
Challenge Problems for Inductive Theorem Provers v1.0∗

Louise A. Dennis†, Jeremy Gow‡and Carsten Sḧurmann§

May 4, 2007

Abstract

Within the field of inductive theorem proving it is hard to assess claims for thesuperiority of any given system
since there is naturally a tendency to report “successes” – difficult or challenging problems automatically proved.
There is also a desire within the community to develop a store of shared knowledge about the challenges that face the
automation of proof by mathematical induction.

A group of researchers within the community agreed that they would eachput forward a number of “Challenge
Problems”. These should present interesting challenges to the automationof inductive proof or illustrate important
features which an inductive prover should be able to handle.

This technical report represent the current state of this challenge problem set.

Inductive Theorem proving is a small field. The main theorem provers within this field are Nqthm [2] (now re-
engineered as ACL2 [6]), INKA [1], theClam series [4, 8] and RRL [5]. Twelf [7] also looks at the automation of
inductive proof in the context of logical frameworks. Within the field it is hard to assess claims for the superiority
of any given system since there is naturally a tendency to report “successes” – difficult or challenging problems
automatically proved. There is also a desire within the community to develop a store of shared knowledge about the
challenges that face the automation of proof by mathematical induction.

TPTP (Thousands of Problems for Theorem Provers) [10] is a library of test problems for first-order ATP systems.
They provide the ATP community with a comprehensive librarycomplete with unambiguous names and references.
All the problems are stated in a standardised formulation offirst-order logic and are widely used to benchmark first-
order systems. They are also used as the test set for the CASC competition [9] which compares such systems. One
of the benefits of the TPTP library to the ATP community is the existence of a common set of problems by which
comparisons can be made.

It is not practical for inductive theorem provers to follow the pattern of the TPTP library. Various attempts have
been made to build a similar corpus of problems requiring inductive reasoning. The most mature of these was based
on the Boyer-Moore [2] corpus1. This corpus was unpopular partly because there was repetition within the problem
set and partly because many problems depended on a few particular function definitions. But the major objection was
that inductive theorem provers use a number of different logics, some of which are typed and some of which are not,
which made it difficult to agree on a standard format. The use of other logics also raised translation issues and a fully
automated process for converting the theorems, even into anagreed typed language was never produced.

A group of researchers within the community2 agreed that instead of a large set of benchmarks in a standardlogic
they would each put forward a number of “Challenge Problems”. These should present interesting challenges to the
automation of inductive proof or illustrate important features which an inductive prover should be able to handle. A set
of these problems would be collected which would remain sufficiently small that an individual could represent them
within their own theorem proving system as they saw fit.

This technical report represent the current state of this challenge problem set.

∗University of Liverpool, Department of Computer Science, Technical Report, ULCS-007-004
†Department of Computer Science, The University of Liverpool
‡UCL Interaction Centre (UCLIC), University College London
§Department of Theoretical Computer Science, IT University ofCopenhagen
1This has become known as the Dmac corpus after David McAllesterwho translated a fragment of the NQTHM corpus into a simpler language.
2At the 2000 CADE Workshop on the Automation of Proof by Mathematical Induction.

1



Standard Notation
Logic

⊤ True
⊥ False
¬ negation
∨ or
∧ and
→ implication

Natural Numbers
s successor
+ addition
∗ multiplication
xy exponentiation
even true if number is even (defined without using mutual recursion with odd)
n
√

x nth root (inverse of exponentiation)
x
y

quotient (result of dividingx by y rounded down to nearest natural)
x mod y the remainder ofx divided byy

< less than
≤ less than or equal to

Lists
[] empty list
:: cons
length(l) length of listl
l1 <> l2 append of lists,l1 andl2
x ∈ l list membership
hd(l) head of list
tl(l) tail of list
map(f, l) a function ,f , applied to all elementsl
take(n, l) the firstn elements ofl
drop(n, l) a list with the firstn elements removed

The Challenges

1 IWC001a: First Order Version of the Arithmetic/Geometric Mean

1.1 Summary

• Unusual Induction Scheme.

• Needs Lemmas and extra functions.

• Presents challenges to Rippling [3].

• Goal is not equational.

1.2 Definitions

sum (first order)

Σ0L = 0 (1)

ΣN [] = 0 (2)

Σs(Y )H :: T = H + ΣY T (3)

2



prod (first order)

Π0L = 1 (4)

ΠN [] = 1 (5)

Πs(Y )H :: T = H ∗ ΠY T (6)

1.3 Theorem

∀n, a. n = length(a) → nn ∗ Πna ≤ (Σna)n (7)

1.4 Comments

The main challenge here is finding the appropriate inductionscheme. One possible schemes involves two base cases
(0 and 1) and two step cases(P (n) → P (2.n)) and(P (s(n)) → P (n)). However the step cases require a number of
lemmas (including the introduction of a new functions). Thenew functions are called here oddlist, evenlist, sumlist,
timeslist, ctimeslist, explist and are for respectively getting a list of the odd numbered elements of a list, the even
numbered elements of a list, pairwise summation of all the elements of two lists, pairwise multiplication of two list,
multiply every element of a list by a constant and raising every element of a list by a given exponent.

