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Abstract

Distributed negotiation schemes offer one approach to agreeing an allocation of re-
sources among a set of individual agents. Such schemes attempt to agree a distribution
via a sequence of locally agreed ‘deals’ – reallocations of resources among the agents –
ending when the result satisfies some accepted criteria. Our aim in this article is to demon-
strate that some natural decision questions arising in such settings can be computationally
significantly harder than questions related to optimal clearing strategies in combinatorial
auctions. In particular we prove that the problem of deciding whether it is possible to
progress from a given initial allocation to some desired final allocation via a sequence of
“rational” steps is pspace-complete.

1. Introduction

The abstraction wherein a triple 〈A,R,U〉 represents sets of agents, resources, and “utility”
functions by which individual agents associate values with resource subsets, has proven to be
a useful mechanism in which to consider problems concerning how best to distribute a finite
collection of items among a group of agents. In very informal terms, two general approaches
have been the basis of algorithmic studies concerning how to organise the allocation of
resources to agents: centralized mechanisms of which combinatorial auction techniques are
possibly the best-known exemplar; and distributed methods deriving from the contract-net
model formulated in (Smith, 1980) whose properties are the subject of the present article. In
Combinatorial Auction schemes, e.g. (Sandholm, 2002; Sandholm & Suri, 2003; Tennenholz,
2000; Yokoo et al., 2004; Parkes & Ungar, 2000a, 2000b), a centralized controlling agent (the
“auctioneer”) assumes responsibility for determining which agents receive which resources
basing its decisions on the bids submitted by individual agents. Bidding protocols vary
in expressive complexity from those that simply allow an agent to submit a single bid
of the form 〈S, p〉 expressing the fact that the agent is prepared to pay some price p in
return for the subset S of R to methods allowing a number of different subsets to be
described in separate bids, e.g. the so-called xor language discussed in (Sandholm, 2002).
A typical aim of the auctioneer is to decide which bids to accept so as to maximise the overall
price paid subject to at most one agent being granted any resource. This scheme gives
rise to the Winner Determination Problem of deciding which bids among those submitted
are successful. In its most general form Winner Determination is np–hard, but there are
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a number of powerful heuristic approaches and winner determination can be efficiently
carried out albeit if the bidding language is of very limited expressiveness. Despite the
practical effectiveness of these approaches, there has, however, been a recent revival of
interest in autonomous distributed negotiation schemes building on the pioneering study
of these by Sandholm (1998). It is not difficult to identify motivations underpinning this
renewed interest: the implementation overheads in schema where significant numbers of bids
(possibly having complex structures) are communicated to a single controlling agent; the
potential difficulties that might arise in persuading an individual agent to assume the rôle
and responsibilities of auctioneer; similarly the need to ensure that bidding agents comply
with the decisions made by the auctioneer; the issues raised in deciding on a bidding protocol
given the extremes from languages that are highly expressive but computationally hard for
winner determination to highly rigid and simple bidding languages which, while tractable,
face the problem of no allocation at all being compatible with the bids received; finally,
aside from the computational problems with which the auctioneer is faced, there is the
highly non-trivial issue for the agents bidding as regards selecting and pricing resource sets
so as to optimise the likelihood of their “most preferred” bid being accepted.

Faced with such computational issues, notwithstanding the advances in combinatorial
auction technology, environments whereby allocations are settled following a process of
local improvements negotiated by agents agreeing changes, appear attractive, particularly
if the protocols for proposing and implementing resource transfers between agents limit the
number of possibilities that individual agents may have to review.

The principal results of this paper establish that, far from resulting in a computationally
more tractable regime or, indeed, even one that exhibits complexity “no worse” than the
np-hard status of winner determination, a number of natural decision questions concerning
simple distributed negotiation protocols, have significantly greater complexity. In particu-
lar, we show that given a description of a resource allocation setting – 〈A,R,U〉 – together
with some initial and desired allocations 〈P (s), P (t)〉 deciding if the desired allocation can
be realised by a sequence of rational “local” reallocations is pspace-complete. Thus, de-
ciding if a particular type of negotiation will be effective in bringing about a reallocation
is at a similar level of complexity to classical A.I. planning problems, e.g. as considered in
the work of (Bylander, 1994). We, further, note one of our results resolves a question left
open from (Dunne et al., 2005): specifically we show the problem of deciding if there is a
rational sequence of “one-resource-at-a-time” reallocations to progress between given start-
ing and final allocations, to be pspace–complete, improving upon the earlier np-hardness
classification.

