
Amongst First-Class Protocols

Jarred McGinnis1 and Tim Miller2

1 Department of Computer Science
Royal Holloway, University of London, Egham, Surrey TW20 0EX

jarred@cs.rhul.ac.uk
2 Department of Computer Science

University of Liverpool, Liverpool, L69 7ZF
tim@csc.liv.ac.uk

Abstract. The ubiquity of our increasingly distributed and complex
computing environments have necessitated the development of program-
ming approaches and paradigms that can automatically manage the nu-
merous tasks and processes involved. Hence, research into agency and
multi-agent systems are of more and more interest as an automation so-
lution. Coordination becomes a central issue in these environments. The
most promising approach is the use of interaction protocols. Interaction
protocols specify the interaction or social norms for the participating
agents. However the orthodoxy see protocols as rigid specifications that
are defined a priori. A recent development in this field of research is the
specification of protocols that are treated as first-class computational en-
tities. This paper explores the most prominent approaches and compares
them.

1 Introduction

Research into multi-agent systems aims to promote autonomy and intelligence
into software agents. Intelligent agents should be able to interact socially with
other agents, and adapt their behaviour to changing conditions. Despite this,
research into interaction in multi-agent systems is focused mainly on the doc-
umentation of interaction protocols a priori. We identify three significant dis-
advantages with this approach: 1) it strongly couples agents with the protocols
they use — something which is unanimously discouraged in software engineering
— therefore requiring agent code be changed with every change in a protocol;
2) agents can only interact using protocols that are known at design time, a
restriction that seems out of place with the goals of agents being intelligent and
adaptive; and 3) agents cannot compose protocols at runtime to bring about
more complex interactions, therefore restricting them to protocols that have
been specified by human designers — again, this seems out of place with the
goals of agents being intelligent and adaptive. An important corollary of these
points is that the protocol is internalised within the individual agents. There
is no possibility to communicate, inspect or verify the protocols by the agent
or others. Not to mention a repetition of effort for each agent engineer as each
agent must be encoded with the same protocol.

Recent research into multi-agent system protocols has begun to focus on
first-class protocols, which were first defined in [11]. By first-class, we mean that
a protocol exists as a computational entity in a multi-agent system that can
be shared between agents, referenced, invoked, and composed, in contrast to
hard-coded protocols, which exist merely as abstractions that emerge from the
messages sent by the participants. Agents in the system read the definition of
a protocol to learn its rules and meanings, and then structure their interaction
from this definition.

Authors of such work envisage systems in which agents have access to li-
braries of protocols. Agents can search through these libraries at runtime to find
protocols that best suit the goal they are trying to achieve, and can share these
protocol specifications with possible future participants. If no single protocol is
suitable for the agent, runtime composition of these may offer an alternative.

This paper explores the current state-of-the-art in first-class protocol lan-
guages, and compares these. We look at the following approaches:

1. In Section 3, we explore commitment machines [17], a socially-centric ap-
proach that uses commitment to define the meaning of messages and pro-
tocols. We review three different approaches [4, 5, 18], all of which share the
common feature of using Yolum and Singh’s commitment machines frame-
work [17].

2. In Section 4, we explore a normative approach to defining protocols [2], which
using obligations, permissions, and prohibitions to specify protocols.

3. In Section 5, we explore the Lightweight Coordination Calculus (LCC), a
protocol language described in [13] based on process algebra and logic pro-
gramming.

4. In Section 6, we explore the RASA language [11], which combines process
algebra and constraint languages.

5. In Section 7, we explore an approach [3] that extends Petri Nets to specify
message sequencing and message meaning.

In Section 8, we compare and contrast the above approaches, outlining the
relative advantages and strengths of the approaches, and in Section 9, we briefly
present some approaches that resemble first-class protocol languages, and discuss
why they are not.

2 First-Class Protocols — A Definition

Our notion of first-class protocol is comparable to the notion of first-class ob-
ject/entity in programming languages [15]. That is, a first-class protocol is a
referencable, sharable, manipulable entity that exists as a runtime value in a
multi-agent system. From the definition of a first-class protocol, participating
agents should be able to inspect the definition to learn the rules and effects of
the protocol by knowing only the syntax and semantics of the language, and the
ontology used to describe rules and effects.

To this end, we define four properties that constitute a first-class protocol
language:

– Formal: The language must be formal to eliminate that possibility of am-
biguity in the meaning of protocols, to allow agents to reason about them
using their machinery, and to allow agents to pass and store the protocol
definitions as values.

