
A Common Basis for Agent Organisations in BDI Languages⋆

Anthony Hepple, Louise Dennis, and Michael Fisher

Department of Computer Science, University of Liverpool, Liverpool, U.K.

{A.J.Hepple,L.A.Dennis,M.Fisher}@csc.liv.ac.uk

Abstract. Programming languages based on the BDI style of agent model are now com-
mon. Within these there appears to be some, limited, agreement on the core functionality of
agents. However, when we come to multi-agent organisations, not only do many BDI lan-
guages have no specific organisational structures, but those that do exist are very diverse. In
this paper, we aim to provide a unifying framework for the core aspects of agent organisa-
tion, covering groups, teams and roles, as well as organisations. Thus, we describe a simple
organisational mechanism, and show how several well known approaches can be embedded
within it. Although the mechanism we use is derived from the METATEM language, we do
not assume any specific BDI programming language. The organisational mechanism is thus
intended to be independent of the underlying agent languageand so provides a common
core for future developments in agent organisation.

1 Introduction

As hardware and software platforms become more sophisticated, and as these are deployed in
more unpredictable environments, so the level ofautonomybuilt into such systems has increased.
This has allowed systems to work effectively without detailed, and constant, human intervention.
However, autonomous systems can be hard to understand and even harder to develop reliably. In
order to help in this area, the concept of anagentwas developed to capture the abstraction of an
autonomously acting entity. Based on this concept, new techniques were developed for analysing,
designing and implementing agents. In particular, severalnew programming languages were
developed explicitly for implementing autonomous agents.

We can simply characterise an agent as an autonomous software component having certain
goals and being able to communicate with other agents in order to accomplish these goals [31].
The ability of agents to act independently, to react to unexpected situations and to cooperate with
other agents has made them a popular choice for developing software in a number of areas. At one
extreme there are agents that are used to search the INTERNET, navigating autonomously in order
to retrieve information; these are relatively lightweightagents, with few goals but significant
domain-specific knowledge. At the other end of the spectrum,there are agents developed for
independent process control in unpredictable environments. This second form of agent is often
constructed using complex software architectures, and hasbeen applied in areas such as real-
time process control [25, 19]. Perhaps the most impressive use of such agents is as part of the
real-time fault monitoring and diagnosis carried out in theNASA Deep Space One mission [22].

The key reason why an agent-based approach is advantageous in the modelling and program-
ming of autonomous systems, is that it permits the clear and concise representation, not just of

⋆ Work partially supported by EPSRC under grant EP/D052548.

what the autonomous components within the system do, butwhy they do it. This allows us to
abstract away from the low-level control aspects and to concentrate on the key feature of au-
tonomy, namely the goals the component has and the choices itmakes. Thus, in modelling a
system in terms of agents, we often describe each agent’sbeliefsandgoals, which in turn de-
termine the agent’sintentions. Such agents then make decisions about what action to perform,
given their beliefs and goals/intentions. This kind of approach has been popularised through the
influential BDI (Belief-Desire-Intention) model of agent-based systems [25]. This representation
of behaviour usingmentalnotions is initially unusual, yet has several benefits. The first is that,
ideally, it abstracts away from low-level issues: we simplypresent some goal that we wish to
be achieved, and we expect it to act as an agent would given such a goal. Secondly, because
we are used to understanding and predicting the behaviour ofrational agents, the behaviour of
autonomous software should be relatively easy for humans tounderstand and predict too. Not
surprisingly, the modelling of complex systems, even spaceexploration systems, in terms of ra-
tional agents has been very successful [27, 26, 16]. Thus, the BDI approach to agent modelling
has been successful. Unsurprisingly, this has led to many novel programming languages based
(at least in some part) upon this model; these are often termed BDI Languages. Although a wide
variety of such languages have been developed [3] few have strong and flexible mechanisms for
organisingmultiple agents, and those that do provide no agreement on their organisational mech-
anisms. Thus, while BDI languages have converged to a commoncore relating to the activity of
individual agents [8], no such convergence is apparent in terms of multi-agent structuring.

As part of our overall aim is to provide a common logically based framework for BDI style
agent programming, incorporating organisational aspects, and so facilitate agent verification via
model checking, a clear goal is to develop a simple, intuitive and semantically consistent organ-
isation mechanism. In this paper we do this, in addition showing how this simple model can, in
BDI languages, encompass many previously proposed models of multi-agent organisation and
teamwork.

