr = y1) be any simple
cycle in the vaf 〈〈X ,Aα〉,V , η〉 defined from H(V) via the specific audience α.
Since each of the attacks 〈yi, yi+1〉 for 1 ≤ i ≤ r − 1 occurs in A ∩ Aα from the
definition of Aα we must have ∀ 1 ≤ i ≤ r − 1 ¬(η(yi+1) ≻α η(yi)). That is,

∀ 1 ≤ i ≤ r − 1 (η(yi) ≻α η(yi+1))
∨

(η(yi) = η(yi+1))

With some minor abuse of notation, we write v �α w if (v = w) ∨ (v ≻α w),
so that the expression above implies η(y1) �α η(y2) �α . . . �α η(yr−1) �α η(y1).
Since α is a specific audience so that �α is a total ordering, the only possible
choice of values which this behaviour could arise is η(y1) = η(y2) = . . . = η(yi) =
. . . = η(yr−1) which contradicts the assumption that H(V) satisfies mca. 2

Analogous to the concepts of credulous and sceptical acceptance, in vafs the ideas
of subjective and objective acceptance (w.r.t. an audience R) arise, [4, p. 48]. The
computational complexity of a number of decision problems in both standard afs
and vafs has been considered in work of Dimopoulos and Torres [7], Dunne and
Bench-Capon [13], and Dunne [12]. The results of these papers are summarised
in Table 1.

Table 1. Computational complexity in afs and vaf

Problem Instance Question Complexity

ca 〈H(X ,A), x〉 Is x credulously accepted? np–complete [7]

sa 〈H(X ,A), x〉 Is x sceptically accepted? Πp

2–complete [13]

coh H(X ,A) Is H coherent? Πp

2–complete. [13]

sba 〈H(V), x,R〉 ∃ α ∈ χ(R) : x ∈ P (H(V), α)? np–complete [14,4] (with R = ∅)

oba 〈H(V), x,R〉 ∀ α ∈ χ(R) : x ∈ P (H(V), α)? co-np–complete [14,4] (with R = ∅)

In recent work of Dunne [12], the complexity of sba and oba w.r.t. the
universal audience is shown to be unchanged under quite extreme restrictions on
the form of instances.

Fact 2 (Dunne [12])

1. Let sba
(T ) be the decision problem sba with instances restricted to those

for which the graph structure 〈X ,A〉 is a binary tree: sba
(T ) is np–

complete.
2. Let sba

(T,ǫ) be the decision problem sba
(T ) in which instances are re-

stricted to those in which |V| ≤ |X |ǫ: ∀ ǫ > 0 sba
(T,ǫ) is np–complete.

3. Suppose sba
(V,≤k) is the decision problem sba restricted to instances for

which ∀ v ∈ V |η−1(v)| ≤ k, i.e. at most k arguments share a common
value, v ∈ V. Similarly, sba

(T ),(V,≤k) is this problem with instances addi-
tionally restricted to trees: sba

(T ),(V,≤3) is np–complete.

Analogous co-np–completeness results for oba also hold for the restricted frame-
works of Fact 2.



2. Uncontested Semantics in vafs

In this paper we are concerned with a vaf based extension semantics that captures
elements of the ideal semantics: the uncontested semantics.

Definition 4 Let H(V) be a vaf and R an audience. A set of arguments, S in H(V)

is an uncontested extension w.r.t. R if it is an admissible set in H(〈X ,A〉) and
every argument in S is objectively acceptable in H(V) w.r.t. the audience R.

Our main interest in this section is to review various properties of this ap-
proach: characteristics in common with ideal extensions such as that described in
Thm. 1; as well as points under which these forms differ.

Theorem 1 Let H(V)(〈X ,A,V , η〉) be a vaf, H(X ,A) its supporting (value free)
af, and R ⊂ V × V be any audience.

If U1 and U2 are both uncontested extensions of H(V) w.r.t. R then U1 ∪ U2

is also an uncontested extension of H(V) w.r.t. R.

Proof: Suppose that U1 and U2 are uncontested extensions of H(V) w.r.t. R.
Since, U1 ⊆ {x ∈ X : oba(H(V), x,R)} and U2 ⊆ {x ∈ X : oba(H(V), x,R)} it is
certainly the case that U1∪U2 ⊆ { x : oba(H(V), x,R) }. It, therefore, suffices to
show that adm(H,U1∪U2), where adm(H, S) is the predicate returning true if and
only if the set S is admissible for H(X ,A). We first show that this set is conflict-
free. Noting that both adm(H,U1) and adm(H,U2), the set U1∪U2 could only fail
to be conflict-free if some attack in A involved an argument in U1 and an argument
in U2. Without loss of generality suppose 〈p1, q1〉 ∈ A with p1 ∈ U1 and q1 ∈ U2.
Consider any specific audience α ∈ χ(R), then from {p1, q1} ⊆ P (H(V), α) (by
objective acceptability w.r.t. R of both p1 and q1) for all such specific audiences
we must have η(q1) ≻α η(p1). The set U2, however, is admissible for 〈X ,A〉 so
there is some q2 ∈ U2 for which 〈q2, p1〉 ∈ A. Now, in the same way as before,
{p1, q1, q2} ⊆ P (H(V), α) so that η(q1) ≻α η(p1) ≻α η(q2). Continuing thus, using
admissibility of U1 we find p2 ∈ U1 with 〈p2, q2〉 ∈ A, so from the original premise
〈p1, q1〉 ∈ A we identify subsets {p1, . . . , pr} ⊆ U1 and {q1, . . . , qr} ⊆ U2 for which

1. {p1, p2, . . . , pr, q1, q2, . . . , qr} ⊆ P (H(V), α) for every α ∈ χ(R).
2. 〈pi, qi〉 ∈ A and 〈qi+1, pi〉 ∈ A for each 1 ≤ i ≤ r

3. η(qi) ≻α η(pi) ≻α η(qi+1) (1 ≤ i ≤ r) for all α ∈ χ(R).