oddlist

oddlist([]) = [] (8)

oddlist(H :: []) = H :: [] (9)

oddlist(H1 :: H2 :: T ) = H1 :: oddlist(T ) (10)

evenlist:

evenlist([]) = [] (11)

evenlist(H :: []) = [] (12)

evenlist(H1 :: H2 :: T )) = H2 :: evenlist(T ) (13)

sumlist:

sumlist([], L) = L (14)

sumlist(L, []) = L (15)

sumlist(H1 :: T1,H2 :: T2) = (H1 + H2) :: sumlist(T1, T2) (16)

timeslist:

timeslist([], L) = L (17)

timeslist(L, []) = L (18)

timeslist(H1 :: T1,H2 :: T2) = (H1 ∗ H2) :: timeslist(T1, T2) (19)

ctimeslist:

ctimeslist(M, []) = [] (20)

ctimeslist(M,H :: T ) = (M ∗ H) :: ctimeslist(M,T ) (21)

explist:

explist([],M) = [] (22)

explist(H :: T,M) = (HM ) :: explist(T,M) (23)

3



Lemmas used in a sample proof are:

(xy)z = xzyz

(xy)z = y(xz)

Πnctimeslist(x, l) = xnΠnl

Σ2nl = Σnsumlist(oddlist(l), evenlist(l))

Π2nl = Πnprodlist(oddlist(l), evenlist(l))

zyz = (xy)z

Πnexplist(l,m) = (Πnl)m

Σnsumlist(l,m) = Σnl + Σnm

sumlist(l, ctimeslist(n, l)) = ctimeslist(s(n), l)

Σnctimeslist(m, l) = mΣnl

xz ≤ xy → z ≤ y

xs(n) = xxn

Even with these lemmas the rewriting involved presents several challenges to rippling (e.g. sinks need to be proved
equal) and rippling has to take place in the induction hypothesis for the second step case.

1.5 Source

T. Walsh,The Arithmetic/Geometric Mean Theorem, Edinburgh MRG Group Blue Book Note 828.

2 IWC001b: Arithmetic/Geometric Mean

2.1 Summary

• Higher Order.

• Unusual Induction Scheme.

• Extra lemmas required.

• Challenges Rippling.

• Goal is not equational.

2.2 Definitions

sum

Σ0F = F (0) (24)

Σs(Y )F = F (s(Y )) + ΣY F (25)

prod

Π0F = F (0) (26)

Πs(Y )F = F (s(Y )) ∗ ΠY F (27)

4



2.3 Theorem

∀n, a. Πna ≤ (
Σna

n
)n (28)

2.4 Comments

This is essentially the same theorem as IWC001c but reformulated and using a different step case in a way that makes
the proof easier. Reformulation is attributed to Shankar.

There are at least two possible induction schemes that can beused for this proof. One with the step cases(P (n) →
P (2n)) and(P (n) → P (2n − 1)) and(∀m.(m < n) → P (m)) → P (n)) with a casesplit on odd and even numbers
in the step case. The discussion here is based upon a proof using the first of these.

It needs several lemmas (some given below)

Σ2nf = Σnf + Σnλi.f(n + i)

Π2nf = Πnf.Πnλi.f(n + i)

x

yz
=

x
z

y

x + y

z
=

x

z
+

y

z

xy
√

z = x

√

y
√

z

x√yz = x√y.x
√

z

(xn = y) = (x = (n√y))

Even with these lemmas the rewriting involved presents several challenges to rippling (e.g. the “odd” step case
does not appear to make use of the annotations).

2.5 Source

A. Bundy,Shankar’s Arithmetic/Geometric Mean Proof, Edinburgh MRG Group Blue Book Note 951.

3 IWC001c: Arithmetic/Geometric Mean

3.1 Summary

• Higher Order.

• Unusual Induction Scheme.

• Extra lemmas required.

• Challenges Rippling.

• Goal is not equational.

sum

Σ0F = F (0) (29)

Σs(Y )F = F (s(Y )) + ΣY F (30)

prod

Π0F = F (0) (31)

Πs(Y )F = F (s(Y )) ∗ ΠY F (32)

5



3.2 Theorem

∀n, a.nn ∗ Πna ≤ (Σna)n (33)

3.3 Comments

There are at least two possible induction schemes that can beused for this proof. One with the step cases(P (n) →
P (2n)) and(P (s(n)) → P (n)) and∀m.(m < n) → P (m) → P (n) called variously course of values induction,
strong induction and other names. The discussion here is based upon a proof using the first of these.