The structure of this paper is as follows. Section 2 surveys some of the leading approaches to
agent organisation and illustrates their diverse nature. In Section 3 we describe the structuring
mechanism we propose to unify the multi-agent concepts uncovered within our survey. Section 4
demonstrates how our framework can be used to model conceptssuch as joint-intentions, roles,
etc. Finally, in Section 5, we provide concluding remarks and outline future work.

2 Approaches to Agent Organisation

In this section we overview some of the key approaches to the organisation of agents that have
been proposed. It is important to note that we are particularly concerned withrational agents,
predominantly using the BDI model of computation. In addition, while we have not listedall the
various approaches, the selection we give below covers manyof the leading attempts at team-
work, organisational structuring and role-based computation. In addition, while we are primarily
interested in developing BDI languages with clear logical semantics and logic-based mecha-
nisms, we also consider organisational approaches beyond this class.

2.1 Cohen and Levesque:Joint Intentions

Offering a respected philosophical view on agent co-operation, Cohen and Levesque produced
a significant paper ‘Teamwork’ [7] extending previous work [21, 5, 6]. They persuasively argue

that a team of agents shouldnot be modelled as an aggregate agent but propose new (logical)
concepts ofjoint intentions, joint commitmentsandjoint persistent goalsto ensure that teamwork
does not break down due to any divergence of individual team members’ beliefs or intentions.
The authors’ proposals oblige agents working in a team to retain team goals until it is mutually
agreed amongst team members that the goal has been achieved,is no longer relevant or is impos-
sible. This level of commitment is stronger than an agent’s commitment to its individual goals
which are dropped the moment it (individually) believes they are satisfied. Joint intentions can
be reduced to individual intentions if supplemented with mutual beliefs.

2.2 Tidhar, Cavedon and Rao:Team-Oriented Programming

Tidhar [29] introduced the concept ofteam-oriented programmingwith social structure. Essen-
tially this is an agent-centred approach that defines joint goals and intentions for teams but stops
short of forcing individual team members to adopt those goals and intentions. An attempt to
clarify the definition of a ‘team’ and what team formation entails was made using concepts such
as ‘mind-set synchronisation’ and ‘role assignment’. Teambehaviour was defined by a temporal
ordering of plans which guided (but did not constrain) agentbehaviour. A social structure is pro-
posed by the creation ofcommandandcontrol teams which assign roles, identify sub-teams and
permit inter-team relationships.

2.3 Ferber, Gutknecht and Michel:Roles and Organisations

Ferberet al. [10] present the case for an organisational-centred approach to the design and en-
gineering of complex multi-agent systems. They cite disadvantages of the predominant agent-
centred approaches such as: lack of access rights control; inability to accommodate heteroge-
neous agents; and inappropriate abstraction for describing organisational scenarios. The authors
propose a model for designing language independent multi-agent systems in terms ofagents,
roles andgroups. Agents and groups are proposed as distinct first class entities although it is
suggested that an agent ought to be able to transform itself into a group. (We will see later that
this is close to our approach.)

In [11], Ferber continues to argue for an organisational-centred approach, advocating the
complete omission of mental states at the organisational level, defining an organisation of agents
in terms of its capabilities, constraints, roles, group tasks and interaction protocols. Clearly ar-
ticulated here is a manifesto of design principles.

2.4 Pynadath and Tambe:TEAMCORE

Pynadathet al. [24] the authors describe their interpretation of ‘team-oriented programming’
that aims to organise groups of heterogeneous agents to achieve team goals. A framework for
defining teams is given that provides the following concepts:

Team— an agent without domain abilities;
Team-ready— agents with domain abilities that can interface with a teamagent;
Sub-goal— a goal that contributes to the team goal; and
Task — the allocation of a sub-goal to a team-ready agent.

An implementation of their framework, TEAMCORE, provides organisational functionality such
as enabling multicast communication between agents, assigning tasks, maintaining group beliefs
and maintaining hierarchies of agents (by role). Also, heterogeneous agents are accommodated
by wrapper agents that act as proxies for the domain agent.

2.5 Fisher, Hirsch and Ghidini: Groups as Agents

Beginning within the context of executable temporal logics[1], Fisheret al.produced a series of
papers [12–15] that developed the METATEM language into a generalised approach for express-
ing dynamic distributed computations. As we will see more about this model in Section 3, we
just provide a brief outline below.