The sets U1 and U2 are finite3 and thus the chain implied by (3) will eventually
lead to a contradiction. We deduce, therefore, that U1 ∪ U2 is a conflict-free set
in H(X ,A). That it is also, admissible, follows easily: any attacker x of U1 ∪ U2,
either attacks some y1 ∈ U1 (and thus counterattacked by U1) or some y2 ∈ U2

(and so counterattacked by U2). 2

Corollary 1 For every vaf, H(V)(〈X ,A,V , η〉) and audience R, there is a unique,
maximal uncontested extension w.r.t. R.

3In fact, we could equally use the fact that V is finite to derive this contradiction, i.e. the
analysis also applies to frameworks in which X is allowed to be an infinite set.



Proof: Trivial consequence of Thm. 1. 2

We introduce the following notation for vafs H(V)(〈X ,A,V , η〉) and audiences R.

UR = The maximal uncontested extension of H(V) w.r.t. R
U = U∅

M = The maximal ideal extension of H(X ,A)

2.1. Ideal vs. Uncontested Semantics

One issue arising from our definitions is to what extent do the ideal semantics
and uncontested semantics give rise to distinct subsets. The results comprising
this section consider this issue.

Theorem 2 Given a vaf, 〈X ,A,V , η〉 let M denote its maximal ideal extension
w.r.t to the af 〈X ,A〉.

a. There are vafs for which x ∈ M but x 6∈ U .
b. There are vafs for which x ∈ U but x 6∈ M.
c. There are vafs for which U ⊂ {x : oba(〈X ,A,V , η〉, x, ∅)}.

Proof: Consider the three systems of Fig. 2
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Figure 2. Cases in proof of Thm. 2

For (a), the maximal ideal extension for the af of Fig. 2(a) is {x, z}, however
U = {z} (since x is not in the preferred extension with respect to the specific
audience B ≻ A), so that x ∈ M but x 6∈ U .

For (b), the vaf of Fig. 2(b) has U = {x, z}: both specific audiences yielding
the preferred extension {x, z}. In contrast M = ∅ in the underlying af: both
{x, z} and {y, w} being preferred extensions of this.

Finally, for the vaf of Fig 2(c), we have U = ∅ (since every non-empty subset
of {x, y, z} fails to be admissible) whereas the argument z is objectively accepted,
so establishing (c). 2

We have further indications that uncontested extensions describe radically differ-
ent structures, in the failure of the following characterising lemmata, proven for
ideal semantics in [11], to have an analogue in the uncontested semantics.



Fact 3 Let H(X ,A) be an af with maximal ideal extension M ⊆ X .

a. A subset S of X defines an ideal extension of H(X ,A) if and only if both
(I1) and (I2) below hold:

I1. S is an admissible set in H(X ,A).
I2. No attacker of S is credulously accepted, i.e. ∀ y ∈ S− ¬ca(H, y).

b. For any x ∈ X , x ∈ M if and only if both (M1) and (M2) below hold:

M1. No attacker of x is credulously accepted, i.e. ∀ y ∈ {x}− ¬ca(H, y).
M2. For each attacker, y of x, there is some attacker, z of y, for which

z ∈ M, i.e. ∀ y ∈ {x}− : {y}− ∩M 6= ∅.

A natural reformulation of (M1) and (M2) in terms of vafs is

U1. No attacker of x is subjectively accepted w.r.t. R.
U2. For each attacker y of x, some attacker z of y is in UR.

The following result demonstrates, however, that these fail to characterise maxi-
mal uncontested extensions.

Lemma 1 There are vafs, H(V)(〈X ,A,V , η〉) with maximal uncontested exten-
sions, U , that do not satisfy (U1). i.e. an argument y ∈ U− is subjectively ac-
cepted, so that this is not a necessary condition for membership in the maximal
uncontested extension.

Proof: Consider the vaf, H(V) of Fig. 3
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Figure 3. No attacker subjectively accepted is not a necessary condition

The maximal uncontested extension is formed by the set {x, y, w}: this is easily
seen to be admissible since {y, w}− = ∅ and the sole attacker, z, of x is coun-
terattacked by y. Each argument in {x, y, w} is also objectively accepted: that
{y, w} ⊆ P (H(V), α) for any specific audience α, is immediate from {y, w}− = ∅.
The argument x is in P (H(V), α) for all specific audiences in which A ≻α C (since
the attack 〈z, x〉 does not succeed); the remaining specific audiences (in which
C ≻α A) satisfy u ∈ P (H(V), α), so that 〈u, z〉 is an attack in the acyclic af

induced by these, thereby providing u as a defence to the attack by z on x.



The argument z ∈ {x, y, w}− is, however, subjectively accepted using the
specific audience A ≻ C ≻ B: 〈y, z〉 does not succeed with respect to this audience;
the (successful) attack 〈w, u〉 provides w as a defence to the attack by u on z so
that P (H(V), A ≻ C ≻ B) = {x, y, w, z}. 2

We observe that the constructions of Thm. 2 and Lemma 1 further emphasise the
fact that there are a number of subtle differences between the divers acceptability
semantics proposed for vafs – i.e. Subjective, Objective and Uncontested – in
comparison with superficially similar acceptability semantics in afs, i.e. Credu-
lous, Sceptical and Ideal. Thm. 2 and Lemma 1 thus develop the related compar-
ison of Bench-Capon et al. [4, Thm. 12, pp. 50–51].

Despite Fact 3 failing to have an immediate counterpart when characterising
uncontested extensions, cf. Lemma 1, it turns out that a very similar result can
be obtained, albeit in a rather indirect manner. We first introduce the notion of
a vaf being k-terse, where k ≥ 1.

Definition 5 For k ∈ N, the vaf, H(V)(〈X ,A,V , η〉) is k-terse if every simple
directed path of length k involves at most k different values from V. Formally,
∀ x1x2x3 · · ·xk+1 ∈ X k+1 such that 〈xi, xi+1〉 ∈ A for each 1 ≤ i ≤ k and
|{x1, x2, . . . , xk+1}| = k + 1, |{ η(xi) : 1 ≤ i ≤ k + 1}| ≤ k.