It needs several lemmas (given below)

(xy)z = xzyz

(xy)z = y(xz)

Πnλi.xf(i) = xnΠnf

Σ2nf = Σnλi.f(2i − 1) + f(2i)

Π2nf = Πnλi.f(2i − 1) + f(2i)

xyz = (xy)z

Σnf + Σng = Σnλi.f(i) + g(i)

Σnλi.xf(i) = xΣnf

xz ≤ xy → z ≤ y

(34)

Even with these lemmas the rewriting involved presents several challenges to rippling (e.g. sinks need to be proved
equal) and rippling has to take place in the induction hypothesis for the second step case.

3.4 Source

A. Bundy,An Analysis of the Arithmetic/Geometric Mean TheoremEdinburgh MRG Group Blue Book Note 524.

4 IWC002: Even Length Append

4.1 Summary

• Needs induction scheme on two variable.

• Needs a lemma.

4.2 Theorem

∀x, y.even(length(X <> Y )) = even(length(Y <> X)) (35)

4.3 Comments

Its the (non-mutually recursive) definition of even that requires a non-straigtforward induction scheme.
A lemma is also required (along the lines of)

length(X <> Y1 :: (Y2 :: Y )) = s(s(length(Y <> X)))

6



4.4 Source

Andrew Ireland

5 IWC003: Case Analysis

5.1 Summary

• Requires Case Analysis

• Not an equality theorem

5.2 Theorem:

∀x, z. X ∈ Y → X ∈ (Y <> Z) (36)

5.3 Comments

This is here becauseλClam is no good at case splits. I’m not sure if this is a problem particular toλClamor a more
general problem.

5.4 Source

Andrew Ireland

6 IWC004a: Rotate Length

6.1 Summary

• Requires a Generalisation.

• Needs lemmas.

6.2 Definitions

rotate

rotate(0, Z) = Z (37)

rotate(s(N), []) = [] (38)

rotate(s(N), Y :: Z) = rotate(X,Z <> (Y :: [])) (39)

Allowed Lemmas

(X <> Y ) <> Z = X <> (Y <> Z) (40)

(X <> (Y :: [])) <> Z = X <> (Y :: Z)) (41)

6.3 Theorem

∀x. rotate(length(X),X) = X (42)

7



6.4 Comments

A generalisation step is required. One of these would be to transform the theorem into IWC004b.

6.5 Source

Andrew Ireland

7 IWC004b: Rotate Length

7.1 Summary

• Lemmas Required

7.2 Definitions

rotate

rotate(0, Z) = Z (43)

rotate(s(N), []) = [] (44)

rotate(s(N), Y :: Z) = rotate(X,Z <> (Y :: [])) (45)

7.3 Theorem

∀x, y. rotate(length(X),X <> Y ) = Y <> X (46)

7.4 Comments

Needs lemmas:

(X <> Y ) <> Z = X <> (Y <> Z) (47)

(X <> (Y :: [])) <> Z = X <> (Y :: Z)) (48)

7.5 Source

Andrew Ireland

8 IWC005a: Binomial Theorems

8.1 Summary

• Non Trivial Lemmas needed

8.2 Definitions

choose

choose(X, 0) = s(0) (49)

choose(0, s(Y )) = 0 (50)

choose(s(X), s(Y )) = choose(X, s(Y )) + choose(X,Y ) (51)

8



sum

Σ0
XF = F (0) (52)

s(Y ) < X → Σ
s(Y )
X F = 0 (53)

¬(s(Y ) < X) → Σ
s(Y )
X F = F (s(Y )) + ΣY

XF (54)

8.3 Theorem

∀x, n. s(x)n = Σn
0 (λi.choose(n, i) ∗ xi) (55)

8.4 Comments

Requires several non-trivial lemmas. A simple first order version has been proved by SPIKE.
Possible lemmas include:

choose(n, k) = choose(n, n − k)

Σn
mλi.f(i) + G(i) = Σn

mf + Σn
mg

Σn
mλi.t ∗ g(i) = t ∗ Σn

mg

¬s(m) < n ⇒ Σn
s(m)f = f(n) + Σn

mλi.f(s(i))

8.5 Variants

choose(n, i) can be replaced with n!
(i!∗(n−i)!)

8.6 Source

T. Walsh,The Binomial Theorem, MRG Group BBNote 903.

9 IWC005b: Binomial Theorem (Variation)

9.1 Summary

• Non Trivial Lemmas needed.

9.2 Definitions

choose

choose(X, 0) = s(0) (56)

choose(0, s(Y )) = 0 (57)

choose(s(X), s(Y )) = choose(X, s(Y )) + choose(X,Y ) (58)

sum

Σ0
XF = F (0) (59)

s(Y ) < X → Σ
s(Y )
X F = 0 (60)

¬(s(Y ) < X) → Σ
s(Y )
X F = F (s(Y )) + ΣY

XF (61)

9



9.3 Theorem:

∀x, y, n.(x + y)n = Σn
0 (λi.choose(n, i) ∗ xi ∗ yn−i) (62)

9.4 Comments

9.5 Variants

choose(n, i) can be replaced with n!
(i!∗(n−i)!)

