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Abstract

Many types of inter-agent dialogue, including informa-
tion seeking, negotiation and deliberation can be fruit-
fully seen as varieties of argumentation. Argumenta-
tion frameworks, originally introduced by Dung, pro-
vide a powerful tool for evaluating the sets of con-
flicting arguments which emerge from such dialogues.
Originally argumentation frameworks considered argu-
ments as completely abstract entities related by a sin-
gle attack relation, which always succeeded. Use of
the frameworks in practical application such as law, e-
democracy and medicine, however, motivated a distinc-
tion between successful and unsuccessful attacks, deter-
mined by properties of the conflicting arguments. This
remains insufficient, however, to capture a range of phe-
nomena which can arise from procedural and contextual
considerations, and which require that the success of an
attack depend not only on the properties of the conflict-
ing arguments but also on the nature of the attack or the
context in which it is made. In this paper we present,
in functional decomposition style, an analysis of argu-
ments, their properties and relations which can accom-
modate a wide range of such phenomena. Our analysis
is extensible and is presented in a series of stages which
capture first the abstract notions of original argumenta-
tion frameworks, is then extended to embrace proper-
ties of arguments, and then further extended to include
properties of relations between arguments. We illustrate
each stage of this progression by representing charac-
teristic systems of each type, and discuss the particular
features of argumentation which they can address.

Introduction

In recent theoretical research on argumentation frameworks
((Dung 1995), (Bench-Capon 2003), (Atkinson 2005),
among others), arguments are first class objects. Arguments
are in an attack relation, where one argument attacks another
argument; the attack relation succeeds unless the attacking
argument is itself defeated. Arguments can be understood as
nodes and the attack relation as arcs. In some proposals, the
success of an attack is regulated by ascribing properties to
arguments whichfilter the attack relation relative to the prop-
erty of the arguments; for instance, preferences or values can
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be ascribed to the arguments ((Amgoud & Cayrol 1998) and
(Bench-Capon 2003)). However, these approaches are not
adequate to account for a range of uses of argumentation.
We consider several examples. For instance, distinct author-
ities may determine the success of an attack. Alternatively,
the legal force of a precedent may vary with respect to level
of the legal context in which the precedent was decided and
the level of the court in which the new case is under con-
sideration. Furthermore, arguments may be attacked in a
range of ways, for instance, attacking the rule or asserting
that an exception holds. In these uses, arguments must be
differentiated with respect to properties they bear as well as
different sorts of attacks. To account for these other uses,
we present an functional decompositional analysis of argu-
ments wherein argument objects bear a range of additional
properties, and we can differentiate sorts of attacks. The
important novelty of the paper is that it extends the formal
approach based on (Dung 1995) with additional properties
of arguments and labelled arcs and that it brings formal ar-
gumentation to bear on a broader range of phenomena.

In the following, we present our analysis as a series of ex-
tensions to the abstract Argumention Framework of ((Dung
1995) and the value-based Argumentation Framework of
(Bench-Capon 2003)). In other words, we maintain argu-
ments as nodes and attacks as arcs as well as related notions
of admissible sets of arguments, but then add properties of
arguments as well as labels on the arcs. Notions such as
admissibility are modified accordingly.

The structure of the paper is as follows. We recast (Dung
1995) and (Bench-Capon 2003) in a notationally equivalent
form that facilitates further modifications. Then, we extend
the formalism to account for how different authorities may
distinguish the outcome of attacks. We show how we can in-
tegrate the Carneades Argumentation Framework (Gordon
& Walton 2006). We sketch an analysis of precedent in court
hierarchies (Wyner & Bench-Capon 2007). In the section on
future work, we suggest extensions to account for Burden of
Proof (Prakken & Sartor 2006) as well as Critical Questions
(Atkinson 2005), and Case-based Reasoning.