Theorem 3 Let H(V)(〈X ,A,V , η〉) be any 2-terse vaf, R an audience. The argu-
ment x ∈ X is in UR if and only if both of the following hold:

U1. No attacker, y, of x is subjectively accepted w.r.t. R in H(V), i.e. ∀ y ∈
{x}−, ¬sba(H(V), y,R).

U2. For every attacker, y, of x, at least one attacker, z of y, is in UR, i.e.
∀ y ∈ {x}− {y}− ∩ UR 6= ∅.

Proof:

(⇒) Suppose that x ∈ UR for the 2-terse vaf, H(V)(〈X ,A,V , η〉). We show that
x satisfies both (U1) and (U2). To see that (U2) holds it suffices to observe that,
since UR is an admissible set in 〈X ,A〉 any attacker y of x must be counterattacked
by some z ∈ UR, thus for each y ∈ {x}− we have {y}− ∩ UR 6= ∅. To see that
x must satisfy (U1), suppose for the sake of contradiction that this were not
the case, i.e. there is a 2-terse, vaf and audience R with maximal uncontested
extension UR containing an argument x an attacker, y, of which is subjectively
accepted w.r.t. R. Since UR is an admissible set it must contain an argument z

that attacks y, e.g. Fig 4 where η(x) = Vx, η(y) = Vy and η(z) = Vz.

Consider any specific audience, α ∈ χ(R), under which y ∈ P (H(V), α): since
{x, z} ⊆ UR it holds that oba(H(V), x,R)∧oba(H(V), z,R) and thus, {x, y, z} ⊆
P (H(V), α). It follows, therefore, that neither 〈y, x〉 nor 〈z, y〉 can be attacks in the
af arising from H(V) with respect to the specific audience α,4 i.e. η(x) ≻α η(y)
and η(y) ≻α η(z). This, however, is only possible when η(x), η(y), and η(z) are

4Notice that {x, y} ⊂ P (H(V), α) also indicates that x cannot self-defend the attack by y, i.e.
at most one of {〈x, y〉, 〈y, x〉} are in A.
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Figure 4. No attacker subjectively accepted is needed in 2-terse vafs

all distinct values. This contradicts the assumption that H(V) is 2-terse since
the path z → y → x involves three distinct values. As a result we deduce that
¬sba(H(V), y,R) for every y ∈ {x}−, i.e. that x ∈ UR implies that x satisfies
(U1).
(⇐) Suppose that x satisfies both (U1) and (U2). Consider the set UR ∪ {x}.
Certainly this is conflict-free: if 〈y, x〉 ∈ A for some y ∈ UR then x fails to satisfy
(U1) since oba(H(V), y,R); if 〈x, y〉 ∈ A for some y ∈ UR then from admissibility
we find z ∈ UR with 〈z, x〉 ∈ A and again this contradicts x satisfying (U1).
The set UR ∪ {x} in addition to being conflict-free, is also admissible: any y that
attacks UR ∪ {x} either attacks UR (and so is counterattacked by some z ∈ UR)
or attacks x so that y ∈ {x}− so that since x satisfies (U2) we find z ∈ UR∩{y}−

as a defence.
It must, however, also be the case that oba(H(V), x,R): for suppose this were

not so and for some specific audience, α ∈ χ(R), x 6∈ P (H(V), α). Since P (H(V), α)
is a stable extension, we must have {x}− ∩ P (H(V), α) 6= ∅ : this, however, would
contradict x satisfying (U1). In summary, from x satisfying (U1) and (U2), the
set UR∪{x} is both admissible in 〈X ,A〉 and each of its arguments is objectively
accepted w.r.t. R in H(V), i.e. this set is an uncontested extension. From the fact
that UR is maximal we deduce UR ∪ {x} = UR, i.e x ∈ UR as required. 2

The property 2-terseness may seem rather too restrictive in order for the charac-
terisation of Thm. 3 to be widely applicable. As the following result shows, this
in fact is not necessarily the case.

Lemma 2 (Path Dilation Lemma – pdl) Let 〈X ,A,V , η〉 be any vaf. There is a
vaf, 〈X ∪ Y,B,V , ε〉 such that

PD1. ∀x ∈ X , ∀α, x ∈ P (〈X ,A,V , η〉, α) ⇔ x ∈ P (〈X ∪ Y,B,V , ε〉, α).
PD2. 〈X ∪ Y,B,V , ε〉 is 2-terse.

Furthermore 〈X ∪Y,B,V , ε〉 is constructible in polynomial time from 〈X ,A,V , η〉.

Proof: Given 〈X ,A,V , η〉 as input, consider the result 〈X ∪Y,B,V , ε〉 of applying
Algorithm 1

The typical transformation enacted by Algorithm 1 is illustrated in Fig. 5.
Notice that we do not assume {x}− ∩ {x}+ = ∅.

Observing that the effect of replacing a single xi ∈ X by the structure de-
scribed in Algorithm 1 reduces the total number of arguments contributing to



Algorithm 1 Construction of 2-terse vaf from 〈X ,A,V , η〉

Y := ∅ ; B := A
for xi ∈ X do

ε(xi) := η(xi)
if ∃ (y ∈ {xi}−) ∧ (z ∈ {xi}+) s.t. |{η(y), η(xi), η(z)}| = 3 then

Y := Y ∪ {xin
i,1, xin

i,2, xout
i,1 , xout

i,2 }

ε(xin
i,1) := ε(xi) ; ε(xin

i,2) := ε(xi)
ε(xout

i,1 ) := ε(xi) ; ε(xout
i,2 ) := ε(xi)