9.6 Source

10 IWC006: Two Definitions of Even are Equivalent

10.1 Summary

• Mutual Recursion

10.2 Definitions

evenm

evenm(0) = ⊤ (63)

evenm(s(N)) = oddm(N) (64)

oddm

oddm(0) = ⊥ (65)

oddm(s(N)) = evenm(N) (66)

evenr

evenr(0) = ⊤ (67)

evenr(s(0)) = ⊥ (68)

evenr(s(s(N))) = evenr(N) (69)

10.3 Theorem

∀n.evenm(n) = evenr(n) (70)

10.4 Source

Alan Bundy

11 IWC007: All numbers are odd or even

11.1 Summary

• Mutual Recursion

• Not Equality

10



11.2 Definitions

evenm

evenm(0) = ⊤ (71)

evenm(s(N)) = oddm(N) (72)

oddm

oddm(0) = ⊥ (73)

oddm(s(N)) = evenm(N) (74)

11.3 Theorem

∀n.evenm(n) ∨ oddm(n) (75)

11.4 Source

Alan Bundy

12 IWC008a: Chinese Remainder Theorem

12.1 Summary

• Needs many lemmas (some of whose proofs are also challenging)

• An Existential Witness has to be Provided

12.2 Definitions

allcongruent

allcongruent(X, []) = ⊤ (76)

allcongruent(X,Y :: Y s, Z :: Zs) = allcongruent(X,Y s, Zs) ∧ (X mod Y ) = (Z mod Y ) (77)

allpositive true if all members of the list are greater than 0.

allprime2

allprime2([]) = ⊤ (78)

allprime2(Y :: Z) = prime2list(Y,Z) ∧ allprime2(Z) (79)

prime2 is true iff its arguments are relatively prime

prime2list

prime2list(X, []) = ⊤ (80)

prime2list(X,Y :: Z) = prime2(X,Y ) ∧ prime2list(X,Z) (81)

products1 product of list.

11



12.3 Theorem

∀l1, l2.∃x.allpositive(l1) ∧ allprime2(l1) → allcongruent(x, l2, l1) (82)

∀l1, l2, x, y.allpositive(l1) ∧ allprime2(l1)∧
allcongruent(x, l2, l1) ∧ allcongruent(y, l2, l1) → (x − y) mod products(l) = 0 (83)

12.4 Comment

Actually two proofs, existance and uniqueness. Proved in RRL by Zhang and Hua and there is a good deal of comment
of the proof in their CADE-11 paper on the subject. They provide by hand the existential witness needed for the
existance part of the proof.

12.5 Source

Proving the Chinese Remainder Theorem by the Cover Set Induction H. Zhang and X. Hua, CADE-11, D. Kapur (ed),
1992. Springer-Verlag.

13 IWC008b: Chinese Remainder Theorem (Higher Order)

13.1 Summary

• Needs many lemmas (some of whose proofs are also challenging).

• An Existential Witness has to be Provided.

• Higher Order.

13.2 Definitions

all

all(X, 0, P ) = P (0) (84)

s(Y ) < X → all(X, s(Y ), P ) = ⊤ (85)

¬(s(Y ) < X) → all(X, s(Y ), P ) = P (s(Y )) ∧ all(X,Y, P ) (86)

prod

Π(X, 0, F ) = F (0) (87)

s(Y ) < X → Π(X, s(Y ), F ) = s(0) (88)

¬(s(Y ) < X) → Π(X, s(Y ), F ) = F (s(Y )) ∗ Π(X,Y, F ) (89)

quot

quot(X, 0) = 0 (90)

(X < Y ) ∧ ¬(Y = 0) → quot(X,Y ) = 0 (91)

¬(X < Y ) ∧ ¬(Y = 0) → quot(X,Y ) = s(quot(X − Y, Y )) (92)

rprime X andY are relatively prime.

12



13.3 Theorem

∀f, g, n, u1, u2, v1, v2.

∃x.all(0, n, λi.(0 < f(i)))
∧ 0 ≤ u1 ≤ n ∧ 0 ≤ u2 ≤ n

∧ u1 6= u2 ∧ rprime(f(u1), f(u2))
→ all(0, n, λi.x = (g(i) mod f(i))

(93)

∀f, g, n, u1, u2, v1, v2, x1, x2.

all(0, n, λi.(0 < f(i)))
∧ 0 ≤ u1 ≤ n ∧ 0 ≤ u2 ≤ n

∧ u1 6= u2 ∧ rprime(f(u1), f(u2))
∧ all(0, n, λi.x1 = (g(i) mod f(i))) ∧ all(0, n, λi.x2 = (g(i) mod f(i)))
→ (x1 mod Π(0, n, f)) = (x2 mod Π(0, n, g))

(94)

13.4 Comment

Actually two proofs, existance and uniqueness First Order version proved in RRL by Zhang and Hua (See IWC008a).

