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Abstract. Current approaches to multi-agent interaction involve speci-
fying protocols as sets of possible interactions, and hard-coding decision
mechanisms into agent programs in order to decide which path an in-
teraction will take. This leads to several problems, three of which are
particularly notable: hard-coding the decisions about interaction within
an agent strongly couples the agent and the protocols it uses, which
means a change to a protocol involves a changes in any agent that uses
such a protocol; agents can use only the protocols that are coded into
them at design time; and protocols cannot be composed at runtime to
bring about more complex interactions. To achieve the full potential of
multi-agent systems, we believe that it is important that multi-agent in-
teraction protocols exist at runtime in systems as entities that can be
inspected, referenced, composed, and shared, rather than as abstractions
that emerge from the behaviour of the participants. We propose a frame-
work, called RASA, which regards protocols as first-class entities. In this
paper, we present the first step in this framework: a formal language for
specification of agent interaction protocols as first-class entities, which, in
addition to specifying the order of messages using a process algebra, also
allows designers to specify the rules and consequences of protocols using
constraints. In addition to allowing agents to reason about protocols at
runtime in order to improve their the outcomes to better match their
goals, the language allows agents to compose more complex protocols
and share these at runtime.

1 Introduction

Research into multi-agent systems aims to promote autonomy and often intelli-
gence into agents. Intelligent agents should be able to interact socially with other
agents, and adapt their behaviour to changing conditions. Despite this, research
into interaction in multi-agent systems is focused mainly on the documenta-
tion of interaction protocols, which specify the set of possible interactions for
a protocol in which agents engage. Agent developers use these specifications to
hard-code the interactions of agents. We identify three significant disadvantages
with this approach: 1) it strongly couples agents with the protocols they use —



something which is unanimously discouraged in software engineering — there-
fore requiring agent code to changed with every change in a protocol; 2) agents
can only interact using protocols that are known at design time, a restriction
that seems out of place with the goals of agents being intelligent and adaptive;
and 3) agents cannot compose protocols at runtime to bring about more complex
interactions, therefore restricting them to protocols that have been specified by
human designers.

We propose a framework, called RASA, which regards protocols as first-class

entities. These first-class protocols are documents that exists within a multi-
agent system, in contrast to hard-coded protocols, which exist merely as ab-
stractions that emerge from the messages sent by the participants. To promote
decoupling of agents from the protocols they use, we propose a formal, executable
language for protocol specification. This language combines two well-studied and
well-understood fields of computer science: process algebra, which are used to
specify the messages that can be sent; and constraints, which are used to specify
the rules governing under which conditions messages can be sent, and the effects

that sending messages has on a system. Therefore, rather than a protocol being
represented as a sequence of arbitrary tokens, each message contains a meaning
represented as a constraint. Instead of hard-coding the decision process of when
to send messages, agent designers can implement agents that reason about the
effect of the messages they send and receive, and can choose the course of ac-
tion that best achieves their goals. Agents able to reason about protocols can
therefore learn of new protocols at runtime, making them more adaptable, for
example, by being able to interact with new agents that insist on using specific
protocols. The RASA language also allows protocols to be composed to bring
about more complex interactions.

In this paper, we define a syntax and semantics for the RASA protocol
specification language, which forms part of the RASA framework, a framework
for modelling agent interaction as first-class entities. They key ideas that were
taken into account in the design of the RASA language were the following:

– protocols as first-class entities: rather than protocol specifications emerging
from an abstraction of the behaviour of participating agents, RASA proto-
cols are first-class, meaning that they exist as entities in multi-agent systems;

– inspectable: agents are able to inspect and reason about the set of interactions
permitted by a protocol, when they can occur, and what their effects are, so
that the agents can devise strategies at runtime, therefore de-coupling them
from the protocols they use;

– layered: other languages used for inspectable interaction protocols, such as
OWL-P [7] and Yolum and Singh’s Event Calculus extension [27], use the
same language for specifying rules and effects as they do for specifying the
sequencing of messages. We take a layered approach, in which the language
for specifying the sequence of messages is separated from the language for
specifying rules and effects. This allows us to develop the RASA framework
independent of the underlying constraint language, and does not enforce the
use of a particular language; and



– reusable, composable and extendable: existing protocol specifications can be
extended and composed with other protocols to bring about new protocols.
In addition, composable protocols permits designers to break up their task
into smaller subtasks, simplifying the design process.

1.1 RASA Outline

The idea of first-class protocols is novel, but not entirely new. Desai et al. [7],
and Yolum and Singh [27] present some initial work in using OWL and the Event
Calculus respectively to model protocols as first-class entities (although they do
not use this term). These approaches adapt existing declarative languages by
adding definitions, written in that language, that specify the rules and effects
of protocols. However, there are two major downsides to taking this approach.
Firstly, the effects and rules must be specified in the declarative language (OWL
or the Event Calculus), which is too restrictive. Secondly, the message sequencing
is also specified in the language itself. For example, to specify that message a is
sent before b, one must write a predicate resembling the following:

Happens(a, t1) ∧Happens(b, t2) ∧ t1 < t2

This means that event a happens at time t1, event b happens at time t2, and
event a occurs before event b, specified by the predicate t1 < t2. This can be spec-
ified in a process algebra as a; b, which we believe is more intuitive to the human
reader, and is no less expressive. Robertson [22] takes a similar approach of us-
ing a process algebra and an underlying language to specify first-class protocols.
We extend his work by, among other things, providing an additional language
construct — local variable declaration — and by formalising the relationship
between the process algebra and the underlying language.

Using RASA, protocols can be visually represented as annotated trees outlin-
ing the interactions that can occur. As well as being annotated with a transitional
message, each arc in the tree is annotated with a precondition and postcondition,
in which the precondition must be enabled for the message to be sent, and the
postcondition represents the effect of sending a message. The nodes represent the
states that result from the corresponding postcondition. We incorporate states
into the language to allow designers and agents to calculate the effect of a series
of transactions; that is, if there are two messages sent in sequence, the effect of
the second depends on the state resulting from the first. The root node of the
tree is the initial state of the protocol, and the leaf nodes represent terminating
states. Branches in the tree represent choices to be made by one or more agents.

Protocol rules, effects, and states are specified using declarative constraint
languages. Using such languages allow agents to reason about which messages
to send by calculating the which paths best achieve their goals, with each path
from the root node to a leaf node representing a possible sequence of interac-
tion. Agents can also reason about sub-protocols, by taking the root node of a
sub-protocol as the starting point. We do not insist on a particular constraint
language, but instead assume that it contains a few basic operators and constants



common to most constraint languages. Such an approach fulfils our requirement
that the language is inspectable, because agents can be equipped with the neces-
sary constraint solvers, while maintaining flexibility by not enforcing a particular
language. The constraint language is separate from the language for specifying
the possible sequences of interaction in the protocol.

Protocols can be referenced and composed with others to form new protocols.
The composition of these interactions provides a precondition and postcondition
for an entire protocol. RASA allows one type of atomic event, comprising a
precondition, message, and postcondition. These correspond to an arc in the
tree. An atomic event is itself a protocol, meaning that the syntax and semantics
of composing existing protocols is the same as composing a single protocol.

We envisage systems in which agents have access to bases of protocol spec-
ifications; either locally or centrally. Agents can search through these bases at
runtime to find protocols that best suit the goal they are trying to achieve,
and can share these protocol specifications with possible future participants. If
no single protocol is suitable for the agent, composition of these may offer an
alternative.

This paper is structured as follows: Section 2 presents the assumptions we
make regarding the constraint language used by the agents engaged in interac-
tion. As will be seen, these assumptions are quite general, allowing wide applica-
bility of the framework. Section 3 then presents the formal syntax of the RASA

modelling language, with an operational semantics for this language presented
in Section 4. The paper follows this with a section discussing reuse and compo-
sition of protocols. Section 6 then presents a discussion of related work, before
Section 7 concludes the paper.

2 Modelling Information

Communication in multi-agent systems is performed across a universe of dis-

course. Agents send messages expressing particular properties about the uni-
verse. We assume that these messages refer to variables, which represent the
parts of the universe that have changing values, and use other tokens to repre-
sent relations, functions, and constants to specify the properties of these variables
and how they relate to each other. We also assume that agents share an ontology

that provides a shared definition of these relations, functions, and constants.
In this section, we discuss the minimum requirements for a constraint lan-

guage that can be used in RASA. We do not believe that these requirements are
unreasonable — many languages can be used within the framework. For exam-
ple, there are many description logics [2], constraint programming languages [23],
commitment logics [27], or even predicate and modal logics [3] that contain the
necessary constructs, although some of these languages may not be executable,
and therefore the protocols would not be inspectable. The content languages
proposed by FIPA [9] would also be suitable candidates.



Definition 1. Constraint

A constraint is a piece of information reducing the set of values that are possible
for variables in a universe. For example, if an agent wishes to specify that the
price of an item, Item, is 10 units, it may express this as follows:

PriceOf (Item, 10)

In this constraint, Item is a variable, PriceOf a relation, and ‘10’ a constant.
Operators used to express constraints over the universe must be defined.

Definition 2. Constraint System

We assume agents communicate using a communication language, which has
a set of operators used to express constraints over variables. We will refer to
such as language as a constraint language. Rather than define the syntax and
semantics of a new language, or present the details of an existing one, we take the
approach that any language can be used as the communication language in our
framework, provided it contains a few basic constants and operators with certain
properties. As well as using this as a communication language, we assume that
this language is used to specify the preconditions and consequences of protocols.
We refer to this as the underlying constraint language or just underlying language.
This constraint language is denoted L.

We use the definition of a constraint system proposed by De Boer et al. [5].
They define a constraint system as a complete algebraic lattice

〈C,⊒,⊔, true, false〉

In this structure, C is the set of atomic propositions in the language, for example
1 ≤ 2, ⊒ is an entailment operator, true and false are the least and greatest ele-
ments of C respectively, and ⊔ is the least upper bound operator. The shorthand
c = d is equivalent to c ⊒ d and d ⊒ c.

The entailment operator is a partial order over C, in that, for any atomic
propositions, c and d, c ⊒ d means that c contains more information than d. This
is read that d is provable from c, which means that any values that satisfy the
variables in d also satisfy c. For example, x ≤ 5 ⊒ x ≤ 6 specifies that if x is less
than or equal to 5, then it is less than or equal to 6, which is trivially true because
there exists no value for x that satisfies x ≤ 5 that does not also satisfy x ≤ 6.
The ⊔ operator specifies the addition of information. For example, to specify
the prices of ItemA and ItemB are 5 and 10 units respectively, one could write
PriceOf (ItemA, 5)⊔PriceOf (ItemB, 10). This is is analogous to conjunction in
logic, in that c ⊔ d is the joining of information. Therefore, c ⊔ d ⊒ d is true for
any c and d.

A cylindric constraint system is a constraint system with an operator for
hiding variables. De Boer et al. [5] define a cylindric constraint system as a
structure, 〈C,⊒,⊔, true, false, V ar,∃〉, in which V ar is a set of variables, and ∃
the hiding operator. To hide a variable x in a constraint c, one would write ∃xc.
The hiding operator has the following properties:



– c ⊒ ∃xc
– c ⊒ d implies ∃xc ⊒ ∃xd
– ∃x(c ⊔ ∃xd) = ∃xc ⊔ ∃xd
– ∃x∃yc = ∃y∃xc

For example, to specify that the price of Item is between 5 and 10 units
inclusive, one could write ∃Price(PriceOf (Item,Price) ⊔ 5 ≤ Price ⊔ Price ≤
10).

We use shorthand to represent negation in L. For constraints c and d, c ⊒
¬d is true if and only if c ⊒ d is not. That is, c entails ¬d if and only if c
does not entail d. Note that, from this definition, we assume only that negation
can occur on the right hand side of the entailment operator. Depending on the
underlying constraint language used, this restriction could be relaxed, but this
is not necessary to fit into the framework.

Throughout this paper, constraints will adhere to the following grammar,
although a suitable language need not adhere to this grammar to be used in the
framework:

φ ::= c | φ ⊔ φ | ¬φ | ∃xφ

In this grammar, c is any atomic constraint in C, and x any variable in V ar. We
use ψ and φ as meta-variables representing constraints that follow this grammar,
adding subscripts and superscripts to denote distinct meta-variables. Brackets
are used to remove syntactic ambiguity, although to reduce the need for brackets,
we specify that ¬ and ∃ both bind tighter than ⊔, so ¬φ ⊔ ψ is (¬φ) ⊔ ψ, and
∃xφ ⊔ ψ is (∃xφ) ⊔ ψ.

We introduce a renaming operator, which we will write as [x/y], such that
φ[x/y] means ‘replace all references of y in φ with x’. The reader may have
already noted that φ[x/y] is shorthand for ∃y(y = x⊔ φ). We also introduce the
shorthand φ 6= ψ for ¬(φ = ψ), and ∃x,yφ for ∃x∃yφ.

Definition 3. Free Variables

The function, free ∈ L → ℘(V ar), returns the set of free variables in any
constraint; that is, variables referenced in φ that are not hidden using ∃. For
example, free(x ≤ 5) = {x}, and free(∃x(x ≤ 5⊔y = x)) = {y}. Calculating the
free variables in a constraint can be done at a syntactic level using an inductive
definition over the constraints:

free(c) = . . .
free(true) = ∅
free(false) = ∅
free(φ ⊔ ψ) = free(φ) ∪ free(ψ)
free(¬φ) = free(φ)
free(∃xφ) = free(φ) \ {x}

We do not define free(c) because that is specific to L. For readability, we
use the shorthand ∃bxφ to represent ∃free(φ)\{x}φ. That is, ∃bxφ means that we
quantify over all free variables in φ except x.



3 RASA Protocols

In this section, we present the language for modelling RASA protocols, and some
definitions relevant to this.

The RASA protocol specification language resembles that of other process
algebras, such as CSP [11]. However, we specify the rules and effects of protocols
using an underlying constraint language, which would be declarative by defini-
tion. This allows agents equipped with the necessary tools to reason about this
language to determine when rules are satisfied, to calculate the effect of sending
a particular message, and to devise strategies for interaction at runtime.

Definition 4. Communication Channel

We assume that a communication channel is a one-to-one connection between
two agents. The notation c(i, j) denotes the communication channel between the
sending agent with identity i, and the receiving agent with identity j, in which
identities are represented in the underlying language.

We employ the notation c(i, j).φm to represent the message φm being sent by
agent i to agent j via the channel c(i, j). The event of agent i sending a message
to j is the same event as agent j receiving this message. That is, the event is the
communication over the channel. Agent identities are omitted when the sending
and receiving agents are not relevant; that is, we write c.φm.

An alternative way to represent communication between agents is to have
many-to-many channels, with the sender and receiver identities as part of the
message. However, we choose the first approach so that we can reason about
communication in our framework language, rather than mixing this with the
underlying constraint language.

Definition 5. RASA Protocol

A RASA protocol is an annotated tree of interactions between entities. An
annotation is a triplet of constraints, in which the first constraint represents
the precondition that must hold for a transition to occur, the second constraint
represents the message to be sent, and the third constraint is a postcondition,
which must hold after an enabled transition occurs. Branches in the tree repre-
sent choices to be made by one or more agents.

Let φ represent constraints defined in constraint language, c communication
channels, N protocol names, and x a sequence of variables. Protocol definitions
adhere to the following grammar.

π ::= ǫ | φ
c.φ
−−→ φ | π;π | π ∪ π | N(x) | varφx·π

We use π as a meta-variable to refer to protocols; subscripts and superscripts
are used to denote distinct meta-variables. ǫ represents the empty protocol, in
which no message is sent and there is no change to the protocol state. A protocol

of the format φ
c.φm

−−−→ φ′ is an atomic protocol. It represents the value φm being
sent over channel c if φ holds in the current state. After the value is sent, the



new state of the protocol is updated using φ′. We use this to specify rules and
effects of protocols: the precondition represents a rule for a protocol because φm
can only be sent if this precondition is true; and the postcondition represents the
effect that sending φm has. For atomic protocols, meta-variables with a prime (′)
are used to refer to the postconditions; that is, φ is the precondition and φ′ the
postcondition. We use φm (that is, constraints subscripted with m) to denote
message constraints.

The protocol π1;π2 denotes the sequential composition of two protocols, such
that all of protocol π1 is executed, then protocol π2. The protocol π1∪π2 denotes
a choice of two protocols. N(x) denotes a reference to a protocol N(y), with
variables y renamed to x, such that the referenced protocol is expanded into this
protocol. For brevity, we use x and y to represent sequences of variables as well as
single variables. Protocols can reference themselves, and can mutually reference
each other, which introduces the possibility of non-terminating protocols. The
protocol varφx·π denotes the declaration of a local variable x, with the constraints
φ on x. The scope of x is limited to the protocol π.

We permit brackets to group together protocols, and to reduce the use
of brackets, operators have a strict ordering. The infix operators always bind
tighter than variable declaration, with sequential composition binding tighter
than choice. Therefore, the protocol varψx ·π1;π2 ∪ π3 would be equivalent to

varψx · ((π1;π2) ∪ π3).

Definition 6. Protocol Specification

Let N be a name, y be a sequence of variable names, and π be a protocol. A
protocol specification is defined as a set of definitions of the form

N(y) =̂ π

Definition 7. Protocol Instance

Let D be a protocol specification, π a protocol, and φ a constraint. A protocol

instance is a tuple, 〈D,π, φ〉, in which π can reference the protocol names defined
in D, and φ is a constraint representing the state of the protocol at that instance.
Instances evolve via message sending and the changing of the state.

Example 1. As an example of specifying a protocol, we use a simple negotiation
protocol. In this example, a buyer, B, is bidding for an item. If the price that
the buyer suggests, Price, is greater than the current price in the protocol state,
the seller, S, accepts the bid, otherwise rejecting it. In the case that the bid
is accepted, Price becomes the new current price. Such a protocol could be a
sub-protocol of an English auction protocol, and would be iterated over until
no more bids are received, or until some timeout is reached. This protocol is
specified as follows:



Buy(Item, Price, B, S) b= Bid; AcceptOrReject

Bid(Item, PriceB, S) b= isItem(Item)
c(B,S).bid(Item,Price)
−−−−−−−−−−−−−−−→ true

AcceptOrReject(Item, Price, B, S) b= var
PriceOf (Item,Curr)
Curr · (Accept ∪ Reject)

Accept(Item, Price, Curr, B, S) b=

Curr < Price
c(S,B).accept(PriceOf (Item,Price))
−−−−−−−−−−−−−−−−−−−−−−−→ PriceOf (Item, Price)

Reject(Item, Price, Curr, B, S) b=

Curr ≥ Price
c(S,B).reject(PriceOf (Item,Price))
−−−−−−−−−−−−−−−−−−−−−−−→ true

So, the bidder sends a bid to the seller. The declaration of the local variable
Curr represents the current bid; that is, Curr is equivalent to the value that
satisfies PriceOf (Item,Curr) in the state. If the bid is greater than Curr, the
seller sends an acceptance, and the constraint PriceOf (Item,Curr) is added to
the constraint store, overriding any previous constraints on Item. If the bid is
less than the current price, the bid is rejected and the state remains unchanged.
This specification corresponds to the following tree, in which the nodes re-
fer to the consequence of the previous action, and the arcs are of the format
ψ =⇒ c.φm, interpreted as “if ψ holds, then the transition c.φm can occur.” For
presentation, we have left out some details that are in the specification.

⊤

isItem(Item) =⇒ c(B,S).bid

=⇒ c(S,B).accept =⇒ c(S,B).reject

PriceOf(Item,Curr) ⊔ Curr < Price

PriceOf(Item, Price) ⊤

PriceOf(Item,Curr) ⊔ Curr ≥ Price

An agent with ID represented by the variable a, wishing to sell an item, i, to
another agent b, may propose that this protocol is used to determine a price by
proposing the following protocol instance:

〈P,Bid(i, P rice, b, a),PriceOf (i, 0)〉

In which P is the protocol specification above, Bid(i, P rice, b, a) is the Bid
protocol with renamed variables, and PriceOf (i, 0) is the initial state. The task
is now that the agents must find an instantiation for the variable Price on which
they both agree.

Clearly, agreeing on a protocol instance from which to begin the negotiation
is itself a negotiation problem, which would likely be solvable with another pro-
tocol. Such meta-protocols are, in the context of a system, at a higher level than
other protocols, such as the negotiation protocol above. However, this does not
rule out the option of using the same protocol at both levels.

Meta-protocols, their use, and their control are dependent on the system in
which they are employed, and on the agents within these systems, so proposing a



general solution for this problem is not possible. For example, some agents may
adopt a “take it or leave it” approach, in which other participants either use a
certain protocol to interact with them, or do not interact with them at all. In
other cases, adopting a specific meta-protocol may be a condition of entry into
the system. Other systems may leave it up to the agents themselves to decide. In
future work, we plan to specify a collection of meta-protocols that can be used
to negotiate which RASA protocol to use, and look at the contexts in which
these protocols can be employed.

4 Semantics

In this section, we define and discuss the semantics of the RASA protocol spec-
ification language.

4.1 Structural Operational Semantics

We view the semantics of protocols as commands on a virtual machine, in which
states incorporate protocol instances, and the commands are the messages being
sent over communication channels. To model these semantics, we make use of
structural operational semantics, as defined by Plotkin [20].

Using structural operational semantics, a system is defined as a set of tran-
sitions, with each transition linking two states. In the case of our protocol se-
mantics, a state is defined as a protocol instance. Recall from Definition 7 that
a protocol instance is a tuple 〈D,π, φ〉, in which D is a protocol specification, π
is the protocol that is to be executed, and φ a constraint representing the state
of the protocol. Thus, a transition takes the form:

〈D,π, φ〉
l

−−→ 〈D,π′, φ′〉

This denotes the protocol π being executed in the state φ, the transition l
occurring at this point. π′ denotes the part of the protocol left to execute, and φ′

denotes the new state of the protocol. l refers to either the communication of a
constraint φm over a channel, written c.φm, or the empty transition. We use

ε
−−→

to represent the empty transition. D is invariant over the course of execution,
therefore, we omit it whenever it is not referenced in a transition.

As a shorthand, we use the following to indicate that 〈D,π, φ〉 evolves to
〈D,π′, φ′〉 over the sequence of transitions l1, . . . , ln:

〈D,π, φ〉
l1,...,ln
−−−−→ 〈D,π′, φ′〉

We specify the semantics as inference rules of the following form:

antecedents

conclusion
conditions

In which antecedents are the assertions about what can occur at the current
state, conditions are the side conditions under which this rule is enabled, and
conclusion is the transition that can occur. We use the special protocol, E, to
represent the protocol whose execution is complete.



4.2 Renaming

To define the semantics of protocols specified using RASA, we include syntax for
renaming over protocols. Specifically, renaming is defined inductively over the
structure of the protocols such that the protocol π[x/y] represents the protocol
π, with every free occurrence of the variable y substituted with the variable x,
including variables in the constraints. Formally, renaming is defined as follows,
in which I denotes either of the binary infix operators:

(ψ
c.φm

−−−→ ψ′)[x/y] = ψ[x/y]
c.(φm[x/y])
−−−−−−−→ ψ′[x/y]

(π1 I π2)[x/y] = π1[x/y] I π2[x/y]

N(z1, . . . , y, . . . , zn)[x/y] = N(z1, . . . , x, . . . , zn)

(varψy ·π)[x/y] = var
ψ[x/y]
x ·π[x/y]

(varψz ·π)[x/y] = var
ψ[x/y]
z ·π[x/y]

Informally, this says that renaming y to x in an atomic protocol is equivalent
to performing the same rename over the constraints in the protocol. Renam-
ing a infix composition is equivalent to renaming the two sub-protocols of that
composition. Renaming y to x in a protocol reference consists of renaming any
instances of y in the variable list to x — the name of the protocol is not renamed.
Variable declaration has two rules: the first if the declared variable is y, in which
case the variable is changed to x; the second if the declared variable is not y,
in which case the variable remains the same. In both cases, the constraint on x
and the protocol in the scope of the variable are both renamed.

As an example of protocol renaming, we use the negotiation example from
Section 3. Suppose that we wish to use this within an auction protocol, with an
auctioneer represented by the variable Auctioneer, then one could use the re-
named protocol Buy[Auctioneer/S] to represent the same protocol, but in which
every occurrence of the variable S replaced with Auctioneer. Therefore, the mes-
sage representing a bid on the item would be c(B,Auctioneer).bid(Item,Price).

4.3 Operational Semantics of Protocol Operators

Now we have some basic definitions covered, we define the semantics of the
protocol operators in the RASA language. That is, of executing a protocol within
the context of a protocol specification and a constraint representing the protocol
state.

Definition 8. Semantics of the Empty Protocol

The empty protocol terminates under no transition, and has no effect on the
protocol state.

〈ǫ, φ〉
ε

−−→ 〈E, φ〉



Definition 9. Semantics of Atomic Protocols

Firstly, we define the semantics for the atomic protocol. That is, the protocol
consisting only of a message being sent over a channel if the precondition is
satisfied, resulting in a new protocol state.

〈ψ
c.φm

−−−→ ψ′, φ〉
c.φ′

m−−−→ 〈E, φ′〉
if φ ⊒ ψ and φ′m ⊔ φ′ ⊒ φm ⊔ O(φ, ψ′)

This states that, if the precondition ψ is true under the model φ, then the
transition can occur. This transition can be the constraint, φm, but can also be
a constraint, φ′m, that contains more information that φm, such that φ′m ⊒ φm.
This allows the message sender to place additional constraints on the message,
and, as a consequence, the resulting state. The resulting state is O(φ, ψ′), in
which O ∈ (L × L) → L is an overriding function defined as O(φ, ψ′) = ψ′ ⊔
∃free(ψ′)φ. Therefore, O defines a new constraint such that the values of any
free variables in ψ′ are overridden with the values constrained by ψ′, while the
free variables in φ that are not otherwise in ψ′ maintain their pre-state values.
However, any additional information in the message, φ′m must also apply to the
resulting state. For example, considering the following atomic protocol from the
auction example in Section 3:

Curr < Price
c.accept(PriceOf (Item,Price))
−−−−−−−−−−−−−−−−−−−−→ PriceOf (Item, Price)

The sender confirms that the bid for Item at the price Price has been accepted,
in which Item and Price are variables. As part of the interaction, the sender
would like to instantiate both variables — Item with an item, and Price with
a number. If the sender wants to confirm that the price of the Item is 10, then
the message will be c.accept(PriceOf (Item,Price)⊔Price = 10). The constraint
Price⊔10 needs to be shared with the postcondition. The semantics enforces this:
φ′m⊔φ′ ⊒ φm⊔O(φ, ψ′). In this example, the only solution for Price in this con-
straint would be Price = 10, therefore, the post-state is PriceOf (Item,Price)
⊔ Price = 10, which simplifies to PriceOf (Item, 10). Such an approach allows
protocol specifications to be general, and then instantiated at runtime.

Definition 10. Semantics of Sequential composition

Sequential composition is defined as executing the left-hand protocol until it
terminates, and then executing the right-hand protocol until it terminates. The
semantics of this is given by two rules.

〈π1, φ〉
l1,...,ln
−−−−→ 〈E, φ′〉

〈π1;π2, φ〉
l1,...,ln
−−−−→ 〈π2, φ′〉 〈E;π2, φ〉

ε
−−→ 〈π2, φ〉

The first of these rules specifies that if sequence of transitions, l1, . . . , ln, can be
made from 〈π1, φ〉 taking the system to the state 〈E, φ′〉, then we can perform
this transition under the state 〈π1;π2, φ〉, leaving us to execute π2 under the
protocol state φ′. The second rule specifies that at all times, E;π is equivalent
to π.



Definition 11. Semantics of Non-Deterministic Choice

Non-deterministic choice is defined using two rules.

〈π1, φ〉
l1,...,ln
−−−−→ 〈E, φ′〉

〈π1 ∪ π2, φ〉
l1,...,ln
−−−−→ 〈E, φ′〉

〈π2, φ〉
l1,...,ln
−−−−→ 〈E, φ′〉

〈π1 ∪ π2, φ〉
l1,...,ln
−−−−→ 〈E, φ′〉

These two rules state that, for a protocol π1 ∪ π2, if one of the arguments can
progress, then that argument progresses, and the other is discarded. If both
can progress, then a non-deterministic choice is made between the two of them,
and the other is discarded. The new protocol state of the argument that is
chosen is the new protocol state of the entire transition. The entire protocol
terminates when the chosen protocol terminates. A choice between a protocol
and the terminated protocol, E, cannot occur because the choice is made before
progressing, and because E is not a part of the language syntax.

Definition 12. Semantics of Protocol References

〈D,N(x), φ〉
ε

−−→ 〈D,π[x/y], φ〉
if N(y) =̂ π ∈ D

This rule specifies that, if there is a protocol named N with variables y and
protocol π in the set D, then the reference N(x) is equivalent to the protocol π,
with the variables y renamed to x.

For example, the Bid(Item,Price,B, S) protocol, from Section 3, can be
referenced as with Bid(i, p, a, b), in which i, p, a, and b are variables. This is
equivalent to the following:

isItem(i)
c(a,b).bid(i,p)
−−−−−−−−−→ true

In which Item,Price,B, and S are renamed to i, p, a, and b respectively.

Definition 13. Semantics for Variable Declaration

A näıve attempt to specify the semantics for variable declaration would give
the following.

〈π, ψ ∧ φ〉
l1,...,ln
−−−−→ 〈E, φ′〉

〈varψx ·π, φ〉
l1,...,ln
−−−−→ 〈E, φ′〉

The protocol varψx ·π specifies that a new variable x is declared with constraints
ψ, and then the protocol π, which may refer to x, is executed. Thus, if the
protocol π can progress under the protocol state ψ ∧ φ to the protocol π′ and
state φ′, then make this transition.

We have labelled this definition “näıve” because it does not consider three
cases. Firstly, it does not consider that case that x is already a free variable in
the state. This will cause problems because the behaviour would be to evaluate
π in the protocol state ψ ∧ φ, which could be inconsistent. A designer writing



the protocol varψx ·π would surely want any references of x in π to refer to the
most recently declared x, therefore, in the antecedent of the rule, x is hidden in
φ using the cylindric operator, so the constraints of the x in the state are hidden.
Secondly, it does not remove the local variable x from the state after execution,
meaning that the scope of x is not restricted to π. Finally, it does not maintain
the constraints on x over the protocol. A second attempt to specify this rule
leads to the following:

〈π, ψ ∧ ∃xφ〉
l1,...,ln
−−−−→ 〈E, φ′〉

〈varψx ·π, φ〉
l1,...,ln
−−−−→ 〈E,∃xφ′ ⊔ ∃bxφ〉

where ∃bxφ = ∃bxφ
′

In this definition, the state ψ ∧ ∃xφ has all references to the previously de-
clared x hidden. The side condition, ∃bxφ = ∃bxφ

′, says that hiding all variables
except x in the pre-state and the post-state will result in the same constraint,
therefore, the constraints on x are the same in the post-state and pre-state. Fi-
nally, the post-state, ∃xφ

′ ⊔ ∃bxφ hides all references to the local variable x in
φ′, and reinstates the global reference by hiding all variables except the global
x in the pre-state, φ.

Example 2. We turn to an example to help with the understanding of variable
declaration, as its definition is not straightforward. Take the following protocol,
which is an expanded version of accepting a bid from the example in Section 3:

var
PriceOf (Item,Curr)
Curr ·

Curr < Price
c(S,B).accept(PriceOf (Item,Curr))
−−−−−−−−−−−−−−−−−−−−−−−→ PriceOf (Item, Price)

If this is executed with the protocol state PriceOf (Item, 2) ⊔ Curr = 10, in
which Curr is a variable unrelated to the current bid, then the state value of
Curr is inconsistent with the constraints on the local variable Curr. So, it is
executed under the following state (corresponding to ψ ∧ ∃xφ in the definition):

PriceOf (Item,Curr) ⊔ ∃Curr(PriceOf (Item, 2) ⊔ Curr = 10)

This ensures that any reference to Curr will be referring to the local variable
name instead of the global name, and will be constrained to the price of Item,
which is 2. Consider a message in which the buying agent constrains Price to
be 3; that is, sends the message PriceOf (Item,Price) ⊔ Price = 3. After this
message, the state would be (corresponding to φ′ in the definition):

(1) PriceOf (Item,Price) ⊔ Price = 3 ⊔

(2) ∃Item,Price(PriceOf (Item,Curr) ⊔ PriceOf (Item, 2))