Organisational structuring within the METATEM [12] language consists of a simple nested
grouping structure where groups comprise communicating elements (objects, agents, or other
software components). The key aspect of this approach is that groups themselves are also agents,
providing a homogeneous, simple, yet expressive, model. In[14], it is argued that systems com-
posed of components as diverse as objects, web services and abstract features can be modelled
within this general language.

2.6 Hübner, Sichman and Boissier:Roles and Permissions

Hübner and his co-authors believed that the agent organisational frameworks proposed prior to
their 2002 paper [18] overlooked the significant relationship between structural and functional
properties of an organisation. Thus, in [18], they propose athree component approach to the
specification of agent organisations that combines independent structural and functional specifi-
cations with a deontic specification, the latter defining, among other things, the roles (structural)
having permission to carry out group tasks (functional). The approach provides a proliferation
of constructs for specifying multi-agent systems, including the ability to concisely express many
previously unmentioned situations, such as:

– the ability to specifycompatibilityof group membership, akin to the members of a govern-
ment expressing a conflict of interest;

– enabling thecardinalityof group membership to be defined and thus defining a well formed
group as a group who’s membership is between its specified minimum and maximum size;

– the ability to express a variance in the agents’ permissionsover time.

It is argued that such an approach improves the efficiency of multi-agent systems by focusing
agents on the organisation’s goals. However, we note that ofall the proposals discussed in this
section this approach applies the most restrictions to agent autonomy.

2.7 Summary

It should be noted that none of the above organisational approaches can comprehensively model
all forms of co-operative multi-agent systems. Rather theyrepresent attempts to discover prac-
tical and beneficial ways of specifying distributed computational systems, and facilitating the
focus of computation on a system’s main purpose whilst not compromising the autonomy of
the system’s components. In achieving this aim it may be convenient to categorise groups of

agents in terms of cohesion and co-operation. For instance,a groupof agents may be individu-
ally autonomous, existing as a group solely due to their proximity to one another rather than their
co-operation. In contrast, the wordteam, implies a high degree of co-operation and adhesion with
anorganisationfitting somewhere in between. As Cohen stated in [7]

“teamwork is more than co-ordinated individual behaviour”.

Thus, the more expressive proposals reviewed here enable the specification of more cohesive
groups but often at significant cost to the agents involved.

3 Structuring Mechanisms

The approach we propose is based on that of METATEM described previously [12]. However, we
advocate this grouping approach, independent of the underlying language for agents. The only
restrictions we put on any underlying language is that, as inmost BDI-based languages, there
are logically coherent mechanisms for explicitly describingbeliefsandgoals.

The aim of our grouping structure is to provide a simple organisational construct that enables
the definition of a wide range of multi-agent systems — from unstructured collections of unco-
ordinated agents to complex systems that are often described using the high-level abstractions
described in the last section.

3.1 Prerequisites

As in the METATEM framework, the grouping approach involves very few additional constructs
within the language. Specifically, we require just two additional elements within each agent’s
state. We also, as is common, require that first-class elements, such as beliefs, goals, etc, can
be communicated between agents. Delivery of messages should be guaranteed, though the delay
between send and receipt is not fixed. Finally, we expect asynchronously concurrent execution
of agents.

3.2 Extending Agents

Assuming that the underlying agent language can describe the behaviour of an agent, as has
been shown for example in [8], we now extend the concept of agent with two sets,Content
andContext. The agent’sContent describes the set of agents it contains, while the agent’s
Context describes a set of agents it is contained within. Thus, the formal definition of an agent
is as follows.

Agent ::= Behaviour: Specification
Content: P(Agent)
Context: P(Agent)

Here,P(Agent) are sets of agents andSpecification is the description of the individual
agent’s behaviour, given as appropriate in the target BDI language.

On the right, we provide a graphical representa-
tion of such an agent. The agent (the circle) re-
sides within a context and itself comprises its own
behavioural layer and its content. This content can
again contain further agents. Note that, for formal
development purposes, theBehaviour may well
be a logical specification.

Context

Content

Behaviour

The addition ofContent andContext sets to each agent provides significant flexibility for
agent organisation. Agent teams, groups or organisations,which might alternatively be seen as
separate entities, are now just agents with non-emptyContent. This allows these organisa-
tions to be hierarchical and dynamic, and so, as we will see later, provides possibilities for a
multitude of other co-ordinated behaviours. Similarly, agents can have several agents within
their Context. Not only does this allow agents to be part of several organisational struc-
tures simultaneously, but it allows the agent to benefit fromContext representing diverse at-
tributes/behaviours. So an agent might be in a context related to its physical locality (ie agents in
that set are ‘close’ to each other), yet also might be in a context that provides certain roles or abil-
ities. Intriguingly, agents can be within many, overlapping and diverse, contexts. This gives the
ability to produce complex organisations, in a way similar to multiple inheritance in traditional
object/concept systems. For example configurations, see Fig. 1.