14 IWC009: “Pete’s Nasty Theorem”

14.1 Summary

• Problems for Rippling (Hole-less Wave Front)

14.2 Definitions

split list

split list([],W ) = W (95)

length(W ) = 6 → split list(A :: X,W ) = W :: split list(A :: X, []) (96)

¬(length(W ) = 6) → split list(A :: X,W ) = split list(X,W <> [A]) (97)

new split

new split([],W,D) = W (98)

(D = 6) → new split(A :: X,W,D) = W :: new split(A :: X, [], length([])) (99)

¬(D = 6) → new split(A :: X,W,D) = new split(X,W <> [A], s(D)) (100)

14.3 Theorem

∀x,w.new split(x,w, (length(w))) = split list(x,w) (101)

14.4 Comment

This poses a problem for rippling since it is hard to annotatethe definitions of wave rules (although a number of
solutions have been proferred I’m not aware that any have been implemented).

13



14.5 Source

Problem attributed to P. Madden.
A. Bundy,How to Prove Pete’s Nasty Theorem, Edinburgh MRG Group BBNote 725
A. Bundy,The Advantages of Binary Sinks, Edinburgh MRG Group BBNote 1311

15 IWC010: Quicksort

15.1 Summary

• Destructor Style Induction Scheme

• Additional Lemmas

15.2 Definitions

grtlist

grtlist(X, []) = [] (102)

H ≤ X → grtlist(X,H :: T ) = grtlist(X,T ) (103)

¬(H ≤ X) → grtlist(X,H :: T ) = H :: grtlist(X,T ) (104)

leqlist

leqlist(X, []) = [] (105)

H ≤ X → leqlist(X,H :: T ) = H :: leqlist(X,T ) (106)

¬(H ≤ X) → leqlist(X,H :: T ) = leqlist(X,T ) (107)

occ

occ(X, []) = 0 (108)

X = H → occ(X,H :: T ) = s(occ(X,T )) (109)

X 6= H− > occ(X,H :: T ) = occ(X,T ) (110)

qsort

qsort([]) = [] (111)

qsort(H :: T ) = qsort(leqlist(H,T )) <> H :: qsort(grtlist(H,T )) (112)

sorted

sorted([]) = ⊤ (113)

sorted(X :: []) = ⊤ (114)

(T 6= []) ∧ (¬(H ≤ hd(T ))) → sorted(H :: T ) = ⊥ (115)

(T 6= []) ∧ (H ≤ hd(T )) → sorted(H :: T ) = sorted(T ) (116)

15.3 Theorem

∀l.sorted(qsort(l)) (117)

∀l.occ(x, qsort(l)) = occ(x, l) (118)

14



15.4 Comments

Proved in RRL (using split, instead ofgrtlist andleqlist, which takes< and> as arguments), Walther describes an
approach in Mathematical Induction in the Handbook of Automated Reasoning and Bronsard, Reddy and Hasker look
at the problem in Induction Using Term Orders in JAR 16.

A destructor style induction is needed.
Possible Lemmas:

sorted(L) ∧ sorted(M) → sorted(L <> M) (119)

occ(X,L <> M) = occ(X,L) + occ(X,M) (120)

X ≤ Y → occ(X, leqlist(Y,L)) = occ(X,L) (121)

¬(X ≤ Y ) → occ(leqlist(Y,L) = 0 (122)

X ≤ Y → occ(X, grtlist(Y,L)) = 0 (123)

¬(X ≤ Y ) → occ(grtlist(Y,L)) = occ(X,L) (124)

15.5 Source

F. Bronsard, U. Reddy, R. Hasker, Induction using Term Orders. J. of Automated Reasoning Vol 16, Nos 1-2, 3-37,
1996.

C. Walther,Mathematical Induction. In D. Gabbay, C. Hogger and J. Robinson (eds), Handbook of Logic in Artificial
Intelligence and Logic Programming, v2. 127-228, OUP, 1994.

H. Zhang, D. Kapur, M. Krishnamoorthy.A Mechnaizable Induction Principle for Equational Specifications. In E.
Lusk and R. Overbeek (eds). Proc 9th International Conference on Automated Induction, 152-181, Springer-Verlag,
1988.

16 IWC011: Verifying Abstractions in Model Checking (Safety Lemma for
Removing the head of a list)

16.1 Summary

• Generalisation(?).

• Challenges for Rippling.

• Goal is not equational.

16.2 Definitions

aelem enumerated type containing elements{e1, e2, ne}. This is intended to be an abstraction of the natural numbers:
anα ∈ is equal to 2, 5 or some other natural.

α∈ Converts naturals to aelems.