– Meaningful: The meaning of messages must be specified by the protocol,
rather than simply specifying arbitrary communication actions whose se-
mantics are defined outside the scope of the document. Otherwise, one may
encounter a communicative action of which they do not know the definition,
rendering the protocol useless.

– Inspectable/executable: Agents must be able to reason about the protocols
at runtime in order to derive the rules and meaning of the protocol, so that
they can determine the messages they will send that best achieve their goals,
and compare the rules and effects of different protocols.

– Dynamically composable: If an agent does not have access to a protocol that
helps to achieve its goals, then it should be able to compose new protocols
that do at runtime, possibly from existing protocols. This new protocol must
also form a first-class protocol in its own right.

This definition of first-class protocol eliminates many of the protocol spec-
ification languages that have been presented in the literature. We emphasise
here that first-class does not equal global. By global, we mean languages that
specify the protocol from a global view of the interaction, rather than from the
view of the individual participants. Therefore, languages such as AgentUML
and FSM-based languages are not first-class, as is commonly commented, even
though they are global. AgentUML is not meaningful (although one could adapt
it quite easily to make it meaningful), and the composability at runtime could
also be difficult, if possible at all. FSM approaches could also add meaning, but
the authors are not aware of any current FSM approaches that are executable
and support dynamic composition.

3 Commitment Machines

Yolum and Singh [17] present commitment machines, which are used to for-
mally represent the social relationships that exists between autonomous agents
in the form of commitments. A conditional commitment for debtor a to bring
about condition q when p is satisfied is represented using the constraint
CC(a, b, p, q), in which b is the creditor of the commitment. Non-conditional
commitments (or base-level commitments) are written C(a, b, p), which is equiv-
alent to CC(a, b, true, p). In commitment machines, agents participating in a
protocol create and manipulate commitments as a result of sending particular
messages. Agents are programmed to understand the meaning of commitments,
and can therefore reason about protocols whose meaning is specified using com-
mitment machines.

Winikoff [16] presents a mapping from commitment machines to an abstract
programming language for agents called the Simple Abstract Agent Program-
ming Language (SAAPL). This approach is somewhat different to our idea of

first-class protocol languages in that the agents do not inspect protocols to de-
cide their course of action, but are instead implemented as a mapping from the
commitment machine into a SAAPL program.

Several approaches have used the idea of commitment machines for specifying
first-class protocols. In this section, we present these approaches.

3.1 Commitment Machines in the Event Calculus

Yolum and Singh [18] use the Event Calculus for specifying commitment ma-
chines. The Event Calculus is a logical language for specifying at which time-
points actions occur, and the effect that those actions have. Yolum and Singh’s
approach uses the Event Calculus to specify message sending as actions, and the
effect that message sending has is specified as the creation or manipulation of
commitments.

Two predicates in the Event Calculus are the most used for specifying pro-
tocols. The Happens predicate specifies that an event, e, happens at the time t,
written Happens(e, t). The HoldsAt predicate specifies that a property, p, holds
at time t, written HoldsAt(p, t). The set of time points is a partially ordered
set, with the relation <, therefore, one can specify the occurrence of messages
using Happens, and order them using <. For example,

Happens(m1, t1) ∧Happens(m2, t2) ∧ t1 < t2

specifies that the message m1 occurs before the message m2. To specify further
that the sending of m2 commits agent a to perform p for agent b, we add to the
above predicate, the following:

HoldsAt(t2, C(a, b, p)).

Yolum and Singh present a set of axioms relating communicative acts and
commitments, discuss the use of an abductive planner for agents to plan their
execution paths.

3.2 Commitment Machines in OWL-P

Desai et al. present OWL-P [4], an ontology used for modelling protocols —
specifically business protocols —, which is encoded in the OWL web ontology
language. The ontology defines concepts such as message, protocol, roles, propo-
sition, and commitment. Commitments are specified as discussed above, and
therefore, a protocol specified using OWL-P is a commitment machine. An ad-
ditional ontology is presented for protocol composition — that is, composing
protocols that achieve a single business goal into protocols that achieve multiple
business goals. The axioms that define the composition must be specified by the
protocol designer themselves.

3.3 Commitment Machines in MAD-P

Desai and Singh [5] present MAD-P, an extension of the C+ language. The
MAD-P approach is similar to that of the Event Calculus approach discussed in
Section 3.1. Message passing is specified as actions occurring at particular time
points, and the meaning of message passing is specified using commitments, with
the relation causes, linking particular messages to their meaning, for example,

m1 causes cancel(C(a, b, p)).