In the next section we introduce the formal structures of contract-net derived distributed
negotiation reviewing the components of this presented by Sandholm (1998) together with
terminology and notation that will be used subsequently. Section 3 describes the decision
questions that are considered, summarises related work concerning these, and presents a
formal statement of the results subsequently proved in Section 5. Separating these two
sections, we give a high-level, informal overview of the proof mechanisms in Section 4.

The problems analysed in Section 5 are concerned with what might be called “local”
properties of a given allocation setting, specifically whether it is possible to progress from a
given starting point to a desired allocation via a restricted class of negotiation primitives.
In Section 6 we address “global” properties of such schemes which we term Convergence
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and Accessibility. Convergence addresses a property of resource allocation settings that has
been studied earlier in work of (Endriss & Maudet, 2004; Chevaleyre et al., 2005), namely
whether a setting is such that using a restricted class of deals, no matter what starting
allocation is in force and which ever sequence of allowed rational deals is employed, the
outcome will always be some optimal allocation. Perhaps suprisingly, for the restricted deal
classes under which the questions considered in Section 5 turn out to be pspace–complete,
deciding convergence properties is “only” coNP–complete. Accessibility, considers whether
from a given starting point it is possible to reach an optimal outcome: this, too, turns out to
be pspace–complete. We present concluding comments and discuss further developments
in Section 7.

2. Resource Allocation Settings and Local Negotiation

The principal structure we consider in this paper is presented in the following definition.

Definition 1 A resource allocation setting is defined by a triple 〈A,R,U〉 where

A = {A1, A2, . . . , An} ; R = {r1, r2, . . . , rm}

are, respectively, a set of (at least two) agents and a collection of (non-shareable) resources.
A utility function, u, is a mapping from subsets of R to rational values. Each agent Ai ∈ A
has associated with it a particular utility function ui, so that U is 〈u1, u2, . . . , un〉. An
allocation P of R to A is a partition 〈P1, P2, . . . , Pn〉 of R. The value ui(Pi) is called the
utility of the resources assigned to Ai. We use Πn,m to denote the set of all partitions of m
resources among n agents: it is easy to see that |Πn,m| = nm, there being n different choices
for the owner of each of the m resources.

Given some starting allocation, P ∈ Πn,m, individual agents may wish to “improve” this: for
the purposes of this paper, the concept of an allocation Q improving upon an allocation P
will be defined in purely quantitative terms. Even within these limits there are, of course,
many different methods by which an allocation P may be quantitatively rated. For the
settings we consider we concentrate on the measure of utilitarian social welfare, denoted
σu(P ), which is simply the sum of the agents’ utility functions for their allocated resources
under P , i.e. σu(P ) =

∑n
i=1 ui(Pi).

We next formalise the concepts of deal and contract path.

Definition 2 Let 〈A,R,U〉 be a resource allocation setting. A deal is a pair 〈P,Q〉 where
P = 〈P1, . . . , Pn〉 and Q = 〈Q1, . . . , Qn〉 are distinct partitions of R. The effect of imple-
menting the deal 〈P,Q〉 is that the allocation of resources specified by P is replaced with that
specified by Q. For a deal δ = 〈P,Q〉, we use Aδ to indicate the subset of A involved, i.e.
Ak ∈ Aδ if and only if Pk 6= Qk.

Let δ = 〈P,Q〉 be a deal. A contract path for δ is a sequence of allocations

∆ = 〈P (0) ; P (1) ; . . . ; P (d−1) ; P (d)〉

in which P = P (0) and P (d) = Q. The length of ∆, denoted |∆| is d, i.e. the number of
deals in ∆.
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Sandholm (1998) presents a number of restrictions on the form that deals may take, one
motivation for such being to limit the number of deals that a single agent may have to
consider. The class of restricted deals presented in the following definition includes those
analysed in (Sandholm, 1998).

Definition 3 Let δ = 〈P,Q〉 be a deal involving a reallocation of R among A.

a. δ is bilateral if |A|δ = 2.

b. δ is t-bounded if δ is bilateral and the number of resources whose ownership changes
after implementing δ is at most t.

c. δ is a t-swap if δ is bilateral and for some s ≤ t, Q is formed by exactly s resources
in Pi being assigned to Aj and replaced, in turn, by exactly s resources of Pj.