B := B \ {〈y, xi〉 : y ∈ {xi}
−}

B := B \ {〈xi, z〉 : z ∈ {xi}+}
B := B ∪ {〈y, xin

i,1〉 : 〈y, xi〉 ∈ A}
B := B ∪ {〈xout

i,2 , z〉 : 〈xi, z〉 ∈ A}

B := B ∪ {〈xin
i,1, x

in
i,2〉, 〈x

in
i,2, xi〉}

B := B ∪ {〈xi, x
out
i,1 〉, 〈xout

i,1 , xout
i,2 〉}

end if

end for

return 〈X ∪ Y,B,V , ε〉

z
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y x

Vy Vx

x

V V V V Vx x x x x
in
1

x in
2

x x
1
out

2
xout
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z

Vz

{x}
+

{x}
−

Figure 5. Path Dilation in vafs resulting from Algorithm 1

paths which fail to be 2-terse, it is easily seen that the final vaf, 〈X ∪ Y,B,V , ε〉
is 2-terse. To complete the proof we need to show that x ∈ P (〈X ,A,V , η〉, α) if
and only if x ∈ P (〈X ∪ Y,B,V , ε〉, α). Here it is only necessary to argue that
the effect of replacing a single x preserves acceptability with respect to specific
audiences. So suppose x ∈ X and let 〈X ∪ Y,B,V , ε〉 be the vaf formed after
a single iteration of the main loop in Algorithm 1. If no changes have occurred
(that is, every length 2 path with middle argument x1 is 2-terse), then it is cer-
tainly the case ∀x x ∈ P (〈X ,A,V , η〉, α) if and only if x ∈ P (〈X ∪ Y,B,V , ε〉, α).
So assume that x1 has resulted in changes to the structure of 〈X ,A,V , η〉. Let
S = P (〈X ,A,V , η〉, α). We claim that

T =def P (〈X ∪ Y,B,V , ε〉, α) =

{

S ∪ {xin
1,1, xout

1,2 } if x1 ∈ S

S ∪ {xin
1,2, xout

1,1 } if x1 6∈ S

To see this, let 〈X ,Aα〉 be the af induced from 〈X ,A,V , η〉 by the specific au-
dience α, and 〈X ∪ Y,Bα〉 the af induced from 〈X ∪ Y,B,V , ε〉 by α so that



(similarly to the construction of Fact 1)

Aα = A \ {〈x, y〉 ∈ A : η(y) ≻α η(x)}
Bα = B \ {〈x, y〉 ∈ B : ε(y) ≻α ε(x)}

Observing that Y = {xin
1,1, x

in
1,2, x

out
1,1 , xout

1,2 }, it is easily seen that Bα contains
every attack in Aα with the exception of

{〈y, x1〉 : ¬(η(x1) ≻α η(y)}
⋃

{〈x1, z〉 : ¬(η(z) ≻α η(x1)}

and that the only attacks in Bα that do not occur in Aα are

{〈y, xin
1,1〉 : ¬(ε(xin

1,1) ≻α ε(y)} ∪ {〈xout
1,2 , z〉 : ¬(ε(z) ≻α ε(xout

1,2 )}
∪ {〈xin

1,1, x
in
1,2〉, 〈x

in
1,2, x1〉, 〈x1, x

out
1,1 〉, 〈x

out
1,1 , xout

1,2 〉}

Recalling that S is the preferred extension of the af, 〈X ,Aα〉, first suppose that
x1 ∈ S. In this case S ∪ {xin

1,1, x
out
1,2 } is certainly an admissible set in 〈X ∪ Y,Bα〉:

any attacker y of x1 in 〈X ,Aα〉 attacks xin
1,1 in 〈X ∪ Y,Bα〉 and y is countered

by some z ∈ S. If z ∈ S \ {x} then z ∈ S ∪ {xin
1,1, x

out
1,2 } so that z defends xin

1,1

against the attack by y. If z = x, then 〈xout
1,2 , y〉 ∈ Bα so that the attack 〈y, xin

1,1〉 is

countered by the attack 〈xout
1,2 , y〉. In consequence S ∪{xin

1,1, x
out
1,2 } is an admissible

set in 〈X ∪ Y,Bα〉 if x1 ∈ S, i.e. S ∪ {xin
1,1, x

out
1,2 } ⊆ T . It must, however, also

be a maximal such set in this af. For suppose, S ∪ {xin
1,1, x

out
1,2 } ⊂ T so that T

contains some argument, y say, not among S ∪ {xin
1,1, x

out
1,2 }. It cannot be the case

that y ∈ {xin
1,2, x

out
1,1 } since x1 ∈ T and T is conflict-free. Thus y ∈ X but y 6∈ S.

Since S is a stable extension of 〈X ,Aα〉, there must be some attacker, z, of y in
S. If z ∈ S \ x then z ∈ S ∪ {xin

1,1, x
out
1,2 } so that y could not belong to T . If z = x

then 〈xout
1,2 , y〉 ∈ Bα and, again, we cannot have y ∈ T . We deduce that if S is

the unique preferred extension of 〈X ,Aα〉 and x1 ∈ S then S ∪ {xin
1,1, x

out
1,2 } is the

unique preferred extension of 〈X ∪ Y,Bα〉.
For the remaining possibility, suppose that x1 6∈ S and consider S ∪

{xin
1,2, x

out
1,1 }. Again this latter set is admissible: x1 6∈ S requires some attacker, y, to

be in S so that the attack by xin
1,1 on xin

1,2 is countered by the attack 〈y, xin
1,1〉 ∈ Bα

(it is immediate that xin
1,2 defends xout

1,1 from the attack 〈x1, x
out
1,1 〉). We thus have,

S ∪ {xin
1,2, x

out
1,2 } ⊆ T with T the unique preferred extension of 〈X ∪ Y,Bα〉. The

set S ∪ {xin
1,2, x

out
1,1 } must, however, also be maximal. Were there some y ∈ T not

contained in it, it cannot be the case that y ∈ {xin
1,1, x1, x

out
1,2 } (recall that T is the

unique preferred extension so that S ∪ {xin
1,2, x

out
1,1 } is a subset of T ). Thus y 6∈ Y,

i.e. y ∈ X \ {x}. As before, since y 6∈ S, it must be attacked by some z ∈ S (since
S is the stable extension of 〈X ,Aα〉) which suffices to guarantee that y 6∈ T , i.e.
T = S∪{xin

1,2, x
out
1,1 } forms the unique preferred extension of 〈X ∪Y,Bα〉 whenever

x1 6∈ S. 2

3. Complexity of Uncontested Semantics

Results on the computational complexity of problems in the ideal semantics of
Dung et al. [9,10] are presented by Dunne in [11] and summarised in Tables 2



and 3: The randomized reductions are in the sense described by Valiant and

Table 2. Decision questions for Ideal Semantics

Problem Name Instance Question

ie 〈H(X ,A), S〉 Is S an ideal extension?

ia 〈H(X ,A), x〉 Is x in the maximal ideal extension?

mie∅ H(X ,A) Is the maximal ideal extension empty?

mie 〈H(X ,A), S〉 Is S the maximal ideal extension?

cs H(X ,A) Is H(X ,A) cohesive?