α∈(2) = e1 (125)

α∈(5) = e2 (126)

¬((N = 2) ∨ (N = 5)) → α∈(N) = ne (127)

15



order enumerated type containing elements{e[], e1l, e2l, e1e2l, e2e1l, error}. This abstracts lists of aelems to the
information about whether there are an occurences ofe1 ande2 in the list and in which order they come.error

indicates that there is more than 1 occurence of eithere1 or e2 in the list.

combine Represents the effect of inserting aelems in orders.

combine(ne,X) = X (128)

combine(e1, e[]) = e1l (129)

combine(e1, e2l) = e1e2l (130)

combine(e2, e[]) = e2l (131)

combine(e2, e1l) = e2e1l (132)

¬((X = e[]) ∨ (X = e2l)) → combine(e1,X) = error (133)

¬((X = e[])or(X = e1l)) → combine(e2,X) = error (134)

αorder Converts a regular list of naturals to an order

αorder([]) = e[] (135)

αorder(H :: T ) = combine(α∈(H), αorder(T )) (136)

alist New Type. A quadruple of two booleans, an aelem and an order. Arefinement ofαorder. The first boolean
indicates whether the list is nonempty, the second whether it has only one element, the third element gives the
head of the list and the third the ordering information held in the order type.

α This converts a regular list of naturals to an alist.

α([]) = 〈⊥,⊥, ne, e[]〉 (137)

α(H1 :: T ) = 〈⊤, (T = []), α∈(H1), αorder(T )〉 (138)

setl New type. Constructors:

set∅

seti(alist, setl)

rmhd

rmhd([]) = [] (139)

rmhd(H :: T ) = T (140)

set elem

set elem(E, set∅) = ⊥ (141)

set elem(E, seti(E,X)) = ⊤ (142)

¬(E = X) → set elem(E, seti(X,T )) = set elem(E, T ) (143)

armhd

armhd(〈⊥, A,B,C〉) = seti(〈⊥,⊥, ne, e[]〉, set∅) (144)

armhd(〈A,⊤, B,C〉) = seti(〈⊥,⊥, ne, e[]〉, set∅) (145)

armhd(〈⊤,⊥,X, e[]〉) = seti(〈⊤,⊥, ne, e[]〉, seti(〈⊤,⊤, ne, e[]〉, set∅)) (146)

armhd(〈⊤,⊥,X, e1l〉) = seti(〈⊤,⊥, e1, e[]〉, seti(〈⊤,⊤, e1, e[]〉, seti(〈⊤,⊥, ne, e1l〉, set∅)))(147)

16



armhd(〈⊤,⊥,X, e2l〉) = seti(〈⊤,⊥, e2, e[]〉, seti(〈⊤,⊤, e2, e[]〉, seti(〈⊤,⊥, ne, e2l〉, set∅)))(148)

armhd(〈⊤,⊥,X, e1e2l〉) = seti(〈⊤,⊥, ne, e1e2l〉, seti(〈⊤,⊥, e1, e2l〉, set∅)) (149)

armhd(〈⊤,⊥,X, e1e1l〉) = seti(〈⊤,⊥, ne, e1e1l〉, seti(〈⊤,⊥, e2, e1l〉, set∅)) (150)

armhd(〈⊤,⊥,X, error〉) = seti(〈⊤,⊥, ne, error〉, seti(〈⊤,⊥, e1, e1l〉,
seti(〈⊤,⊥, e1, e1e2l〉, seti(〈⊤,⊥, e1, e2e1l〉,
seti(〈⊤,⊥, e1, error〉, seti(〈⊤,⊥, e2, e2l〉,
seti(〈⊤,⊥, e2, e1e2l〉, seti(〈⊤,⊥, e2, e2e1l〉,
seti(〈⊤,⊥, e2, error〉, set∅))))))))) (151)

16.3 Theorem

∀l.set elem(α(rmhd(l)), armhd(α(l))) (152)

16.4 Comments

Provided by Dieter Hutter for 2000 Challenges. The problem is originally attributed to Dennis Dams of Eindhoven
University. Believe the problems involve the need for generalisations and some challenges for Rippling.

17 IWC012: Verifying Abstractions in Model Checking (Safety Lemma for
the prefix Operation)

17.1 Summary

• Generalisation(?).

• Lemmas.

• Challenges for Rippling.

• Goal is not equational.

17.2 Definitions

aelem Defined as for IWC011.

order Defined as for IWC011.

alist Defined as for IWC011.

αelem Defined as for IWC011.

combine Defined as for IWC011.

αorder Defined as for IWC011.