Fig. 1. A selection of possible organisation structures.

An important aspect is that this whole structure is very dynamic. Agents can move in and out
of Content andContext sets, while new agents (and, hence, organisations) can be spawned
easily and discarded. This allows for the possibility of a range of organisations, from thetransient
to thepermanent. From the above it is clear that there is no enforced distinction between an agent

and an agent organisation. All are agents, all may be treatedsimilarly. On the other hand it is
possible to distinguish between agents (with emptyContent) and organisations (with non-
emptyContent) to allow an organisation-centred approach, if required.

Finally, it is essential that the agent’s internal behaviour, be it a program or a specification,
have direct access to both theContent andContext sets. As we will see below, this allows
each agent to become more than just a ‘dumb’ container. It cancontrol access to, restructure, and
share information and behaviours with, itsContent. Note that, in order to describe fragments
of the agent’s behaviour during the rest of the paper, we willuse simpleIF ...THEN ...ELSE
statements. Again, this does not prescribe any particular style of BDI language.

3.3 Communication

The core communication mechanism between agents in our model is broadcast message-passing.
The use of broadcast is very appealing, allowing agent-based systems to be developed without
being concerned about addresses/names of the agents to be communicated with. The potential
inefficiency of broadcast communication is avoided by the use of the agents’Content and
Context structures. By default, when an agent broadcasts a message,it is sent to all members of
the agent’sContext sets with the message being forwarded to agents within the same context.
This, effectively, producesmulticast, rather than full broadcast, message-passing.

This is clearly a simple, flexible and intuitive model, and the system developer is encour-
aged to think in this way. However, it is useful to note that multicast, or ‘broadcast within a
set’, is actually built on top of point-to-point message passing! We will assume that the BDI
language has a communication construct that can be modelledas the actionsend(recipient, m)
which means that the messagem has been sent to the agentrecipient, and a corresponsing
received(sender, m) which become true when therecipient agent receives the message. Let
us consider an example where an agent wishes to broadcast to all other members of one of its
Context sets. For simplicity, let us term this context set ‘group’. An agent wishing to ‘broad-
cast’ a message,m, to members of thegroup sends a message,send(group, broadcast(m)), to
the group agent alone, as illustrated in Fig. 2.

Fig. 2. Broadcast within a Group.

The effect of sending a broadcast message to thegroup agent is that thegroup acts as a proxy
and forwards the message to itsContent, modifying the message such that the message appears
to have originated from the proxy. In this way agents maintain their anonymity within the group.

IF received(from, broadcast(m))
THEN for each x in {Content \ from} send(x, m)

Being an agent-centred approach to multi-agent organisation there does not exist an [accessible]
entity that referencesall agents in the agent space, thus a true broadcast is not possible. However
a number of recursive group broadcasts can be specified, allowing a message to be propagated to
all agents with an organisational link to the sender.

For example, reaching all accessible agents requires the sending agent to send a message to
all members of itsContext andContent sets and for each first-time recipient to recursively
forward that message to the union of theirContext andContent (excluding the sender).
Clearly this is not an efficient method of communication as itis possible for agents to receive
multiple copies of the same message, and so it may not be practical in very large societies, but
what it lacks in sophistication it makes up for in simplicityand clarity [14].

IF received(from, broadcastAll(m))AND not received(, m)
THEN for each x in {Content ∪ Context} send(x, m) AND send(x, broadcastAll(m))

Perhaps more useful than indiscriminate broadcasting would be the case of an agent who wants
to reach all other members of the ‘greatest’ organisation towhich it belongs. This requires a
message to propagate up through the agent structure until itreaches a group with an empty
context, at which point the message is sent downwards until all members and sub-members have
been reached.

Fig. 3. (a)Nested Organisations (b). Propagation of Messages

To illustrate this, consider the situation of agentE in Fig. 3(a), who wants to send a message to
its entire organisation — the organisation specified byA. A propagateUp(m) message originates
from agentEwho sends it to agentB.B’s context is non-empty so the message continues upwards
to A. SinceA is the widest organisation to whichE belongs (it has an emptyContext set), it
modifies the message, converting it topropagateDown(message) and broadcasts it along with
the message to all members of its content. Upon receipt of this message, agentsB andG send it

to their contents and so it continues until the message reaches an agent with an empty content
set as illustrated by Fig. 3(b).