Table 3. Complexity of ideal semantics in afs

Decision Problem Complexity (Randomized reduction) Complexity (≤p
m)

ie – co-np–complete

ia p
np

||
–complete co-np–hard

mie p
np

||
–complete d

p–hard

mie∅ p
np

||
–complete np–hard

cs – Σp

2–complete

Vazirani [18] and developed by Chang et al. [6]: all of the randomized hardness
constructions succeed with probability ≥ 1 − 2−|X |. It is further shown by [11]
that the problem of finding the maximal ideal extension is complete (via standard
many-one reducibility, ≤p

m) for the function class fp
np
|| .

The problems arising for ideal argumentation described in Table 2 motivate
those of Table 4

Table 4. Decision questions for Uncontested Semantics

Problem Name Instance Question

ue 〈H(V), S,R〉 Is S an uncontested extension?

ua 〈H(V), x,R〉 Is x ∈ UR(H(V))?

mue∅ 〈H(V),R〉 Is UR(H(V)) = ∅?

mue 〈H(V), S,R〉 Is S = UR(H(V))?

Although almost all of the results presented are w.r.t. the universal audience
we note the following: for lower bounds it suffices to demonstrate that these hold
for a single audience, R, thus the universal audience subsumes the cases where
R is part of the instance; in addition where upper bound methods are given such
will apply for arbitrary audiences and not only R = ∅.

Theorem 4 ue is co-np–complete.

Proof: To see that ue ∈ co-np it suffices to note that given 〈H(V), S,R〉 as an
instance of ue, S defines an uncontested extension of H(V) if and only if S is
admissible and every argument of S is objectively accepted w.r.t. R. This can be
testing by checking

∀ α ∈ χ(R) adm(H, S) ∧
∧

x∈S

(x ∈ P (H(V), α))



which can be carried out in co-np.5

To establish co-np–hardness we use a reduction from unsat without loss
of generality restricted to instances in 3-cnf. We will actually prove a stronger
result: that ue is co-np–hard even when instances are restricted to vafs whose
supporting af is a tree and having every value in V associated with at most 3
arguments.

We start from the vaf, TΦ, described in Dunne [12, Thm. 25], which is formed
from a 3-cnf formula, Φ(z1, . . . , zn), the argument, Φ, of which is subjectively
accepted (w.r.t. the universal audience) if and only if Φ(z1, . . . , zn) is satisfiable:
TΦ is a tree and no value is associated with more than 3 arguments.6 The in-
stance, FΦ of ue is formed by adding two arguments – f1 and f2 – to TΦ; at-
tacks {〈f1, Φ〉, 〈Φ, f2〉}; a new value, vf to VΦ (the value set of TΦ); and defining
η(f1) = vf , η(f2) = vf . The instance of ue is completed by setting S = {f1, f2}
and the audience used is, again, R = ∅, i.e. the universal audience. The construc-
tion is illustrated in Fig. 6.

Φ

z1 iz zn

TΦ
SBA( TΦ ,Φ)

SAT(Φ)
<=>

f
v f1 f 2 vf

vΦ

Figure 6. The vaf FΦ: sba(TΦ,Φ) ⇔ sat(Φ)

We now claim that 〈FΦ, {f1, f2}, ∅〉 is accepted as an instance of ue if and only
if Φ(z1, . . . , zn) is unsatisfiable.

Suppose that Φ is unsatisfiable. The set {f1, f2} is admissible, so it suffices
to show that each of its constituent arguments is objectively accepted. Certainly
{f1, f2} ⊆ P (FΦ, α) for any specific audience in which vf ≻α vΦ: {f1}− = ∅ and
the attack 〈Φ, f2〉 is unsuccessful. For any specific audience in which vΦ ≻α vf ,
f1 is objectively acceptable (irrespective of whether Φ is satisfiable). When Φ is
unsatisfiable and vΦ ≻α vf it is again the case that f2 ∈ P (FΦ, α): recalling that
the value vf does not occur amongst the values used in TΦ, since Φ is unsatisfiable,
there is no specific audience, β, for which Φ ∈ P (TΦ, β) and thus the successful
attack 〈Φ, f2〉 can always be countered using a suitable argument of TΦ. We deduce
that if Φ is unsatisfiable then {f1, f2} is an uncontested extension.

5Note that given any audience R ⊂ V×V , testing α ∈ χ(R) can be carried out in polynomial
time, thus universal quantification could equally be applied to specific audiences in general,
rather than simply those in χ(R).

6The precise specification of TΦ is not important for the purposes of the proof: only the
property that sba(TΦ,Φ) if and only if Φ(z1, . . . , zn) is satisfiable.



Conversely suppose that {f1, f2} is an uncontested extension of FΦ. In this
case f2 is objectively accepted, thus a member of P (FΦ, α) for any specific audi-
ence. In particular, f2 ∈ P (FΦ, α) for all specific audiences in which vΦ ≻α vf .
We deduce that Φ 6∈ P (FΦ, α) and thus Φ 6∈ P (TΦ, α), i.e. ¬sba(TΦ, Φ, ∅) from
which it follows that Φ(z1, . . . , zn) is unsatisfiable. 2

We note that following the methods of [12, Corollary 7], this construction can be
further developed to show ue is co-np–hard for instances 〈X ,A,V , η〉 in which
〈X ,A〉 is a binary tree with every v ∈ V associated with at most three arguments
of X .