Sequencing of messages is specified using the before relation, used in the context

m1 before m2

meaning that message m1 occurs before message m2.
Desai and Singh present a set of axioms for composing new protocols from

existing protocols.

3.4 Discussion

The approaches outlined in this section are all different ways of specifying com-
mitment machines. We note the following properties of all of these approaches:

– Protocols are specified from a global rather than local perspective.
– Message sequencing is specified in a declarative manner, rather than an

algebraic/operational manner.
– The languages used for specifying the message sequences and the meaning

of messages are the same. That is, the language, for example, the Event
Calculus, is used to specify the order in which messages can occur, as well
as the preconditions and effects of messages.

– All of the approaches assume some form of state — mainly the existence of
commitments between agents.

– The OWL-P and MAD-P approaches support protocol composition, how-
ever, composition axioms are at a different level to protocol specification.
The Event Calculus approach presented in [18] does not discuss composi-
tion, but it seems likely that composition axioms could be defined.

4 Normative Systems

Artikis et al. [2] propose an approach similar to commitment machines, especially
the commitment machines based on C+, which Artikis et al. also use, however,
the approach implements normative constraints rather than social commitments.

The normative approach distinguishes valid behaviour — behaviour that an
agent had the power to perform at the time — from invalid behaviour — anything
else. Interaction protocols are specified as actions, in which, for an agent Ag,
and an action Act, Ag is permitted to perform Act, written Permitted(Ag,Act),

prohibited to perform Act, written ¬Permitted(Ag,Act), and obliged to perform
Act, written Obliged(Ag,Act).

Similar to the commitment machines approach, agents create and manipulate
norms as a result of sending messages, thus giving meaning to the protocol using
norms. The Causal Calculator is used in [2] to execute the specifications.

We note the following properties of this approach

– Protocols are specified from a global rather than local perspective.
– Message sequencing is specified in a declarative manner, rather than an

algebraic/operational manner.
– The language used for specifying the message sequences and the meaning of

messages are the same.
– There is some form of state — mainly the norms associated with actions.
– Artikis et al. do not discuss composition, but it seems likely that composition

axioms could be defined.

5 Lightweight Coordination Calculus

The Lightweight Coordination Calculus (LCC) [13] is a process-algebra based
language for first-class protocol specification. A protocol consists of a protocol
definition, and a set of axioms, K, keeping track of the common information
known to all participants. A protocol definition consists of a set of at least two
agent clauses, A{n}, with each clause defining the agents from a local partici-
pant’s view. An agent clause is defined using the format agent(R, Id) ::= op,
in which R is a role name, Id is an agent identifier, and op is an operation.
Operations define the protocol that an agent must adhere to, and their syntax
is defined as follows:

op ∈ Operation :: no op
| (M⇒ agent(R, Id))← ψ (Send)
| ψ ← (M⇐ agent(R, Id)) (Receive)
| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| agent(R, Id) (Substitution)

M ∈ Message :: 〈m,P〉

We briefly discuss this definition. ‘no op’ is an empty operation, meaning
that the agent does nothing. The send and receive operations define the sending
of a message M to the agent defined by clause agent(R, Id), provided that the
proposition ψ is satisfiable from the common knowledge, K, and the receiving
of a message M from the agent agent(R, Id), which results in ψ being added to
the common knowledge, K. Omitting ψ ← and ← ψ is equivalent to specifying
that ψ is true. A message is defined as a tuple 〈m,P〉, in which m is the message
content, and P is the protocol definition (written using the LCC language) that
remains to be executed and the axioms of common knowledge. Composition
of protocols is defined using the composition operators, then and or, which

represent sequential composition (the left operation must occur before the right),
and choice (one and only one operation should occur). Finally, one can reference
the name of an agent class agent(R, Id), and the corresponding definition (if
it exists) is substituted for agent(R, Id). Intuitively, this represents an agent
adopting the role R.

Constraints can fortify or clarify semantics of the protocols. Those occurring
on the left of the ‘←’ are postconditions and those occurring on the right are
preconditions. For example, an agent receiving a protocol with the constraint to
believe a proposition s upon being informed of s can infer that the agent sending
the protocol has a particular semantic interpretation of the act of informing other
agents of propositions. This operation, (M⇒ agent(R, Id))← ψ, is understood
to mean that message M is being sent to the agent defined as agent(R, Id) on
the condition that ψ is satisfiable. This operation, ψ ← (M ⇐ agent(R, Id)),
means that once the message M is received from agent agent(R, Id), ψ holds.
These together represent the meaning of the sending and receiving of individual
messages. The meaning of a composite protocol is derived from the meaning of
the messages that comprise it.