α Defined as for IWC011.

prefix

prefix([], L) = ⊤ (153)

prefix(h :: t1, h :: t2) = prefix(t1, t2) (154)

(h1 6= h2) → prefix(h1 :: t1, h2 :: t2) = ⊥ (155)

17



aprefix

aprefix(〈⊥, A,B,C〉, 〈E,F,G,H〉) = ⊤ (156)

aprefix(〈A,B,C,D〉, 〈E,F,G, error〉) = ⊤ (157)

aprefix(〈A,⊤,D, e[]〉, 〈⊤, F,G,H〉) = ⊤ (158)

aprefix(〈A,B,D, e[]〉, 〈⊤,⊥, G,H〉) = ⊤ (159)

aprefix(〈A,⊤,D, e1l〉, 〈E,F,G, e1l〉) = ⊤ (160)

aprefix(〈A,B,D, e1l〉, 〈E,⊥, G, e1l〉) = ⊤ (161)

aprefix(〈A,⊤,D, e1l〉, 〈E,F,G, e1e2l〉) = ⊤ (162)

aprefix(〈A,⊤,D, e2l〉, 〈⊤,⊥, G, e2l〉) = ⊤ (163)

aprefix(〈A,B,D, e2l〉, 〈E,⊥, G, e2l〉) = ⊤ (164)

aprefix(〈A,B,D, e2l〉, 〈E,F,G, e2e1l〉) = ⊤ (165)

otherwisefalse (166)

17.3 Theorem

∀l1, l2.prefix(l1, l2) → aprefix(α(l1), α(l2)) (167)

17.4 Comments

Provided by Dieter Hutter for 2000 Challenges. Believe the problems involve the need for generalisations and some
challenges for Rippling.

Lemmas required by INKA include:

aprefix(〈⊤,⊥, U, Y 〉, 〈⊤,⊥, V, Z〉) → aprefix(〈⊤,⊥,W, combine(X,Y )〉, 〈⊤,⊥,W, combine(X,Z)〉)

aprefix(〈⊤,⊥, U, combine(U, e[])〉, 〈⊤,⊥, U, combine(U, V )〉)

prefix(Y,Z) → aprefix(〈⊤,⊥, Z, αorder(Y )〉, 〈⊤,⊥,X, αorder(Z)〉)

18 IWC013: Divide and Conquer

18.1 Summary

• Destructor style induction (at least)

18.2 Definitions

dc

dc(F,B, []) = B (168)

dc(F,B,X :: []) = X (169)

dc(F,B,H1 :: (H2 :: L)) = F (dc(F,B, take(
length(L)

2
, L)), dc(F,B, drop(

length(L)

2
, L)))(170)

foldr

foldr(F,A, []) = A (171)

foldr(F,A,H :: T ) = F (H, foldr(F,A, T )) (172)

18



split

split(0, L) = L :: [] (173)

split(s(0), L) = L :: [] (174)

split(s(s(X)), L) = take(
length(L)

2
, L) :: split(1, drop(

length(L)

2
, L)) (175)

18.3 Theorem

∀f, b, x, l, n. f(b, x) = x → dc(f, b, l) = foldr(f, b, foldr(<>, [],map(map(λx.f(b, x), split(n, l)))))

18.4 Comments

Prove the equivalence of two divide and conquer algorithms.

18.5 Source:

Greg Michaelson.

19 IWC014: Harald’s Problem

19.1 Summary

• Non-standard induction scheme.

• Needs a Lemma

• Higher Order

19.2 Definitions

foldl

foldl(F,A, []) = A (176)

foldl(F,A,H :: T ) = foldl(F, F (A,H), T ) (177)

foldr

foldr(F,A, []) = A (178)

foldr(F,A,H :: T ) = F (H, foldr(F,A, T )) (179)

19.3 Theorem

∀o1, o2, l, x, y, z, a. (o1(a, x) = o2(x, a) ∧ o1(o2(x, y), z) = o2(x, o1(y, z))) → foldl(o1, a, l) = foldr(o2, a, l)

19.4 Comments

Allegedly easy to understand and prove when expressed as Ellipsis. A key lemma suggested isfoldl(F,A, (L <>

[e])) = F (foldl(F,A,L), E) (NB. It is probably not unreasonable to assume the presence of this lemma in a well
developed theory.) and a suggested induction rule is

P ([]), P ([E]), P (T ) ∧ P (H :: T ) ∧ P (T <> [E]) ⇒ P (H :: T <> [E])

∀L.P (L)

which gives 3 induction hypotheses in the step case.

19



19.5 Source

Attributed to Harald Ganzinger. A. Bundy,Rippling in Harald’s Problem, Edinburgh MRG Group BBNote 978

20 IWC015: Paulson’s Problem

20.1 Summary

• Non-standard induction scheme

• Lemma needed

• Problems for Rippling

• Higher Order

20.2 Definitions

foldl

foldl(F,A, []) = A (180)

foldl(F,A,H :: T ) = foldl(F, F (A,H), T ) (181)

20.3 Theorem

∀o, l, x, y, e. o(x, e) = x ∧ o(o(x, y), z) = o(x, o(y, z)) → o(y, foldl(o, e, l)) = foldl(o, y, l)

20.4 Comments

Paulson presents two proofs of this. In both cases he uses non-structural induction to justify the use of a non-standard
but structural induction scheme.

The two schemes are:
P ([]), P (l) → P (L <> [X])

∀L.P (L)

and
P ([]), P ([x]), P (x :: l) → P (x1 :: (x2 :: l))

∀L.P (L)
.