Corollary 2

a. ua is co-np–hard.
b. mue∅ is np–hard.
c. mue is d

p–hard.

Proof:

a. For the vaf, FΦ, described in the proof of Thm. 4, the argument f2 belongs
to its maximal uncontested extension if and only if Φ is unsatisfiable.

b. We employ a similar reduction to that given in the proof of Thm. 4, but
using the vaf, WΦ, described in [4, Thm. 8, pp. 65-66]: unlike the con-
struction of TΦ from Dunne [12, Thm. 25], WΦ has an empty uncontested
extension.7 Modify WΦ as shown in Fig. 7 to give a new vaf, DΦ. Then
mue∅(DΦ) if and only if Φ(z1, . . . , zn) is satisfiable (otherwise the argu-
ment {f} constitutes an uncontested extension.)

Φ

z1 iz zn

Φ
SBA( Φ ,Φ)

SAT(Φ)
<=>

vΦ

vf

f

W

W

Figure 7. The vaf DΦ

c. We show that the decision problem sat-unsat whose instances are pairs
of cnf-formulae, 〈F, G〉 accepted if and only if F (z1, . . . , zn) is satisfiable
and G(y1, . . . , yn) is unsatisfiable, is polynomially reducible to mue. Given
an instance 〈F, G〉 of sat-unsat, form the vaf shown in Fig. 8

7It should be noted that mue∅ is trivial for any 〈X ,A,V , η〉 in which 〈X ,A〉 is acyclic: such
frameworks have at least one argument, x, for which {x}− = ∅. Any such argument is objectively
accepted and, on its own, defines an admissible set.
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Figure 8. Reduction from sat-unsat 〈F, G〉 to mue

This consists of distinct copies of DF and DG as in the proof of part (b).
Complete the instance of mue by fixing S = {g}. The set S is a maximal
uncontested extension if and only if F is satisfiable (so that UF the maximal
uncontested extension of DF is empty) and G is unsatisfiable (so that
UG = {g}).

2

Upper bounds for the problems ua, mue∅ and mue are immediate from the fol-
lowing result which proves that constructing the maximal uncontested extension
can be performed in the complexity class fp

np

|| of function computations realised
by deterministic polynomial time algorithms that make a polynomially bounded
number of queries to an np oracle with all queries performed in parallel, i.e. non-
adaptively so that the form of each query must be determined in advance of any
invocation of the np oracle.8

We require one preliminary result in proving this upper bound. Specifically
the property of objectively accepted arguments w.r.t. R given in Lemma 3 and
the consequence in Corollary 3. We note that although Lemma 3 is not difficult
to derive, we are not aware of the property stated having been observed in earlier
work.

Lemma 3 Let 〈X ,A,V , η〉 be a vaf, R ⊂ V×V an audience, and XR
oba

the set of
objectively accepted arguments w.r.t. R. The af induced by XR

oba
, i.e. 〈XR

oba
, E〉

in which E = A ∩ {〈x, y〉 : x ∈ XR
oba

and y ∈ XR
oba

}, is acyclic.

Proof: Suppose the contrary holds and that for some vaf, 〈X ,A,V , η〉, and audi-
ence, R, the af 〈XR

oba
, E〉 contains a cycle, i.e. there is a sequence x1x2 · · ·xr ∈

X r for which x1 = xr, and 〈xi, xi+1〉 ∈ E for each 1 ≤ i ≤ r − 1. From the
facts that 〈xi, xi+1〉 ∈ E and xi ∈ XR

oba
for each i, it must be the case that

〈η(xi+1), η(xi)〉 ∈ R∗, for otherwise η(xi) = η(xi+1) or there would be a specific
audience α ∈ χ(R) with η(xi) ≻α η(xi+1): in either case {xi, xi+1} 6⊆ P (H(V), α)
contradicting the objective acceptability w.r.t R of both. From the assumption
that a cycle exists and the constraints this imposes on R, however, it follows that
R∗ forces, η(xr) ≻R η(xr−1) ≻R · · · ≻R η(x2) ≻R η(x1) = η(xr). In this case, R
could not be an audience. We deduce, therefore, that 〈XR

oba
, E〉 is acyclic. 2

8For further background on fp
np

||
and the related decision problem class, p

np

||
we refer the

reader to, e.g. [17, pp. 415–423], [15,19,20].



Corollary 3 Let H(V)(〈X ,A,V , η〉) be a vaf, R an audience and P(XR
oba

) the
unique preferred extension of the af, 〈XR

oba
, E〉 defined in the statement of

Lemma 3.

UR(H(V)) ⊆ P(XR
oba)

Proof: Suppose to the contrary that there is an argument, x1 ∈ UR for which
x1 6∈ P(XR

oba
). Since 〈XR

oba
, E〉 is acyclic, the set P(XR

oba
) constitutes a stable

extension, and hence there is some y1 ∈ P(XR
oba

) such that 〈y1, x1〉 ∈ E . Since
UR defines an admissible subset of XR

oba
, there must be some x2 ∈ UR for which

〈x2, y1〉 ∈ A, furthermore it cannot be the case that x2 ∈ P(XR
oba

) as this
set is conflict-free. The attack 〈x2, y1〉 must also belong to E (from {x2, y1} ⊆
XR
oba

). Repeating this argument we identify subsets {x1, x2, . . . , xr} ⊆ UR and
{y1, y2, . . . , yr} ⊆ P(XR

oba
) for which 〈yi, xi〉 ∈ E and 〈xi+1, yi〉 ∈ E . The sets

UR and P(XR
oba

) are both finite so the process described must eventually revisit
some argument: but in this case we have identified a directed cycle in the af,
〈XR

oba
, E〉 contradicting Lemma 3. We deduce, therefore, that UR ⊆ P(XR

oba
) as

claimed. 2

Theorem 5 Let fmue be the (single-valued) function, defined as

fmue(H(V)(〈X ,A,V , η〉),R) =def UR(H(V))

i.e. given a vaf, H(V), and audience, R, the function fmue returns the maximal
uncontested extension w.r.t R: fmue is fp

np

|| –complete.

