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Abstract

One difficulty that arises in abstract argument systems is that many natural questions re-
garding argument acceptability are, in general, computationally intractable having been
classified as complete for classes such as NP, co-NP, and

��� �
. In consequence, a number of

researchers have considered methods for specialising the structure of such systems so as
to identify classes for which efficient decision processes exist. In this paper the effect of
a number of graph-theoretic restrictions is considered: � -partite systems ( ����� ) in which
the set of arguments may be partitioned into � sets each of which is conflict-free; sys-
tems in which the numbers of attacks originating from and made upon any argument are
bounded; planar systems; and, finally, those of � -bounded treewidth. For the class of bipar-
tite graphs, it is shown that determining the acceptability status of a specific argument can
be accomplished in polynomial-time under both credulous and sceptical semantics. In ad-
dition we establish the existence of polynomial time methods for systems having bounded
treewidth when deciding the following: whether a given (set of) arguments is credulously
accepted; if the system has a non-empty preferred extension; has a stable extension; is co-
herent; has at least one sceptically accepted argument. In contrast to these positive results,
however, deciding whether an arbitrary set of arguments is “collectively acceptable” re-
mains NP–complete in bipartite systems. Furthermore for both planar and bounded degree
systems the principal decision problems are as hard as the unrestricted cases. In deriving
these latter results we introduce various concepts of “simulating” a general argument sys-
tem by a restricted class so allowing any argument system to be translated to one which has
both bounded degree and is planar. Finally, for the development of basic argument systems
to so-called “value-based frameworks”, we present results indicating that decision prob-
lems known to be intractable in their most general form remain so even under quite severe
graph-theoretic restrictions. In particular the problem of deciding “subjective acceptability”
continues to be NP–complete even when the underlying graph is a binary tree.
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1 Introduction

Since their introduction in the seminal work of Dung [20] abstract argument sys-
tems have proven to be a valuable paradigm with which to formalise divers seman-
tics defining argument “acceptability”. In these a key component is the concept of
an “attack” relationship wherein the incompatibility of two arguments – 	 and 
 ,
say – may be expressed in terms of one of these “attacking” the other: such rela-
tionships may be presented independently of any internal structure of the individ-
ual arguments concerned so that the properties of the overall argument system, e.g.
which of its arguments may be defended against any attack and which are indefen-
sible, depend solely on the attack relationship rather than properties of individual
argument schemata. Among other applications, this abstract view of argumenta-
tion has proven to be a powerful and flexible approach to modelling reasoning in a
variety of non-classical logics, e.g. [20,12,17].

We present the formal definitions underpinning argument systems in Section 2,
including two of the widely-studied admissibility semantics – preferred and stable
– introduced in [20]: at this point we simply observe that these describe differing
conditions which a maximal set of mutually compatible arguments, � , must satisfy
in order to be admissible within some argument system comprising arguments �
with attack relationship �������� .

Despite the descriptive power offered by abstract argument systems one signifi-
cant problem is the apparent intractability of many natural questions concerning
acceptability under all but the most elementary semantics: such intractability clas-
sifications encompassing NP–completeness and co-NP–completeness results of Di-
mopoulos and Torres [18] and the � � � –completeness classifications presented in
Dunne and Bench-Capon [24]. Motivated, at least to some degree, by these nega-
tive results a number of researchers have considered mechanisms by which argu-
ment systems may be specialised or enriched so that the resulting structures admit
efficient decision procedures. Two main strategies are evident: the first, and the
principal focus of the present paper, has been to identify purely graph-theoretic
conditions leading to tractable methods for those cases within which these are sat-
isfied; the second, which itself may be coupled with graph-theoretic restrictions,
is to consider additional structural aspects in developing the basic argument and
attack relationship form. Under the first category, [20] already identifies directed
acyclic graphs (DAGs) as a suitable class, while recent work of Coste-Marquis et
al. [14] has shown that symmetric argument systems – those in which 	 attacks 
 if
and only if 
 attacks 	 – also form a tractable class. Graph-theoretic considerations
also feature significantly in work of Baroni et al. [3,4].

Probably the two most important exemplars of the second approach are the Prefer-
ence based argumentation frameworks of Amgoud and Cayrol [1] and Value based
argumentation frameworks introduced by Bench-Capon [7]. While the supporting
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motivation for both formalisms is, perhaps, more concerned with providing inter-
pretations and resolution of issues arising from the presence of multiple maximal
admissible sets which are mutually inconsistent, both approaches start with an arbi-
trary argument system, �������� , and reduce it to an acyclic system, ��������� in which
���  this reduction being determined via some additional relationship ! : the
main distinction between [1] and [7] being the exact manner in which ! is defined.

In this paper some further classes of graph-theoretic restrictions are considered:"
–partite directed graphs, bounded degree systems, planar argument systems, and

those with
"

-bounded treewidth. In the first class, for which the case
"$#&%

is of
particular interest, the argument set � may be partitioned into

"
pairwise disjoint

subsets – ���(')�+*+*+*,�-��./� such that every attack in  involves arguments belonging to
different sets in this partition: the special case,

"�#0%
, defines the class of bipartite

directed graphs. The bounded degree class, limits the number of attacks on (the
argument’s in-degree) and by (its out-degree) any 1324� , i.e. 57698;:��<8=�>1?�@23�AB5
and 57698C:D�E1F�>8G�H2I�AB5 are bounded by given values JK	L��
NM , again the special case
	 # 
 #O% is of particular interest. The concept of treewidth, introduced in work
of Robertson and Seymour, e.g. [34], has proven to be a useful aid in developing
efficient methods for many computationally hard problems, e.g. via very general
approaches such as those of Arnborg et al. [2], Courcelle [15,16], even in the case
of problems which are not directly graph-theoretic in nature, e.g. Gottlob et al. [29].

In the remainder of this paper formal background and definitions are given in Sec-
tion 2 together with the decision questions considered. Section 3 describes two
important systems from [18,24] that feature in a number of subsequent hardness
proofs, while Sections 4 and 5 present results concerning, respectively,

"
-partite

and bounded degree directed graphs. Planarity is discussed in Section 6 and prop-
erties of bounded treewidth systems are given in Section 7. The range of results
proved indicate that for many of these restrictions it is possible to obtain efficient
decision processes: both credulous and sceptical acceptability of individual argu-
ments may be determined in polynomial time within bipartite systems. In the case
of systems with bounded treewidth, similar positive results for a number of prop-
erties are derivable using a number of deep results originally obtained in [15,16]
and developed in [2]. It turns out, however, that for the development of standard
argument systems into value-based frameworks we do not obtain more efficient
mechanisms simply by limiting the graph structure: in Section 8 we show that two
basic decision problems in this model remain hard even when the underlying graph
structure is a binary tree. Conclusions and developments are discussed in Section 9.

2 Finite Argument Systems – Basic Definitions

The following concepts were introduced in Dung [20].
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Definition 1 An argument system is a pair P # �Q�R�>�� , in which � is a finite set
of arguments and S�T���U� is the attack relationship for P . A pair �E1F��8V�W2� is
referred to as ‘ 8 is attacked by 1 ’ or ‘ 1 attacks 8 ’. For �4�T� , the set of argumentsX J<�YM is given by
X J<�YM # Z

[+\/] 6^8_:��E1F��8V�W2� or �<8=�>1?��2��A

The convention of excluding “self-attacking” arguments, also observed in [14], is
assumed, i.e. for all 1`2a� , �E1F�>1?��b2_ . For c , � subsets of arguments in the
system PIJQ�����M , we say that

a. de2�� is attacked by c if there is some fg2Rc such that �<f9�-d9�^2h .
b. 1$2i� is acceptable with respect to � if for every 8D2i� that attacks 1 there

is some j�2R� that attacks 8 .
c. � is conflict-free if no argument in � is attacked by any other argument in � .
d. A conflict-free set � is admissible if every 8k2�� is acceptable w.r.t � .
e. � is a preferred extension if it is a maximal (with respect to � ) admissible set.
f. � is a stable extension if � is conflict free and every 8hb2�� is attacked by � .
g. P is coherent if every preferred extension in P is also a stable extension.

Following the terminology of [14], PIJ<�����M is symmetric if for every pair of argu-
ments 1 , 8 in � it holds that �l1F��8G�W2h if and only if �<8=�>1?�W2R .

An argument 1 is credulously accepted if there is some preferred extension contain-
ing it; 1 is sceptically accepted if it is a member of every preferred extension.

Combining the ideas of credulous and sceptical with preferred and stable, provides
a number of differing formalisations for the concept of a set of arguments being ac-
ceptable: these are sometimes referred to as the credulous preferred/stable seman-
tics and sceptical preferred/stable semantics. Unless we explicitly state otherwise
we will usually be considering the preferred variant of these.

We make one further assumption regarding the graph-theoretic structure of argu-
ment systems: as an undirected graph, PIJQ�����M is connected. In informal terms,
this states that systems do not consist of two or more “isolated” graphs.

The concepts of credulous and sceptical acceptance motivate a number of decision
problems that have been considered in [18,24].

That problems (a–d) are NP–complete, while (e) is CO-NP–complete follows from
results of [18]. Problems (f) and (g) were shown to be � � � –complete in [24].

The questions above are formulated in terms of single arguments, it will be useful
to consider analogous concepts with respect to sets. Thus CA mon denotes the decision
problem whose instances are an argument system �������� together with a subset �
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Table 1
Decision Problems in Finite Argument Systems

Problem Instance Question

a. CA prqlsutovxw , ykz{s Is y credulously accepted?

b. CAS prqls|tov}w , y{zks Is y in any stable extension?

c. PREF-EXT p�qls|tov}w Does p have a non-empty preferred extension?

d. STAB-EXT prqls|tov}w Does p have any stable extension?

e. SAS prqls|tov}w , y{zks Is y in every stable extension?

f. SA prqlsutovxw , ykz{s Is y sceptically accepted?

g. COHERENT prqls|tov}w Is the system p coherent?

of � : the instance being accepted if there is a preferred extension ~ for which
����~ . Similarly, SA mon accepts instances for which � is a subset of every preferred
extension.

In contrast, we have the following more positive results.

Fact 2

a. Every argument system P has at least one preferred extension. (Dung [20])
b. If PIJQ�����M is a DAG then P has a unique preferred extension. This is also a

stable extension and may be found in time linear in 5��$5��05 �5 . ((Dung [20])
c. If PIJ<�R�>�M is symmetric then CA, SA, CA mon , and SA mon are all polynomial-time

decidable. Furthermore P is coherent. (Coste-Marquis et al. [14]).
d. If PIJ<�����M contains no odd-length simple directed cycles, then P is coherent.

(Dunne and Bench-Capon [24])
e. If PIJQ�����M is coherent then SA JlP��>1?M can be decided in co-NP.

Fact 2 (e) is an easy consequence of the sceptical acceptance methods described in
work of Vreeswijk and Prakken [36].

While Fact 2 (a) ensures the existence of a preferred extension – a property that is
not guaranteed to be the case for stable extensions – it is possible that the empty
set of arguments (which is always admissible) is the unique such extension. Noting
Table 1 (c), whether a given argument system PIJQ�����M has a non-empty preferred
extension is unlikely to be efficiently decidable in general.

3 The argument systems P�� and ��� and their properties

A number of our subsequent hardness proofs regarding various graph-theoretic re-
strictions are obtained by transforming argument systems used in earlier reductions
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of [18,24] in classifying the decision problems CA and SA. In order to avoid repeti-
tion it will be useful formally to introduce the two systems used in these contexts.
Noting that both systems take as their starting point some CNF formula � , we de-
note these subsequently by P�� and ��� .

3.1 The system P��

The form we describe is virtually identical to that first presented by Dimopoulos
and Torres [18, Thm. 5.1, p. 227] where it is used to establish NP–hardness of CA
via a reduction from 3-SAT.

Given a CNF formula �}JQ����M #������� '�� � with each � � a disjunction of literals from
6�j�'��+*+*+*��)j����-��j�'��+*+*+*,�-��j���A , the argument system, P��FJQ�����M has

� # 6��(� � '-�+*�*+*�� � � A$�;6�j��Q�Y��j��D:u�x� �Y�¢¡�A
 # 6�� � � �-�^�3:u�x��£{�¢¤�A3��6��Qj����-��j��¥�,�¦����j�����j��l�3:g�e�¢�Y�¢¡§A3�

6��Qj���� � � �i:xj�� occurs in � � A$�;6�����j���� � � �3:x��j�� occurs in � � A

Fig. 1 illustrates P�� for the CNF �}JEjN'��)j � �)j+¨/�)j�©�M # JEj�'�ªij � ªij+¨�M,JQ��j � ª3��j+¨�ª
��j�©,M�JQ��j�'Lªhj � ªDj�©,M .

C2
C3

C1

Φ

−z1z1 z4 −z4

z2 −z2

−z3

z3

Fig. 1. The Argument System p �

Fact 3 (Dimopoulous and Torres [18]) Let �}J<���«M be an instance of 3-SAT, i.e. a
3-CNF formula. Then �}JQ�Y�«M is satisfiable if and only if CA J¥P���J<�����M��-�^M .
.
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3.2 The system �L�

The proof that SA is � � � –complete from [24] uses a reduction from QSAT ¬� in-
stances of which may, without loss of generality, be restricted to 3-CNF formu-
lae, ' �}JE®���-���«M , accepted if ¯±°�²�³D´®µ±�}JE°§²Y��´®µ?M , i.e. for every instantiation of
the propositional variables =� ( °§² ) there is some instantiation of �Y� ( ´®µ ) for which
�Q°F²��>´®µ?� satisfies � .

The system ���FJE¶a���^M is formed from the system PD�FJ<�����M , i.e. � �·¶ and
S�¢� , so that

¶ # 6��(� � '��+*+*�*,� � � A$�;698��<�-��8��Q�)j����)�Yj��D:g�¸�¢�Y�¢¡�Ai�;6�¹�'-�)¹ � �)¹)¨+A
� # 6�� � � �-�^�3:g�e��£k�¢¤�AH�

6��<8��Q�-��8��¥�,�9����8��<��8��¥�,�/�Qj����-��j��E���9����j����)j��¥�i:u�¸� �Y�¢¡�AH�
6��<8��Q� � � �i:}8�� occurs in � � A3�&6�����8��Q� � � �3:¸��8�� occurs in � � AH�
6��Qj��o� � � �i:xj�� occurs in � � Ai��6�����j���� � � �3:x��j�� occurs in � � AH�
6����(�)¹�'>�,�9�Q�(�)¹ � �,�9���(��¹-¨����9�Q¹�'-�)¹ � �,�/�Q¹ � �)¹)¨��,�9�Q¹)¨+��¹+'>�-Aº�
6��Q¹�'��)j��l���9�Q¹�'-�-��j��E�i:u�x�¢�Y�T¡§A

The resulting system is shown in Fig. 2.

z2yn z1 zn

b2

b1

b3

y1 y2

Φ

HΦ

Fig. 2. The Argument System » � .

Fact 4 (Dunne and Bench-Capon [24])

a. �}J<B�V�-���NM is accepted as an instance of QSAT ¬� if and only if SA J<�L���)�^M .
' The proof in [24], in fact presents a more general translation from arbitrary propositional
formulae over the logical basis ¼�½¾t�¿¾t�À�Á . Exploiting such translations is a significant mo-
tivating device underlying Theorem 12 and, in particular, accounts for the original context
of Fig. 8.
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b. �}J<B�V�-���NM is accepted as an instance of QSAT ¬� if and only if �L� is coherent.

4
"
-partite Argument Systems

In this section
�

we consider the effect on problem complexity of restricting sys-
tems to be

"
-partite. Our results are summarised in Table 2.

Definition 5 An argument system PIJ<�����M is " -partite if there is a partition of �
into
"

sets ���('��+*�*+*,�)�^.+� such that

¯��<8=�)jÂ��2� 8�2R���BÃ·jDb2R���

The term bipartite will be used for the case
"i#&%

. It should be noted that, since
there is no insistence that each of the partition members be non-empty, any

"
-partite

system is, trivially, also a J " �kÄ�M -partite system for every ÄWÅTÆ . We use the notationÇ¾È .)É for the set of all
"

-partite argument systems.

Table 2
Complexity-theoretic Properties of � -partite Argument Systems

Decision Problem Complexity

a. CA
È � É Polynomial-time

b. CA
È ¨ÊÉ

NP–complete

c. CA
È � Émon NP–complete

d. SA
È � É Polynomial-time

e. SA
È ¨ÊÉ � � �

–complete

f. SA
È � Émon Polynomial-time

g. SA
È ¨ÊÉmon � � �

–complete

h. COHERENT
È � É Trivial

i. COHERENT
È ¨ÊÉ �¾� �

–complete

The notations CA
È .)É , SA

È .)É , CA
È .)Émon , and SA

È .)Émon will be used to distinguish the various
avatars of the decision problems of interest when instances are required to be

"
-

partite argument systems. Similarly we use COHERENT
È .)É to denote the problem

of deciding whether a
"

-partite argument system is coherent. In instances of these
problems it is assumed that PIJ<�R�>�M is presented using an appropriate partition of
�

The results presented in Theorems 6, 7, and 8 first appeared in a preliminary version of
this paper in [23].
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� into
"

disjoint sets ���('-��*+*+*��)�^.�� . ¨

We first deal with the case of bipartite argument systems (
"3#Ë%

). For other val-
ues it is noted that the classifications are largely straightforward consequences of
the graph-theoretic constructions described in Section 3. © Notice that it is straight-
forward to deal with the claim made in Table 2(h): a bipartite argument system
cannot have any odd-length cycles, and thus coherence is ensured via Fact 2 (d). In
contrast to undirected graph structures, the absence of odd-length directed cycles,
while necessary, is not a sufficient condition for an argument system to be bipar-
tite; symmetric systems, however, are bipartite systems if and only if the associated
undirected graph contains no odd-length cycles.

The main idea underlying Algorithm 1 in proving Theorem 6 is as follows: in a
bipartite argument system, �}JlÌu�)Í����M attackers of an argument 8{2�Ì can only be
arguments j�2�Í , and defences to such attacks must, themselves, also be arguments
in Ì . It follows, therefore, that those arguments of Ì that are attacked by members
of Í upon which no counterattack exists cannot be admissible. Moreover, attacks
on Í furnished by such arguments play no useful function (as counterattacks) and
may be eliminated from  , a process that can lead to further arguments in Í be-
coming unattacked. By iterating the process of removing indefensible arguments in
Ì and their associated attacks on Í , this algorithm identifies an admissible subset
of Ì .

Theorem 6

a. CA
È � É is polynomial-time decidable.

b. SA
È � É is polynomial-time decidable.

Proof: For (a), given a bipartite argument system, �}JEÌu��Í����M and 1�2�ÌÎ�iÍ ,
without loss of generality assume that 1Ï2�Ì . Consider the subset, � of Ì that is
formed by Algorithm 1.

We claim that CA
È � É JE�(��1?M holds if and only if 1h2�� .

Suppose first that 1�2Ð���&Ì . Since �@JEÌu�)Í��>�M is a bipartite argument system
it follows that � is conflict-free. Now consider any argument j42�Í that attacks
� : it must be the case that there is some 8D23� that counterattacks j for otherwise
at least one argument would have been removed from � at Step 4. In total, � is
conflict-free and every argument in � is acceptable with respect to � , i.e. � is an
admissible set containing 1 which is, hence, credulously accepted.

¨ Without this, problems arise when checking if an arbitrary argument system, p , is � -
partite: for �g�±Ñ the corresponding decision question is NP–complete.© It is noted, however, that some extension of the basic construction in Section 3.2 is
needed for the results of Table 2(g) and (i).
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Algorithm 1. Credulous Acceptance in Bipartite Systems
1: �Y: # Æ ; ÌÓÒ4: # Ì ; uÒ�: # 
2: repeat
3: ��: # �?�T�
4: ÌY�U: # ÌY�ÕÔB'�Ö�6^8�2�ÌY�ÕÔB'$:¸³gj�2RÍ :��QjV��8V�W2Rg�ÕÔB' and

576¦8{2RÌY�ÕÔB'I:��<8=�)jÂ��2�g�ÕÔB'�AB5 # ÆeA
5: g�U: # g�ÕÔB'�Ö¢6x�<8?��jÂ�i:}8Rb2�ÌY��Ö¦ÌY�ÕÔB'�A
6: until ÌY� # Ì��×ÔB'
7: return Ì��

On the other hand, suppose that 1 is credulously accepted. Let � be the subset of
Ì returned and suppose for the sake of contradiction that 1�b2 � : then there must
be some iteration of the algorithm during which 1Ð2ØÌW�ÕÔB' but 1�b2ØÌ�� . In order
for this to occur, we must have a sequence of arguments �Qj�Ò/�}j�'¸�+*�*+*��}j��¥� in Í
with the property that 5Ù6¸842TÌ � : �<8=�)j � �k2T � AB5 # Æ with �Qj�����1?�k2�g� . Now
any argument 8�Ú of Ì attacked by j/Ò cannot be credulously accepted since there
is no counterattack on j/Ò available. It follows that the attacks �E8VÚ×�)jÂ� provided by
such arguments cannot play an effective role in defending another argument and
thus can be removed. Continuing in this way, it follows that no argument 8BÚ Ú that is
attacked by j�' is credulously accepted: the only attackers of j«' are arguments of Ì
that are attacked by j9Ò and these, we have seen, are indefensible. In total, 1Øb2��
would imply that 1 is indefensible, a conclusion which contradicts the assumption
that 1 was credulously accepted.

The preceding analysis establishes the algorithm’s correctness. The proof of (a) is
completed by noting that it runs in polynomial-time: there are at most 5 Ì�5 iterations
of the main loop each taking only polynomially many (in 5 Ì��hÍh5,�05 �5 ) steps.

Part (b) follows from (a), Table 2(h) and the observation of [36] that, in coherent
systems, an argument is sceptically accepted if and only if none of its attackers are
credulously accepted. Û
Examining the structure of Algorithm 1 allows the following characterization of
the set of preferred extensions in bipartite systems.

Corollary 1 Given a bipartite argument system �}JlÌu�)Í����M let �LÜ and �ÞÝ be the
subsets of Ì and Í returned by Algorithm 1. Let ~Î� Ì4�rÍ and for ��2i69Ìu�)Í{A ,
~�ß denote ~�àD� . Then ~ is a preferred extension of �@JEÌu�)Í����M if and only if

~ # �?ÜuÖ X Jl~?Ý§Má� �ÞÝ�Ö X Jl~=ÜÞM

Turning to the problems CA mon and SA mon , [14] note that in many cases decision prob-
lems involving sets are “no harder” than the related questions formulated for spe-
cific arguments, e.g. for unrestricted argument systems, symmetric argument sys-
tems and DAGs, the upper bounds for CA mon and SA mon are identical to the correspond-
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ing upper bounds for CA and SA. In this light, the next result may appear somewhat
surprising: although, as has just been shown, CA

È � É is polynomial-time decidable,
CA
È � Émon is likely to be noticeably harder.

Theorem 7

a. CA
È � Émon is NP–complete, even for sets containing exactly two arguments.

b. SA
È � Émon is polynomial-time decidable.

Proof: For (a), that CA
È � Émon 2 NP is easily demonstrated via the non-deterministic

algorithm that guesses a subset ~ , checks �4��~ and that ~ is admissible.

To show that CA
È � Émon is NP–hard we use a reduction from the problem Monotone

3-CNF Satisfiability (MCS) ([27, p. 259]), instances of which comprise a 3-CNF

formula over a set of propositional variables 6/1F'-�+*+*�*��>1B�âA ,

�}Jl1�'��>1 � ��*+*+*���1B�ÂM #
�ã
� � ' � �

# �ã
� � ' J=8��Õäå'�ª�8��×ä

� ªa8��Õä ¨�M

and each clause, � � , is defined using exactly three positive literals or exactly three
negated literals, e.g. Jl1L'/ª�1 � ª^1®¨,M � JQ�¾1�'+ªº��1 � ªº��1B©�M would define a valid instance
of MCS, however J¥1L'�ª��¾1 � ªD1®¨�M would not. An instance � of MCS is accepted if
and only if there is an instantiation, °32���æu�-ç¸� � under which �}JE°�M # æ .

Given �}J¥1L'���*+*+*���1B�ÂM an instance of MCS let 6 �éè' ��*+*+*�� � èê A be the subset of its
clauses in which only positive literals occur and 6�ëUì' �+*+*+*,�)ë�ìí A those in which only
negated literals are used. Consider the bipartite argument system � MCS JEÌu�)Í��>�M
in which

Ì # 6�� ì � �¸è' �+*+*+*,� � èê ���¾1�'��+*+*�*��-�¾1B�VA
Í # 6�� è ��ë{ì' ��*+*+*���ë�ìí �¾1�'��+*+*�*,�>1B��A

and  contains

6x�E1 � �)��1 � �,�¦�Q��1 � �>1 � �3:g����£k�¢¡�A î
6x� �eè� �-� è �3:g�e�¢�Y�¢f�A3�&6e�Që�ì� �-��ì��i:u�x�¢����dNA î
6x���¾1 � �)ë�ì� �3:x�¾1 � occurs in ërì� A î
6x�E1 � � �eè� �i:@1 � occurs in �eè� A

The instance of CA
È � Émon is completed by setting � # 6�� è �)� ì A .
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Suppose that there is some preferred extension, ~ , of � MCS for which 6�� è �)� ì Ae�
~ , i.e. that �E� MCS �)��� defines a positive instance of CA

È � Émon . Then, for each � è� some
argument 1 � with �E1 � � � è� ��2Î must be in ~ (otherwise the attack � � è� �-� è � is
undefended); similarly for each ërì� some argument ��1=. with ���¾1®.N��ë�ì� �^2h must
be in ~ . It cannot be the case, however, that both 1 � and �¾1 � are in ~ . We can, thus,
construct a satisfying instantiation of � via 1 � : # æ if 1 � 2Î~ , and 1 � : # ç if
�¾1 � 2h~ .

On the other hand suppose the instance � of MCS is satisfiable, using some instan-
tiation ° . In this case the set

6�� è �-� ì A3�&6^1 è� :@1 � # æ under °YA$�;6^1 ì� :@1 � # ç under °�A

is easily seen to be admissible, so that �<� MCS �,6�� è �-� ì A�� defines a positive in-
stance of CA

È � Émon .
Part (b) follows easily from Theorem 6(b) since a set of arguments � is sceptically
accepted if and only if each of its constituent members is sceptically accepted. Û
The remaining cases in Table 2 are considered in the following Theorem.

Theorem 8

a. ¯ " Å ï , CA
È .)É is NP–complete.

b. ¯ " Å ï , SA
È .)É and COHERENT

È .�É are � � � –complete.

Proof: The membership proofs are identical to those that hold for the unrestricted
versions of each problem. For (a), NP–hardness follows by observing that the argu-
ment system P�� given in Section 3.1 is ï -partite: using three colours – 6�cg�)ð{�)ñuA
say – PU� may be three vertex coloured by assigning c to 6��(�)jÂ'��+*+*�*,�)j��âA ; ð to
6���j�'��+*+*+*,�-��j���A and ñ to 6 � ')�+*+*+*,� � � A . The proof of (b) requires techniques in-
troduced in Section 5 applied to the construction �§� of Section 3.2: details are given
in Appendix 1. Û

5 Bounded degree systems

In contrast to many of the results of Section 4, the restriction considered in this
Section ò does not lead to improved algorithmic methods. Our principal interest is
in introducing the concept of a given class of argument systems being capable of

ò The presentation here is a revised and expanded treatment of ideas originally outlined in
[23].
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“representing” another class. This is of interest for the following reason. Suppose
that � and ó are properties of argument systems (where the formal definition of
“property” will be clarified subsequently). Furthermore, suppose that any system
with property � can be “represented” (in a sense to be made precise) by another
system with property ó . Assuming such a representation can be constructed effi-
ciently, we would be able to exploit algorithmic methods tailored to systems with
property ó also to operate on systems with property � : given P (satisfying � ),
form �?ô (with property ó ) and use an algorithm operating on this to decide the
question posed of P . In a more precise sense, we have the formalism presented
below.

Definition 9 A property, � of finite argument systems is a (typically infinite) subset
of all possible finite argument systems. We say P has property � if PË2R� .

The argument system PIJQ�����M is simulated by the argument system �¦J<�á�RÌu�>�^M
with respect to credulous admissibility (denoted �iõ¸öE÷ÓP ) if

¯����T� CA mon/J<�¦J<�`��Ìu�>�^M��)��MOø CA mon+JlPIJ<�����M��-�YM

Similarly P is simulated by � w.r.t. sceptical admissibility ( �iõ¸ùÕ÷ÓP ) if

¯����T� SA mon/J<�¦JQ�ú��Ìu����M��-�YMOø SA mon/J¥PIJQ�����M-�-�YM

For °32$6 CA � SA A , a property, ��° -represents a property ó if for every PIJ<�R�>�MÓ2
� there is some �¦JQ�`�DÌu���^M^2Ió such that �iõ¸ûgP . We say that � polynomially
° -represents ó if there is some constant

"
such that, for every PIJ<�R�>�M^2�� there

is some �¦J<�_�DÌu����Mº2$ó such that 5å�`�hÌ�5��S5��$5 . and ��õxûgP . Finally we say
that a property is (polynomially) ° -universal if it (polynomially) ° -represents all
argument systems.

It will be useful also to view as “polynomially ° -universal” those properties that
° -represent all but finitely many argument systems.

The class of argument systems considered in this section are those defined by the
property, ü È � ä ýoÉ introduced below,

Definition 10 An argument system PIJQ�����M has Jþ	L��
NM -bounded degree if

¯�1R2�� 5Ù6^8�2�� : �E8?�>1?�W2h_AB5��i	 and 576¦8�2�� : �E1F��8V��2�`AB5�� 


The notation ü È � ä ýoÉ will be used for the set of all Jþ	L��
NM -bounded degree systems.

Our main result in this section is

13



Theorem 11

a. ü È
� ä � É is polynomially CA-universal.

b. ü È
� ä � É is polynomially SA-universal.

Proof: We prove part (a) only. An identical construction serves for part (b) with
the analysis needed for the conditions of simulation w.r.t. sceptical admissibility
proceeding in a similar style to the case of credulous admissibility.

Let PIJQ�����M be any finite argument system. Suppose P b2Îü È
� ä � É . Consider any

1�2�� for which

698_:|�<8=�>1?��2��AB5 # 698â'-��8 � �+*+*�*,��8�.�A and
" Å ï

y1 y2

x

y3 yk

Fig. 3. Argument y attacked by �g�±Ñ arguments

Consider the system � È .�ÔB'<É[ J<�Ï�u6�j�'-�)j � A�����M formed by introducing new arguments
j�' and j � with

� # ÎÖ(6��<8����>1?�i: % � ��� " A^�R6��Qj�'��>1?�,�/�Qj � �)j�'��-A^�R6��<8��Q�)j � �i:u�e�¢�Y� " A

i.e. formed by replacing the attacks on 1 in Fig. 3 with the system in Fig. 4

x

y2 y3 yk

z1y1

z2

Fig. 4. Reducing � attacks to �@ÿ�� attacks

We claim that � È .,ÔB'<É[ JQ�ú��6�j�'��)j � A����^MYõ@ö<÷�PIJQ�����M .
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Consider any ~C�S�a��6�j�'��)j � A defining an admissible set in � È .,ÔB'<É[ and let � #
~¢Öé6�j�'-��j � A . To see that � is conflict-free it suffices to observe that the only way
in which ~ can be conflict-free and � fail to be so is if 6/1F��8«�QAT� ~ for some% � �$� " : but in this case, since jN' attacks 1 and the only counterattack on
j�' is j � , 1a2a~ forces j � 2a~ from which 8��hb2�~ , for every ��� �h� " . To
see that � also defends itself against any attack if ~ does so, first suppose that
1;2�~ . In this case, not only must some attacker of 8V' be in ~ (and thus the
same attacker is in � ) but also since j � 2 ~ to defend the attack on 1 by jN' , we
require that for each attack �<8N�Q�)j � � , ~ must contain some attacker of 8N� : again all
of these attacks will be members of � . If, on the other hand, 1�b2D~ , without loss of
generality suppose that �E1F�Q	=�é2� and that 	424~ . Then either 8V'é24~ (and thus
also in � ) or jN'k2�~ . The second of these, however, requires that at least one of
698 � ��*+*+*��>8N.9A is in ~ to counterattack j � . It follows that if 1Ïb2$� and attacks 	�2$�
then 698â')�+*�*+*���8�.�A�à��Tb#��

.

In the reverse direction, suppose that �O� � is admissible in P . If 102ú� then
���I6�j � A is an admissible set of � È .,ÔB'<É[ . If 1�b2$� either � is also an admissible set
of � È .�ÔB'<É[ (if 8â'º2$� or 1 does not attack any argument of � ) or ���I6�j«'-A is such a
set (whenever �{à�698 � �+*+*�*���8�.�A{b#��

). Thus, � È .,ÔB'<É[ JQ���U6�j�'��)j � A�����M�õ@öE÷ÓPIJ<�R�>�M .
Noting that the construction does change the number of attacks on arguments other
than 1 , a similar procedure can be applied to any remaining argument attacked by
at least three arguments. A near identical construction serves when dealing with
those arguments that attack more than two others. Û

Now, recalling that
Ç�È .)É is the set of all

"
-partite argument systems we obtain

Corollary 2 The property
Ç�È © É à�ü È

� ä � É is polynomially CA-universal and polyno-
mially SA-universal.

Proof: Viewed as undirected graphs, via Brooks’ Theorem ([9, Thm 6, Ch. 15, p. 337]),
with a single exception, every argument system in ü È

� ä � É is � -colourable. It follows
that these are � -partite. Û

Corollary 3 Let Q
È � ä � É denote either of the decision problems 6 CA � SA A restricted

to argument systems with the property ü È
� ä � É .

a. CA
È � ä � É is NP–complete.

b. SA
È � ä � É is � � � –complete.

Proof: Apply the construction of Theorem 11 to the systems Ph� and ��� presented
in Section 3. Û
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6 Planar Argument Systems

We recall that a graph ñ{J��Y���éM is planar if it can be drawn (in the plane) in such
a way that no two edges of the graph cross each other. Thus, the complete graph
on four vertices is planar, e.g. Fig. 5, whilst the complete graph on five vertices is
non-planar.

A B

D C D

BA

C

Fig. 5. Planar drawing of 	 © the complete graph on four vertices.

Several graph-theoretic decision problems whose general versions are NP–hard are
known to admit polynomial time algorithms when instances must be planar graphs.
Examples include not only questions that are immediately resolvable from estab-
lished properties of planar graphs, e.g. 4 vertex colouring and maximal clique, but
also for questions where it is far from obvious that planarity assists in developing
efficient algorithms, e.g. the problem of determining whether a graph has a bipartite
subgraph containing at least some specified number of edges, [27, GT25, p. 196].
For problems whose complexity status is still open, most notably that of deciding
if two given graphs are isomorphic, linear time methods have been found for planar
graphs, e.g. [30]. Planarity, however, does not help in the construction of efficient
decision procedures for the problems of Table 1. The reductions employed to prove
this make use of a device which is of some independent interest: in terms of the
formalism introduced in the preceding section this allows us to argue that planarity
is a polynomially CA-universal property.

We observe in passing that using the (NP–complete) decision problem PLANAR-3-
SAT, whose instances are 3-CNF formulae having planar clause incidence graphs, 

it is not too difficult to show that CA mon+J¥P��-�YM is NP-complete when P is required to
be a planar graph. � We do not consider the proof of this result in any further detail,


 The clause incidence graph of a CNF �^qÕy ' t����toy � w��Ð½ ��>� '�� � , is the bipartite graph
with vertex sets ¼-y ' t����toy � Á and ¼ � ' t����t � � Á and edges ¼-y � t � � Á for each case when
ÀÞy � occurs in � � or y � occurs in � � .� For readers familiar with the relevant graph-theoretic concepts, the instance of CA mon
is formed using a planar embedding of the clause incidence graph of � – an instance of
PLANAR-3-SAT – augmenting it with arguments ¼�� ' t�� � t���,t�� ê Á one for each face of the
embedding in which a clause of � occurs. These arguments are then attacked by the in-
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simply noting that it is subsumed by our proof that CA J¥P��>1?M is NP–complete with
P restricted to planar graphs.

For Q any of the decision problems of Table 1, we let QP denote the variant in which
the argument system forming part of the instance is planar.

Theorem 12 CAP is NP–complete.

Proof: It suffices to prove that CAP is NP–hard, for which purpose we use a reduc-
tion from 3-SAT. Given �}JQ���ÂM we first form the system P��§JQ�����M of Section 3.1
and recall that �}JQ���«M is satisfiable if and only if CA JlP����-�^M holds.

The argument system P�� , however, will not in general be planar, e.g. in Fig. 1
there are eleven distinct points where edges cross and thus Ph� must be modified
to obtain a planar graph, P P� , whilst retaining the property that the argument � is
credulously accepted if and only if �}JQ�Y�ÂM is satisfiable.

The system P P� is formed from P�� in two stages. First for each position where two
edges � cross, e.g. � 	���
«� and �Ef��)d�� , replace the “crossing point” by an argument
which attacks 
 and d and is attacked by 	 and f . If the chosen realisation of P��
contains f crossings we denote these new arguments ��� # 6/1�'��>1 � ��*+*+*���1 ê A . We
note that f #�� J)5 �5 � M so the translation is polynomial time computable. Fig. 6
illustrates the outcome of this translation when applied to the argument system of
Fig. 1 after replacing the eleven crossings.

C2
C3

C1

Φ

−z1z1 z4 −z4

z2 −z2

−z3

z3

x2

x4

x3

x5
x6

x10
x8 x11

x1

x7

x9

Fig. 6. p � after crossings replaced by new arguments y � .

dividual clauses within the relevant face. Following some minor adjustments to represent
the presence of negated literals in clauses, we can then show that the set ¼�� ' t���-t�� ê Á is
credulously accepted if and only if � is satisfiable.� It is not necessary to consider the case of three of more edges having a common crossing
point: any graph may be drawn in such a way that this case does not arise.
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Of course this new system will no longer have the same admissibility properties of
the one it replaces: in particular it is not guaranteed to be the case that an admis-
sible set containing � can be built if and only if �}JQ���«M is satisfiable. For exam-
ple, for the system shown in Fig. 6, the set 6��(�)j«'-�)j � �)j+¨��)j�©9�>1®¨+�>1 � ��1���A is admis-
sible, however, the corresponding instantiation of �<jÂ'��)j � �)j+¨+��j�©,� by j��¦: # æ gives
�}JQæu�-æu�-æ|�)æeM�� ç . In order to restore the desired behaviour we systematically
replace each new argument introduced with a planar argument system.

The typical environment in this case is shown in Fig. 7(a). We have arguments ( j
and 8 ) that (in P�� ) attacked arguments 
 and 	 : the attacks �QjV��
N� and �E8?�Q	®� crossing
in the drawing of P�� and the crossing point replaced by an argument ( 1 ) so that
the attacks present are now �QjV�>1?� , �<8=�>1?� , �E1F�Q	=� , and �E1F��
N� . In Fig. 7(b), 1 in turn is
replaced by a planar system linking arguments j and 8 with new arguments 8 � and
j"! with 8#� attacking 	 and j$! attacking 
 . In order to ensure this replacing system
operates correctly it must have the property that in any preferred extension, � , of
the resulting system it holds: jU23� if and only if j%!e23� and 8h23� if and only if
8#��2�� .

x
PLANAR SYSTEM

(a) (b)

z y

p q

z y

p q

y
b d

z

Fig. 7. Crossing edges in p � and their replacement

Before describing the exact design of the replacing system, however, we specify the
order in which the �&� are replaced. We say that the argument 8 of PD� is a literal
if 8�2�6�j�������j��F�u���W��¡�A and now observe that the set of arguments, �'� may be
ordered using the labelling approach presented in Algorithm 2 to assign a unique
number (§Jl1?M to each 1�2��)� with ���*(§Jl1?M{�&f . For the example of Fig. 6 an
ordering produced by this algorithm is �E1F'��>1 ò ��1�'o'��>1 
 �>1 � �>1®¨/��1 � �>1B©/�>1 � �>1�'EÒ/��1��-� .
The construction of the planar system P P� is completed by replacing the arguments
1¢2+�,� in order of increasing value of their label (�J¥1?M with a copy of the planar
crossover gadget given in Fig. 8. � We denote by ¶ the arguments of P P� (noting
that � �a¶ and �)�¾àR¶ #-�

); and its attacks by � (observing that each of the
attacks � � � �)�^�^2h is also in � ).� Readers familiar with research literature on planar realisations of Boolean networks may
recognise that the structure of Fig. 8 derives from that of the planar crossover formed from
twelve binary ÀF½ -elements, cf. [32] and [22, Ch. 6, pp. 404-5].
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Algorithm 2. Ordering of Arguments in . �(�J¥1?M�: # Æ¦¯�1�2/�,�
~ : # �,� ; " : # �
while

" �¢f do
if ³e1�2�~ : 1 is attacked by two literals then(§Jl1?Mi: # " ; ~ : # ~�Ö@6/1LA
else if ³e1�2D~ : 1 is attacked by a literal and 1 Ú 2/�,�ÞÖ^~ then(§Jl1?Mi: # " ; ~ : # ~�Ö@6/1LA
else

Choose any 1�2h~ with both attackers of 1 in �'�?Ö�~(§Jl1?Mi: # " ; ~ : # ~�Ö@6/1LA
end if" : # " � �

end while

a1

a2 a3

d2

b1

a4

b3b2

d1

d3

z y

zy
b d

Fig. 8. Planar crossover gadget

The resulting system, P P� , is planar: it remains to show that � is credulously ac-
cepted in P P� if and only if �}J<���ÂM is satisfiable. In PU� , � is a preferred extension
containing � if and only if � # 6��(��8�'-�>8 � �+*�*+*���8���A with 8��^2 6�j����-��j���A defining
an instantiation satisfying �}JQ�Y�«M , i.e. j�� # æ if 8�� # j�� and j�� # ç if 8�� # ��j�� , it
therefore is sufficient to prove for the crossover gadget of Fig. 8 that whenever �
is a preferred extension of P P� , jh2���ø j"!u2�� and 8�24��ø 8#�H2�� . We need
only consider the first of these as an identical proof covers the second. To simplify
the analysis, it is useful to note that PD� and P P� are both coherent: the only cycles
are those of length two formed by the ¡ pairs 6�j/���-��j���A , i.e. PU� and P P� contain no
odd length cycles and coherence follows from Fact 2(d). Given this, every preferred
extension, � , of P P� is also a stable extension so that any 
±b2�� must be attacked
by some 	�2±� .
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Consider any preferred extension �4�¢¶ of P P� and an occurrence of the crossover
gadget which, without loss of generality, we take as labelled in Fig. 8. Suppose
j{2I� and consider the two possibilities 8U2$� and 8Ib2I� . The first of these, gives0 ©|2Ï� : each of 6 0 '-� 0 � � 0 ¨+A is attacked by 698?��j�A , however 0 © is only attacked by
6 0 � � 0 ¨�A and so (from stability) must be in � . From 698=�)jV� 0 ©+A��á� it follows that
6�¹�'��)¹ � �)¹)¨/��1V'-��1 � ��1Â¨�AYà�� #��

and thence, again via stability, 6982���)j"!/Ae�T� since no
attackers of these can belong to � . For the second possibility, 8Rb2�� , some attacker
of 8 ( 8�Ú say) must belong to � and we deduce that 6�jV�>8VÚÕ� 0 ¨+A$�Ë� and 0 ©3b2Ø� .
In this case, however, it must hold that 1B'¸2�� (this is only attacked by 0 © and 8 )
and thence j"!�2T� (since neither of its attackers - 1 � and 1Â¨ can belong to � ). In
summary if j|2�� then j$!@2�� regardless of the status of 8 .
On the other hand suppose that jIb2i� so that some attacker of j , jÂÚ is in � . Again
we have the two possibilities 8r2I� and 8�b2$� . In the former case, 6�jÂÚÕ��8?� 0 � Au�Î�
and 6 0 ©+��1V'-��1Â¨�A¦àR� #3�

. From this we must have 1 � 2i� (since its only attackers
are 1V' and 0 © ) from which it follows that j$!�b2I� as required. Finally in the second
case with 8�b2±� , some attacker 8âÚ of 8 is in � . From 698?��j�A¾à�� #��

we deduce that
698 Ú �)j Ú � 0 '-� 0 ©/Aé�T� ( 8 and j are the only attackers of 0 ' ), and thence 641G'-�51 � A�à¸� #�
. In this case, however, it must hold that 1�¨H2I� as its only attackers are 8 and 1G' :

in consequence j$!±b2�� as required. In total we have that j�b2�� implies j%!±b2�� ,
completing the proof that the crossover gadget has the desired behaviour.

It is now easy to see that � is credulously accepted in the planar system P P� if and
only if �}J<���ÂM is satisfiable. If 698â'-�+*�*+*,�>8��âA is a set of literals defining a satisfying
instantiation of �}JQ���ÂM then each clause � � must contain a literal from this set.
Choosing the argument j+� in ¶ if 8�� # j�� and the argument ��j+� otherwise, we
can build an admissible subset � of ¶ which attacks each argument � � (either the
literal itself or that propagated via the crossover gadget that replaced �E1F� � � � ), so
that � can be added to � in forming a preferred extension. On the other hand if � is
credulously accepted then from a preferred extension containing � and the attacks
on each � � in � we identify a set of literals that will satisfy �}JQ�Y�ÂM .
We deduce that CAP is NP–complete as claimed. Û

In the analysis demonstrating that the crossover gadget of Fig. 8 operated correctly,
we relied on the fact that the system in which it was used was coherent and that
thus for any given preferred extension, � , arguments 
Ub2�� could be assumed to be
attacked by some argument 	D2±� . We cannot, however, rely on this assumption in
attempting to translate arbitrary non-planar argument systems to planar schemes,
and thus it is unclear whether directly replacing crossing points using the crossover
gadget would produce a system with similar admissibility properties. It turns out,
however, that it is possible to transform any argument system, P , into a planar
system, P P in such a way that questions regarding credulous admissibilty of argu-
ments in P may be posed of corresponding arguments in P P. In order to do this a
rather more indirect construction is needed.
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Theorem 13 Planarity is polynomially CA-universal.

Proof: Let PIJQ�����M be any finite argument system with � # 6/1F'��>1 � ��*+*+*���1B��A .
Consider the propositional formula 6 ô J7���NM defined from PIJQ�����M as

6 ô J8�|�«M # ã9 [;: ä [=<�> \@? J<��1B�VªD��1 � M � J<��1 � ª A[CBED 9 [CB ä [;:F>¥\@? 1®.+M
If ° # � 0 '-�+*+*�*�� 0 �«� is any satisfying instantiation of 6 ô then the subset �¦JE°�M of �
chosen via 1®��2��;ø 0 � # æ is an admissible set in P .

The formula 6 ô is in CNF and so we can define another argument system – G ôH
simply by using the construction of Section 3.1. Furthermore we can now apply the
planarization method of Theorem 12 ( G ôH is coherent irrespective of whether P is
so). Let G ô�ä PH be the resulting planar argument system. Now although it is not the
case that G ô�ä PH õ@öE÷¸P – every subset of 6/1L'-��1 � �+*+*+*,�>1B��A describes an admissible
set in G ô�ä PH – it is easily modified to a system P ô�ä PH which is planar and satisfies
P ô�ä PH õ@ö<÷xP . To achieve this, we add a new argument, I , to the set of arguments
forming G ô�ä PH together with attacks 6��J6g�5I?��A ��6��KI§��1=� �,�9�KI§�)��1B�¥�i:u�¸� ��� ¡�A .
Notice that a planar realisation of P ô�ä PH is straightforward to construct from the
planar realisation of G ô�ä PH . Now let Ì consist of the arguments 6��¾1=�U:é�x� �Y�¢¡�A
together with 6%IF�;6éA , the arguments representing clauses of 6 ô and those intro-
duced during the transformation of G ôH to the planar system G ô�ä PH , i.e. arising by
replacing crossing points with copies of the schema in Fig. 8.

We claim that P ô�ä PH õ}öE÷iP . Consider any admissible subset ~ of ����Ì , the
arguments of P ô�ä PH . To see that � # ~3Ö¦Ì is an admissible set in P , notice that

JL6Ob2D~@M and ( ~ is admissible) ø J¥~ #�� M
since the argument I attacks each 8 in 6/1=���-�¾1B�h:|�¸�T��� ¡�A and is only attacked
by 6 , so it is no longer the case that every non-empty subset of 6/1�'-�>1 � ��*+*+*���1B��A
describes an admissible set in P ô�ä PH (as happened with G ô�ä PH ). So without loss of
generality we may assume 6Ð2h~ . Now the definition of 6 ô J7���NM and the properties
of G ôH ensure that since the instantiation 1®� # æ if 1B�g2Ð~ , 1®� # ç if 1B�rb2Ð~
satisfies 6 ô the set 6�1B�D:@1B�§2h~xA is an admissible subset in P : this, set however,
is exactly the set of arguments in � # ~�Ö^Ì .

Similarly, if �¢�Î� is admissible in P , it may be extended to an admissible set in
P ô�ä PH by adding the arguments 6M6gA , 6��¾1=��:(1B�Ób2��WA and those from the crossover
elements whose inclusion is forced by the subset of 6|1?�o�-�¾1B� :C�Ï� �h� ¡�A
corresponding to the satisfying instantiation of 6 ô J7�|�ÂM . Û
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Corollary 4 PREF-EXT P is NP–complete.

Proof: Immediate by noting that P P� modified by the addition of the argument I as
described in the proof of Theorem 13, has a non-empty preferred extension if and
only CA J�N P� �)�^M . Û
Corollary 5 Let O È � ä ý�É¥ä . be the class of planar argument systems in the set ü È � ä ýoÉ àÇ¾È .)É . The property O È � ä � É¥ä © is polynomially CA-universal.

Proof: From Theorem 13 planarity is polynomially CA-universal. The transforma-
tion described in Theorem 11 preserves planarity, thus the result follows by com-
bining Theorem 13, Theorem 11 and Corollary 3. Û

In fact, analysing the structure of P ô�ä PH from the proof of Theorem 13 we obtain a
stronger result,

Corollary 6 The property O È ¨ÊÉ satisfied by ï -partite planar argument systems is
polynomially CA-universal.

Proof: Given PIJQ�����M form the planar system P ô�ä PH of Theorem 13. It is straight-
forward to show that this system is ï vertex colourable and hence ï -partite. Û
Finally, paralleling the result of Theorem 12 we have,

Theorem 14

a. SAP is � � � -complete.
b. COHERENTP is � � � -complete.

Proof: Exactly as the reduction from QSAT ¬� outlined in Section 3.2, however,
with the CNF instance �}J<®�V�)���NM implemented as the argument system P P� instead
of PU� . Û

7 Bounded Treewidth

Treewidth, which may be informally understood as a measure of the extent to which
a graph differs from a tree, is known to provide a significant aid in developing ef-
ficient algorithmic approaches, particularly in the case of graphs whose treewidth
may be bounded by a constant value

"
. A useful survey of results concerning graphs

with bounded treewidth is presented in [11]. With some minor differences, we fol-
low the treatment given in Arnborg et al. [2] for the definition of treewidth in
Defn. 15 and for the description of the language of monadic second order logic.
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The second of these admits the use of powerful general tools for synthesising effi-
cient decision algorithms for an extensive range of NP–hard graph problems when
the graphs in question have bounded treewidth.

Definition 15 A tree decomposition of a directed graph N3J8�h�5P}M is a pair �E~¦�-�Y� ,
where ~gJ��Y�5QéM is a tree and � # 6���')�-� � �+*+*�*��-� ê A is a family of subsets of � with
f # 5R�U5 for which

a. î ê� � ' �?� # � .
b. For all �l1F��8G�W2SP there is at least one 'EÒ �?�§2�� for which 6/1F�>8=Ae�T�Þ� .
c. For each 1�2T� , the subgraph of ~éJL����QéM induced by the set � [ # 6M�G�{:^1h2
�?�QA is connected, i.e. a subtree of ~gJ��Y�5QéM .

The width of a tree decomposition �l~¦�-�Y� of N3J7���5P@M is U)V4W ]@: \+] 5��?��5YX`� ; the
treewidth of N3J8�h�5P}M – denote Ä[ZuJKNRM – is the mimimum width over all tree de-
compositions of N .

We denote by \ È .)É the class of all argument systems PIJQ�����M whose treewidth is
at most

"
.

Consider structures of the form �������� where � # 6/1F'-��*+*+*���1B��A is a finite set
of arguments and  � �·��� an attack relation. The language, ] , of monadic
second-order logic (MSOL) for this class of structures contains the standard propo-
sitional connectives –

�
, ª , ^ , _ , � – individual variable symbols – 1 , 8 , j etc. –,

predicates, and quantifiers ( ³ , ¯ ). In addition, and distinguishing it from first-order
logic, ] contains set variable symbols, ` , � , \ , etc., the set membership symbol
( 2 ) and allows quantification over set variables.

We note that the scheme presented in [2] is rather more elaborated. The correspond-
ing structure would be �Qëh�)�R�>r��acb���d%el� where � and  are unary predicates on
elements of the set ë , i.e ��JK1�M holds if and only if 1 is an argument; �JK1�M if and
only if 1 is an attack. To relate attacks to their constituent arguments, hd and tl are
binary predicates defined so that acbWJ<¹/��f,M if ¹ is an attack whose source is the argu-
ment f ; similarly d%eÊJE¹/��f�M holds whenever ¹ is an attack directed at the argument f :
thus �E1F��8V��2� would be realised as ��Jl1?M � ��JE8VM � ³Y1Â�J�1âM � acbÓJ�1B�>1?M � d%eÊJK1®�>8GM . For
reasons of clarity we eschew this level of precision. We note that, where we write,
e.g. ³g` � �ih{JJ`@M (for some predicate h ), within the formal style of [2], this
could be expressed by ³g`uJÕ¯jI'I�2k`l^ �±J8I?M>M � hkJm`@M ; similarly ¯n`á�0�oh{JJ`@M
is equivalent to ¯n`ÐJÕ¯jIpI�2q`�^ ��JKI?M>M�^ hkJm`@M .
Now given a well-formed MSOL sentence �}J<�R�>�M typically some argument sys-
tems, P , will satisfy 'o' � and others fail to do so, i.e. such sentences provide

'EÒ [2, Defn. 3.1, p. 314] requires exactly one, however, the distinction is not significant.'o' The satisfaction relation �sr �Ïp is defined in the usual inductive style via the structure
of the MSOL sentence � .
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a mechanism for specifying properties of finite argument systems. Formally we
say an argument system property, � , is MSOL–definable if there is a well-formed
MSOL sentence, �}JQ�����M such that

¯�PIJQ�����M�P�2R� ø �Ø5# P

For example, the property of an argument system being bipartite, PIJQ�����MW2 Ç�È
� É ,

is MSOL-definable as shown by the sentence,

ðutÞJ<�����M # ³g`¢³p��¯=14J¥1�2q` ªa1�2��eM � JQ�¦Jl1h2q`@MFª��¦Jl1�2S�gM>M �
JÕ¯?8�J��E1F��8V�W2��M�^ J¥1R2q`�_ 8�2��éM¾M

That is the system �Q�R�>�� is bipartite whenever there are two sets ( ` and � ) such
that: every 1 belongs to at least one of these ( 1�2�` or 1�2v� ); no 1 belongs to
both; and should �E1F��8V� be an attack in  , exactly one of 1 and 8 is in ` . Thus, the
system with � # 6/1L'���1 � �>1®¨�A and  # 6��E1�'-�>1 � ���9�E1 � �>1®¨����9�E1®¨+�>1�' ��A fails to satisfy
ðwt?JQ�����M whereas with uÚ # 6��E1�'��>1 � �,�/�E1 � �>1®¨��,�/�E1 � �>1�'>��A@ðwt?JQ����gÚ M is satisfied
(choose ` # 6/1L'-��1®¨+A and � # 6/1 � A ).
Although not all graph-theoretic properties are MSOL-definable, for those which
are – irrespective of the computational complexity for instances in general – the
following result of Courcelle [15,16] is of significance respecting decision methods
for MSOL-definable properties restricted to graphs with treewidth

"
.

Fact 16 (Courcelle’s Theorem, [15,16] also [2]) Let x be a class of graphs for
which ¯Þñ_2Tx�Ä[ZgJ<ñeMW� " for some constant

" 2Sy and � be any MSOL-definable
property. Given ñ`2/x and a width

"
tree decomposition of ñ , ñ_2R� is decidable

in linear time.

Recall that \ È .)É is the class of finite argument systems PIJQ�����M for which a tree
decomposition of width

"
exists.

Theorem 17 For all constant
" 2zy , given PIJQ�����M±2z\ È .)É together with a

width
"

tree decomposition of PIJQ�����M each of the following decision problems
are decidable in linear time.

a. PREF-EXT JlPDM .
b. STAB-EXT JlPDM
c. COHERENT JlPDM .
d. There is at least one sceptically accepted argument in P .

24



Proof: Given Fact 16 it suffices to give MSOL sentences expressing each of these
properties.

a. PREF-EXT JQ�����M
³g`Ø�T�±JJ`�b#�� M � P@ë�{_J<����r�@`@M

where P(ë�{_J<�R�>r�@`@M is the predicate

¯=1h2���¯?8�2����E1F��8V�W2� ^ J<�¦Jl1�2|`}MFª��¦Jl8�2q`@M>M �
Jl8�2q`�^ JQ³GjGJ<j{2q`@M � �<jV�>1?�^2��M>M

Note that we use the abbreviated form ` b#o�
rather than the more involved

³}I�2���JKI�2q`@M . Thus, the given expression represents the property of ��������
having a non-empty preferred extension via the conditions that there is some
non-empty subset ( ` ) of � which is admissible, i.e. ` is conflict-free and for
any argument 1Ïb2~` attacking an argument 8�2k` , there is some jU2~` that
counterattacks 1 .

b. STAB-EXT JQ�����M
³g`Ø�T��P@ë�{_J<����r�@`@M � ¯=1�2R���¦J¥1�2q`@M�^ J<³Gjk2q`Î�QjV��1?�¦2��M

That is, �������� has a stable extension if there is a subset ` of � which is
admissible and attacks any argument not contained in it.

c. COHERENT JQ�����M
¯n`Ø�T��hec��uQ{J<�R�>r�@`@M�^ �¾~�P@ð�]��{JQ����r�@`@M

where �¾~�P@ðw]��{JQ����r�@`@M is the predicate,

P@ë�{_J<����r�@`@M � ¯=1R2R�á�ºJ¥1R2q`@M�^ J<³Gj�2q`0�QjV��1?�¦2��M
and h¸c��wQkJQ����r�@`@M the predicate

P@ë�{_J<����r�@`@M � {�P��St�{�P�]ºJ<�R�>r�@`@M
with {vP��St�{�P�]HJ<����r�@`@M defined as,

¯�\ �T��¯��Ð�T�&J�JQ� # `��T\ÐM � P@ë�{_J<����r�-�@M�ME^ J�\ ��`@M
Again we use abbreviated forms � # `��/\ and \ ��` noting,

� # `���\ � ¯=1�2���J¥1�2��@M�_ Jl1h2q`�ªU1h2�\ÐM\ ��` � ¯=1�2���J¥1�2�\ÐM�^ Jl1�2�`@M
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In total this expression captures the concept of coherence via: any subset of
� which is a preferred extension is also stable. A subset, ` , being a preferred
extension if it is both admissible and maximal, i.e. for every \ for which`��/\ is admissible it holds that \ is a subset of ` .

d. There is at least one sceptically accepted argument in PIJ<�R�>�M .
³�1R2��Ð¯n`Ø�T��hec��uQ{J<����r�@`@ME^ Jl1�2|`}M

Û
Although Theorem 17 establishes the existence of efficient algorithms for decision
problems whose complexities in general are NP and � � � –complete, it does not aid
with problems concerning the properties of specific arguments within a given sys-
tem, e.g. CA JlP��>1?M . Suppose, however, we define ëRJ¥PDM as

U&V%W[+\ ß 5Ù6¦8`:��<8=�>1?��2� or �E1F��8V�W2��AB5

then we can obtain algorithms whose run-time is
� JL�¾JE
NM ¡ � M for CA mon/JlP��-�YM : here� is some fixed function � :�y ^ y , ¡ # 5��$5 , f is a constant (independent of

P ) and 
 is the parameter Ä[ZuJ¥PDMT� ëRJ¥PDM , that is, in terms of the framework of
fixed-parameter complexity pioneered by Downey and Fellows [19], CA mon/J¥P��-�YM is
fixed-parameter tractable (FPT) with respect to the parameter 
 .
In order to prove this we exploit results from Gottlob et al. [29] in which a param-
eter with to respect which CNF-SAT is FPT was presented.

Definition 18 Let �}J<���ÂM be a CNF formula with clause set 6 � ')� � � �+*+*�*�� � � A . The
primal graph of � , denoted P �FJ<�������éM , is the (undirected) graph with vertices la-
belled by the propositional variables defining � , and whose edge set, � , is,

6}6�j����)j � A : j�� and j � occur as variables in some clause � of � . A
Fact 19 (Gottlob et al. [29]) CNF-SAT is FPT w.r.t. the parameter Ä[ZuJ P �®M .
Theorem 20 CA mon is FPT w.r.t. the parameter Ä[ZuJ¥PDM$�&ëRJlPDM .
Proof: Let PIJQ�����M have Ä[ZuJ¥PDM # f and consider the CNF formula, 6 ô J8�|�«M , as
defined in the proof of Theorem 13, i.e.

6 ô J8�|�«M # ã9 [;: ä [=<�> \@? J<��1B�VªD��1 � M � J<��1 � ª A[CBED 9 [CB ä [;:F>¥\@? 1®.+M
Notice that P

ô H J8�|�����gM contains the undirected form of PIJ<�����M as a subgraph
by virtue of the clause set

� 9 [;: ä [=<�> \@? J<�¾1B�?ªi�¾1 � M . The additional edges of P
ô H are
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those arising from the clauses J<�¾1 � ª � [ B D 9 [ B ä [;:F> \�? 1®./M . The edges, � 9 [;: ä [=<�> in �
contributed by this clause associated with the attack �E1?����1 � � being

� 9 [;: ä [=<�> # 6(6/1 � �>1®.�A�:��l1B���>1 � �¦2h and �E1®.��>1B�l��2R�A î
6(6/1®.N�>1��lA�:��l1®.��>1B�l�^2h and �E1��E�>1B�l��2��A

For each 1B��2�� define the set of edges ��� by

�|� # 6(698 � �)j+.�A�:��<8 � ��1B�l�^2� and �l1®�Q�)j+./��2R�A`�
6(698 � ��8N.9AÎ:u�<8 � �>1B�¥�¦2� and �<8N.��>1B�E��2��AÎ�
6(6�j � �)j+.�A�:��l1B���)j � ��2� and �l1®���)j+./��2��A

Then if N3J7���5P@M is the undirected form of PIJQ�����M then not only is N3J7���5P@M a
subgraph of P

ô H J7�������éM , but P
ô H J7�������éM is in turn a subgraph of N ÷J�5� where N ÷J�5�

has vertex set ��� and edge set

Q ÷J��� # P � Z[;: \@� ���
From these it observations it follows that Ä[ZuJ�N�M(�ØÄ[ZgJ P ô H M@�0Ä[ZuJKN ÷J�5� M and thus
bounding the width of a tree-decomposition of N ÷J�5� gives an upper bound on the
treewidth of the primal graph P

ô H J8�|�â���éM of 6 ô J7�|�ÂM .
Let �E~¦�-�Y� be a width f tree decomposition of PIJQ�����M , with � # 6��¾'-�)� � �+*+*+*��-� � A ,
�?�3� � and ~éJ��Y��QeM the tree structure linking the family of sets indexed by� # 6M��')�+*+*+*,�;� � A . Form the family of sets  # 6�L'-�) � �+*+*+*,�) � A via

®� # �?��� Z
[;:¥\ ß 6¦8?�¾jØ:��E8?�>1?�W2h or �E1F��jÂ�¦2h�A

With this, �E~¦�)é� is a tree decomposition of N ÷J�5� J7����Q ÷J�5� M . Furthermore, its width
is at most J<ëRJKNRM-�k�9M,JlÄ[ZuJKNRM-�k�9M"Xu� : each �Þ� contains at most Ä[ZuJKNRM-�k� members,
each of which can contribute at most ëRJKNRM new elements to �L� in addition to those
already present. It follows that

Ä[ZgJ P ô H M¢� Ä[ZgJ�NRML�4ëRJ�N�M�JlÄ[ZgJ�NRM?�T�9M
# JEëRJ�N�ML�T�9M,JlÄ[ZuJKNRMÞ� �9M�X¢�

Thus, given an instance �EP��)��� of CA mon and a width f tree decomposition of P ,
we may now apply the methods described in [29] to test satisfiability of the CNF
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formula

�}J8�|�«M # � ã
[+\+] 1�� � 6 ô J7���NM

via a tree decomposition of P � having width at most J<ë�J�NRM�� �9M�Jlf¦�T�/M�X�� . Û

8 Value-based Argument Frameworks

To conclude we consider the effect that restricting the underlying graph structure
has with respect to value-based argument systems. We recall the following defini-
tions from Bench-Capon [7].

Definition 21 A value-based argumentation framework (VAF), is defined by a triple
�EPIJQ�����M-�5�@�5�V� , where PIJ<�R�>�M is an argument system, � # 6%�â'-�5� � �+*+*+*,�5��.�A a set
of
"

values, and � :3� ^ � a mapping that associates a value �ÞJl1?Mu2s� with
each argument 1�2�� .

An audience for a VAF ������r�5�@���G� , is a binary relation ! ���`��� whose (ir-
reflexive) transitive closure, !�� , is asymmetric, i.e. at most one of �K�=����Ú � , ����ÚÕ�5���
are members of ! � for any distinct � , � Ú 2 � . We say that ��� is preferred to � � in
the audience ! , denoted ����¡£¢�� � , if ���9�o�5� � �U20! � . We say that ° is a specific
audience if ° yields a total ordering of � .

Using VAFs, ideas analogous to those introduced in Defn. 1 by relativising the con-
cept of “attack” using that of successful attack with respect to an audience. Thus,

Definition 22 Let ������r���@�5�V� be a VAF and ! an audience. For arguments 1 , 8
in � , 1 is a successful attack on 8 (or 1 defeats 8 ) with respect to the audience !
if: �E1F��8V�W2� and it is not the case that �ÞJE8VM¤¡�¢���J¥1?M .
Replacing “attack” by “successful attack w.r.t. the audience ! ”, in Defn. 1 (b)–(f)
yields definitions of “conflict-free”, “admissible set” etc. relating to value-based
systems, e.g. � is conflict–free w.r.t. to the audience ! if for each 1 , 8 in � it is not
the case that 1 successfully attacks 8 w.r.t. ! . It may be noted that a conflict-free
set in this sense is not necessarily a conflict-free set in the sense of Defn. 1 (c): for
1 and 8 in � we may have �E1F�>8G�}2� , provided that �ÞJE8VM�¡�¢s�ÞJl1?M , i.e. the value
promoted by 8 is preferred to that promoted by 1 for the audience ! .

Bench-Capon [7] proves that every specific audience, ° , induces a unique preferred
extension within its underlying VAF: we use hkJ>������r���@�5�V�)��°�M to denote this ex-
tension. Analogous to the concepts of credulous and sceptical acceptance, in VAFs
the ideas of subjective and objective acceptance arise,
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Table 3
Decision Problems in Value-based Argument Frameworks

Problem Instance Question

Subjective Acceptance (SBA) ¥ls|tovetm¦Wtm§©¨ ; y�z�s ª�«¬Óy{z�®¸qm¥ls|tovetm¦Wtm§©¨-t=«�w ?
Objective Acceptance (OBA) ¥ls|tovetm¦Wtm§¯¨ ; y�z�s °±«¬Óy{z�®¸qm¥ls|tovetm¦Wtm§©¨-t=«�w ?

Regarding these questions, [26,8] show the former to be NP–complete and the latter
co-NP–complete. Our main result in this section is that, unlike the case of standard
argument systems, even within very limited graph classes, both of these problems
remain computationally hard. '

�
Formally we have,

Theorem 23 Let SBA
È³² É and OBA

È³² É be the decision problems of Table 3 with in-
stances restricted to those for which the graph-structure �������� is a tree.

a. SBA
È³² É is NP–complete.

b. OBA
È´² É is co-NP–complete.

Proof: Membership in NP (for SBA
È´² É ) and co-NP (for OBA

È´² É ) follows from mem-
bership in these classes for the general versions.

For part (a), to show that SBA
È´² É is NP–hard we use a reduction from 3-SAT. It

will be convenient (although is not essential to the proof) to restrict instances,
�}JQ���ÂM # ������ ' � � , to those in which no variable j of �Y� occurs in more than
3 clauses 'E¨ . Notice that given this restriction, without loss of generality, we may
assume that for each variable j the literal ��j occurs in exactly one clause of � ; the
literal j in at most two (and at least one) clause of � .

For each variable j+� of � let the values ��Jl�oM , d�JE�oM , and ¡�JE��M be

�¾JE�oM # U,µ·¶®6�£`:}j�� occurs in � � A
d�Jl�oM # U)V4W®6�£`:@j�� occurs in � � A
¡�JE��M # £Ø:¸��j�� occurs in � �

Should j+� occur exactly once in positive form then ��Jl�oM # d�Jl�oM .
We can now construct the instance J>�E~L�FJQ�����M-�5�§�?�5�V�,�>1?M of SBA

È´² É .
' � Theorem 23 subsumes the result presented in [23, Thm. 4, p. 93] where it was proven
that SBA

È � É is NP–complete, i.e. when the underlying system is bipartite.'E¨ see, e.g. [33, Propn. 9.3] for one proof that this variant of 3-SAT remains NP–hard.
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Its argument set � comprises (at most) ¸�¡��4¤`��� arguments,

� # 6��(� � '-� � � �+*+*+*,� � � A|�T6�j '� ��j
�
� ��j ¨� :u�¸�¢���¢¡§A

�T6���j '� ���Yj
�
� ���Yj ¨� :g�¸�¢�Y�¢¡�A

(If j�� occurs exactly once in positive form then neither j
�
� nor ��j

�
� occur in � .)

The set of attacks,  , is formed by

 # 6e� � � �-�^�3:g�¸��£{�¢¤�AH�
6�����j '� �)j '� �,�¦����j

�
� ��j
�
� �i:u�e�¢�Y�¢¡�AH�

6��Qj ¨� �-��j ¨� ��:é�e�¢�Y�¢¡�AH�
6��Qj '� � ��¹ È �þÉ �,���Qj �� � � í È �þÉ �3:g�¸�¢���¢¡§AH�
6�����j ¨� � � � È �KÉ �i:u�x� �Y�¢¡�A

The value set, ��� of the instance contains
% ¡��T� members,

�§� # 64f/Ai��6�	�º�d�����¡¼»�½��U:u�T�¢�Y�¢¡�A
Finally the mapping, � from � to �¾� is defined via

��J¥1?M # ¾¿¿¿¿¿À ¿¿¿¿¿Á
f if 1R2$6��(� � '-��*+*+*�� � � A
	�ºNd�� if 1R2$6�j '� �)j

�
� �)j ¨� A

¡�»�½�� if 1R2$6���j '� �-��j
�
� �-��j ¨� A

The construction for the CNF formula �}J<j«'��)j � ��j+¨+�)j�©,M defined by

J<j�'Lªhj � ªhj+¨�M�J<��j � ªD�Yj+¨�ªh��j�©,M�J<��j�'§ªDj � ªhj�©�M

is illustrated in Fig. 9.

It is easy to see that ~L�§J<�R�>�M is a tree. To complete the instance of SBA
È³² É we set

the argument 1 to be � . We now claim that J>�E~L�FJQ�����M������?�5�G���-�^M is accepted as
an instance of SBA

È´² É if and only if �}JQ���«M is satisfiable.
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Fig. 9. Â � for ���¢qÄÃ ' ¿�Ã � ¿�Ã ¨ w�qlÀ�Ã � ¿|À�Ã ¨ ¿|À�Ã © w�qlÀ�Ã ' ¿�Ã � ¿pÃ © w
Suppose that �}JQ���«M is satisfied by some instantiation 0 # � 0 ')� 0 � �+*+*+*,� 0 �Â� of ��� .
Consider any specific audience ° for which

	ÅºNd��Æ¡ºû�¡�»�½�� if 0 � # æ
¡¼»�½���¡ºû4	ÅºNd�� if 0 � # ç
	ÅºNd��n¡ºûÇf ¯��¸�¢���¢¡
¡¼»�½��È¡ºû�f ¯��¸�¢���¢¡

Consider the subset �¦J 0 M of � chosen as

6��HA3��6�j '� ��j
�
� : 0 � # æuA3��6���j ¨� : 0 � # çuA

We claim that �¦J 0 M is admissible with respect to the audience ° . The only attacks
on � are from the arguments � � , however, since 0 satisfies � , each clause has
at least one true literal with this instantiation: thus � � is successfully attacked by
one of 6�j '� �)j

�
� A whenever 0 � # æ and £�2á6M��Jl�oM��)dâJl�oM)A ; similarly � � is success-

fully attacked by ��j ¨� whenever 0 � # ç and £ # ¡�JE��M . Furthermore the attacks on
6�j '� �§j

�
� : 0 � # ægA by 6���j '� �-��j

�
� A are not successful on account of the value order-

ing 	ÅºNd���¡ºûg¡¼»�½�� . In the same way, the attack on �Yj ¨� by j ¨� fails whenever 0 � # ç
since ¡¼»�½��p¡ºû±	�º�d�� . We deduce that �¦J 0 M is admissible and thus � subjectively
accepted if �}JQ���«M is satisfiable.

On the other hand suppose � is subjectively accepted and let ° be a specific audi-
ence with �_�&� an admissible set w.r.t. ° that contains � . Noting that �ÞJQ�^M #��J � � M # f for each � � it follows that �$à36 � '-�+*�*+*�� � � A #z�

and, thus, each � �
must be successfully attacked by some 8«� w.r.t. ° , with the (unique) attack on this
8�� , i.e. ��j .� if 8�� # j .� , j ¨� if 8�� # ��j ¨� failing to succeed. Now let 698�'-��8 � �+*+*+*,��8 � A
be the set of arguments for which 8 � successfully attacks � � w.r.t. ° and construct
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the (partial) instantiation � 0 '-�+*+*�*�� 0 �«� of ��� with

0 � # æ if 6�j '� �)j
�
� A�à�698â')�+*+*+*,��8 � A{b#��

0 � # ç if ��j ¨� 2$698â')�+*+*+*,��8 � A

It now suffices to observe that this instantiation is well-defined. If both ��j ¨� and j .�
occur in 698â'-��*+*+*��>8 � A , from the fact that ° is a specific audience either 	�ºNd/�É¡Hû
¡�»�½�� or ¡�»�½���¡ºûe	�º�d�� : in the former case, �Yj ¨� is successfully attacked by j ¨� (and,
hence, could not belong to � ); in the latter j .� is successfully attacked by �Yj .� and,
again could not belong to � . We deduce that the partial instantiation � 0 '��+*�*+*,� 0 �«� is
well-defined and satisfies �}JQ�Y�«M .
In total, � is subjectively accepted in the system �l~F�FJQ�����M������=�5�V� if and only if
�}JQ���ÂM is satisfiable.

Part (b) uses a similar reduction from UNSAT restricted to 3-CNF instances of the
same form as part (a). Given �E~L�FJQ�����M-�5�§�Þ�5�V� as described earlier the instance of
OBA
È´² É is formed by adding one additional argument, �^Ú , to � whose sole attacker

is the argument � and with �ÞJQ�WÚ M # f . In this construction ��Ú is acceptable w.r.t. to
every specific audience if and and only if � is not subjectively acceptable. Using
an identical argument to (a), the latter holds if and only if �}JQ���«M is unsatisfiable. Û
Corollary 7 SBA

È³² É is NP–complete and OBA
È³² É is co-NP–complete even if in-

stances are restricted to binary trees.

Proof: Apply the translation of Theorem 11 to the trees constructed in the proof
of Theorem 23, assigning the value f to each new argument introduced. This trans-
lation and value allocation affects neither the subjective acceptability of � nor the
objective acceptability of � Ú . With the exception of the root (i.e. the arguments �
and � Ú respectively), each argument in the trees so formed attacks exactly one other
argument. Similarly, with the exception of the leaf arguments which have no attack-
ers and �ÓÚ (which has exactly one attacker), each argument is attacked by exactly
two others. Û
One feature of the reduction in Theorem 23 (as, indeed, of the reduction for general
VAFs given in [26,8]) is that the number of values (

% ¡¾�{� ) is of the same order as the
number of arguments in the system: in the reduction �«¡§�x¤��|�}�_5��$5Â�v¸N¡§�x¤��|� ,
however, given the restrictions on � it is easily seen that

% ¡�ÊNï��¢¤Ë�¢¡ and hence,
5 �é5 # ó|J-5å�$5�M . Our final result indicates that even insisting that 5 �é5 # ºVJ)5��$5�M does
not lead to tractable cases.

Theorem 24 Let SBA
È´² ä Ë¥É be the decision problem SBA

È³² É in which instances are
restricted to those in which 5 �é5��_5��$5 Ë . ¯&Ì�ÍÏÆ SBA

È³² ä Ë¥É is NP–complete.
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Proof: Let J��E~��FJ<�R�>�M��5�§�Þ�5�V�,�-�^M be the instance of OBA
È³² É constructed in the

proof of Theorem 23 (b). Given ÌwÍÐÆ , choose Î'Ëº2ky as Î,Ë # Ï Ì ÔB'EÐ . An in-
stance of SBA

È´² ä Ë¥É is formed by taking f # 5��$5ÒÑ�Ó ÔB' copies of ~�� – 6/~F'-�>~ � �+*+*�*��>~ ê A .
Letting Ô®� denote the argument forming the root of ~�� , the instance is completed by
adding one further argument, � È Ë¥É with ��J<� È Ë¥É M # f and attacks �JÔ®���)� È Ë¥É � for each
�h���é�af . Recalling that Ô®� is objectively accepted if and only if � is unsatisfi-
able it is easily seen that � È Ë¥É is subjectively accepted if and only if � is satisfiable.
The number of values in the constructed instance is 5 ���¾5 #� J-5å�$5�M , however, the
number of arguments is 5��$5 Ñ Ó and this is now a valid instance of SBA

È³² ä Ë¥É . Û

9 Conclusions and Development

In this paper we have considered how the complexity of a number of important
decision questions in both standard and value-based argument systems is affected
under various graph-theoretic restrictions: the system being

"
-partite; each argu-

ment being attacked by and attacking some maximum number of arguments; planar
systems; and systems with bounded treewidth.

Overall the picture apparent regarding the efficacy of graph-theoretic restrictions
in admitting efficient algorithmic methods is somewhat mixed. For quite general
classes – planar and and bounded degree systems – the complexity of decision
questions remains unchanged from that of the unrestricted case. In contrast, for
more limited classes, to the known examples of DAGs and symmetric frameworks
can now be added bipartite systems and those with

"
-bounded treewidth. The na-

ture of what characterises “efficient restrictions” from those which offer no gains
may seem rather arbitrary, e.g. bipartite systems are tractable however ï -partite sys-
tems are not. A partial explanation of such phenomena is offered by our notions of
“polynomial universality”. Thus, although, for example, planarity is not a property
of every finite argument system, by virtue of Theorem 13 there is no loss of gener-
ality (with respect to credulous acceptance issues) in assuming planarity since any
system is transformable to a related planar system. Notwithstanding the fact that
such translations, in general, do not simplify decision processes, there are potential
applications exploiting polynomially universal properties in representing argument
systems. For example, consider multiagent environments dedicated to maintain-
ing information about admissible and preferred sets within a dynamically evolving
system, knowledge concerning which is distributed over distinct agents. In earlier
work, Baroni et al. [4] have shown the graph-theoretic concept of strongly con-
nected component (SCC) decompositions provides a useful mechanism with which
to approach this environment. One can envisage complementing such techniques
by exploiting � -partiteness and/or planarity as universal properties: the former sug-
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gests a natural partition of arguments over four agents with the set maintained by
each being conflict-free and questions about a specific argument, 	 say, requiring
local resolution via the (at most two) agents allocated its attackers; similar meth-
ods, using properties of planar graphs, e.g. the separator results of Lipton and Tar-
jan [31], may also offer useful mechanisms. Such treatments are the subject of
current work.

We conclude by raising a select number of interesting open issues.

9.1 Open problems within
"
-partite systems

B1. What is the complexity of CA
È � É¥ä Pmon , i.e. when instances are planar bipartite

graphs and the set of arguments in the instance is constant size, e.g. as in the
proof that CA

È � Émon is NP–complete given in Theorem 7(a)? The crossover gadget
of Fig. 8 is not bipartite and thus cannot be used to replace crossing points in
the reduction from MCS. We note that CA

È � É¥ä Pmon can be shown NP–complete via
an involved reduction from PLANAR-3-SAT. One drawback to this reduction,
however, is that the number of arguments in the instance set may be

� Jl¤�M
where ¤ is the number of clauses in the planar CNF formula � .

B2. Corollary 1 characterises the set of preferred extensions within a given bi-
partite argument system. Can this characterisation be developed to construct
efficient methods for counting or enumerating these? Here, given that there
may be exponentially many distinct preferred extensions, the term “efficient
enumeration procedure” is in the sense of Goldberg [28].

9.2 Open problems with bounded treewidth systems

Potentially the most interesting suite of issues arises from the results on bounded
treewidth decision problems given in Theorems 17 and 20. Although following
the algorithm synthesis template of, for example [2], produces a linear time algo-
rithm via some MSOL sentence and width

"
tree decomposition, such algorithms

are likely to be rather opaque with the linear time method concealing large constant
factors that increase rapidly with the treewidth bound. 'l© Given such eventualities it
is tempting to view the algorithms guaranteed by Courcelle’s Theorem as “proof of

'l© While the comparison is rather unfair the relationship between the property captured by
a complex MSOL expression and the width � algorithm synthesised is analogous to that
of a high-level programming language description and the binary machine code resulting
from its compilation. In addition, we recall that (relative to the full formal description of
[2]) the sentences given in the proof of Theorem 17 require further development in order
to eliminate constructs such as Õ Ö�Ø× , Ù ÚÜÛ , etc. prior to applying the algorithm
construction process.
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concept”, i.e. that efficient algorithms exist in principle, rather than as viable solu-
tions in themselves. This interpretation then raises the question of forming practical
algorithmic methods. Thus suppose one limits attention to systems of treewidth

%
or ï , relying on the nature of argument systems as might arise in real settings to be
of this form. Rather than synthesising methods indirectly via Courcelle’s Theorem,
one could attempt to develop practical direct methods. There are several promis-
ing indications that this is a realistic objective: the precise characterisation of those
graphs having treewidth

%
, e.g. [11, Thm. 42, p. 22]; and the dynamic programming

templates discussed in [10].

Two similar issues arise with respect to the methods discussed for determining
credulous acceptability in Theorem 20. Firstly, although arguably of a less extreme
nature, the algorithm for deciding CA J¥P��>1?M in the case Ä[ZuJ¥PDM # f and ëRJlPDM # 1
is rather indirect involving, as it does, a translation into CNF. ' ò Thus there is, again,
the issue of finding direct algorithmic solutions, i.e not via CNF-SAT formulations,
for systems with small treewidth, e.g. Ä[ZuJ¥PDMD� ï . Even without such methods,
however, the nature of our translation raises one immediate issue: the dependency
on ëRJ¥PDM in bounding the treewidth of the primal graph of 6¸ô . Our upper estimate
of J<ë�JlPDM��Ø�/M�JlÄ[ZgJlPDM��Ð�9MÝX0� is extremely conservative and a careful analysis
of the primal graph relative to the structure of P itself might well improve it. Of
perhaps greater interest, however, is the relationship between Ä[ZuJ¥PDM and Ä[ZuJE�YM
with �Ð2Ïü È

� ä � É the system resulting from Theorem 11(a) for which �TõeöE÷xP . In
particular,

T1. Is the transformation of Theorem 11(a) treewidth preserving?, i.e. for � as
defined, is Ä[ZgJ<�YM # Ä[ZgJlPDM ?

We conjecture that this is, indeed, the case so that, even in the absence of a more
searching analysis of the primal graph its treewidth would be at most Þ9Ä[ZuJlPDMY�� . The assertion that T1 holds is, of course, trivially verified when Ä[ZgJlPDM # � .
By systematically considering the recursive constructions characterising the class,
the same may be (rather tediously) inductively validated for those systems with
Ä[ZuJ¥PDM # % . A general argument covering Ä[ZgJlPDM # " has, however, yet to be
found.

A final group of problems regarding bounded treewidth systems concerns combin-
ing dialogue game methods, e.g. the TPI-disputes studied in [36,25], or the rea-
soning schema presented in [21], using both the graph-theoretic form of P and a
width

"
tree decomposition of P . Among the reasons why treewidth decomposi-

tions may provide useful representations for both of these approaches are the fol-
lowing. The pathological examples for which exponential length TPI-disputes result
constructed in [25], cannot occur in width

"
systems: the mechanism used to form

' ò In addition, the methods of [29] require a further translation from CNF to a CSP problem
in order to use an algorithm of Yannakakis [37].
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such cases is via the translation of “provably hard” unsatisfiable CNF instances ' 
 :
such instances, however, necessarily have primal graphs with large treewidth. Re-
garding the application to the dialogue structure promoted in [21], we observe that
one standard design approach for efficient algorithms based on tree decomposi-
tions, discussed in [10], is to construct solutions working from the leaves of the
tree decomposition building towards its root: such techniques mirror the reasoning
methods discussed in [21].

9.3 Issues in Value-based Argumentation

The results presented in Section 8 indicate that efficient methods for the central
decision questions – SBA and OBA – are unlikely to come about through simply
limiting the underlying directed graph form: binary tree structures being the most
basic non-trivial graph class. ' � While Theorem 23 and Corollary 7 seem to offer
rather pessimistic prospects for the possibility of developing tractable variants of
SBA, these are in some respect unsurprising: a critical distinction between the nature
of decision problems in VAFs and in standard argument systems concerns the search
space examined.

For SBA this is the set of all specific audiences, i.e. the
"jß

total orderings of � ; in
decision problems such as CA, this space is the set of all subsets of � , Searching
over orderings of structures within combinatorial objects (as opposed to subsets) is
known to give rise to decision questions which often remain hard even in restricted
instances, ' � a notable example being the bandwidth minimisation problem, [27,
GT40, p. 200] that, like SBA is NP–hard even when restricted to binary trees.

It might, therefore, be argued that in order to identify non-trivial tractable variants
of SBA, not only is it needed to restrict the underlying argument graph but also to
restrict how the value set � and mapping � :I�à^ � interact with it. While, �
defines a parameter w.r.t which SBA is FPT – the procedure described in [7] giving

' 
 The notion of “hardness” is that of proof length within certain weak (but complete)
propositional proof systems, see e.g. Cook and Reckhow [13], Beame and Pitassi [5], and
Urquhart [35] for technical background. In [25] the TPI formalism is shown equivalent (in
the sense of [13]) to the CUT-free Gentzen calculus.' � One could limit structures further to, e.g. systems p , with á�qÕp|w�âC� . In this case,
retaining the connectivity assumption, one has only paths and simple cyclic structures:
both cases are completely characterised in the original presentations of Bench-Capon [6,7].' � The problem of deciding if an ã -vertex graph has a hamiltonian cycle may appear to
be an exception to this generalisation, however, one can sensibly treat the search space in
this instance, not as all possible vertex orderings ( ãåä ), but rather as ã element subsets of
the edges: such viewpoints are exploited in efficient algorithms for testing hamiltonicity
of graphs with small treewidth by progressively building “partial solutions” defining paths
between vertex subsets.
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a bound
� J "gß 5 �5�M via the brute-force approach of testing each specific audience in

turn – an open question is whether alternative approaches can succeed, i.e.

V1. Are there parameters other than 5 �é5 w.r.t. which SBA is FPT?

One aspect of the hardness proofs in Theorem 23 and those of [26,23], is that there
is a single value ( f ) associated with “many” arguments, i.e. 5 � ÔB' J�f,M95 # ó|J-5��$5åM ,
and a large number of values (	�º�d/� , ¡�»�½�� ) associated with only a few (at most ï in
the proof of Theorem 23) arguments. This suggests two possible approaches with
which to consider alternative restrictions of SBA instances,

R1. by bounding the minimum and maximum number of occurrences of any given
value �{2T�

R2. by bounding the number of occurrences of attacks �E1F�>8G� in which �ÞJl1?M #��Jl8GM .
The second of these is, again, motivated by recurring features in the hardness
proofs, specifically the predominance of attacks involving two arguments with
value f .
Theorem 24 and the trivial observation that at least one value must be common
to 5��$5ÒÊ=5 �é5 arguments, however, limit the possible range of interest in trying to
exploit R1: if 5 �é5 # º�J-5å�i5åM , e.g. the case considered in Theorem 24, then some
value is shared by æ(JÊ�9M arguments. In trying to limit the number of occurrences
of any value to be a constant – thus forcing 5 �e5 # ó|J)5��$5�M – another difficulty
arises. Thus, suppose SBA

È´ç äRèâ.)É is the decision problem SBA restricted to instances
for which ¯��R2k�Ð5 � ÔB' J8��M95=� " , i.e. at most

"
arguments share a common value,�{2S� . Similarly, SBA

È´² É ä Èéç äRèâ.�É is this problem with instances additionally restricted
to trees.

Theorem 25 SBA
È´² É ä Èéç äRèâ¨ÊÉ is NP–complete even if instances are binary trees.

Proof: The proof uses the binary tree structure of Corollary 7, with a modifica-
tion of the definition of � and the associated mapping � . Details are presented in
Appendix 2. Û

The problem, SBA
Èéç äRèB'<É on the other hand is trivial: any argument, 1 , is subjectively

accepted in such instances simply by choosing an audience in which �ÞJl1?M is the
most preferred value. Between the extremes of this case and that of Theorem 25,
we propose the following conjecture,

Conjecture 1 SBA
Èéç äRè � É is polynomial time decidable.

Regarding the approach suggested by R2, suppose we define the following param-
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eter on VAFs:ê J>�lPIJQ�����M����@�5�V��M # 5Ù6��E1F��8V�W2� :���J¥1?M # ��Jl8GM)AB5
(note that, retaining the assumptions of [6–8,26], cases �ÞJl1?M # ��Jl8GM , �E1F�>8G�W2� and
�<8=�>1?�e24 do not arise since there are no directed cycles all of whose arguments
share the same value.)

Conjecture 2 SBA is fixed parameter tractable w.r.t. to the parameter ê J��EP��5�@���G��M .
These, again, are the subject of current work.

Appendix 1 – Further properties of �F�

In this appendix we present the proof of the result stated in Theorem 8(b).

Proof: (of Theorem 8(b))
Recall that this asserts SA

È .)É and COHERENT
È .�É are � � � –complete for

"
-partite sys-

tems with
" Å ï .

It suffices to construct a ï -partite argument system � È ¨ÊÉ� from the system ��� of
Section 3.2. Noting that � is sceptically accepted in the latter system if and only
if �}JE®���-���«M is accepted as an instance of QSAT ¬� , � È ¨ÊÉ� is designed to preserve this
property. In order to form � È ¨ÊÉ� the subsystem of four arguments 6��(�)¹/'��)¹ � �)¹)¨�A in
��� is replaced by the system of Fig. 10.

Φ

b2 p1

p2

b3 b1

Zn

C
j

Fig. 10. Local Modification of the Argument system » �

From the properties of �L� , it is still the case that for every satisfying instantiation
of the CNF �}J<B�V�-���NM there is a preferred extension of � È ¨ÊÉ� containing � . Such pre-
ferred extensions additionally contain the argument 	 � . It follows easily from this
that SA J<� È ¨ÊÉ� �-�^M holds if and only if �}JE=���-���ÂM is a positive instance of QSAT ¬� . We
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further observe that the system � È ¨ÊÉ� is coherent if and only if � is sceptically ac-
cepted. To complete the proof it remains to show that � È ¨ÊÉ� is ï -partite. We can con-
struct a three colouring of � È ¨ÊÉ� by assigning colour c to 6��(��8�'-�+*�*+*���8��â�)j�'-�+*+*�*��)j��âA ;
colour ð to 6���8�'���*+*+*��-��8����-��j�'��+*+*+*,�-��j���A and ñ to 6 � '-��*+*+*�� � � A . This leaves the
arguments 6�¹+'-�)¹ � �)¹)¨/* 	Þ'-* 	 � A uncoloured, however, the ï -colouring is completed us-
ing ñ for 6)	Þ'-�)¹�'-A ; ð for 6�¹ � �Q	 � A ; and c for 6�¹-¨,A . Û

Appendix 2 – Proof of Theorem 25

Recall that Theorem 25 asserts SBA
È´² É ä Èéç èâ¨ÊÉ is NP–complete even when instances

are restricted to binary trees.

Given an instance, �}J<�Y�«M of ï -SAT as in the proof of Theorem 23, i.e. in which
every variable occurs in at most three distinct clauses 'K� of � , consider the instance
of SBA

È³² É – �E~��FJ<�����M��5�§�=�5�G� constructed. In this instance each of the values �D2
6)	�º�d+�Q��¡�»�½��I:D�|�0�^�0¡�A has 5 � ÔB' J8�VM/5B�Ðï . Renaming the value f to �â' , we have
5 � ÔB' JK�Â'�M/5 # ¤&�Ð� – the argument � and the ¤ arguments representing clauses.
Introduce a new value � � together with arguments 0 'oäå' and 0 'oä � and replace the
sub-tree formed by 6��(� � ')� � � �+*+*�*�� � � A with the structure of Fig 11.

Φ

C1

C2
C3

Cm

v
1

v
1

v
1

v

v
v

v

2

2
2

2

a1,1

1,2a

Fig. 11. Reducing number of occurrences of the value ë in Â �
In the resulting tree there are now 3 occurrences of the value ��' and ¤ occurrences
of the new value � � . Applying the same replacement method to the sub-tree with
root 0 'oä � and introducing a further new value �«¨ , ~�� will be modified to a tree, ~ È ¨ÊÉ�
with additional arguments

6 0 � äå'-� 0 � ä � :u�¸��£k� ¤oX % A
'K� In contrast to Theorem 23 in which this assumption is made for cosmetic purposes of
presentational ease, in the current proof this variant of 3-SAT is needed in order to ensure
appropriately few occurrences of the values ì�í$î � and ãgï�ð � .
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New attacks,

6�� 0 'oäå')�-�^�,�9� � � � 0 � Ô � ä � ��A�� 6�� 0 � äå'�� 0 � ÔB'oä � �i: % ��£{�¢¤ñX % AH�
6�� 0 � ä � � 0 � äå'Ê��:g�T� £ú� ¤ñX % A � 6�� � � � 0 � ÔB'oä � �i: % � £ú� ¤ñX¢�NA

and value set

� È ¨ÊÉ # �§���&6%��'��5� � �+*�*+*��5� � ÔB'-A
The mapping � as it effects clauses and these new arguments is now,

��Jl
«M # ¾¿¿¿¿¿À ¿¿¿¿¿Á
�Â' if 
u2$6��(� � '-� 0 'oäå')A� � if 
u2$6 0 � äå')� 0 � ÔB'oä � � � � A and

% ��£{�¢¤ñX %� � ÔB' if 
u2$6 0 � Ô � ä � � � � ÔB'-� � � A
This now satisfies 5 � ÔB' JK��M95�� ï for every value in � È ¨ÊÉ .
The final stage is to replace the sub-trees rooted at each clause argument � � using
binary trees. The typical replacement is shown in Fig. 12

y
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y y
j,3

−y
−y

j,1

j,2

j,1

j,2
j,3

b
j,1

bj,2

j
w

j
w

Cj
v

j

Fig. 12. Reducing clause sub-trees to binary trees in Â È ¨ÊÉ�
In forming this final (binary) tree

% ¤ new arguments are introduced, 6�¹ � äå')�Þ¹ � ä � :@�x�
£{�¢¤�A and a further ¤ values 6%Z � :x�¸��£{�¢¤�A . The mapping � being extended
for these new arguments via ��JE¹ � äå'�M # �ÞJ<¹ � ä � M # Z � .
We now claim that � is subjectively accepted in the resulting binary tree if and only
if �}JQ���ÂM is satisfiable.

Suppose first that �}JQ���«M is satisfied using an instantiation 0 # � 0 '��+*+*+*�� 0 �«� . Con-
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sider any specific audience, ° in which

	ÅºNd��n¡ºûé¡�»�½�� if 0 � # æ
¡¼»�½��È¡ºûº	ÅºNd�� if 0 � # ç
	ÅºNd��n¡ºûw� � ¯D�x�¢�Y� ¡¾�W�¸��£{�¢¤oX¢�
¡¼»�½��È¡ºûu� � ¯D�e�¢�Y�¢¡¾�W�¸��£k�¢¤-X��
	ÅºNd��n¡ºûwZ � ¯D�e�¢�Y�¢¡����x��£��¢¤
¡¼»�½��È¡ºûuZ � ¯D�x�¢�Y�T¡��W�¸��£{�¢¤Z � ¡HûÉ� � ¯D�¸��£k� ¤ñX¢� and Z � ¡ºûw� � ÔB'� � ¡ºûw� � ÔB'=¯ % ��£{�¢¤ñX��

Since 0 satisfies �}J<���ÂM each clause � � has at least one literal, assigned the value
æ : if the corresponding literal in ~ È ¨ÊÉ� is the (unique) literal attacking the clause
� � then this attack is successful; otherwise the corresponding literal (successfully)
attacks ¹ � ä � so that ¹ � äå' succesfully attacks � � . It follows that in the unique preferred
extension, hkJ<°¾M induced by hkJ<°�M�àé6 � '>�+*+*+*,� � � A #��

. From this, and the ordering� � ¡ºû|� � ÔB' we deduce that the attack by 0 � ä � on 0 � äå' succeeds for each �R�_£3�
¤-X % , i.e. 6 0 'oä � �+*�*+*�� 0 � Ô � ä � Ag�shkJ<°¾M and hence �T2Th{JE°�M as claimed.

One ther other hand suppose the audience ° is such that �T2ShkJ<°¾M . From the same
reasoning as that in the proof of Theorem 23 we can construct an instantiation,0 # � 0 '-�+*+*+*,� 0 �Â� of ��� via 0 � # æ if and only if 	�º�d+��¡ºû�¡�»�½�� . Now since �S2h{JE°�M an easy argument establishes 0 � äå'�b2Çh{JE°�M and 0 � ä � 2lhkJ<°�M for every �I�
£i�a¤ÜX % . To complete the proof it suffices to show that this instantiation must
satisfy �}JQ���«M . Suppose, to the contrary, that �}J 0 M # ç and let � � be any clause
that it is falsified by 0 . Consider the corresponding argument, � � within ~ È ¨ÊÉ� . It
cannot be the case that � � # � ' : for in that case the attack by � ' on � succeeds,
contradicting the assumption that �S2+hkJ<°¾M . The alternative, however, is that � �
attacks some argument 0 � ÔB'oä � or 0 � Ô � ä � for � � # � � . Again � � falsified by 0
contradicts the property 0 � ä � 2~h{JE°�M which holds of any preferred extension with
respect to ° containing � . Thus, every clause of �}J<���ÂM must be satisfied by 0 and
it follows that from a specific audience under which � is subjectively accepted we
can construct a satisfying instantiation of �}JQ�Y�ÂM .
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