The properties of the LCC language are summarised below.

– LCC is based on the process calculus, CSP, a formal model for modelling
concurrent systems. This makes LCC well suited as a language for interaction
protocols and the concurrency found in multi-agent systems.

– There is long pedigree of process calculi for use as a high-level description
of interactions. Besides facilitating human readability, there is a wealth of
research to draw upon and apply to the field of agent coordination.

– Protocol specifications in LCC are local, rather than global.
– Although the framework provides the representation of the trace of messages

occurring, there is no explicit labelling of states.
– The language for specifying message sequencing is independent of the un-

derlying communication language.
– Constraints are declarations, not definitions.
– Designed to have a light-weight engineering requirement.
– Requires a meta-level operations to be composable.

6 RASA

The RASA [11] language, part of the larger RASA framework, combines con-
straints and process algebra to model interaction protocols as first-class entities.
The process algebra in the language is used to specify the sequencing of messages
in a protocol, while the underlying constraint language is used to describe the
meaning of messages and the message content. The meaning of entire protocols
can be compositionally determined from combining the two.

Similar to LCC, RASA’s protocol specification language resembles that of
many process algebras, and in fact, the RASA syntax and semantics were influ-
enced by LCC.

Let φ represent constraints defined in the constraint language, c commu-
nication channels, N protocol names, and x a sequence of variables. Protocol
definitions adhere to the following grammar.

π ::= φ→ ǫ | φ
c(i,j).φ
−−−−−→ φ | π;π | π ∪ π | N(x) | varφ

x·π

We use π as a meta-variable to refer to protocols; subscripts and superscripts
are used to denote distinct meta-variables. φ→ ǫ represents the empty protocol,
in which no message is sent and there is no change to the protocol state, but

only if φ holds in the current state. A protocol of the format φ
c(i,j).φm

−−−−−−→ φ′ is
an atomic protocol. It represents that i can send the constraint φm to j over
channel c only if the precondition φ holds in the current state, in which i and j
are values in the constraint language. After the message is sent, the new state
of the protocol is updated using the postcondition φ′. This is used to specify
meaning of protocols: the precondition represents a rule for a protocol because
φm can only be sent if this precondition is true; and the postcondition represents
the effect that sending φm has on the state.

The protocol π1;π2 denotes the sequential composition of two protocols, such
that all of protocol π1 is executed, then protocol π2. The protocol π1∪π2 denotes
a choice of two protocols. N(x) denotes a reference to a protocol π named N(y),
with variables y renamed to x, such that any occurrence of N is equivalent to its
definition, π. The protocol varφ

x·π denotes the declaration of a local variable x,
with the constraints φ on x. The scope of x is limited to the protocol π, and the
constraints on x do not change throughout its scope; that is, x is a constant.

A protocol specification is defined as a set of definitions of the form:

N(y1, . . . , yn) =̂ π

in which N, y1, . . . , yn are variable names from the underlying constraint lan-
guage, and π is a protocol definition. Protocol definitions can reference other
protocols in the specification using their names.

The reader may have already noted several properties of RASA:

– The use of a process algebra inherits many of the benefits stated in Section 5.
– Protocol specifications in RASA are global, rather than local.
– The language for specifying message sequencing is algebraic, rather than

declarative; a design decision which was made to simplify protocol composi-
tion — especially runtime composition.

– The underlying language for specifying meaning is declarative.
– The language for specifying message sequencing is independent of the un-

derlying communication language.
– RASA specifications maintain a state, which is not explicitly sent in messages

(unless this is specified as part of the messages themselves).
– The operators for protocol composition have the same syntax and semantics

at all levels of dialog. That is, atomic protocols are protocols in their own
right, and composing them together brings about compound protocols, which
can be further composed using the same operators.

7 Petri Nets

De Silva et al. [3] have experimented with specification of first-class interac-
tion protocols using Petri Nets. Petri Nets are graph structures with additional
annotations. The approach proposed by De Silva et al. models protocols by rep-
resenting the arcs of a Petri Net as possible messages, and the nodes as states
between messages. Petri Nets were chosen rather than similar approaches such
as finite state automata due to their ability to model concurrency.

In addition to representing messages, the approach enables the specification
of internal actions, also using Petri Nets, which specify the actions other than
message sending that agents can use. These actions include the functions an
agent should execute, which variables to update after a transition, and which
conditions the agent must test before sending a message. As such, these actions
are used to specify the rules of the protocol, and the meanings of messages.