Proof: Hardness follows by considering the fp
np

|| –complete problem of computing,

given a collection 〈Φ1, . . . , Φm〉 of cnf formulae, the bit sequence σ1σ2 . . . σm ∈
[0, 2m − 1] corresponding to the characteristic function σi = 1 ⇔ sat(Φi): use
m copies of the vaf described in Corollary 2(b) so that σi should be 1 if and
only if fi (the argument of DΦi

associated with the corresponding cnf) is in the
maximal uncontested extension.

Given a vaf, H(V)(〈X ,A,V , η〉), with argument set X = {x1, . . . , xn} and
audience R the sequence of binary values χ1χ2χ3 · · ·χn such that χj = 1 if and
only if ¬oba(H(V), xj ,R) can be determined with a single (length n) parallel
query to an (np) oracle for ¬oba. We can thus compute the set, XR

oba
, of all

objectively accepted arguments w.r.t. R in H(V) via an fp
np

|| algorithm: XR
oba

=

{ xi : χi = 0}.
Now recalling from Corollary 3 that UR ⊆ P(XR

oba
), let YR

oba
denote the

set P(X
R
oba

) and consider the bipartite af, B(YR
oba

,X \ XR
oba

,F) in which the
set of attacks, F , is

F = A \ { 〈xi, xj〉 : xi 6∈ XR
oba and xj 6∈ XR

oba }

Note that the set of attacks F does indeed induce a bipartite graph on (YR
oba

,X \
XR
oba

) since YR
oba

must be a conflict-free set within the af H(X ,A) underlying
the vaf, H(V).



The maximal uncontested extension, UR, of H(V), is the maximal admissible
subset of YR

oba
within the af, H(X ,A). In determining this subset, however,

attacks involving only arguments outside YR
oba

are not relevant and thus the
maximal admissible subset of YR

oba
considered with respect to the af, H(X ,A) is

identical to the maximal admissible subset of YR
oba

with respect to the bipartite
framework B(YR

oba
,X \XR

oba
,F). Applying the algorithm of Dunne [12, Thm. 6],

given B(YR
oba

,X \ XR
oba

,F) this set can be identified by a (deterministic) poly-
nomial time computation. It remains only to observe that B(YR

oba
,X \XR

oba
,F)

can be constructed in polynomial time from H(V) given the set XR
oba

. 2

Corollary 4 The problems ua, mue∅ and mue are all in p
np

|| .

Proof: Given H(V) its maximal uncontested extension, UH can be computed
as described in Thm. 5. An instance 〈H(V), x〉 of ua can be decided simply by
checking x ∈ UH; deciding an instance H(V) of mue∅ involves testing UH = ∅
and, similarly, checking the instance 〈H(V), S〉 of mue is carried out by testing
UH = S. 2

The following provides a parallel for uncontested semantics to the properties of
ideal semantics proven in [11, Thm. 6].

Theorem 6 If ua is np–hard then ua is p
np

|| -complete.

Proof: We use the characterisation of p
np

|| –complete languages established by

Chang and Kadin in [5, Thm. 9, p. 182], by which the result follows by showing ua

to have the properties orω and andω, i.e. the languages andω(ua) and orω(ua)

defined over m-tuples, Hm = 〈〈H
(V)
1 , x1,R1〉, . . . , 〈H

(V)
m , xm,Rm〉〉 (for arbitrary

m ≥ 1) of distinct instances of ua by

andω(Hm) =

m
∧

i=1

ua(H
(V)
i , xi) ; orω(Hm) =

m
∨

i=1

ua(H
(V)
i , xi)

are both polynomially reducible to ua.9

andω(ua) ≤p
m ua

Given 〈〈H
(V)
1 , x1,R1〉, . . . , 〈H

(V)
m , xm,Rm〉〉 an instance of andω(ua) construct

the instance 〈H(V), z,R〉 of ua shown in Fig. 9 in which R = ∪m
i=1Ri

In Fig. 9, {y1, . . . , ym} are new arguments, the value, η(yi) associated with yi being
that of its sole attacker xi. The argument z has η(z) = Vz with Vz 6∈ ∪m

i=1 V(i)

(V(i) being the value set for the vaf H
(V)
i ). We claim that ua(H(V), z,R) if and

only if ua(H
(V)
i , xi,Ri) for all 1 ≤ i ≤ m.

9Note that, without loss of generality, it may be assumed that for i 6= j, Xi∩Xj = Vi∩Vj = ∅.
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Figure 9. ua has property andω

Suppose first that ua(H(V), z,R) and let UR be the maximal uncontested
extension of H(V) w.r.t. R. In this case z ∈ P (H(V), α,R) for every specific
audience, α ∈ χ(R), in particular for those specific audiences in which Vi ≻α Vz

for each Vi. It follows for each such audience, α, {x1, . . . , xm} ⊆ P (H(V), α)
(otherwise for some i, no defence to the attack 〈yi, z〉 would be present). We
deduce that {z, x1, . . . , xm} ⊆ UR. In addition, however, defining U(i) = UR ∩

X(i), we see that U(i) is the maximal uncontested extension of H
(V)
i w.r.t. Ri and

xi ∈ U(i), i.e. ua(H
(V)
i , xi,Ri) holds for each 1 ≤ i ≤ m as required.

Conversely, suppose that
∧m

i=1 ua(H
(V)
i , xi,Ri) holds. Let U(i) be the max-

imal uncontested extension of H
(V)
i w.r.t. Ri so that xi ∈ U(i). Consider the set

of arguments S = {z} ∪m
i=1 U(i). Certainly S is admissible (with respect to

the supporting af of H(V)). Thus, to establish ua(H(V), z,R) it suffices to show
oba(H(V), z,R) given that oba(H(V), xi,Ri) for each 1 ≤ i ≤ m. It is certainly
the case that z ∈ P (H(V), α) for any audience satisfying Vz ≻α Vi for each i.