An Extensible Argumentation System

An Extensible Argumentation System (ExArs) is a language
comprised of argument objects, relations, and definitions of
auxiliary concepts. We provide only those components of



the system as needed to make our point, then extending it
to account for some other phenomena. We use subscripting
to differentiate the systems. Our assumption is that (Dung
1995) is the most abstract system, which we extend. How-
ever, for clarity, we subscript all the elements.

We assume boolean and object types. The
boolean type has two subsorts – true and false. Ini-
tially, we have but one sort of object type, namely, argu-
ments. Expressions of the form object → boolean are
to be understood as functions from objects to truth-values;
that is, in this instance, it expresses the characteristic func-
tion such that an expression of that type denotes a set of
objects. By the same token, (object × object) →
boolean denotes a set of ordered pairs of objects, which
is a relation. The most basic system only has a set of ar-
guments, which are the nodes, and relations between argu-
ments, which are the arcs.

Definition – ExArS0 is a tuple <Arg0, Rel0>, where:

• Arg0 is a set of argument names, a1,...,an, of type
argument which denote arguments.

• Rel0 is an attack relation between arguments, where
we read Rel0(a1, a2) as argument a1 attacks argument
a2. Rel0 is of type (argument × argument) →
boolean.

We give a sample of the main auxiliary definitions of
(Dung 1995), which are notational variants of the original
definitions. Suppose R, S are subsets of Arg0.

Definition – Acceptability, Admissibility, and Exten-
sions

• x ∈ Arg0 is acceptable with respect to S if for ∀y ∈ Arg0

where Rel0(y, x), ∃z ∈ S where Rel0(z, y).

• S is conflict-free if ¬∃y ∃x ∈ S, x 6= y and Rel0(x, y).

• A conflict-free set S is admissible if ∀x ∈ S, x is accept-
able with respect to S.

• S is a preferred extension if it is a maximal (with respect
to ⊆) admissible set.

Definitions for stable extension, coherence, credulously ac-
cepted, and skeptically accepted follow suit.

First Extension – Value-based Argumentation

The Value-based argumentation framework of (Bench-
Capon 2003) builds on (Dung 1995). The principle intuition
is that an argument attack may succeed or fail relative to a
value that is ascribed to an argument; that is, intuitively, if
there is an argument that I should go eat pastry, and it is at-
tacked by an argument that I should diet, I might still accept
that I should go eat pastry because I value eating pastry more
than dieting. Here we provide it as our first example of an
extension to ExArS0; it is a notational variant of (Bench-
Capon 2003). We only provide some of the key clauses.

Definition – ExArS1

• Arg1, a set of arguments.

• Rel1, an attack relation between arguments.

• Val is set of value names, v1,...,vn, of type value, which
denote values. We assume Val1 is defined for ExArS1.

• RankingScheme is a total ordering of Val; it is is under-
stood as an audience. For xi and yj ∈ Val, if <xi, yj>

∈ RankingScheme, we say that xi is preferred to yj in
the audience RankingScheme. A RankingScheme is of
type (value × value) → boolean. We assume a
RankingScheme1 is define for ExArS1.

In addition to these components, arguments are assigned a
value.

Definition – Argument-Value Ascription

• ∀x ∈ Arg1 ∃y ∈ Val1 assignArgVal(x) = y, where assig-
nArgVal is a function from arguments to values. We as-
sume assignArgVal1 is defined for ExArS1.

Definitions of argument defeat, acceptability, conflict-free,
and admissibility are relativized to audiences and the values
of the arguments. Notice, in particular, that the success or
failure of an argument attack is determined with respect to a
property associated with an argument. Other extensions rel-
ativize the analysis in other ways. As we define other exten-
sions, we subscript defined terms to the particular extension.
We assume that sets S and R are subsets of Arg1.

Definition – Defeat, Acceptability, and Admissiblity

• For arguments x, y ∈ Arg1, x defeats1 y with
respect RankingScheme1 if: <x,y> ∈ Rel1
∧ ¬ [<assignArgVal(y), assignArgVal(x)> ∈
RankingScheme1]

• An argument x is acceptable1 to the subset S: ∀y ∈ Arg1

that defeat1 x, ∃z ∈ S that defeats1 y.