The class of t-bounded and t-swap deals are simple extensions of the classes of O-contracts
and S-contracts in (Sandholm, 1998): O-contracts being 1-bounded deals and, similarly,
S-contracts are 1-swap deals. We note that t-swap deals are a special case of (2t)-bounded
deals.

We introduce the concept of a deal being rational in the following definition. It will be
useful to consider two forms: one linked to the particular quantitative measure of utilitarian
social welfare; and, more generally, one which is expressed in terms of arbitrary quantitative
measures.

Definition 4 A deal 〈P,Q〉 is individually rational (ir) if and only if σu(Q) > σu(P ). For
〈A,R〉 as before, an evaluation measure is a (total) mapping σ : Πn,m → Q. A deal 〈P,Q〉
is σ-rational if and only if σ(Q) > σ(P ).

We note that δ is individually rational if and only if δ is σu-rational. Where there is no
ambiguity we will simply refer to a deal being rational without specifying σ.

The notions of rationality introduced above are now extended in order to introduce the
structures that form the main object of study in this paper: σ-rational paths.

Definition 5 For 〈A,R〉 and an evaluation measure, σ, a sequence of allocations

∆ = 〈P (0) ; P (1) ; . . . ; P (d)〉

is a σ-rational contract path for the (σ-rational) deal 〈P (0), P (d)〉 if for all 1 ≤ i ≤ d,
〈P (i−1), P (i)〉 is σ-rational.

More generally, if Φ : Πn,m ×Πn,m → {>,⊥}, is some predicate on deals, we say that
∆ is a Φ-path if Φ(P (i−1), P (i)) holds for each 1 ≤ i ≤ d. We say that Φ-deals are complete
for σ-rationality if

∀ 〈P,Q〉 ∈ Πn,m ×Πn,m : (〈P,Q〉 is σ-rational) ⇒ (∃ ∆ : ∆ is a Φ-path for 〈P,Q〉)
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3. Decision Problems in Localised Negotiation

The ideas introduced in Definitions 3 and 4 combine to focus on deals that not only restrict
their structure (in the sense of limiting the number of agents and the number of resources
involved) but also add the further condition that a deal must result in a better allocation.
It is as a result of such rationality conditions that significant difficulties arise within local
negotiation approaches. Thus, two extremes are already apparent in the following result
from (Sandholm, 1998).

Fact 1

a. 1-bounded deals are complete for σ-rationality.

b. ir 1-bounded deals are not complete for individual rationality.

c. If |A| ≥ 3, then ir bilateral deals are not complete for individual rationality.

Among the questions that naturally follow from Fact 1 are those listed below:

Q1. Are there “reasonable” conditions that can be imposed on collections of utility func-
tions, U , so that in settings 〈A,R,U〉 where these hold, ir 1-bounded deals are com-
plete for individual rationality?

Q2. Given 〈〈A,R,U〉, P (s), P (t)〉 with 〈P (s), P (t)〉 being ir, how efficiently can one deter-
mine whether there is a rational 1-bounded contract path for 〈P (s), P (t)〉?

Q3. When such a path does exist what can be proven regarding its properties, e.g. number
of deals involved, etc.?

The first has been considered in (Endriss & Maudet, 2004; Chevaleyre et al., 2005) and
while these offer some positive results, the initial analyses regarding the other two questions
presented in (Dunne, 2005; Dunne et al., 2005) are rather less encouraging.

Fact 2

a. Given 〈〈A,R,U〉, P (s), P (t)〉 with 〈P (s), P (t)〉 being ir, the problem of deciding if there
is a rational 1-bounded contract path for 〈P (s), P (t)〉 is np–hard. (Dunne et al., 2005,
Thm. 12)

b. For every m = |R| ≥ 7 there are choices of 〈〈A,R,U〉, P (s), P (t)〉 for which: there is a
unique ir 1-bounded contract path, ∆, for the ir deal 〈P (s), P (t)〉 and |∆| = Ω(2m).
(Dunne, 2005, Thm. 3).

c. For every m = |R| ≥ 6 there are choices of 〈〈A,R,U〉, P (s), P (t)〉 with |A| = 3 and
for which: there is a unique ir bilateral contract path, ∆, for the ir deal 〈P (s), P (t)〉
and |∆| = Ω(2m/3). (Dunne, 2005, Thm. 6).