With the first of these schemes a rippling proof goes through fairly easily, given the lemma

foldl(F,X,L <> M) = foldl(F, foldl(F,X,L),M)

The second presents some fairly serious challenges to rippling.
Another suggested lemma is:

foldl(F,X,L <> H :: T ) = F (foldl(F,X,L),H)

20.5 Source

L. C. Paulson, ML for the Working Programmer.
A. Bundy,Non-Structural Inductions and Rippling, Edinburgh MRG Group BBNote 1188

20



21 IWC016: The Whisky Problem

21.1 Summary

• Needs some sort of Generalisation.

• Goal is not an equation.

21.2 Definitions

p(0, 0) (182)

p(X, 0) → p(h(X), 0) (183)

p(h(X), Y ) → p(X, s(Y )) (184)

21.3 Theorem

∀y.p(0, y)

21.4 Comments

This is a proof from the domain of first order temporal logic. For it to go through the original conjecture needs to be
generalised to:∀y, n.p(hn(0), y) (wherehn meansn applications ofh - which is second order) or a new functionh∗

needs to be introduced

h∗(0,X) = X (185)

h∗(s(n),X) = h(h∗(n,X)) (186)

and the conjecture generalised to
∀y, n.p(h∗(n, 0), y)

21.5 Source

Logics group at Liverpool. In particular Michael Fisher andAnatoli Degtyarev. Problem originally attributed to
Regimantas Pliuskevicius.
L. A. Dennis and A. Bundy, A Comparison of two Proof Critics: Power vs. Robustness, in V. A Carreno, C. A. Munoz,
S. Tahar (Eds.):Proceedings of Theorem Proving in Higher Order Logics, 15thInternational Conference, TPHOLs
2002, Hampton, VA, USA, August 20-23, 2002. pp 182-198. LNCS 2410. Springer.

22 IWC017: Dixon’s Problem

22.1 Summary

22.2 Definitions

P0 ⇐⇒ (P0 ⇐⇒ P1)

P1 ⇐⇒ (P1 ⇐⇒ P2)

...

P i ⇐⇒ (Pi ⇐⇒ P (i + 1))

...

Pn ⇐⇒ (Pn ⇐⇒ P0)

21



Which can be captured in something like the following equation

q(N) = (∀0 ≤ i < N.p(i) ⇐⇒ (p(i) ⇐⇒ p(s(i))) ∧ p(N) ⇐⇒ (p(N) ⇐⇒ p(0))) (187)

22.3 Theorem

∀n. q(n) → p(0)

22.4 Comments

Interestingly this problem is easy for classical logic, butless easy if you are using intuitionistic logic (but still true and
provable). Either way induction is a natural way to solve theproblem.

22.5 Source

Lucas Dixon, Edinburgh MRG group.

References

[1] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. System description: INKA 5.0 - a logical voyager. In
H. Ganzinger, editor,16th International Conference on Automated Deduction, CADE-16, volume 1732 ofLecture
Notes in Artificial Intelligence, Trento, 1999. Springer.

[2] R. S. Boyer and J S. Moore.A Computational Logic.ACM monograph series. Academic Press, New York, 1979.

[3] A. Bundy, D. Basin, D. Hutter, and A. Ireland.Rippling: Meta-Level Guidance for Mathematical Reasoning,
volume 56 ofCambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2005.

[4] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In M. E. Stickel, editor,10th
International Conference on Automated Deduction, pages 647–648. Springer-Verlag, 1990. Lecture Notes in
Artificial Intelligence No. 449. Also available from Edinburgh as DAI Research Paper 507.

[5] D. Kapur and H. Zhang. An overview of rewrite rule laboratory (RRL). J. Computer and Mathematics with
Applications, 29(2):91–114, 1995.

[6] M. Kaufmann and J S. Moore. ACL2: An industrial strength version of Nqthm. InCompass’96: Eleventh Annual
Conference on Computer Assurance, page 23, Gaithersburg, Maryland, 1996. National Institute of Standards and
Technology.

[7] F. Pfenning and C. Schürmann. System description: Twelf — A meta-logical framework for deductive systems.
In H. Ganzinger, editor,Proceedings of the 16th International Conference on Automated Deduction (CADE-16),
pages 202–206, Trento, Italy, 1999. Springer-Verlag LNAI 1632.

[8] J.D.C. Richardson, A. Smaill, and I. Green. System description: Proof planning in higher-order logic with
lambda-clam. In C. Kirchner and H. Kirchner, editors,Conference on Automated Deduction (CADE’98), volume
1421 ofLecture Notes in Computer Science, pages 129–133. Springer-Verlag, 1998.

[9] G. Sutcliffe. The CADE-17 ATP system competition.Journal of Automated Reasoning, 27(3):227–250, 2001.

[10] G. Sutcliffe and C. Suttner. The TPTP problem library: CNF release v1.2.1.Journal of Automated Reasoning,
21(2):177–203, 1998.

22