For the remaining audiences, should Vi ≻α Vz , then since xi ∈ P (H
(V)
i , α) (re-

call that Vz 6∈ V(i)), the attack 〈yi, z〉 is countered by the attack 〈xi, yi〉. Thus

oba(H(V), z,R) holds and we deduce that S defines the maximal uncontested
extension of H(V), i.e. ua(H(V), z,R) holds as claimed.

orω(ua) ≤p
m ua

Given an m-tuple 〈〈H
(V)
1 , x1,R1〉, . . . , 〈H

(V)
m , xm,Rm〉〉 as an instance of orω(ua)

construct the instance 〈H(V), z,R〉 of ua shown in Fig. 10 where, again R =
∪m

i=1Ri

In this construction, {yi, zi : 1 ≤ i ≤ m} together with {y, z} are new arguments
for which η(yi) = η(xi) = Vi and the remaining new arguments are associated
with a new value Vz. We claim that ua(H(V), z,R) if and only if at least one of

ua(H
(V)
i , xi,Ri) holds.

Suppose first that ua(H(V), z,R) letting UR be the maximal uncontested ex-
tension so that z ∈ UR. Since UR is an admissible set with z ∈ UR at least one of
the arguments zi must also belong to UR (in order to deal with the attack 〈y, z〉).
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Figure 10. ua has property orω

Similarly if zi ∈ UR then xi ∈ UR (otherwise the attack 〈yi, zi〉 is undefended).
Hence from ua(H(V), z,R) we infer ua(H(V), xi,R) (for some xi) and now, not-
ing that Vz 6∈ V(i) and defining U(i) = UR ∩ ∩X(i) we see that U(i) defines the

maximal uncontested extension of H
(V)
i w.r.t. Ri and contains xi, i.e for some i,

ua(H
(V)
i , xi,Ri) holds.

Conversely, without loss of generality, suppose that ua(H
(V)
1 , x1,R1) holds.

The subset U(1) ∪ {z1, z} is clearly admissible, so it suffices to show that

oba(H(V), z1,R) since oba(H(V), z,R) will follow from this. Certainly z1 ∈
P (H(V), α) for all audiences in which Vz ≻α V1. For the remaining audiences (with

V1 ≻α Vz) from oba(H
(V)
1 , x1,R1) we have oba(H(V), x1,R) and thus the attack

〈y1, z1〉 is countered by 〈x1, y1〉. Thus, oba(H(V), z1,R) so that x1 ∈ U(1) yields

{z1, z} ⊂ UR, i.e. ua(H(V), z,R) as claimed. 2

4. Conclusions and Further Development

This article presents an extension-based semantics for value-based argumentation
frameworks which arises as a natural counterpart to the ideal semantics of Dung et
al. [9,10] for the standard argumentation frameworks of [8]. It has been shown that
although, in common with the ideal semantics, this form satisfies the property of
defining a unique maximal extension w.r.t. any audience R, nevertheless these give
rise to significantly different behaviours: specifically, in general, these semantics
are not coincident for a given vaf even in the case of the universal audience
R = ∅.

The motivation underlying our proposed formulation is in order to present one
mechanism by which the nature of objective acceptabilility in vafs may be further
refined in the sense that those objectively accepted arguments falling outside
the unique maximal uncontested extensions, although accepted by all relevant



audiences, are so accepted on account of differing reasoning patterns germane to
the audiences concerned. We have largely concentrated, in the present article,
upon formal aspects of these semantics, in particular algorithmic and complexity-
theoretic issues. These analyses represent only preliminary work and a number of
questions remain unresolved forming the topic of work in progress. We conclude
by briefly outlining some of these formal concerns.

One immediate issue is the gap between proven lower bounds (hardness) clas-
sifications and the p

np

|| upper bound affecting several key decision questions. In

the case of related questions in ideal semantics for afs, Dunne [11, Cor. 7–10] deals
with an apparently similar issue by establishing p

np
|| -hardness with respect to

randomized reductions (as opposed to the more usual ≤p
m deterministic reducibil-

ity). It is unclear, however, whether the core construction used in the approach
adopted in [11] can be translated into value-based settings: the proof that the so-
called Unique Satisfiability problem is polynomially reducible to ia [11, Thm. 7].
Amongst other obstacles to such translations is the extensive use of Fact 3 in the
correctness proof, a characterisation which, as we have seen in Lemma 1, fails to
carry over to the uncontested semantics.

Further questions, which for reasons of space we have eschewed detailed treat-
ment of in this paper, concern properties of alternative related semantics in vafs.
In particular, we have used the requirement that a subset, S of XR

oba
, qualifies as

an uncontested extension of 〈X ,A,V , η〉 if S is admissible within the supporting
af, 〈X ,A〉. There are, however, two other vaf based semantics defined in terms
of subsets of XR

oba
that may have properties of interest:

S1. S ⊆ XR
oba

and S is admissible w.r.t. R in 〈X ,A,V , η〉.
S2. S ⊆ XR

oba
and for all α ∈ χ(R), S is admissible in the framework 〈X ,Aα〉

arising from 〈X ,A,V , η〉 by including only successful attacks w.r.t. α.

While it is straightforward to show that, for the universal audience, (S1) is equiv-
alent to the uncontested semantics – i.e. S satisfies (S1) if and only if S is an
uncontested extension – the behaviour described by (S2) is rather different.

yx

z

A

w A

B

A

Figure 11. Uncontested semantics and (S2) semantics are distinct.

Thus, consider the example of Fig. 11, and the universal audience: U = {x, z},
however, this set fails to satisfy the conditions imposed by (S2), since {x, z} fails to
be admissible w.r.t. the specific audience A ≻ B. The maximal (S2)-extension is
{z} and, for any vaf and audience one may show that the maximal (S2)-extension
w.r.t. R is unique and a subset of UR. Further investigation of the properties of



these semantics and their relationship to the uncontested semantics introduced
in this paper forms the subject of current work in progress.
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