A local-view approach is taken in the modelling of the protocols, although it
is straightforward to see how Petri Nets could also be used to specify a global
view. For the local view, four types of actions (two external and two internal)
are available for specifying protocols: the internal actions, Send and Recv, for
sending and receiving messages respectively; and the external actions, Action,
for reading and writing variables and executing functions, and Pred, which are
boolean functions. These are defined as templates, and each must adhere to the
following format:

Send[Sender,Performative,Receiver,Content]

Recv[Receive,Performative,Sender,Content]

Action[Label,Type,Act,Args]

Pred[Boolean]

The templates for Send, Recv, and Pred are straightforward to follow. For
Action, Label is a unique label identifying the action, Type is execute for func-
tions read or write for variables, and Args specifies the arguments to the func-
tion, or the values for the variables.

De Silva et al. do not discuss the language that is used to specify the message
content, the boolean functions, or the arguments, though from examples in [3],
one infers that they use some form of propositional logic. Because there appears
to be no restriction on the language, it seems reasonable to say that any language
capable of expressing boolean expressions could be used.

We note the following properties of this approach:

– Protocol specifications are local rather than global.

– The language for specifying message sequencing is operational, rather than
declarative.

– Specifying the meaning of messages is done using a declarative language.

– Petri Nets for specifying message sequencing are independent of the under-
lying communication language.

– It appears that the specification must maintain state, although there is not
discussion of this by De Silva et al. .

8 Comparisons

The approaches to first-class protocols described in the previous sections share
the properties of being formally defined, meaningful, inspectable, executable and
dynamically composable. However there are issues of design in which they differ.
The point of this comparison is not to declare one approach as the winner but
to highlight the advantages and disadvantage each. No disadvantage should be
considered fatal, but merely a consideration that must be taken. It is unlikely
any first-class protocol language will be the panacea to all the ills of agent
communication. By highlighting the issues and differences, it is hoped that the
system designer can make an informed decision when choosing to take advantage
of the first-class protocol approach.

8.1 Declarative vs Algebraic/operational

Singh [14] and Winikoff [16] both present good arguments for the benefits of
declaratively specifying protocols, stating that this allows for a more flexible
interaction. They argue that specifying what rather than how gives permits a
more flexible approach to interaction. For example, one can specify that three
events, a, b, and c, occur, and that b must occur before c, but with no other
constraints. The interacting agents are free to choose the sequence of these mes-
sages as long as they obey the one constraint, which allows flexible interaction.
For an algebraic language to specify this, one would likely have to specify all
the possible sequences, which could lead to a larger expression. It is difficult to
envisage an example that would be straightforward using a declarative language,
but complex in an algebraic language, however, it is clear that a further level of
abstraction provides the usual benefits associated with abstraction.

Another difference between the two approaches is the computational aspects.
Adapting a declarative language would likely have the benefit that the language
has tool support for automated reasoning and execution. While LCC and RASA

are both executable if the agents can execute the underlying language, one must
implement an agent to understand the process algebra in each. Furthermore,
LCC and RASA were both designed to be quite generic, so there is no commit-
ment to an underlying language, and tool support would be difficult to provide
without committing to a particular underlying language. However, computation-
ally, the declarative approach would be more demanding. Calculating the set of
possible dialogs is straightforward in algebraic languages: simply traverse the
tree that is formed by the definition. Using a declarative language, one would
have to solve the paths as a constraint, which, for protocols of more than a few
messages, could prove demanding. Winikoff [16] avoids this problem by imple-
menting agents as a mapping from the protocols, however, Yolum and Singh’s
agents [18] reason by calculating all possible interactions.

The authors believe that a key benefit to using algebraic languages is the
human readability. Despite the motivations behind first-class protocols being
machine readable, it is clear that human designers will need to read and reason
about these as well. An algebraic formalism is at a level that is more inline with

the way humans think about interaction. One only has to look at existing work
on dialogue games [9], abstract models of interaction [7], and token-based ap-
proaches such as AgentUML to see that operational-based approaches are the
favoured approach for protocol specification and design. Even outside of com-
puter science, instructions that are meant to be read by humans, such as recipes
and installation instructions, are presented in a step-by-step manner. From the
literature, it seems that declarative approaches (whether first-class or otherwise)
are considerably more verbose than algebraic/operational approaches. This is
not surprising, because one is specifying the semantics of sequential composi-
tion, choice, etc., each time they specify such a composition. As an example of
the verbosity of declarative approaches, consider the model of the Contract-Net
Protocol using Social Integrity Constraints in [1]. This model consists of 17 rules,
which is verbose for such a straightforward protocol, especially as the messages
contain no meaning.