• A subset R of Arg1 is conflict-free1: ∀x∀y[<x,y> ∈
R × R, either <x,y> 6∈ Rel1 or ¬ [<assignArgVal(y),
assignArgVal(x)> ∈ RankingScheme1]]

• A subset R of Arg1 is admissible1 if: R is conflict-free1

and ∀x ∈ R is acceptable1 to R.

As with the Dungian framework, we can define notational
variants of the notions of preferred extensions and subjec-
tively acceptable credulously.

To this point, we have but recast familiar argumentation
frameworks into our language. The advantage, as shown in
the subsequent section, is that we can then extend the basic
components of these frameworks to address a range of ad-
ditional issues and problems in the argumentation literaure
while keeping the basics of the framework intact.

Further Extensions
In this section, we extend the argumentation frameworks to
account for issues in argumentation which have not previ-
ously been accounted for in a Dungian style analysis. First,
we consider a case where we have multiple audiences, which
may themselves be ordered; in this case, we differentiate at-
tack relations, which is to label the arcs. In the second exten-
sion, we incorporate the substructure of arguments, making
reference to premises, conclusions, and rules; again, attacks
may be labelled with respect to what substructure they at-
tack and a ranking may be placed on them. In the third ex-
tension, we show how precedence and procedural contexts



of legal hierarchies can be expressed. In the fourth exten-
sion, we present key notions of an analysis of the Burden of
Proof in an extended system.

Multiple Audiences – ExArS2

In ExArS1, we had but one ranking of values (i.e. one audi-
ence), and attacks succeeded or failed with respect to rank-
ings and values on arguments. However, in an argument,
there may be two or more audiences, which means there
are two (or more) different rankings of the values. In this
case, we must consider Multi-agent Systems, where we un-
derstand the audiences to be the agents. For instance, we
can label one audience for a government official GovtOf-
ficial and another for a religious minister RelMinister: in
RankingSchemeGovtOfficial, vi is preferred to vj while in
RankingSchemeRelMinister , vj is preferred to vi. Clearly,
these conflict. Any two (or more) distinct audiences could
be so represented. Moreover, the different audiences may
have different capacities to argue about the outcome of an
attack. For example, suppose that the values are vi = eco-
nomic well-being and vj = spiritual well-being, where in
certain debates, the government official’s valuation of the
arguments is paramount, while in others it is the religious
ministers, leaving aside exactly how such determinations are
made.

To abstractly account for such cases, we subsort the rank-
ing schemes and the attack relations. For each sort, we have
subsorts to represent the GovtOfficial and the other repre-
sents the RelMininster. For simplicity, we refer to the sub-
sorts as agents. The outcome of the attack relation is relative
to the label on the node: if the arc is labelled with GovtOf-
ficial, then we use the ranking scheme for the GovtOfficial
in order to determine the outcome of the attack; if the arc is
labelled with RelMinister, then we instead use the ranking
scheme for the RelMinister.

For clarity, we provide the extension along with an exam-
ple of two ranking schemes. We turn to the attack relations
in a moment.

Definition – ExArS2

• Arg2 is {a1, a2, a3, a4}.

• Val2 is {v1, v2} and RankingScheme2 is defined with re-
spect to Val2.

• assignArgVal2 is a function from elements of Arg2 to el-
ements of Val2.

• Rel2 is the attack relation defined on Arg2.

• RankingSchemeRelMinister ⊂ RankingScheme2 is
{<v2,v1>}
RankingSchemeGovtOfficial ⊂ RankingScheme2 is
{<v1,v2>}.

For example, suppose the following values of arguments.

Definition – Argument-Value Ascription

• assignArgVal2(a1) = v1

assignArgVal2(a2) = v2

assignArgVal2(a3) = v1

assignArgVal2(a4) = v2

The key novelty is to introduce labels for the arcs, where
subsorts of the attack relation.