This might be specified as follows;

IF received(, propagateUp(m)) AND Context 6= ∅
THEN for each x in {Context} send(x, propagateUp(m))

IF received(, propagateUp(m)) AND Context = ∅
THEN for each x in {Content} send(x, m) AND send(x, propagateDown(m))

IF received(, propagateDown(m)) AND Content 6= ∅
THEN for each x in {Content} send(x, m) AND send(x, propagateDown(m))

3.4 Refining and Restricting Communications

Further communication restriction is possible by, for example, restricting the type of communica-
tions agents can make. Employing the concept of speech acts [28] we can use the group agent as
a communication filter that restricts intra-group messaging to those that conform to permissible
protocols or structures.

Fig. 4. Filtering communication by group.

If, for example, a fact-finding agent contains a number of agents with access to information
resources, it may be necessary to restrict their intra-group communication toinform speech acts.
In such circumstances it is possible to modify the default behaviour by imposing a message filter.

IF received(from, broadcast(m))AND informFilter (m)
THEN for each x in {Content \ from} send(x, m)

See Fig. 4 for an example of this. In this way filters can be adapted for many purposes, enabling
organisations to maintain:

relevance— ensuring communication remains relevant to to group goal(s), intentions or
tasks;
fairness— allowing each member of a group an equal opportunity to speak; and
legality— assigning permissions to group members to restrict communication channels.

3.5 Communication Semantics

The above variations onbroadcast define varying semantics for a message. A key feature of
the grouping approach is that the semantics of communication is flexible and, potentially, in
the hands of the programmer. Such semantics can also, potentially, be communicated between
agents in the form of plans allowing an agent to adopt different semantics for communication as
its Context changes.

Adherence to particular common communication protocols/semantics also allows groups to
establish the extent to which a member is autonomous (e.g., agroup can use a semantics for
achievespeech acts which forces recipients to adopt the communicated goal).

4 Common Multi-Agent Structures

In this section we will examine some of the key structuring mechanisms that are either explicit
or implicit within the approaches surveyed in Section 2, andshow how each can be represented
appropriately, and simply, using theContent/Context approach outlined above.

Table 1 lists the mechanisms identified by our surveyed authors as being useful in the spec-
ification of agent co-operation. We believe that our approach is flexible enough to model all of
these but for brevity we will demonstrate a sample of them only.

Table 1.Multi-agent organisation concepts.

4.1 Sharing Information

Shared beliefs Being a member of all but the least cohesive groups requires that some shared
beliefs exist between its members. Making the contentious assumption that all agents are honest

and that joining the group is both individual rational and group rational, let agenti hold a belief
setBSi. When an agent joins a groupj it receives beliefsBSj from the group and adds them to
its own belief base (invoking its own belief revision mechanism is case of conficting beliefs).

The agent in receipt of the new beliefs may or may not disseminate them to the agents in its
content, depending on the nature and purpose of the group. Once held, beliefs are retained until
contradicted.

Joint beliefs Joint beliefs are stronger than shared beliefs. To maintainthe levels of cohesion
found in teams each member must not only believe a joint belief but must also believe that its
team members believe the joint belief. Let us assume the agent is capable of internal actions such
asaddBelief (Belief ,RelevantTo) addingBelief to its belief base, and recording the context
thatBelief is relvant to. Upon joining a group, an agent is supplied the beliefs relevant to that
context, which it stores in its belief base along with the context in which they hold.

IF received(from,membershipConfirm(beliefSet))
THEN for each b in {beliefSet} addBelief (b, from)

The presence of suchContext meta-information can be used to apply boundaries on agent de-
liberation, thus mitigating the complexity caused by introducing another variable. When leaving
aContext an agent might choose to drop the beliefs relevant to that context or retain them.

4.2 Sharing Capabilities

Let agentAgi have a goalG, for which planP exists but thatAgi does not have and therefore
must find an agent that does. Two options available toAgi are to find an agentAgj , who has
P , and either: request thatAgj carries out the plan; or request thatAgj sendsP to Agi so that
Agi can carry out the plan itself. The first possibility suggestsa closer degree of co-operation
between agentsi andj, perhaps even the sub-ordination of agentj by agenti. Whereas, in the
second possibility, agenti benefits from information supplied byj.

In the first scenario we might envisage a group in which a member (or the group agent itself)
asks another member to execute the plan. In the second case, we can envisage agentsi andj

sharinga plan. This second scenario is typical if groups are to capture certain capabilities —
agents who join theContent of such a group are sent (or at least can request) plans shared
amongst the group.

4.3 Joint Intentions

An agent acting in an independent self-interested way need not inform any other entity of its
beliefs, or changes to them. On the other hand, an agent who isworking, as part of a team,
towards a goal shared by itself and all other members of the team has both an obligation and a
rational interest in sharing relevant beliefs with the other team members [7]. Providing an agent
with a persistent goal with respect to a team, such that the agent must intend the goal whilst it
is the team’s mutual belief that the goal is valid (not yet achieved, achievable and relevant). The
implications of this impact on agent’s individual behaviour when it learns, independently, that
the goal is no longer valid - in such a situation the team working agent maintains its commitment
to the invalid goal but informs its team members of the antecedent(s) that lead it to believe the

goal is invalid. Only when the agent receives confirmation that the entire team share its belief
does it drop its commitment.

The intuitive implementation of this joint intention is notvia a team construct but with an
extension of an agent’s attributes. However, increases in expressiveness of this sort do not come
without penalty — increased undecidability usually accompanies them. The organisational or
team construct may overcome this problem but we believe thatour simple group approach is
sufficient to implement joint intentions, mutual beliefs and common goals. Consider the scenario
given in Fig. 5.

Fig. 5.Communicating Joint Intentions.

Agent A.On joining the groupT , agentA accepts goalJI and confirms its adoption of the goal.
Whilst T remains a member ofA’s Context, A informsT of all beliefs that are relevant to
JI. Finally, all communications from agentT must be acknowledged, with an indication of the
agent’s acceptance (or non-acceptance) of the message.

A simple specification of this might be:

IF received(from, jointIntention(JI))
THEN achieve(JI) AND send(from, ack(JI))

IF belief(ϕ) AND there is x in {Context} relevantTo(ϕ, x)
THEN send(x, inform(ϕ))

IF goal(γ) AND there is x in {Context} relevantTo(γ, x)
THEN achieve(γ)

Thus, an agent is obliged to inform its group of beliefs relevant to jointly held intentions and will
maintain a goal whilst it remains relevant to itsContext.

Agent T. Evaluates group beliefs and communicates the taking on, anddropping, of intentions
when mutual agreement is established. SinceT has details of the agents in itsContent and
can send messages to interrogate them, it can maintain knowledge ofcommoninformation and
behaviours, and reason with it.

4.4 Roles

The concept of a role is a common abstraction used by many authors for a variety of purposes [18,
11, 30], including:

– to define the collective abilities necessary to achieve a global goal;
– to provide an agent with abilities suitable for team activity;
– to constrain or modify agent behaviour for conformance withteam norms; and
– to describe a hierarchy of authority in an organisation of agents and hence create a permis-

sions structure.

Below we examine a variety of such roles and consider how eachcould fit into our model.

Ability roles Let planP be a complex plan that requires abilitiesx,y andz if it is to be fulfilled.
An agentA is created (without any domain abilities of its own) to gather together agents that
do have the necessary abilities. AgentA might generate an agent in its content for each of the
abilities required to fulfil planP .

Fig. 6. Roles according to abilities.

When agentA encounters an agent with abilityx, y or z it adds the agent to theContent of
the appropriate group (agent), analogous to assigning roles.

A talented agent might become a member of several ability sets. The ability set, itself an
agent, may be a simple container or exhibit complex behaviour of its own. One basic behaviour
might be to periodically request (of the agents in itsContent) the execution of its designated
ability. Note that in the case of an ability that is hard to carry out, it may be provident to include
many agents with that ability. Similarly, the desired ability might be a complex ability that must
be subjected to further planning, resulting in a number of nested abilities.

Roles in societyJoining a society, organisation or team of agents commonly involves the adop-
tion of the norms of that society, organisation or team. Whether these norms are expressed as
beliefs, goals, preferences or communication protocols, our approach allows them to be trans-
mitted between group members, particularly at the time of joining.

For example, if team membership requires that members acknowledge receipt of messages
then each new member of a group might be given the new rule (behaviour)

IF received(ag, θ) THEN send(ag, ack(θ))

A stronger constraint might require an agent to believe all messages received from itsContext:

IF received(ag, θ) AND ag ∈ ContextTHEN addBelief (θ, ag) AND send(ag, ack(θ))

Of course, agents can not be certain that another agent will keep with given constraints or comply
with norms of the society, the most it can do is demand formal acknowledgement of its request
and a commitment to do so. Group membership can be denied if anagent fails to satisfy theentry
criteria.

Authority roles None of the structures discussed so far result in a structurethat usefully reflects
a hierarchy of authority.

As each of the above structures allow almost arbitrary groupmembership, with transitive and
cyclic structures possible they are not suitable for expressing a hierarchy of authority, which by
its nature must be acyclic with exactly one root.

A common use for such a hierarchy is for creating channels of communication. Our approach
to grouping enables communication restrictions for free such that agents may only communicate
with their immediate superiors (context), or their subordinates (content). Multicast message pass-
ing requires sending a singlebroadcast message to an agent in its context. The receiving agent
will, if it deems it appropriate, forward the message to all other agents in the [superior] agent’s
content.

5 Concluding Remarks

In this paper, we have proposed a simple but clear model for multi-agent structuring in a wide
range of agent languages based on varieties of the logical BDI approach. Although derived from
work on METATEM, we propose this as a general approach for many languages. To support
this, we first show how simple and intuitive the approach is and how the underlying structures
of any appropriate language can be modified. (Note that more detailed operational semantics
for our grouping approach in logic-based BDI languages is given in [9].) We then showed, in
a necessarily brief way, how many of the common teamwork and organisation aspects can be
modelled using our approach.

In order to evaluate the approach, we have also implemented it in AgentSpeak (actually, Ja-
son [4]) and have developed several simple examples of dynamic organisations. This simple addi-
tional layer has so far proved to be convenient and powerful.Obviously, theContent/Context
approach has also been extensively used in previous work on METATEM [13–15,17]. In addition,
it has been incorporated in the semantics of AIL [8], a commonsemantics basis for a number of
languages, including AgentSpeak and 3APL; see [9].

5.1 Future Work

Our immediate aim with this work is to apply the model to larger applications, particularly in the
areas of ubiquitous computing and social organisations. This will give a more severe test for the
approach and will highlight any areas of difficulty.

As mentioned above, the approach is being integrated into the AIL semantics [8], which
provides a common semantics basis for a number of BDI languages. Since translations from
AgentSpeak, 3APL, etc are being produced, we also aim to translate the organisational aspects
used into the above model.

Finally, the aim of the work on AIL is to provide generic verification techniques for BDI
languages (that can be translated to AIL). In extending the AIL semantics, we also aim to provide
verification techniques for teams, roles and organisationsdeveloped within BDI languages.

References

1. H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reynolds, editors. The Imperative Future:
Principles of Executable Temporal Logic. Research Studies Press, May 1996.

2. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.Multi-Agent Programming:
Languages, Platforms and Applications. Number 15 in Multiagent Systems, Artificial Societies, and
Simulated Organizations. Springer-Verlag, 2005.

3. R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors.Multi-Agent Programming:
Languages, Platforms and Applications, volume 15 ofMultiagent Systems, Artificial Societies, and
Simulated Organizations. Springer, 2005.

4. R. H. Bordini, J. F. Hübner, and R. Vieira.Jason and the golden fleece of agent-oriented programming.
In Bordini et al. [2], chapter 1, pages 3–37.

5. P. R. Cohen and H. J. Levesque. Intention is Choice with Commitment. Artificial Intelligence, 42(2-
3):213–261, 1990.

6. P. R. Cohen and H. J. Levesque. Confirmations and Joint Action. InProc. International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 951–959, 1991.

7. P. R. Cohen and H. J. Levesque. Teamwork. Technical Report504, SRI International, Menlo Park,
CA, 1991.

8. L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and M. Wooldridge. A Common Semantic Basis
for BDI Languages. InProc. Seventh International Workshop on Programming Multiagent Systems
(ProMAS), Lecture Notes in Artificial Intelligence. Springer Verlag, 2007 (to appear).

9. L. A. Dennis, M. Fisher, and A. Hepple. Foundations of Flexible Multi-Agent Programming. Submit-
ted, 2007.

10. J. Ferber and O. Gutknecht. A Meta-model for the Analysisand Design of Organizations in Multi-agent
Systems. InProc. Third International Conference on Multi-Agent Systems (ICMAS), pages 128–135,
1998.

11. J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: An Organizational View of
Multi-agent Systems. InProc. Workshop on Agent-Oriented Software Engineering (AOSE), volume
2935 ofLNAI, pages 214–230. Springer-Verlag, 2003.

12. M. Fisher. METATEM: The Story so Far. InProc. Third International Workshop on Programming
Multiagent Systems (ProMAS), volume 3862 ofLecture Notes in Artificial Intelligence, pages 3–22.
Springer Verlag, 2006.

13. M. Fisher, C. Ghidini, and B. Hirsch. Organising Logic-Based Agents. InFormal Approaches to
Agent-Based Systems, volume 2699 ofLNAI, pages 15–27. Springer-Verlag, October 2003.

14. M. Fisher, C. Ghidini, and B. Hirsch. Programming groupsof rational agents. InProc. International
Workshop on Computational Logic in Multi-Agent Sytems (CLIMA), volume 3259 ofLNAI. Springer-
Verlag, November 2004.

15. M. Fisher and T. Kakoudakis. Flexible Agent Grouping in Executable Temporal Logic. In Gergatsoulis
and Rondogiannis, editors,Intensional Programming II. World Scientific Publishing Co., 2000.

16. M. Fisher, E. Pearce, M. Wooldridge, M. Sierhuis, W. Visser, and R. Bordini. Towards the Verifi-
cation of Human-Robot Teams. InIEEE Workshop on Leveraging Applications of Formal Methods,
Verification, and Validation (ISoLA), Washington D.C., USA., 2005.

17. B. Hirsch.Programming Rational Agents. PhD thesis, Department of Computer Science, University
of Liverpool, June 2005.

18. J. F. Hübner, J. S. Sichman, and O. Boissier. A Model for the Structural, Functional, and Deontic
Specification of Organizations in Multiagent Systems. InProc. Sixteenth Brazilian Symposium on
Artificial Intelligence (SBIA), pages 118–128, London, UK, 2002. Springer-Verlag.

19. N. R. Jennings and M. Wooldridge. Applications of agent technology. InAgent Technology: Founda-
tions, Applications, and Markets. Springer-Verlag, Heidelberg, 1998.

20. V. Lesser. Reflections on the Nature of Multi-Agent Coordination and its Implications for an Agent
Architecture.Autonomous Agents and Multi-Agent Systems, 1:89–111, March 1998.

21. H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On Acting Together. InProc. Eighth National
Conference on Artificial Intelligence (AAAI), pages 94–99, 1990.

22. N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote Agent: To Boldly Go Where No AI
System Has Gone Before.Artificial Intelligence, 103(1-2):5–48, 1998.

23. H. E. Pattison, D. D. Corkill, and V. R. Lesser. Instantiating Descriptions of Organizational Structures.
In M. N. Huhns, editor,Distributed Artificial Intelligence, Research Notes in Artificial Intelligence,
volume I, pages 59–96. Pitman Publishers, 1987.

24. D. V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Towards Team-Oriented Programming. In
Intelligent Agents VI — Proc. Sixth International Workshopon Agent Theories, Architectures, and
Languages (ATAL), volume 1757 ofLNAI, pages 233–247. Springer-Verlag, 1999.

25. A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceedings of the First Inter-
national Conference on Multi-Agent Systems (ICMAS-95), pages 312–319, San Francisco, CA, June
1995.

26. M. Sierhuis. Multiagent Modeling and Simulation in Human-Robot Mission Operations. (See
http://ic.arc.nasa.gov/ic/publications), 2006.

27. M. Sierhuis, J. M. Bradshaw, A. Acquisti, R. V. Hoof, R. Jeffers, and A. Uszok. Human-Agent Team-
work and Adjustable Autonomy in Practice. InProceedings of the 7th International Symposium on
Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Nara, Japan, 2003.

28. I. A. Smith and P. R. Cohen. Toward a Semantics for an AgentCommunications Language Based on
Speech-Acts. InProc. AAAI (Vol. 1), pages 24–31, 1996.

29. G. Tidhar. Team-Oriented Programming: Preliminary Report. Technical Report 1993-41, Australian
Artificial Intelligence Institute, April 1993.

30. J. Vazquez-Salceda, V. Dignum, and F. Dignum. Organizing Multiagent Systems. Technical Report
2004-015, Institute of Information & Computing Sciences, Utrecht University, March 2004.

31. M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice.The Knowledge Engi-
neering Review, 10(2):115–152, 1995.