Finally, we note that LCC, RASA, and the Petri Nets approach all have
the advantage of not mixing the communication language with the language for
message sequencing. Adapting a declarative language for modelling interaction
enforces the restriction that message meaning must be specified in that language.
Considering that the meaning of the message is tied in with the message itself,
this further implies that all communication would also be in this language —
an unfortunate restriction. This reduces the application of the language and any
protocols specified in it, as demonstrated by the commitment machines approach
being implemented in three different languages, the Event Calculus [18], OWL-P
[4], and MAD-P [5], all by the same research group.

8.2 Local vs Global

This dichotomy is between the perspective from which the protocols are defined.
Local protocols define clauses with respect to the dialogical activities of a single
actor. For agents to communicate they must each have a set of complementary
protocols –e.g. For a message being sent in one protocol, there is a message being
received in another. Global protocols are defined as one protocol for the actions
of every participant.

There are advantages and disadvantages that must be considered with re-
spect to the perspective used by the protocol language. Local protocols have the
advantage of simplicity of use for the individual agents. They do not need to
sift through the protocol to determine what roles and actions apply to them.
However this can obscure the activities of dialogical partners. This shortcoming
can be overcome, as is done in LCC, by sending all agent clauses to an indi-
vidual agent and not just the clause it is meant to execute. Conversely, global
representations give a more complete representation of the conversation space,
but the agent will have protocol steps that are irrelevant to it. The choice of
perspective is also influenced by the model of interaction that exists within the
multi-agent system. For example mediated or managed interaction would need
a global protocol. Whereas, peer-to-peer interactions would be facilitated by a
local representation.

Regarding the approaches in this paper, LCC and the Petri Nets approach
specify protocols from a local view, while the rest specifying protocols from a
global view.

8.3 Composability

Dynamic protocols are a leap that few system designers are brave enough to
take. There are a number of reasons for this. Most engineers take refuge with in-
teraction protocols for the reliability and certainty they can provide their agent
interactions. They forgive the rigidity and fragility for the safety they provide.
However as the agent paradigm matures a few researchers have recognised the
inevitability and benefits of protocols that can be composed automatically at
run-time. There are inherit drawbacks to allowing composability such as issues
of trust (e.g. who should be allowed to make changes). However, the inclusion of
this functionality does not weaken any of the composable first-class protocol lan-
guages described. Indeed there are numerous frameworks where the modification
of its first-class protocols is disallowed.

Although not explicitly explored, it is imaginable that a set of meta-rules
could be defined over the normative approach and commitment machines to
produce the composition. The same is true of the Petri Net approach. However
at the current time, this has not been explored as far as the authors are aware.

LCC, although not initially designed for the purpose, has been shown suit-
able for dynamic composition of protocols using a number of approaches. Using
dialogue games as a semantic model for composition, [10] composes the protocols
for atomic dialogue games to create more complex games according to the rules
of iteration, sequencing, parallelism and embedding proposed in [8]. Addition-
ally, [10], using adjacency pairs, composition is done at the individual message
level rather than for whole protocols. The RASA language, in reaction to dy-
namic LCC, was designed with dynamic composition as a fundamental feature
of the language. As a consequence, there is a much more methodical application
and execution of dynamic composition in this language.

From the authors’ view, we believe that algebraic languages are far more
suited for composition. In algebraic languages, the start and end of a protocol
and its sub-protocols are straightforward to identify. We assert that this makes
compositions easier to define, and their meaning more straightforward to calcu-
late.

8.4 Top-down vs Bottom-up

The top-down vs bottom-up debate is merely an issue of taste. Nonetheless, we
believe that it is an important point to note, and there are good reasons why the
different approaches are taken. RASA’s bottom-up approach is a consequence
of it being purposefully designed for dynamic composition, and LCC’s top-down
design comes from its pedigree of trying to execute electronic institutions in a
more peer to peer manner. The commitment machines approaches are declara-
tively specified, so they adopt neither approach.

8.5 State vs No state

LCC is the only language that does not specify the meaning of messages as
the alteration of a state. Instead, LCC agents explicitly pass around any such
information as part of each message. The benefits of this are clear: all partici-
pants are aware of any information they need, and there is no chance that the
participants view of the state can become inconsistent with each other. We see
no restriction in other approaches that would prevent protocol designers from
enforcing that agents send the state with each message. However, the approach
is more straightforward in LCC. Two obvious disadvantages of passing the state
with every message is that there is an extra overhead, and that it becomes more
laborious to model protocols in which the participants should have different
information.