Definition – Subsorts of Argument Attacks

• argAttacksRelMinister ⊂ Rel2 is {<a1,a2>, <a2,a1>}

• argAttacksGovOfficial ⊂ Rel2 is {<a2,a3>, <a3,a4>,
<a4,a3>}

The subsorts of attacks represent who has the control of the
attack. Depending on which agent has control of the at-
tack, we relativize the ranking scheme to that agent’s val-
ues. Thus, we express which agent’s values determine the
success or failure of the attack. We assume a function from
arcs to ranking schemes:

Definition – Function from Arcs to Ranking Schemes

• arcRankFun is a function from arcs to ranking schemes:
<argument, argument> → RankingScheme,
where <argument, argument> ∈ Ranking Scheme.
We assume a arcRankFun2 is defined relative to ExArS2.

We have given an example of how attack relations are
relativized, but note that additional defintions are required.
For instance, we could partition the attack relations so as to
avoid conflicts between the agents; alternatively, two attacks
have the same arc, we could order the attack relations, giv-
ing priority to one over the other. Both could be defined with
a procedural context. However, a full specification is left to
future work.

With this, our definitions for notions such as argument
defeat and admissibility are relativized to the ordered values
of the audience, assuming S and R are subsets of Arg2.

Definition – Attack, Acceptability, and Admissiblity

• For arguments x, y ∈ Arg2, x defeats2 y with respect to
the values of the agent which controls that arc if: <x,y>

∈ Rel2 ∧ ¬[<assignArgVal2(y), assignArgVal2(x)> ∈
arcRankFun2(x,y)].

• An argument x is acceptable2 to the subset S if: ∀y ∈ Arg2

that defeats2 x, ∃z ∈ S that defeats2 y.

• A subset R of Arg2 is conflict-free2 if: ∀x∀y[<x,y> ∈
R × R, either <x,y> 6∈ Rel2 or ¬ [<assignArgVal(y),
assignArgVal(x)> ∈ arcRankFun2(<x,y>)]].

• A subset R of Arg2 is admissible2 if: R is conflict-free2

and ∀x ∈ R is acceptable2 to R.

With these definitions, the set {a2, a3} is admissible2 in
ExArS2. Given but one value ranking as in ExArS1, we
could get a different result. However, we would not be able
to represent distinct controls over attacks.

Carneades (Gordon & Walton 2006)

In (Gordon & Walton 2006), an argumentation theory is pre-
sented where argument objects are related to statements so
as to provide mereological structure, in which arguments
have assumptions, a conclusion, and a reasoning relation.
Assumptions are further subdivided into premises, presup-
positions, and exceptions; however, we shall only have space
to consider assumptions in general. With such structure,
we can represent fine-grained argument attacks such as at-
tacks on assumptions, conclusions, and reasoning relations



as found in common-sense argumentation. This is relevant
not only to incorporate well-known approaches to argumen-
tation into a Dungian style framework (e.g. Toulmin Struc-
tures), but more importantly to provide an analysis of proce-
dural contexts, wherein different sorts of arguments and ar-
gument attacks are allowable in a given context (cf. (Wyner
& Bench-Capon 2007)). While (Gordon & Walton 2006)
use argument objects, their approach cannot be character-
ized as an extension of ExArS0 as they do not provide defi-
nitions for attack or admissible sets of arguments. In this pa-
per, we do not have space to fully justify or present (Wyner
& Bench-Capon 2007), as our main focus is to show how the
Dungian framework can be systematically extended. There-
fore, we focus on just a few key defintions.

We want an argumentation framework which account
for the structure of the following commonsense argument,
where given assumptions (Assum) and a reasoning rule (im-
plicit here), we can draw a conclusion.

A Commonsense Argument:

• Assum: John was seen to enter the house at 2pm.

• Assum: John was seen to leave the house at 3pm.

• Assum: John could not leave the house unobserved.

• Assum: There is no secret passage out of the house.

• Conclusion: Therefore, John was in the house at 2:30pm.

More to the point, we want an argumentation framework
which allows one argument to attack the assumptions, con-
clusion, or reasoning rule of the other argument, as is found
in argumentation. For instance, one might attack the eyewit-
ness testimony that John was seen to enter the house at 2pm,
and thus call the conclusion into question.

We do not need values or multiple agents as in ExArS2.
Mereologically, an argument has assumptions, a conclusion,
and a reasoning relation which systematically maps assump-
tions to a conclusion. We introduce statements and reason-
ing relations as first-class objects, which are in relation to an
argument.

Definition – ExArS3 Objects

• Arg3 is a set of arguments a1, . . . , a2, a3, a4}.

• Stat is a set of atomic statement names s1, ..., sn, which
denote atomic propositions. Statement names are of type
statement. If s is a statement, then ¬s is a statement.
In no model can s and ¬s both hold in any context; s and
¬s are called contraries. ¬s is the only complex state-
ment.

• ReasRel is a set of reasoning relation names r1, ..., rn,
which are of type reasoning relation.

The assumptions and reasoning relations are related to the
argument.

Definition – ExArS3 Relations

• If s is a statement and a is an argument, then assum(a,s)
is a well-formed relation on arguments. It is read as the
statement s is an assumption of argument a. The assump-
tion relation is of type (argument → statement) →
boolean; it is a many-to-many relation.

• If a is an argument and r is a reasoning relation name,
then reasRelFunc(a) = r is a function from arguments to
reasoning relations. It is read as the reasoning relation of
argument a is r. The function is of type argument →
reasoning relation

A conclusion of an argument is a statement which holds
with respect to the set of assumptions and some reasoning
relation. The following defines the set of assumptions.

Definition – Set of Assumptions

• λs assum(a,s) is the set of statements which are as-
sumptions of a given argument a. It is a set of type
(statement→ boolean) → argument.

A conclusion is a statement which is functionally related
to the argument, assumptions, and reasoning relation. For
our purposes here, we assume an argument only has one
conclusion just as it has only one reasoning relation.

Definition – Conclusion Relation

• If a is an argument name, A is a set of assumptions, r a
reasoning relation name, s a statement, then
conclusion(a, λs assum(a,s), r) = s is a function from an
argument, assumptions, and a reasoning relation. It iden-
tifies the statement s which follows from assumptions λs
assum(a,s) and reasoning relation r of argument a.

We assume that two arguments a1 and a2 are identical
when they have the same assumptions, conclusions, and rea-
soning relations. Furthermore, one argument a1 is a subargu-
ment of another argument a2 if the conclusions and reason-
ing relations of a1 are the same as a2, but the assumptions of
a1 is a proper subset of a2. In addition, given two arguments
with the same assumptions and reasoning relation, the same
conclusion must follow. For brevity, these assumptions are
not give here, but formally specified in (Wyner & Bench-
Capon 2007). With them, we have the following:

Definition – Argument Distinction

• ∀x, y ∈ Arg3 distinctArg(x,y) if: x and y are not identical
arguments and neither is a subargument of the other.

In these terms, we can analytically define the notion of
attack: the arguments are not only distinct, but their conclu-
sions are contraries.

Definition – General Argument Attack

• Where argAtt ⊆ (Arg3 × Arg3), ∀x, y argAtt(x,y) if:
distinctArg(x,y) ∧ conclusion(x,λs(assum(x,s)),rv) =
¬conclusion(y,λs(assum(y,s)),rw).
We read this as x attacks y.

This definition correlates to the more familiar rebuttal at-
tack; it claims that any attack of one argument on another is
at least an attempt to rebut. In contrast, it is unclear in virtue
of what one argument attacks another in (Dung 1995), and
by the same token, in virtue of what arguments hold together
in an admissible set.

We have defined the most general sort of attack. How-
ever, we can have subsorts of attacks keyed to the mereolog-
ical structure of the arguments, which is an analytic basis



of labelling the attack arcs. For our purposes here, we can
have attacks on assumptions or attacks on rules, though one
could define other sorts of attacks given other subproperties
of arguments. In effect, the subsort of attack expresses why
the conclusion is denied.

An attack on the reasoning relation means that one ar-
gument attacks another and the arguments differ in terms of
the reasoning relation. This correlates to the more familiar
undercutting attack.

Definition – Reason Relation Attack

• Where reasonRelAttack ⊂ argAtt, reasonRelAttack(a1,
a2) if: reasonRelFun(a1) 6= reasonRelFun(a2).

We can say here that the difference in the conclusion is at-
tributed to the differences in the reasoning relations that are
applied. In other words, the reason why we do not accept
the conclusion is because we do not accept the reasoning
relation which led to the conclusion.

An attack on an assumption means that the assumption of
one argument is the contrary of the assumption of another
argument. This correlates to the more familiar premise de-
feat.

Definition – Assumption Attack

• Where assumAttack ⊂ argAttack, ∀y,z, assumAttack(y,z)
if: ∃x [x ∈ λs(assum(y,s)) ∧ ¬x ∈ λs(assum(z,s))]

To this point, we have define subsorts of attacks in terms
of reasoning relations and assumptions. Given additional
properties ascribed to arguments, we could define further
subsorts of attacks such as attacks on presuppositions or ex-
ceptions as in (Gordon & Walton 2006).

Given subsorts of attacks, we can relatively define sub-
sorts for defeat, acceptability, conflict-free, and admissibil-
ity. Such subsorts may be associated with different proce-
dural contexts. For instance, in the appeals process in a le-
gal hierarchy, disputes about matters of fact may be carried
out at the court of first instance; however, upon appeal to
a higher court, the facts as determined by the lower court
are taken as givens and not open to further dispute. In our
terms, at the lower court, there may be attacks on asssump-
tions, but not at the higher court. Such a shift in procedural
context need not imply that other sorts of attacks are ruled
out; for instance, while attacks on assumptions might not be
legitimate in the higher court, attacks on the reasoning re-
lation might still be legitimate. In virtue of such an attack,
a previous conclusion could be overturned (cf. (Wyner &
Bench-Capon 2007)).

The definition of defeat and admissibility most similar to
(Dung 1995) would use the argAtt, as follows.

Definition – Defeat, Acceptability, and Admissiblity for
Contraries

• For arguments x, y ∈ Arg3, x defeats3 y with respect to
contrary conclusions if: <x,y> ∈ argAtt ∧ ¬∃z ∈ Arg3

<z,x> ∈ argAtt.

• An argument x is acceptable to the subset S if: ∀y ∈ Arg3

that defeats3 x, ∃z ∈ S that defeats3 y.

• A subset R of Arg3 is conflict-free3 if: ∀x∀y[<x,y> ∈
R × R, either <x,y> 6∈ Rel3 or ¬ [<assignArgVal(y),
assignArgVal(x)> ∈ arcRankFun3(<x,y>)]].

• A subset R of Arg3 is admissible3 if: R is conflict-free3

and ∀x ∈ R is acceptable3 to R.

Alternatively, instead of defining these notions based on
argAtt, we could define a notion of defeat with respect
to assumptions.

Definition – Defeat with respect to Assumptions

• For arguments x, y ∈ Arg3, x defeats4 y with respect
to asssumptions: <x,y> ∈ assumAttack ∧ ¬∃z ∈ Arg3

<z,x> ∈ assumAttack.

Another approach would be, as in value-based approaches,
to impose an ordering on the attack relations, so making the
defeat of an argument depend on an additional ordering pa-
rameter. Clearly, other notions can be defined given the dif-
ferent ways that arguments can attack and defeat one an-
other. However, we leave further refinement and application
for future research (cf. (Wyner & Bench-Capon 2007) for
one extension of such notions to account for precedent and
procedure in legal hierarchies of appeals).

Future Work

In this section, we briefly sketch two other extensions to ac-
count for additional aspects of argumentation.