Although the analysis leading to the proof of Fact 2(a) is couched in terms of ir 1-bounded
deals, it is straightforward to adapt it to establish np-hardness for ir 1-swap deals. The
principal contribution of the present article is in obtaining tight complexity classifications
for these decision problems: Theorem 4 proving both to be pspace–complete.
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We consider two general forms of decision problems in Section 5 where Φ in the descrip-
tion below is a predicate on deals.
Φ−PATHE

Instance: 〈〈A,R〉, σ, P (s), P (t)〉 with σ(P (t)) > σ(P (s)).
Question: Is there a Φ-path ∆ for the deal 〈P (s), P (t)〉?
Φ−PATHU

Instance: 〈〈A,R,U〉, P (s), P (t)〉 with σu(P (t)) > σu(P (s)).
Question: Is there a Φ-path ∆ for the deal 〈P (s), P (t)〉?

Although, superficially, these are similar problems, the significant distinction that should
be noted is that Φ − PATHU is a restricted special case of Φ − PATHE. We elaborate
further on the differences in our overview of Section 4.

The particular instantiations of Φ that we consider are given below where m = |R|. It
is convenient to introduce distinct names for the relevant decision problem induced.

1. Φ(P,Q) holds if and only if 〈P,Q〉 is a σ-rational 1-bounded deal. Subsequently
denoted 1-path as the resulting specialisation of Φ−PATHE.

2. Φ(P,Q) holds if and only if 〈P,Q〉 is an ir 1-swap deal. This being denoted 1-swap
for the corresponding instantiation of Φ−PATHU .

3. Φ(P,Q) holds if and only if 〈P,Q〉 is an ir 1-bounded deal. We denote this special
case of Φ−PATHU by iro-path.

We will show that each of the resulting decision problems is pspace-complete.

4. Overview of Proof Methods

This section has three aims: firstly, to address the technical question of how instances of
the decision problems introduced at the conclusion of Section 3 are encoded; secondly, to
elaborate on the differences between the forms Φ−PATHE and Φ−PATHU ; and, finally,
to outline the organisation and structure of the proofs presented in Section 5.

4.1 Representing Instances

In order to describe instances of Φ − PATHE or Φ − PATHU the problem of encoding
functions whose domain is exponentially large in |R|, i.e. σ : Πn,m → Q; ui : 2R → Q
must be addressed. Of course, one approach would be simply to enumerate values using
some ordering of the relevant domain. There are, however, at least two objections that
can be made to such solutions: since the domains are exponentially large – nm and 2m

– exhaustive enumeration would in practical terms be infeasible even in the case of very
simple functions, e.g. u(S) = 1 if |S| is even; u(S) = 2 otherwise. The second objection is
that exhaustive enumeration schemes are liable to give misleading assessments of run-time
complexity: an algorithm that is polynomial-time in the length of such an encoding, is
actually of exponential complexity in terms of the numbers of agents and resources.

In (Dunne et al., 2005) the following desiderata are proposed for encoding a utility
function, u, as a sequence of bits ρ(u):
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a. ρ(u) is ‘concise’ in the sense that the length, e.g. number of bits, used by ρ(u) to
describe the utility function u within an instance is “comparable” with the time taken
by an optimal program that computes the value of u(S).

b. ρ(u) is ‘verifiable’, i.e. given some binary word, w, there is an efficient algorithm that
can check whether w corresponds to ρ(u) for some u.

c. ρ(u) is ‘effective’, i.e. given S ⊆ R, the value u(S) can be efficiently computed from
the description ρ(u).

It is, in fact, possible to identify a representation form that satisfies all three of these criteria:
we represent each member of U in a manner that does not require explicit enumeration of
each subset of R and allows (a) to be met; uses a ‘program’ form whose syntactic correctness
can be efficiently verified, hence satisfying (b); and for which termination in time linear in
the program length is guaranteed, so meeting the condition set by (c). The class of programs
employed are the so-called straight-line programs (slp) which have a natural correspondence
with combinational logic networks (Dunne, 1988).