From the atomic protocol semantics, we keep the constraints for variables not
referenced in the post-state by hiding these variables in the pre-state constraint
(line 2), and conjoining this with the postcondition (line 1). This constraint can
be simplified to the following:

PriceOf (Item, 3) ⊔ Price = 3 ⊔ Curr = 2



However, the scope of the local declaration Curr ends there, so we want to
remove all references to this Curr, and reinstate the global Curr with the same
constraints it had prior to the local declaration. Therefore, the local Curr in
this constraint is hidden, and the resulting constraint conjoined with the pre-
state with all variables except Curr hidden (corresponding to ∃xφ

′ ⊔ ∃bxφ in the
definition):

(1) ∃Item,Price(PriceOf (Item, 2) ⊔ Curr = 10) ⊔

(2) ∃Curr
(
PriceOf (Item, 3) ⊔ Price = 3 ⊔ Curr = 2

)

Line 1 is the constraint that reinstates the global Curr with the constraints
it had prior to the local declaration. The constraint in Line 2 hides the local
variable of Curr. This can be simplified to the following:

Curr = 10 ⊔ PriceOf (Item, 3) ⊔ Price = 3

Which is the expected end state of the protocol. With this simplification, one
may wonder why we hide the local reference of Curr rather than just removing
all references to it. This is because the postcondition may refer to the local
variable, in which case ∃Curr could not be removed, because the constraints on
Curr may also constrain other variables, such as Item or Price.

5 Reusing, Composing, and Reasoning about Protocols

So far, we have outlined how protocol designers can specify a protocol, and have
defined the semantics for a protocol given a protocol specification and an initial
state. However, crucial to the goals of agent-oriented software engineering is the
fact that first-class interaction protocols should be reusable and composable, and
inspectable such that agents can reason about protocols to decide their course
of action. How designers and agents reuse, compose, and reason about RASA

protocols is not the topic of this paper, however, in this section, we briefly outline
how the RASA protocol specification language supports these requirements. In
future work, we plan to investigate these areas in more detail.

Protocols can be referenced via their name, which allows protocols and pro-
tocol specifications to be reused to create larger, compound protocols. For ex-
ample, the simple negotiation protocol specified in Section 3 could be embedded
within an auction protocol. Assuming the existence of protocols called Start,
DeclareWinner, and NoBids, which represent the auction starting, a winner
being declared, and no bids received before a certain condition is met, such as a
timeout, one could specify an English auction as follows, in which Bs is a set of
bidders:

Auction(Item, Price, Bs, S) b= Start; Bids; (DeclareWinner ∪ NoWinner)

Bids(Item, Price, Bs, S) b= ǫ ∪ ((var
B∈Bs
B ·Buy); Bids)

The protocol Bids is zero of more iterations of the Buy protocol, in which
one bidder from the set of bidders, Bs, submits a bid, and it is either accepted
or rejected.



RASA is well-suited for composition. The syntax and semantics of protocol
composition operators treat all protocols the same; that is, atomic protocols
are complete protocols themselves. Therefore, the syntax and semantics for con-
structing protocols from atomic protocols can be used to create compound pro-
tocols from other compound protocols. The auction example above is an example
of composing new protocols from existing protocols.

Protocol composition need not be restricted to protocol designers. Agents
able to reason about protocols specified using RASA could be equipped, in a
straightforward manner, with the ability to compose new protocols from existing
protocols using planning techniques.

As an example, consider an intelligent agent, I, that believes it can buy
a particular item of a rather unintelligent agent, U , and then sell it back to
the same agent at a profit. U may propose that itself and I agent engage in
two rounds of the Buy protocol from Section 3, but with the buyer and seller
swapped in each case:

Buy[U/S, I/B];Buy[I/S, U/B]

This composed protocol represents the unintelligent agent acting as the seller,
S, and the intelligent agent representing the buyer, B, followed by the same
protocol, but with the buyer and seller swapped. Depending on the initial state
of the protocol, if I can convince U to engage in this protocol, then I may be able
to make a profit. Note that this is different to I proposing Buy[U/S, I/B], and
then after this interaction has taken place, proposing Buy[I/S, U/B], because U
may not agree to the second protocol, leaving I stuck with the item it does not
want. If, however, U agrees to the composed protocol, it is forced to put in a bid
for the item if I buys it. This example is fabricated, and would require a highly
intelligent agent to devise such a strategy, but should an agent be intelligent
enough to exploit this, this example demonstrates that deriving the composite
protocol would be straightforward.

There are cases in which protocol composition can lead to problems. For
example, take the sequential composition of two protocols: π1;π2. For all possible
states resulting from the protocol π1, the precondition from at least one of the
paths in π2 must be enabled, otherwise the execution of the protocol can become
stuck, in which there are no possible messages that can be sent. To compose this
protocol, one must prove that the protocol can never become stuck. Determining
such proof obligations, and defining a proof system to help discharge such proof
obligations, are part of our ongoing work on the RASA framework.

Agents can reason about which messages to send by calculating the best
course of action at each point in which they can send a message. Each path
from the root node to a leaf node represents a possible sequence of interaction.
To choose a course of action, classical planning or reactive planning techniques
and algorithms can be adapted and used; or more likely, a combination of both.
For example, an agent can calculate the end state of all possible interaction
sequences of a protocol to decide the next message they send. However, an agent
would have to react to changes when it receives a message from another agent,
which would likely reduce the choices for its next move.



6 Related Work

There are many languages that have been designed to model agent interactions,
such as Social Integrity Constraints [1], FIPA [9], and Agentis [8]. AgentUML
[17] has been given a formal semantics for modelling agent interactions [4]. In
this section, we discuss and contrast some of the approaches most relevant to
the RASA framework.

Process algebras, such as CSP [11], CCS [15], and the π-calculus [16] are used
to model processes and their interactions. While the combination of processes
can form the basis of a protocol specification, these languages cannot be used
to specify rules and effects. Languages such as Object-Z/CSP [25], which mixes
process algebras with state-based languages, are often not inspectable.

Viroli and Ricci [26] propose a method for formalising operating instructions

for use on mediating coordination artifacts. Sequences of operation instructions
resemble our first-class protocols; however their language does not provide the
necessary constructs to document the rules or outcomes of protocols. In addition,
Viroli and Ricci explicitly comment that their goals are to provide a methodology
for environment-based coordination, rather than a general approach to agent
interaction semantics.

De Boer et al. [6] present a language that uses constraints and process algebra
to model agent interactions. However, like many interaction modelling languages,
the interaction is emergent from the model of the participants, rather than being
first class.

Propositional dynamic logic (PDL) [10] resembles our notion of protocols.
For example, PDL allows one to define a collection of sequences of actions,
each with an outcome specified as a predicate. In fact, PDL has been extended
[19] with belief and intention modal operators to define a language, PDL-BI,
for modelling agent interaction. The main differences between these approaches
and our approach is that PDL and PDL-BI are declarative languages, while the
RASA language is algebraic; and our language does not require the use of a
specific language to model protocol rules and effects. In addition, the class of
protocols describable using PDL(-BI) is regular, while RASA allows a larger
class; for example, two named protocols with mutually recursive references.

Related work on inspectable protocol specifications also exists in the liter-
ature. OWL-P [7] is a language and ontology for modelling protocols, which is
coded in the OWL web ontology language [18]. While the approach and goals
are different to ours, OWL-P protocols can be used as first-class protocols, and
agents would be able to successfully reason about these using OWL tools, and is
therefore of interest to us. The syntax and semantics of OWL-P are significantly
different to ours, but, like RASA protocols, OWL-P protocols can be composed.
However, unlike RASA, in which composing two protocols has the same syntax
and semantics at all levels, OWL-P protocol composition uses a new process with
new syntax for composition. We believe this to be a significant advantage of our
approach. In addition, OWL-P is not layered; that is, the message sequencing is
specified in the same language as the protocol rules and effects — OWL. This
restricts designers to using OWL for specification. We also believe that using a



declarative language to specify message sequencing is less intuitive for human
readers.

Yolum and Singh [27] present an extension to the Event Calculus [12] that is
tailored to first-class protocol specification. The language is declarative, and the
authors discuss the use of an abductive planner for agents to plan their execution
paths. Although not explicitly discussed by Yolum and Singh, it appears that
protocol composition would be possible using this language. This approach is
different to ours in the same way that OWL-P is: the language is not layered,
and message sequencing is declaratively specified.

Robertson [22] presents the Lightweight Coordination Calculus (LCC). The
goals of Robertson are similar to ours, and indeed, one could view the RASA

language as an extended version of LCC, in which we have taken more consid-
eration of the relationship between the protocol specification language and the
underlying constraint language by formalising the behaviour of atomic protocols.
However, our language differs from LCC in several ways. Firstly, we take a global
view of protocols, whereas LCC takes a local view; that is, two interacting agents
will each have a specification of their view of the protocol. We believe it would
be straightforward to switch between such views in either language. Secondly,
our formalisation of atomic protocols treats protocol state differently. Thirdly,
we provide a local variable construct, which is useful for defining constraints over
sub-protocols, as demonstrated by the example in Section 3. McGinnis [14] has
successfully composed LCC protocols at runtime (although McGinnis refers to
this as synthesis) — a goal clearly in line with our idea of protocol composition.

Serrano et al. [24] describe a multi-agent programming framework in which
interactions are represented by first-class objects. These objects assert some
control over message passing at runtime to guide the interaction. However, this
requires the identification of roles at design time, and appears to force participat-
ing agents to implement certain interfaces, which we explicitly aim to prevent.

There is also work related to protocol composition in the agent communica-
tions literature. McBurney and Parsons [13] propose a formalism for composing
dialogue game protocols, which enables similar types of composition, but over
a more restricted class of protocols. Reed et al. [21] present a framework which
allows agents to assign meanings to messages at run-time, and thus, indirectly,
to create new interaction protocols.

7 Conclusions and Future Work

In this paper we have presented a novel language for the specification of agent
interaction protocols, defining both the syntax and the semantics formally. This
language forms part of the RASA framework, a framework for creating multi-
agent interaction protocols as first-class entities. RASA is general across both
the type of interaction protocol and in the language or ontology used by the
agents engaged in interaction. By treating interaction protocols as first-class
entities, RASA permits protocols to be inspected, referenced, composed, and
shared, by ever-changing collections of agents engaged in interaction. The task



of protocol selection and invocation may thus be undertaken by agents rather
than agent-designers, acting at run-time rather than at design-time. Frameworks
such as this will be necessary to achieve the full vision of multi-agent systems.

Before such visions are realised, significant further work is required. We aim
to develop a proof system for the RASA framework, which, as well as providing
a system for designers to verify properties about their protocols, will provide
agents with a way to make decisions about their actions, and to verify protocols
composed at runtime. Also, further work is needed on the verification of protocols
using this proof system, and the development of verifiable semantics for them
within this framework. In addition, we plan to specify a collection of meta-
protocols for negotiating which protocols to use, and identify in which contexts
each meta-protocol would be useful. To develop and test these ideas, we plan a
prototype implementation in which agents negotiate the exchange of information
using protocols specified using the RASA framework.
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