State is important for composition. To clearly define the meaning of a com-
pound protocol, one must relate the meaning between its sub-protocols. It seems
that some form state is the only way to do. Whether this in the form of a state
itself, or whether it is information that is passed, as in LCC, does not appear to
be important.

8.6 Expressiveness

A comparison of expressiveness is non-trivial, because no formal framework exists
for comparing the expressiveness of protocol languages. However, we note some
interesting aspects of the expressiveness of first-class protocol languages.

Regarding message sequencing, the languages are quite similar. Each of them
specifies a set of possible interactions, in which each interaction is a sequence of
messages with preconditions and meaning. The only aspect that we see as dif-
ferent is regarding parallel message sending. Versions of LCC and RASA define
parallelism as the interleaving of messages, not as messages being sent at the
same time. Declarative approaches do not suffer this restriction, because mes-
sages can be declared to be sent at the same time. For example, using the Event
Calculus, one can specify that messages m1 and m2 are sent simultaneously:

Happens(m1, t) ∧Happens(m2, t)

How this is enforced in the final system, and how straightforward it would be
for agents to reason about such behaviour, is an implementation detail, and is
out of the scope of this paper. In the Petri Net approach, the authors of authors
of [3] state that they specifically use Petri Nets because of its ability to handle
concurrent behaviour.

The second aspect of expressiveness relates to the expressiveness of messages
and their meaning. The normative approach and the different commitment ma-
chine approaches can express any messages and meaning that can be expressed
in the Event Calculus, OWL, or C+ respectively, and only those messages and
meaning. In contrast, the RASA, LCC, and Petri Nets approaches do not specify
a particular underlying language. This provides a greater amount of flexibility in

specifying meaning compared to the other approaches, because one can choose
to model protocol meaning using different underlying languages, and are flexible
enough to model commitment machines and norms.

However, the fact the one can under-specify the message sequencing implies
that, for flexible protocol execution, the expressiveness of declarative languages
are better suited than algebraic/operational languages.

8.7 Discussion

As a reader of this paper, one may be wishing to decide which first-class protocol
approach they would should use. We refrain from making any definite recommen-
dations because the approach used is dependent on the application in which the
protocols will be used, and different engineers will have different views. However,
we use the results in this section to highlight three aspects of these approaches
that stand out:

Local vs. Global: For a peer-to-peer interactions with two-parties, we believe
a local approach is best suited. For mediated interactions, or interactions
with more than two parties, we believe a global approach is best suited.

Flexible interaction: Declarative approaches seem better suited for flexible
interaction; that is, under-specifying the protocol, and having agents calcu-
late the allowable sequences.

Runtime composition: We recommend an algebraic approach if runtime com-
position is an important theme in an application.

9 Other Approaches

Several other approaches exist for agent interaction specification that resemble
first-class protocols, but which we do not consider to be first-class approaches. In
this section, we briefly introduce some of the most closely related approaches, and
discuss why they do not fall into the category of first-class protocol specification
languages.

Social Integrity Constraints (SICs) [1] are rules specifying actual and ex-
pected behaviour. SICs are not consider as first-class protocols because there is
no meaning to the messages. The rules specifies only which messages can oc-
cur, and the order they can occur in. In [1], the authors envisage systems in
which participating agents inherently know the meaning of communicative ac-
tions, which first-class protocols aim to prevent. We believe that it would be
possible for consequents of the rules could carry additional information that
specified meaning, and agents could reason over this information. However, SICs
do not include the notion of state, therefore, a new semantics would have to be
specified, and would have to take into account message meaning, such as when
two messages occur one after the other, but with conflicting outcomes.

Fornaro and Colombetti [6] propose a method for defining the semantics of
agent communication languages using commitments. Their notion of commit-
ment is similar to that used in commitment machines, described in Section 3.

Though the motivation for social commitments is similar to first-class protocols,
it is used to define the semantics of performative-based agent communication
languages, rather than protocols. Composition is obtained using interaction di-
agrams, and the semantics of this composition is not defined formally.

10 Conclusions

The purpose of this paper was to bring more coherence to the emerging research
on first-class protocols. By the comparison of the most prominent approaches,
we tease out their commonalities and their differences. As this approach to agent
communication inevitably attracts more interest it is conceivable that new lan-
guages will be developed, but no matter how exotic they will have the properties
described in Section 2, as well as falling on one side or the other the comparison
criteria.