Definition 6 An (m, s)-combinational network C is a directed acylic graph in which there
are m input nodes, Zm, labelled 〈z1, z2, . . . , zm〉 all of which have in-degree 0. In addition, C
has s output nodes, called the result vector. These are labelled 〈ts−1, ts−2, . . . , t0〉, and have
out-degree 0. Every other node of C has in-degree at most 2 and out-degree at least 1. Each
non-input node (gate) is associated with a Boolean operation of at most two arguments.1

We use |C| to denote the number of gate nodes in C. Any Boolean instantiation of the
input nodes to a ∈ 〈0, 1〉m naturally induces a Boolean value at each gate of C: if h is a
gate associated with the operation θ, and 〈g1, h〉, 〈g2, h〉 are edges of C then the value h(a) is
g1(a)θg2(a). Hence a induces some s-tuple 〈ts−1(a), . . . , t0(a)〉 ∈ 〈0, 1〉s at the result vector.
For the (m, s)-combinational network C and a ∈ 〈0, 1〉m, this s-tuple is denoted by C(a).

Although often considered as a model of parallel computation, (m, s)-combinational net-
works yield a simple form of sequential program – straight-line programs – as follows. Let C
be an (m, s)-combinational network to be transformed to a straight-line program, slp(C),
that will contain exactly m+ |C| lines. Since C is directed and acyclic it may be topolog-
ically sorted, i.e. each gate, g, given a unique integer label τ(g) with 1 ≤ τ(g) ≤ |C| so
that if 〈g, h〉 is an edge of C then τ(g) < τ(h). The line li of slp(C) evaluates the input
zi if 1 ≤ i ≤ m and the gate for which τ(g) = i −m if i > m. The gate labelling means
that when g with inputs g1 and g2 is evaluated at lm+τ(g) since gi is either an input node
or another gate its value will have been determined at lj with j < m+ τ(g).

Definition 7 Let R be as previously with |R| = m, and u a mapping from subsets of R to
whole numbers, i.e. a utility function. The (m, s)-network Cu is said to realise the utility
function u if: for every S ⊆ R with s the instantiation of Zm given by zi = 1 if and only if
ri ∈ S, it holds

u(S) = val(C(s))

1. In practice, we can restrict the Boolean operations employed to those of binary conjunction (∧), binary
disjunction (∨) and unary negation (¬).
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where for b = 〈bs−1, bs−2, . . . , b0〉 ∈ 〈0, 1〉s, val(b) is the whole number whose s-bit binary
expansion is b, i.e. val(b) =

∑s−1
i=0 bi ∗2i, where bi is treated as the appropriate integer value

from {0, 1}.

Definition 7 provides a method of encoding utility functions u : 2R → N ∪ {0} in
instances of Φ−PATHU : each ui ∈ U is represented by a straight-line program, slp(Cui)
derived from a suitable combinational network. For instances of Φ−PATHE, the function
σ : Πn,m → N ∪ {0} can be encoded in a similar fashion. For example, via a (mn, s+ 1)-
combinational network, C, whose input zi,j indicates if rj ∈ Pi; val(C(α)) is again an s-bit
value: the additional output bit being used to flag if the instantiation α is not a valid
partition, e.g. if zi,j = 1 and zk,j = 1 for some rj and i 6= k.2

A key property of encodings via slps is the following result of (Fischer & Pippenger,
1979; Schnorr, 1976)

Fact 3 If f : {0, 1}m → {0, 1}s is computable by a deterministic Turing Machine program
in time T , then f may be realised by an slp containing O(T log T ) lines.

It should be noted that the proof of Fact 3 is constructive, i.e. the translation is not merely
an existence argument and, in addition, a suitable slp can be built in time polynomial in
T . Thus a further consequence is our subsequent reductions do not need to give explicit
detailed constructions of slps.3 It will suffice to specify σ or U for it to be apparent that
these may be computed efficiently: Fact 3 then ensures suitable representations can be
formed.

4.2 Distinctions between Φ−PATHE and Φ−PATHU

We recall that Φ − PATHE concerns the existence of σ-rational Φ-paths with the evalua-
tion measure, σ, forming part of the instance whereas Φ −PATHU focuses on the partic-
ular choice σ = σu with the collection of utility functions forming part of the instance.
Given that our primary interest is in the measure σu, it may seem that there is some
redundancy in considering Φ − PATHE, e.g. if we introduce utility functions for which
u2 = u3 = . . . un = 0, defining u1(S) as σ(〈S, P2, P3, . . . , