Precedent and Procedure:
an argumentation-theoretic analysis

Adam Zachary Wyner
University of Liverpool
Department of Computer Science
Ashton Building
Liverpool, United Kingdom

azwyner@csc.liv.ac.uk

ABSTRACT

In theoretical Al, much recent research on arguments treats
them as entirely abstract, only related by an attack rela-
tion, which always succeeds unless the attacker can itself be
defeated. However, this does not seem adequate for legal
argumentation. Some proposals have suggested regulating
attack relations using preferences or values. However, this
does not explain how an audience can prefer or value an ar-
gument, yet be constrained by the procedure of debate not
to accept it. Nor does it explain how certain types of at-
tack may not be allowed in a particular context. For this
reason, evaluation of the status of arguments within a given
framework must be allowed to depend not only on the attack
relations along with the intrinsic strength of arguments, but
also on the nature of the attacks and the context in which
they are made. In this paper we present a formal, func-
tional decomposition style, description of arguments articu-
lated into their component parts and contexts which allows
us to represent and reason with types of attacks with re-
spect to context. This machinery allows us to account for
a number of factors currently considered to be beyond the
remit of formal argumentation frameworks.

Keywords

argumentation, procedure, precedent

1. INTRODUCTION

In current AI research much of the theoretical work re-
lating to argumentation is based on Dung [5], where argu-
ments are entirely abstract, only related by an attack re-
lation, which always succeeds unless the attacker can itself
be defeated. This may work for mathematics and classical
logic, but it seems inadequate for legal argumentation. Some
people have enriched the structure of the theory such that
attack succeed or fail depending on properties of the argu-
ments involved as in preference-based (Amgoud and Cayrol

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatldbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ICAIL '07 Stanford, California USA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Trevor Bench-Capon
University of Liverpool
Department of Computer Science
Ashton Building
Liverpool, United Kingdom

tbc@csc.liv.ac.uk

[1]) or value-based (Bench-Capon [3]) analyses. This, how-
ever, does not explain several aspects of legal argumenta-
tion. In some contexts, while a court may be sympathetic
to an argument, the court cannot accept it because the le-
gal procedure prohibits it, as for example where a lower
court is forced to follow the decision of a higher court what-
ever their sympathies. In other contexts, a type of attack
is prohibited: hearsay evidence, persuasive in common de-
bate, may be excluded in a legal proceeding. In addition, in
many cases, the appeals process allows distinct courts in a
legal hierarchy to decide a case differently, though the case
is comprised of the same facts and legal issues. Given these
problems, evaluation of the status of arguments within a
given framework must be allowed to depend not only on the
attack relations, nor only on these together with the intrin-
sic strength of arguments, but also on nature of attacks and
the relative contexts of their component arguments. In this
paper we present a formal, functional decomposition style,
description of arguments which allows us to include the type
of attacks and the context in which they are presented. With
this, we can determine the status of arguments given a par-
ticular legal procedure. This machinery allows us to account
for a number of aspects currently considered to be beyond
the remit of formal argumentation frameworks.

This paper addresses the question of how can distinct legal
decisions arise from the same facts and legal issues. We ad-
dress this question with a formal argumentation-theoretic
analysis of relations of legal precedence between court con-
texts. We discuss the formalism with respect to the English
Legal System and particular examples. We draw concepts
for our analysis from the formal argumentation theories of
Dung [5], Bench-Capon [3], Gordon and Walton [6], and
Atkinson [2], which we refer to and contrast on key points.

In a nutshell, the theory makes the following claims. Ar-
guments are related to different sorts of legal contexts. We
rank these contexts relative to each other. An argument
in relation to one context may survive an attack by an at-
tacking argument from a weaker context. Furthermore, we
provide articulated arguments; this enables us to distinguish
a variety of sorts of attacks, which may be ranked as well.
Finally, procedural contexts are comprised of these elements
— arguments with structure, legal contexts, and rankings on
attacks and contexts.

The structure of the paper moves from examples to for-
malization of the examples to extensions of the basic theory.
We outline judicial precedent and procedural contexts, how
a case can be decided differently as it is passed upwards in a

specified legal hierarchy. We also discuss how the elements
of the legal hierarchy change. We point out some of what
this paper does not address. The formal presentation has
two main parts. In Sections 2 and 3 we focus on the use
and change of procedural contexts. We define the basic el-
ements, predicates, relations, and functions with respect to
arguments and legal contexts, defining procedural contexts
in terms of them. We relate our abstract formalization to
the example case. We then extend the analysis in Section
4 along the lines of Gordon and Walton’s Carneades frame-
work [6]. In the final sections, we make some comparisons
to other approaches to formalizing argumentation, outline
future research, and draw some conclusions.

2. PROCEDURAL CONTEXTS

In this section we consider an appeal route in the English
Legal System." We describe a range of elements of the ap-
peals process, not all of which we provide analyses of, as
discussed below. We consider a sample case.

2.1 Crown Court

For our purposes, the lowest level of the legal hierarchy
is the Crown Court, where trials on indictment come before
a judge and jury. The evidence, legal arguments, and the
decision are given according to the procedures specified for
the Crown Court. In particular, the Crown Court is bound
by precedents decided by courts higher in the legal hierar-
chy. The decisions on points of law made in a Crown Court
are not binding on any higher level, nor are they binding
on other judges in another Crown Court, though they are
persuasive. We may refer to a ratio decidendi as the legal
principle on which the decision is based. We do not here con-
sider obiter dictum, which are counterfactual considerations
which may have led the decision to be resolved differently.

The difference between binding and persuasive precedents
is important. A binding precedent is a decided case which
a given court must follow in making a decision on the case
before it, though this depends on the similarities between
the cases. A persuasive precedent is one which is not bind-
ing, but which can be applied should it not conflict with
a binding precedent and the court which applies the prece-
dent chooses to do so. For our purposes, we simply assert
the status of the precedent. In this paper, we are partic-
ularly interested in the interactions between these levels of
precedents and levels of courts.

2.2 Court of Appeal

We assume an appeal to a higher level Court of Appeals.
Cases can be reconsidered on matters of evidence or of law;
for matters of law, there is a claim that the law has been
misapplied, the rule of law which was applied is no longer de-
sireable, or some application of the law was inappropriately
missed. In effect, the ratio decidendi of the prior decision is
somehow faulty.

Judges do not retry the case, but hear the evidence and
arguments. The Court of Appeals can overturn a decision of
a Crown Court. While the decisions of a Court of Appeals
are binding on Crown Courts, the decisions of a higher court
are binding on Courts of Appeals. Moreover, a Court of
Appeal is bound by the decision of another Court of Appeal,

'The following materials are based on
www.lawteacher.com\english.htm.

with a range of exceptions (cf. Young v Bristol Aeroplane
Co Ltd [1944] KB 718).

2.3 House of Lords

We assume our case is appealed to the highest court —
the House of Lords. The evidence and arguments are heard
again. However, the Law Lords who judge the case are not
bound by decisions made at either of the two lower courts.
Following Practice Statement [1966] 3 All ER 77, the House
of Lords is not even obligated to follow its own previous
decisions.?

2.4 Example 1: Use of a Precedent

The courts follow the principle of judicial precedent, where
judges follow the decisions of similar cases which have al-
ready been decided. Courts also abide by hierarchical rela-
tionships, where the inferior courts follow the legal principles
and decisions of superior courts. The key point is that the
judicial context of the case under consideration and its rela-
tion to contexts of other cases which have been decided play
a key role in the application of precedents and the decision
of the case.

Consider an abstract illustration of this point. Suppose
there are three arguments, meaning that for each argument,
evidence, claims, and a ratio decidendi have been given from
which a conclusion follows. We indicate the arguments as a1,
agz, and az. The argument a; is under consideration, mean-
ing that no court has yet decided the matter. The arguments
az and ag have been decided in some court. Furthermore,
we suppose that as attacks ai; that means that if we ac-
cept that the attack succeeds, then a; is defeated, and it is
decided that the conclusion does not follow. On the other
hand, supposing that ag supports a1 (perhaps by attacking
az), which means that if as, rather than the attacking argu-
ment az succeeds, then a; is not defeated. Whereupon, it is
decided that the conclusion holds.

One of the ways to determine which of as or asg succeeds is
to consider the relative contexts. For example, if the attack-
ing argument az has been decided by the House of Lords,
the supporting argument as has been decided by the Court
of Appeals, and the argument a; is under discussion in the
Crown Court, then it is very clear that a; should be de-
feated. The attacking argument as has been decided by the
House of Lords. Decisions by the House of Lords are bind-
ing on decisions of the Crown Court and trump decisions of
the Court of Appeals. On the other hand, if the attacking
argument ap has been decided by the Crown Court, the sup-
porting argument as has been decided by the Court of Ap-
peals, and the argument a; is under discussion in the Court
of Appeals, then the Court of Appeals can choose which de-
cision to follow. This shows that the success or failure of
attacks and supports are determined by the relative hierar-
chical relationships between the context where the argument
is under discussion and the contexts where the attacking or
supporting arguments have been decided.

We want our analysis to systematically represent these
relationships and reasoning patterns in a fized system of
procedure.

2.5 Example 2: Change of Use of Precedent

2The House of Lords is the highest level in the English Le-
gal System. In the European Legal System, above it is the
FEuropean Court of Justice, which we do not consider.

In Miliangos v George Frank (Textiles) Ltd [1976] AC 443,
the House of Lords overruled Re United Railways [1961] AC
1007 and in favor of allowing damages to be awarded in a
foreign currency. For 350 years, it had been take as settled
in English Law that no English Court could award damages
in a foreign currency. However, in 1975, on appeal after
claims in the Court of Appeal, the House of Lords overruled
the Court of Appeal and its own previous decision in favour
of allowing payments in either English currency or a foreign
currency equivalent (cf. Morris [8]). The change was related
to a change in the English Legal System and new circum-
stances. Prior to 1966, the House of Lords was bound to
follow all its prior decisions under the principle of stare de-
cisis. Following the Practice Statement [1966] 8 All ER 77,
the House of Lords granted itself the right to depart from its
previous decisions where it seems right to do so. In addition,
the new decision was tied to changes in the foreign exchange
system in 1961; in particular, by 1976, exhange rates were
floating rather than fixed, which resulted in the instability
of English currency.

In the following, we provide a partial formalization of
change of judicial procedural context.

2.6 Distinctions

Our topic is distinct from other work on precedents. In
contrast to work on case-based reasoning such as Rissland
and Ashley [10], in this paper, we are not concerned with
the identification of precedents and their application in a
particular case. Rather, we are interested in the determi-
nation of the precedent in the first place. Moreover, we are
interested in what happens in the change in decision as a
particular dispute passes from inferior to superior courts,
not what triggers the appeal, which we presuppose. Nor do
we attend to a range of variations, subtlies, and subissues of
the English Legal System; our presentation above is delib-
erately simplified.

We focus on what we take to be fundamental issues: How
do model the application of judicial precedence and hierar-
chy? How can we model a judicial procedure? How can
we model changes in the use of precedence and procedure?
Finally, the language we develop is formal and abstract,
though we touch on examples; it is not designed to express
some particular legal system, but instead is intended to be
expressive enough to allow different legal systems to be ex-
pressed in it.

In the following, formally model aspects of the examples
and judicial procedures we have discussed.

3. AFRAGMENT OF A LANGUAGE OF AR-
GUMENTS

The following language is a fragment, which illustrates
some of the key elements of the analysis with respect to
precedent and procedural notions outlined above. Some el-
ements are given descriptively, then further specified in a
subsequent section. In this way, we can more simply mo-
tivate the analysis. As an illustration, we propose specific
definitions out of the logical space of possible definitions.
As we point out, some of these variations are useful or in-
teresting to our analysis. Other alternatives may find other
purposes, but for brevity, we do not discuss them here.

3.1 Arguments and Relations

We assume atomic, abstract argument entities which we
associate with a type argument.

Definition 1. We assume a set of argument names a; ,...,
an, which denote arguments a’y ,..., a’p. Argument names
are of type argument.

These arguments may be associated with the abstract ar-
guments of Dung [5]. We can existentially quantify over
them, predicate of them, and apply relations and functions
to them.

We assume contexts, which essentially are just indices. We
subdivide contexts into legal and mon-legal contexts. Fur-
thermore, we subdivide the legal contexts into legal contexts
of consideration and legal contexts of decision.

Definition 2. We assume a set of context names ci ,...,
Cn, Which denote contexts ¢’y ,..., ¢’n,. The predicate con-
text denotes the set of contexts. Context names are of type
context.

Definition 3. We assume a set of legal contexts lcy ,...,
lc,, and non-legal contexts nlc; ,..., nlc,, and related predi-
cates, which partition the contexts: Vx [contert(x) — [legal-
Context(x) V nonLegalContext(x)]] A —3x [legalContext(x)
A nonLegalContext(x)]

The legal contexts of decision are the contexts in which,
given the evidence and the ratio decidendi, the court has de-
cided that the conclusion of the argument holds. To stream-
line the presentation, we presume the evidence, ratio deci-
dendi, and conclusion; we return to formalize these later.
The legal contexts of consideration are those in which a de-
cision about an argument has not been made.?

Definition 4. We assume a set of legal contexts of con-
sideration lccy ..., lcc, and legal contexts of decision led; ...,
led,,, and related predicates, which partition the legal con-
texts: Vx [legalContext(x) — [legalContertConsiderFun(x)
V legalContextDecision(x)]] A —3x [legalContextConsider-
Fun(x) A legalContextDecision(x)]

We can have variables of any of these types by subscripting
the variable to the type, e.g. argument variables are xq, ,. ..,
Xa,, Of type argument.

Arguments are in relations to contexts.

Definition 5. Suppose a relation argumentContext type
argument X context — boolean.
O VXa,, 3y, [argumentContertRel(Xa,,, Ye,)]-

While arguments can be stated in a range of non-legal con-
texts or legal contexts of consideration, we assume that, for
legal purpose, an argument is only decided in one context:
we provide a function for this.

3Conceptually, the distinction between contexts of decision
and contexts of consideration is related to Dynamic Logic
(cf. Harel, et. al. [7]). In Dynamic Logic, the assignment
of values to variables function may be partial and change
systematically over time by updating. Analogously, the legal
contexts where an argument is decided correlate to variables
with a value, and where an argument is under consideration
(i.e. not decided) correlates to variables with no determinate
value. Making a legal decision on an argument correlates
with updating the assignment function. We note this here,
but leave it for future work.

Definition 6. Suppose a function argContextDecision(a)
= c of type argument — context, where legalContextDeci-
ston(c).

Furthermore, while arguments may be considered in many
courts, we want to determine which court it is being consid-
ered in for a particular example.

Definition 7. Suppose a function
argContextConsiderFun(a) = c of type argument — context,
where legalContextConsider(c).

Next, we consider how the legal contexts are ranked.

3.2 Ranking the Contexts

We are particularly interested to model the court hierar-
chy as well as the effect of binding and persuasive decisions
on a legal argument. To do so, we assume a partial order
relation on legal contexts of decisions.

Definition 8. Suppose a relation partial order relation
> LegalCont ON the set of entites of type legal context such
that > regaicont(1cm, lcn) is true if and only if the legal con-
text lc,, is superior or equal to lc,, in the hierarchy of courts.

Where need be, we can also have >r.cgaicont and =regaicont
as strictly superior and equal to legal contexts. The courts
can be partitioned into equivalence classes, which are those
courts that are equal with respect to this relation. For ex-
ample, all the courts which are Crown Courts are equal
to one another, all courts which are Courts of Appeal are
strictly greater than all Crown Courts, but equal among
other Courts of Appeal, and the House of Lords is strictly
superior to all other courts, but equal to itself. We have one
restriction, namely, that the non-legal contexts are strictly
the lowest on the hierarchy.

Deﬁnltlon 9. 0O Vch Vanc [>LegalCont (ch7nlc)]

We consider relations among arguments.

3.3 Attack/Support Relations and Defeat

Following Dung [5], arguments are in attack relations; that
is, one argument can attack another argument. In Dungian
analyses, the only way an argument survives an attack is
if the attacker is itself attacked (and similarly for the sur-
vival of the attacker itself). Thus, one argument defeats
another if the attacking argument is not itself successfully
attacked. The general notion of a supporting argument in
Dungian frameworks is that an argument A supports an
argument B, if A is an member of an admissible set contain-
ing B, which would become inadmissible if A were removed.
Later, we shall formalize the claim that arguments can be
attributed a substructure, which then allows a range of ar-
ticulated relations between arguments and so extends the
system. However, while for the current discussion we need
a range of attack relations, the particulars are not crucial
at the moment, so we assume just that arguments are in
relation to one another and informally describe the relation-
ships. We will informally specify which argument in these
relationships wins or loses.*

“In a general sense, our proposal is compatible with the
Argument Interchange Format of Chesnevar et. al. [4].

Definition 10. Suppose a,, and a,, are arguments, then
genArgRel(anm, an) is a boolean type and the relation is of
type argument X argument — boolean.

This relation simply says that two arguments are in relation,
leaving unspecified what that relation is. For example, we
can interprete genArgRel(a1, 3.2) to mean that a1 attacks
ag, say by denying the conclusion and one of the premises;
we can interprete genArgRel(ag, a4) to mean that as sup-
ports a4, say by affirming the conclusion and the reasoning
relation that draws the conclusion of az. It is not crucial to
justify and elaborate these matters at present, for they are
articulated in detail later. For clarity, let us create some sub-
classes of the argument relation, where genArgReloitack (am,
an) is attacking and genArgRelsyupport (am, an) is supporting.

3.4 Formal Use of a Precedent

We want to formalize the notions of precedence discussed
in Section 2.4. In particular, to do so, we must contextual-
ize these relations and rate their effectiveness in virtue of
their relative contexts; in effect, different relations between
arguments have different forces depending on the contexts of
the arguments. More fundamentally, properties (e.g. con-
texts) of the arguments determine properties of the attack
relations. This allows us a formal analysis of the example in
Section 2.4. Suppose that there are three arguments, where
a1 is the argument under discussion. genArgRelgitqck(az,
a1) and genArgRelsupport(as, a1). We see that a; is in two
argument relations. How do we determine whether a; is
defeated by az or supported by as (assuming that an ar-
gument can only be either defeated or supported)? That
we can already distinguish between these two sorts of ar-
gument relations already makes our analysis distinct from
the Dungian analyses. One way to determine the status of
a; relative to az and ag is to rank the relations themselves,
say ranking the attack over the support. However, this does
not represent the precedence relations in relative to the legal
hierarchy discussed in Section 2.4.

To define this generally, we want to specify how an ar-
gument relation succeeds. For this, we suppose variables of
argument relations: Aj ,..., A, are of the type in Defini-
tion 10. We define binding and persuasive relations in terms
of the arguments relative to the court hierarchy, which we
discuss further below.

Definition 11. bindingRel(An(ar, a)) if and only if a,
ar A Anm(ar, ar) A argContextDecision(Xa,) > argCon-
textConsider(Xa,)

Definition 12. persuasiveRel(An,(ar, a)) if and only if
ar # a¢ A Apm(ar, ar) A argContextDecision(Xa,) < argCon-
textConsider(Xa,)

For a sample definition of success, we have several instances
to consider. If one relation is a binding and the other is not,
then the binding relation succeeds; if there is no binding re-
lation, and there is a persuasive relation, then it succeeds;
finally, if two relations are binding, then the argument with
the higher legal context in the hierarchy succeeds. We con-
sider the significance of alternatives below.

Definition 13. successArgRel(Anm (ar, at), An(as, a¢)) if
and only if a, # as # at
A [[bindingRel(A., (ar, a¢)) A [-bindingRel(A, (as, a:))]

V [-bindingRel(A,, (ar, a;)) A persuasiveRel(A, (ar, at))]
V [bindingRel(A,(ar, a¢)) A bindingRel(A,(as, a¢)) A
argContextDecision(a,) > argContextDecision(as)]],
which we read as A, (a,, at) succeeds over A, (ar, at).

Let us assume that if both argument relations are persua-
sive, then one has a choice over which is successful.

To provide an example along the lines of Section 2.4, we
suppose arguments a1, a2, a3, where a; is the argument un-
der consideration in lccy, a2 and az have been decided in lcds
and lcds, respectively. We also assume the ranking: leds >
leds > lcci. Finally, we have genArgRel,ttqck (a2, a1) and
genArgRel upport (a3, a1). Given the specifications above,
genArgRel,itqck (a2, a1) succeeds over genArgRel upport (as,
a1) since while both are binding, as has been decided at
a higher court level than as. Since we have interpreted
genArgRelgitack (a2, a1) to mean that ap implies the con-
clusion of a; is false, we can infer that a; does not hold in
lcer (though exactly how this is determined is provided in
a later section). Unlike Dungian analyses, we have another
way to infer what arguments win or lose by making the ar-
guments relative to contexts and ranking contexts. Suppose
we change the context of consideration of a; from lcci to
lces, assuming that lecs and 1c2; are in an equivalence class
of legal contexts (i.e. the same level of courts) and that we
do not otherwise alter the contexts of decision of the other
two arguments. We then can recalculate the winning ar-
gument. Neither argument relation is binding because the
context of decision of az and as is not strictly higher than
the context of consideration of a;. By assumption, there is
a choice about which argument relation is successful, so we
may choose genArgRelsupport (a3, a1), which means that a;
is supported and not defeated.

The definitions in (11) - (13) are only some of the possible
ways to define the bindingRel and persuasiveRel relations
between arguments and successArgRel on these relations.
We have provided them to illustrate the issues clearly and
simply for the moment. In particular, an argument is bind-
ing on another if it has been decided by a strictly higher
court, and it is persuasive if it has been decided by a court
at the same level or lower. Clearly this need not be so in
a given Legal System. For instance, as discussed in Section
2.5, before the Practice Statement, the House of Lords was
bound to follow any decision which it decide, but clearly,
the House of Lords cannot outrank itself. Furthermore, it
could be that decisions reached at one level of the court
system are binding on other courts of the same level. Our
notion of persuasive arguments could be refined with some
further property that characterizes some arguments as per-
suasive and others not. In particular, we can use elements a
Value-based Argumentation Framework (Bench-Capon [3]),
where an argument is marked as persuasive if it is subjec-
tively acceptable under a given value ordering. The force of
an attack or support might then depend on such valuations
on arguments. The advantage of the analysis at this point
is that it can easily be modified by changing the ranking,
further specification of properties of the contexts, or further
specification of properties of the arguments.

We can tie our analysis into the Dungian analysis in that
we use our successArgRel relation to identify sets of argu-
ments, which may be in attack or support relations. We
can then define the admissible sets of arguments as pre-
ferred extensions, stable extensions, and related Dungian
argumentation-theoretic notions. Value-based Argumenta-

tion (cf. Bench-Capon [3]) allows us to remove attacks based
on properties of the arguments relative to particular audi-
ences: the theory proposed here allows attacks to be re-
moved based on properties of the attacks themselves rela-
tive to the context. This complements Value-based Argu-
mentation Frameworks by providing an additional degree of
freedom when evaluating argumentation frameworks which
enables us to capture additional phenomena, such as the
effect of context as considered in this paper.

3.5 Procedural Change

We have, at this point, provided a formal mechanism to
represent and reason with arguments in legal hierarchies.
The last general point provides a suggestion of how to ac-
count for the case discussed in Section 2.5, where a previ-
ously decided case was overturned by a novel argument and
a change in the House of Lords. For our purposes, the lat-
ter is key, for the House of Lords was no longer bound to
decisions it had made on arguments. We can formalize the
notion of binding relation on argument relations with re-
spect to the House of Lords before the Practice Statement,
where we assume “The House of Lords” is a legal context.

Definition 1. bindingHOLRel(An(ar, a¢)) if and only
if [a, # ar A Am(ar, a¢)] A [argContextDecision(Xa,.) >
argContertConsider(xq,) V argContertDecision(Xq,) = “The
House of Lords”].

Simply put, the effect of the Practice Statement was to drop
the last disjunct and to have definition (11) instead, in which
case since the House of Lords cannot outrank itself, there
can be no binding decisions, but only persuasive decisions,
in which case the House of Lords can choose which argument
relation holds. We can define

procedural change, in part, as a function from one defini-
tion of binding relations to another.

4. EXTENSION OF ANALYSIS

We have discussed elements of an analysis which accounts
for the use and change of precedent, some of which have
been presented descriptively. In this section, we formalize
these elements and extend the language to provide further
sorts of articulated argument relations.

We assume that not only is an argument related to a con-
text, but it has a mereological structure. While it may be
debatable exactly what those parts are and how they are re-
lated, we will follow Gordon and Walton’s Carneades frame-
work [6], assuming an argument has premises, presupposi-
tions, exceptions, which we refer to as the assumptions of
the argument. From the assumptions, we draw a conclusion
of the argument, which is based on the reasoning relation of
the argument.® Our choice of the Carneades framework is
for the purposes of illustration, concreteness, and compari-
son. However, our language is very expressive, so it allows
us to define a range alternative analyses.

Because we can make reference to the mereological struc-
ture of an argument, we can provide a range of articulated
notions of argument relations, varieties of attack and sup-
port, as well as a spectrum of procedural contexts, where we
specify what sorts of relations hold between arguments and
rank the criteria for winning per context.

®Gordon and Walton [6] refer to the rule of the argument.
We discuss later why we prefer the somewhat awkward term
reasoning relation instead.

4.1 Extended Definitions

We assume the definitions of Section 3, to which we add
the following definitions, where we relate arguments to the
component statements and reasoning relations.

Definition 15. We assume set of statement names s; ,...,
Sn, which denote atomic propositions. Statement names are
of type statement. If s is a statement, then —s is a state-
ment. In no model can s and —s both hold in any context.

Where one statement —s is the negation of the another state-
ment s, we will say the statements are contrary. For our
purposes, the only complex statement is the negation of a
statement; we have no complex statements comprised of con-
joint, disjoined, or conditional statements.

Definition 16. If s is a statement and a is an argument,
then premise(a,s) is a well-formed relation on arguments.
It is read as the statement s is a premise of argument a.
The premise relation is of type argument X statement —
boolean.

We have similar forms of definitions for presupposition(a, s)
and exception(a, s).

This is illustrated in Example 1 Premises are taken as
true and not defeasible. Presuppositions are presumed back-
ground, but are defeasible. Exceptions can defeat presuppo-
sitions. If the exception does hold, then the presupposition
is not defeated and we get Conclusion 1; if the exception
does not hold (i.e. there is a secret passage), then the pre-
supposition is defeated and we get Conclusion 2.

Ezample 1. Argument Elements
Premise: John was seen to enter the house at 2pm.
Premise: John was seen to leave the house at 3pm.
Presupposition: John could not leave the house unobserved.
Exception: There is no secret passage out of the house.
Conclusion 1: Therefore, John was in the house at 2:30pm.
Conclusion 2: Therefore, John might not have been in the
house at 2:30pm.

The relations premise, presupposition, and exception are
many to many; that is, an argument may have many state-
ments which are premises, or presuppositions, or exceptions;
a statement which is a premise of one argument may also be
a premise of another argument. Furthermore, the relations
per argument are disjoint.

Definition 17. O—3a s | [premise(a,s)
A presupposition(a,s)] V [premise(a,s) A exception(a,s)] V
[presupposition(a,s) A exception(a,s)]]

For convenient reference, we gather statements in the above
relations together. If a statement is in either the premise,
presupposition, or exception relation to an argument, it is
an assumption of the argument®. If a is an argument, as-
sumptionFun(a) is the set of all statements in either premise,
presupposition, or exeption relations to that argument.

Definition 18. assumptionFun(a) =g4.y Ax [premise(a, x)
V presupposition(a, x) V exception(a, x)]. This is a set of
statements, so of type statement — boolean.

6This is in contrast to Gordon and Walton and Walton,
who use the term premise in two different ways, which can
be confusing

Definition 19. Nothing else is in the premise, presuppo-
sition, or exception relation to an argument.

Mereologically, an argument has assumptions (of several
sorts), a conclusion, and something which systematically
maps assumptions to a conclusion. This relation may be
called implication, inference, Toulmin’s [11] warrant, or rule.
However, each of these may carry with it interpretations or
background information which we do not intend.” Moreover,
we are interested in a general notion which may be specified
in a variety of ways. In order to avoid confusion and to avoid
premature commitment to any particular approach, we refer
to this relation as the reasoning relation.

Definition 20. We assume a set of reasoning relation
names ry,..., I, which are of type reasoning relation. We
discuss the semantics below.

Definition 21. If a is an argument and r is a reasoning
relation name, then reasongRelation(a, r) is a well-formed
relation on arguments and reasoning relations. It is read as
the reasoning relation r is a reasoning relation of argument
a. The reasoning relation is of type reasoning relation X
argument — boolean.

This is a many-to-one relation, as many arguments may have
the same reasoning relation, but (by stipulation) no argu-
ment has many reasoning relations.

Given a set of assumptions and a reasoning relation, we
define a conclusion of an argument in general. A conclusion
is a statement which is functionally determined with respect
to the assumptions and reasoning relation of the argument.

Definition 22. If a is an argument name, A is a set of
assumptions, r a reasoning relation name, s a statement,
then conclusion(a, assumptionFun(a), r, s) is a well-formed
relation. The function conclusion is of type argument X
(statement — boolean) X reasoning relation X statement
— boolean. It identifies the statements s which follow from
assumptions A and reasoning relation r in argument a.

As a relation, an argument can have several statements
which are conclusions; for example, any assumption can also
be claimed to be a conclusion.

We must say something about the semantics of a reasoning
relation such that the conclusion follows from assumptions
in an argument. In Gordon and Walton [6], an argument is
given a value pro or con. However, for clarity and simplic-
ity, we use a truth-functional notion of the reasoning relation
relation between an assumptions and a conclusion in an ar-
gument, which is but one of the possible definitions of the
reasoning relation.

Suppose a reasoning relation r;, where the specification
of the relation is given in terms of the relation of the as-
sumptions and conclusion. In definition (23), we say that a
statement s; is the conclusion of an argument a;, relative to
a set of assumptions given by assumptionFun(a;) and rela-
tive to a reasoning relation ri. Each of the assumptions and

"For instance, do we mean rule as in expert systems, Prolog
programs, or the ’rules’ of logic such as modus ponens. We
have also not used the term scheme, which can be under-
stood along the lines of the schemes in Walton [12], where
we have schemes such as argument from sign, argument from
hearsay, argument from expert testimony, or argument from
witness testimony.

the statement which is the conclusion must all be true for
one to assert that a given statement s is a conclusion.®

Definition 23. conclusion(a,, assumptionFun(ay), 1, Sm)
= 1 if and only if Vx [x € assumptionFun(ay)], otherwise 0.

In this case, a rather strict condition on the conclusion rela-
tion is applied. There are a range of conceivable and useful
alternatives, but for the purposes of this paper, we use this
one.

With all the parts, we have the form of a sample argument
which has premise s1, presupposition sz, and exception ss3
such that applying reasoning relation r; to the assumptions
we conclude s4.

Exzample Spec. 1. Ja[premise(a, s1) A presupposition(a,
s2) A exception(a, s3) A
conclusion(a, assumptionFun(a), r1, s4)]

Our earlier Example 1 correlates with this, where the first
two premises hold, the presupposition, and the conclusion.

4.2 Relations Among Arguments

We assume that two arguments a; and a are identical
when they have the same assumptions, conclusions, and rea-
soning relations. Furthermore, one argument a; is a subar-
gument of another argument ao if the conclusions and rea-
soning relations of a; are the same as a, but the assump-
tions of a; is a proper subset of as. In addition, given two
arguments with the same assumptions and reasoning rela-
tion, the same conclusion must follow.

To define these notions, we define two functions — one to
get the reasoning relation from the argument reasonRelFun
and another to get the conclusion from the argument con-
cludeFun.

Definition 2. reasonRelFun(a) =r if and only if reason-
Rel(a, r). The function reasonRelFun is of type argument
— reasoning relation.

Definition 25. concludeFun(a) = s if and only if conclu-
sion(a, assumptionFun(a), r, s). The function concludeFun
is of type argument — statement.

Given that reasonRelFun and concludeFun are functions,
an argument can only have one reasoning relation and one
conclusion.

To gather all the statements of a particular argument, we
use both the assumption and conclusion functions.

Definition 26. statementsFun(a) = Ax [x € assumption-
Fun(a) V x = concludeFun(a)]

With the reasoning relation and conclusion functions, we
can specify argument identity, subargumenthood, and that
from any two arguments with the same assumptions and
reasoning relations, the same conclusion must hold. Any
relation which is a relation between arguments has the fol-
lowing type argument X argument — boolean.

Definition 27. argumentldentity(ai, az) if and only if
O Va; Vag[[assumptionFun(a;) = assumptionFun(az)] A
[reasongRelationFun(a;) = reasonRelFun(az)] A
concludeFun(a;) = concludeFun(az)] — a; = az]

8This definition is for illustration purposes, and it may be
too strong. However, arguments only offer presumptive jus-
tification for the assertion of their conclusions.

Definition 28. subargument(as,az), argument a; is a sub-
argument of az, if and only if Vx [x € assumptionFun(a;) —
x € assumptionFun(az)] A [reasonRelFun(a;) =
reasonRelFun(az)] A Vx [x = concludeFun(a;) —

x = concludeFun(az)]

This definition stipulates that subarguments can be mono-
tonically extended to the arguments of which they are a part
because conclusions from a subargument must also hold of
the superargument.

Definition 29. conclusionldentity(ai, a2) if and only if
Va; Vaz[[assumptionFun(a:) = assumptionFun(az) A
reasonRelFun(a;) = reasonRelFun(az)] —
[ConcludeFun(a;) = ConcludeFun(as)]]

An argument a; is distinct from an argument ag if a; is
neither identical to nor a subargument of a;. Argument in-
dividuals are, therefore, distinct in virtue of distinct parts.
However, two distinct arguments may be the same in ei-
ther their assumptions, or their reasoning relations, or their
conclusions so long as the constraints above and below are
satisfied.

Definition 30. distinctArguments(ai, az) if and only if
[-argumentIdentity(ai, az) A —subargument(a;, az) A
—subargument(az, ai)]

Two distinct arguments may be the same in either their
assumptions, or their reasoning relations, or their conclu-
sions so long as the constraints above and below are satis-
fied. This gives us a typology of arguments. For brevity, we
indicate this with attacking arguments, where we suppose
these to be arguments with contrary conclusions. For later
purposes, we give the denotation of the types of arguments
by A-abstracting over the arguments.

Definition 31. Argument Typology

e Typel =45 Aa1 Aap [distinctArguments(aq, a2)
A assumptionFun(a;) # assumptionFun(asz)
A reasonRelFun(ai) = reasonRelFun(az2) A
concludeFun(a;) = — concludeFun(az)]

e Type2 =45 Aai Aag [distinctArguments(ai, az)
A assumptionFun(ai) # assumptionFun(asz)
A reasonRelFun(ai) # reasonRelFun(az) A
concludeFun(a;) = — concludeFun(az)]

e Type3 =45 Aar Aag [distinctArguments(ai, az)
A assumptionFun(a;) = assumptionFun(asz)
A reasonRelFun(ai) # reasonRelFun(az) A
concludeFun(a;) = — concludeFun(asz)]

We say that the supporting arguments TypeA-TypeC are
the same, respectively, as Typel-Type3, except that the con-
clusions are equal; they are supporting arguments as they
are different ways to argue for the same conclusion. Sim-
ilarly, we say that additional arguments TypeD-TypeF are
the same, respectively, as Typel-Type3, except that the con-
clusions are not equal; they are just other arguments we
might find. These arguments might be irrelevant to one an-
other in terms of a particular argument, but relevant in a
larger network network of arguments.’ The argument rela-
tions in Definition 31 correspond to an intuitive notion of

“Dung [5] has no analytic means to differentiate relevant
from irrelevant attacks.

attack, where a successful attack implies that both argu-
ments cannot both hold in one context.

Definition 32. argumentAttack(ai, az) if and only if
distinctArguments(ai, az) A concludeFun(a;) =
= (concludeFun(az). We read this as a1 attacks as.

Any argument relation that suits this definition correlates
to the more familiar rebuttal attack. Notice that in this
definition of argument attack, the relation is symmetrical;
each argument denies the conclusion of the other. It makes
explicit what may be otherwise implicit, namely, that any
attack of one argument on another is at least an attempt to
rebut.

The argumentAttack relation is the most general sort of
attack; it just means that one argument attacks another in
the most fundamental way, which is just the denial of the
conclusion. We can make subsorts of attacks keyed to the
subproperties of arguments. A similar point can be made
for supporting arguments. For our purposes at the moment,
these subproperties are: premise, presupposition, ezemption,
and reasoning relation. Clearly, we could define other sorts
of sorts of attacks given other subproperties of arguments.*°
In effect, the subsort of attack expresses why the conclusion
is denied. We have chosen

to present the notions analytically, first giving attacks on
reasoning relations and assumptions, which are not incom-
patible attacks. Then, we provide subspecies of attacks on
assumptions. We have also chosen to atomize the attacks
where possible; that is, we prefer not to have attacks which
are both attacks on an assumption and an attack on a rea-
soning relation. If one wants to attack both an assumption
and a reasoning relation of one argument, one can, but with
different attacks by two different attacking arguments.

An attack on the reasoning relation means that the two
arguments attack one another and differ in terms of the rea-
soning relation. This correlates to the more familiar under-
cutting attack.

Definition 33. reasonRelAttack(ai, az) if and only if
[distinctArguments(ai, az) A reasonRelFun(ai) #
reasonRelFun(asz)

We can say here that the difference in the conclusion is at-
tributed to the differences in the reasoning relations that are
applied. In other words, the reason why we do not accept
the conclusion is because we do not accept the reasoning
relation which led to the conclusion.

An attack on an assumption means that the two argu-
ments attack one another and that one argument contains a
statement which is contrary to an assumption of the other
argument. This correlates to the more familiar premise de-
feat. Notice that the contrary statement of the attacker
could be either one of the assumptions or the conclusion.
We break this into two definitions, one where an assumption
of the attacking argument is the reason for the contrary con-
clusions, and another where the conclusion of the attacking
argument on an assumption is the reason. We do not need
to specify that conclusions attack conclusions since we have
already specified that the attack relation only holds among
such arguments.

198ee Atkinson [2] for a detailed specification of the subprop-
erties and the varieties of attack applicable to arguments
following a particular scheme.

Definition 3. assumptionAssumptionAttack(ai, az) if
and only if [distinctArguments(ai, az) A - reasonRelAttack (a1,
az) A 3x [x € assumptionFun(a;) A —x € assumptionFun(az)]]

This form of attack is reciprocal since each argument has an
assumption which is the negation of an assumption in the
other.

Definition 35. conclusionAssumptionAttack(ai, az) if and
only if [distinctArguments(a;, az) A — reasonRelAttack(ai,
az) A 3x [x = concludeFun(a;) A —x € assumptionFun(az)]]

This form of attack is asymettric since it stipulates that
the conclusion of an argument a; attacks an assumption of
another argument as; however, it need not be the case that
the conclusion of az attacks an assumption of a;.

We can have a spectrum of attack relations on parts or
combinations of parts. The different relations may have dif-
ferent logical properties (symmetric, asymetric). Here we
just give an example definition for an attack on a premise.

Definition 36. premiseAttack(ai, az) if and only if
[assumptionAttack(a;, a2) A 3x [x € statementFun(ai) A
premise(az, —x)]]

The definitions for presupposition and exception attack have
similar forms. These three relations are asymetrical since
we leave underspecified the property of the statement of the
attacking argument.

To this point, we have just specified articulated attack
relations between arguments. It is useful to introduce such
relations explicitly because then we can define relations be-
tween attack relations. For example, we can rank one attack
as stronger than another attack. This is conceptually similar
to the valuation scheme for argumentation of Bench-Capon
[3], though we extend the idea to the attack relations them-
selves to supplement valuations on arguments. Given such
relations on attacks and criteria for winning and argument,
we can define procedures.

Suppose we have a ranking by a stronger than relation
over attack relations. We call these ranking relations.

Exzample Spec. 2. strongerThanAttack
(reasonRelAttack(a;, az), premiseAttack(ai, az)). We read
this as a reasoning relation attack is stronger than a premise
attack.

Assuming the strongerThanAttack relation is transitive,
we could define the relative strength of all the attack rela-
tions. For example, we could specify the following relative
strengths, where > means the attack on the left is stronger
than the attack on the right. We could have attacks which
are equally ranked as well using >. We give an example
specification of a strict ordering.

Exzample Spec. 3. reasonRelAttack(ai, az) >
premiseAttack(ai, az) > presuppositionAttack(ai, az) >
exceptionAttack(ai, az)

We call such orderings a Ranking Scheme (RS).

In the next section, we first define criteria for winning
attacks only with respect to attack relations, then we add
the criteria.

4.3 Winning Attacks

Having specified distinct attack relations relative to sub-
properties of arguments, we can specify winning attacks rel-
ative to attack relations. These specifications are then asso-
ciated with specifications of procedural contexts. In Dung
[5], where there is only one sort of attack, an attack is always
successful unless the attacking argument is itself attacked.
This measure of success stems from the assumption that
there is but one sort of attack, for it is unclear what other
measure of success could be introduced. The disadvantage
of such an approach is that it conflates the notion of attack
with winning. In contrast, where there are several sorts of
attack relations, we make the success relative to the partic-
ular type of attack in the given context. This distinguishes
the attack from the measure of success. For example, if a
premise attack is stronger than an exception attack, then
an argument might survive an exception attack, but not a
premise attack. We can further differentiate contexts by the
measure of success of attacks: in one context, the measure
of success is such that an argument survives and exception
attack but not a premise attack, while in another context,
it would not survive either.

We can have a family of defeat relations. Closest to
Dung’s [5] attack, we have a relation where any attack on
an argument defeats it so long as the attacking argument
is not itself attacked. In Dung [5], attack and acceptability
are with respect to sets of arguments, which we could define
here, but do not for simplicity.

Definition 37. defeatsGeneral(ai, az) if and only if
[argumentAttack(ai, az) A —Jas [argumentAttack(as, az)]]
We read this as a1 generally defeats as.

We also can express the property that an argument is de-
feated.

Definition 38. defeatedGeneral(az) if and only if
Ja; [defeatsGeneral(a;, asz)]
We read this as a2 is generally defeated.

Close to Dung’s [5] acceptability of arguments, we have sur-
vival in general of an argument, which means there is no
argument that defeats it.

Definition 39. survivesDefeatGeneral(a,) if and only if
—[defeatedGeneral(a)]

In contrast to Dung [5], we can have attacks that are keyed
to specific modes of attack — whether to the reasoning re-
lation, premise, presupposition, or exception as well as to
any combination. We could also specify defeat relative to
supporting arguments; that is, an attacking argument de-
feats another argument not only if the attacking argument
is not itself attacked, but also (or instead?) if the argument
under attack does not have a supporting argument. Indeed,
there are a myriad of possible definitions of defeat and corre-
sponding survival properties, each defined by combinations
of attack and support relations. We give just a small sample
of the possible definitions.

Definition 40. defeatsReasonRel(a1, az) if and only if
[reasonRelAttack(ai, az)] A ~Jaz [argumentAttack(as, az)]].
We read this as a1 defeats az by reasoning relation.

Definition 41. survivesReasonRelAttack(a1) if and only
if =3ay [defeatsReasonRelationGeneral(az, a1)]]

If we allow second-order variables A ,..., A, over attack
relations, then we could then specify that an argument sur-
vives any attack until a certain point, and otherwise it is
defeated, as in the following example specification.

Exzample Spec. 4. survivesUpToPremise(aq) if and only
if =3A; [A1(a1, a2) A Ai(a1, a2) > premiseAttack(ar, a2)],
otherwise defeated(ay).

In this case, a reasonRelAttack would defeat the argument,
while a premise attack would not. The clause otherwise de-
feated essentially allows us to suppose that any other attack
defeats the argument; if the ranking were more extensive,
then other attacks might also fail to defeat the argument.
We could make different assumptions here, namely, that the
argument survives any attack other than one which is higher
in ranking. Notice that unlike Dung [5], where an attack on
an attacker eliminates the attack, we have other means to
render the attacker harmless.

More generally, we can defeat or survival relative to rank-
ing schemes RS as defined along the lines of Definition exam-
pleSpec:survivalRuleAttack01. This is an abstract version of
the reasoning relation given in Example Specification 4.

Definition /2. surviveRS(a1, a2, RS) if and only if
— JA 3B [A(a1, a2) A RS(A(a1, a2), B(a1, a2))], otherwise
defeated a1, where RS is a ranking scheme relation, and A
and B are either attacking or supporting relations.

This definition and previous definitions give schematics which
can be articulated in more detail for particular applications.

For our purposes here, we take the reasoning relations which

determine defeat with ranking as in Definition (42) to be the

surviveCriteria; all such definitions define a surviveCri-

teriaSet. However, for simplicity, we assume we only have

attacking relations, since we have not fully discussed support
relations.

4.4 Procedural Contexts

We can use the previous definitions to define procedu-
ral contexts, which determine what sorts of attacks can be
made and what is success relative to contexts. As the context
changes overall or with respect to the court of consideration,
so too changes the decision. However, for brevity, we do
not formally present the specification of procedural context
and context change, as we have presented the key elements
already. A Procedural context is comprised of a set of con-
texts, which are ranked. We have a set of arguments which
are associated with the contexts (e.g. contexts in which the
argument is decided or considered). We have a set of attack
(and support) relations between the arguments; these can
be keyed to highly specific properties of the arguments. We
can rank the argument relations as well as determine which
of two arguments wins given the context. We have seen that
as we change contexts of consideration, we

change the outcome of the argument network. The same
point can be made for changing the procedural context.

5. COMPARISONS

Dungian argumentation theory is abstract in several re-
spects. The arguments are atomic elements in the theory,
there is only one attack relation between arguments, and the
success of an attack is relative solely to whether or not it
is attacked. This means that attacks cannot be ranked, the

reason why one argument attacks another argument can-
not be expressed, and the burden of proof cannot be as-
signed to different participants. Similarly, given a set of
arguments that hold together, it cannot be said whether the
arguments coherently support a particular position since we
do not know what the arguments are about. Our approach
begins to address these limitations.

Bench-Capon [3] does not articulate arguments, nor make
use of context. Atkinson [2], although articulating a par-
ticular type of argument and providing a range of types of
attack in order to generate an argumentation framework,
does not differentiate between attacks on the basis of their
origin when evaluating arguments with the framework. Like
VAFSs, our account gives a way of distinguishing success-
ful from unsuccessful attacks: when combined with values,
it provides an extra dimension on which distinction can be
made. We also adapt ideas from Gordon and Walton [6]
for articulated arguments. However, they do not follow a
Dungian analysis of attack relations, nor do they account
for procedural contexts.

Unlike research on precedent (cf. Rissland and Ashley
[10]), we assume that we have identified a suitable precedent
to use in the argument relations rather than defining criteria
to identify it.

This work is broadly related to the Argument Interchange
Format of Chesnevar et. al. [4]. The clearest similarities are
that we use abstract arguments and specify arguments in re-
lations. However, they do not attempt an analysis of prece-
dence or procedure. Our proposal is more specific about
the definitions and differs in other ways we do not have the
space here to discuss.

6. FUTURE WORK

The formal tools presented in the paper can be applied
to a range of other issues of interest to artificial intelligence
and law. Not only may it help to clarify important issues, as
for example it has with respect to the Dungian framework,
but it would also bring together disparate problems into one
formal language. For example, the articulation of arguments
can be used as the language for Case-Based reasoning along
the lines of Rissland and Ashley [10]; two cases are com-
pared in terms of argument structures, argument relations,
and winning strategies. By the same token, we can represent
Burden of Proof (Prakken and Sartor [9]) on the various at-
tack relations using a property of arguments to represent its
proponents and opponents. We also believe that Standards
of Proof could be represented in the language. The analysis
proposed here can complement value-based argumentation
(Bench-Capon [3]). If we introduce additional relations be-
tween arguments and statements, we can also account for
many of the issues raised by critical questions (Atkinson
[2]), where we regard an attack as the question, the survival
or defeat of an argument as an answer to the question which
is mediated by the rankings of the procedural context.

7. CONCLUSIONS

The paper provides a formal analysis which can be used
to accommodate judicial procedures and precedent within
an argumentation framework based approach. The funda-
mental idea is to define the procedures in each context with
different ways to make and win a debate relative to the legal
hierarchy. We develop an articulated argumentation theory,

where arguments are basic entities. We specify relations
between context, statements of various sorts, reasoning re-
lations, and arguments. Given such specific attacks, we can
define a spectrum of criteria for winning an attack relative
to a context. We define

procedural contexts in terms of these elements such that
as the procedural context changes, so changes the decision.

8. ACKNOWLEDGMENTS

During the writing of this paper, the authors gratefully
acknowledge the support of the Estrella Project, which is
a European Al and Law project comprised of academics,
companies, and public administrators. Errors rest with the
authors.

9. REFERENCES

[1] L. Amgoud and C. Cayrol. On the acceptability of
arguments in preference-based argumentation. In
Proceedings of the 14th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-98), pages
1-7, San Francisco, CA, 1998. Morgan Kaufmann.

[2] K. Atkinson. What Should We Do?: Computational
Representation of Persuasive Argument in Practical
Reasoning. PhD thesis, Department of Computer
Science, University of Liverpool, Liverpool, United
Kingdom, 2005.

[3] T. J. M. Bench-Capon. Persuasion in practical
argument using value-based argumentation
frameworks. J. Log. Comput., 13(3):429-448, 2003.

[4] C. Chesnevar, J. McGinnis, S. Modgil, I. Rahwan,

C. Reed, G. Simari, M. South, G. Vreeswijk, , and
S. Willmott. Towards an argument interchange
format. The Knowledge Engineering Review,
21(4):293-316, 2006.

[5] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial
Intelligence, 77(2):321-358, 1995.

[6] T. Gordon and D. Walton. The carneades
argumentation framework: Using presumptions and
exceptions to model critical questions. In P. E. Dunne
and T. Bench-Capon, editors, Computational Models
of Argument: Proceedings of COMMA 2006, pages
195-207, Amsterdam, 2006. IOS Press.

[7] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic.
The MIT Press, 2000.

[8] J. H. C. Morris. English judgments in foreign
currency: A ”procedural” revolution. Law and
Contemporary Problems, Vol. 41, No. 2, 41(2):44-53,
1977.

[9] H. Prakken and G. Sartor. Presumptions and burdens
of proof. In T. van Engers, editor, Legal Knowledge
and Information Systems. JURIX 2006: The
Nineteenth Annual Conference, pages 21-30,
Amsterdam, 2006. IOS Press.

[10] E. L. Rissland and K. D. Ashley. A note on dimensions
and factors. Artif. Intell. Law, 10(1-3):65-77, 2002.

[11] S. Toulmin. The Uses of Argument. Cambridge
University Press, 1958.

[12] D. Walton. Argumentation Schemes for Presumptive
Reasoning. Erlbaum, Mahwah, N.J., 1996.