Critical Questions

(Walton 1996) proposes a range of argumentation schemes
such as argument from expert opinion, argument from eye-
witness testimony, and argument from exceptional case,
among others. For each argument scheme, critical questions
can be posed, the answers to which support or undermine the
argument; for example, Is the expert really qualified to offer
an opinion on the case at hand?. (Atkinson 2005) extends
the range of critical questions. However, though (Atkin-
son 2005) broadly uses the Dungian Framework, the critical
questions are outside the framework.

We suggest that an extension to the Dungian Framework
along the lines of that for Carneades of (Gordon & Walton
2006). The idea is that we additional properties of state-
ments in an argument such that the arguments can be at-
tacked in specific ways. An attack is associated with a ques-
tion; the way in which we specify defeat with respect to the
attack defines the answer to the question. For example, sup-
pose the critical question is Does the expert witness have
the credentials to provide testimony? This is question that
is answered either Yes or No. The question suggests that the
answer is not obvious, so it constitutes an attack on the argu-
ment. The critieria of defeat for such a question constitutes
how the question is answered, that is, the criteria by which
the argument under attack stands, where the answer is yes, or
falls, where the answer is no. In this way, a critical question
is another sort of attack by one argument on one argument,
which can defeat it.



Burden of Proof

The Burden of Proof refers to the obligation on a party to
defend a position against attack. There are three types – le-
gal burden, evidentiary burden, and tactical burden – which
vary in terms of which party in the dispute bears the obliga-
tion and on what issues. We consider what we take to be the
core issue, namely, that a party at a time bears the burden
of proof, and the burden of proof implies that an argument
which is not yet admissible must be found to be admissible
or otherwise the argument is defeated.

According to (Prakken & Sartor 2006), the Burden of
Proof cannot be accounted for in a Dungian Framework. We
suggest an extension to account for the core issue. We in-
troduce participants and the notion of satisfying the Burden
of Proof in a framework where admissible sets of arguments
can be extended with additional arguments. We assume that
we need not define the set of admissible arguments with re-
spect to the whole domain of arguments, but can do so with
respect to a partial domain. Thus, there can be a set of ad-
missible arguments and a set of arguments which could be
added to it to yield an admissible argument.

For example, consider a case of property, where the de-
fendant claims to own a piece of property against the claim
of the plaintiff. In this case, the defendant’s claim is un-
der attack by the plaintiff’s claim. Let us suppose that the
defendant has the burden of proof. This means that the de-
fendant must provide arguments to the court that support his
claim. Failing to do so, the defendant’s claim fails, and the
plaintiff’s claim succeeded. But in providing arguments to
support his claim, the defendant is attacking all arguments
which attack his claim. Having succeeded in this, the defen-
dant can add his claim to the set of arguments which were
previously admissible.

Comparisons

The paper is based on a range of sources ((Dung 1995),
(Bench-Capon 2003), (Gordon & Walton 2006), (Wyner
& Bench-Capon 2007), (Atkinson 2005), and (Prakken &
Sartor 2006)). Our aim has been not to replace these ap-
proaches, but to adopt and adapt them into a cohesive and
coherent formal argumentation framework, while retaining
the key observations and analyses. The key novel contribu-
tions of the paper are in two areas. First, we have provided a
general format to extend the Dungian Framework in a num-
ber of fruitful directions to account for an additional spec-
trum of problems in argumentation. Second, we have intro-
duced and applied labelled arcs in two extensions, showing
how these can be used to represent and reason about com-
plex issues in argumentation. We have also suggested that
the extensible argumentation system can be extended fur-
ther to cover a critical questions, case-based reasoning, and
burden of proof.

Conclusion

In this paper, we have shown how the Dungian Argumen-
tation Framework can be extended in a variety of ways to
address additional aspects of argumentation which had not
previously been provided for. The manner of the extensions

allows these additional aspects to be presented in a uniform
and consistent way. Key among the extensions is the cre-
ation of labelled arcs which represent attack relations. With
such arcs, we can distinguish sorts of attacks, which leads to
a range of different ways to define admissible sets of argu-
ments.
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