Though we have focused on agent communication and first-class protocols for
the expression of norms of agent societies, in addition to the advantages outline
in the introduction, there is another point that should be stressed. The beauty
of first-class protocols is that they are generically applicable. In [12], the authors
show the use of RASA for hybrid interactions between agents and webservice for
workflow execution in the e-science domain. This is due to the power and expres-
siveness of first-class protocols. Social semantics are no longer held internally.
They are rewritten modularly and separate from the computational entities that
would make use of them. Other research has shown how webservices can follow
LCC protocols for determining message passing sequences without needing to
understand the social semantics of the messages being sent.

Acknowledgements

The work presented in this paper was supported by the EU projects, ARGU-
GRID, (ArguGRID-IST-035200), and PIPS (EC-FP6-IST-507019).

References

1. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Speci-
fication and verification of agent interaction protocols in a logic-based system. In
SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, pages
72–78, New York, USA, 2004. ACM Press.

2. A. Artikis, M. Sergot, and J. Pitt. Specifying electronic societies with the Causal
Calculator. In F. Giunchiglia, J. Odell, and G. Weiss, editors, Agent-Oriented
Software Engineering, 3rd International Workshop, number 2585 in LNCS, pages
1–15. Springer, 2003.

3. L. P. de Silva, M. Winikoff, and W. Liu. Extending agents by transmitting pro-
tocols in open systems. In Proceedings of the Challenges in Open Agent Systems
Workshop, Melbourne, Australia, 2003.

4. N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh. OWL-P: A methodology
for business process modeling and enactment. In Workshop on Agent Oriented
Information Systems, pages 50–57, July 2005.

5. N. Desai and M. P. Singh. A modular action description language for protocol com-
position. In Proceedings of the 22nd Conference on Artificial Intelligence (AAAI).
AAAI Press, 2007. (To appear).

6. N. Fornara and M. Colombetti. A commitment-based approach to agent commu-
nication. Applied Artificial Intelligence, 18(9–10):853–866, 2004.

7. M. W. Johnson, P. McBurney, and S. Parsons. A mathematical model of dialog.
Electronic Notes in Theoretical Computer Science, 141(5):33–48, 2005.

8. P. McBurney and S. Parsons. Games that agents play: A formal framework for di-
alogues between autonomous agents. Journal of Logic, Language and Information,
11(3):315–334, 2002.

9. P. McBurney, R. van Eijk, S. Parsons, and L. Amgoud. A dialogue-game protocol
for agent purchase negotiations. Journal of Autonomous Agents and Multi-Agent
Systems, 7(3):235–273, 2002.

10. J. McGinnis. On the mutability of protocols. Phd thesis, University of Edinburgh,
Edinburgh, Scotland, 2006.

11. T. Miller and P. McBurney. Using constraints and process algebra for specification
of first-class agent interaction protocols. In G. O’Hare, A. Ricci, M. O’Grady, and
O. Dikenelli, editors, Engineering Societies in the Agents World VII, volume 4457
of LNAI, pages 245–264, 2007.

12. T. Miller, P. McBurney, J. McGinnis, and K. Stathis. First-class protocols for
agent-based coordination of scientific instruments. In 5th International Workshop
on Agent-based Computing for Enterprise Collaboration (ACEC) Agent-Oriented
Workflows and Services, 2007. to appear.

13. D. Robertson. Multi-agent coordination as distributed logic programming. In
Proceedings for International Conference on Logic Programming, 2004.

14. M. P. Singh. A social semantics for agent communication languages. In F. Dignum
and M. Greaves, editors, Issues in Agent Communication, pages 31–45. Springer-
Verlag: Heidelberg, Germany, 2000.

15. C. Strachey. Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation, 13(1):11–49, April 2000.

16. M. Winikoff. Implementing commitment-based interactions. In Proceedings of
the Sixth International Joint Conference on Autonomous Agents and Multiagent
Systems, 2007. (To appear).

17. P. Yolum and M. P. Singh. Commitment machines. In J.-J. Ch. Meyer and
M. Tambe, editors, Proceedings of the 8th International Workshop on Agent Theo-
ries, Architectures, and Languages, volume 2333 of LNCS, pages 235–247. Springer,
2002.

18. P. Yolum and M. P. Singh. Reasoning about commitments in the event calculus:
An approach for specifying and executing protocols. Annals of Mathematics and
AI, 42(1–3):227–253, 2004.

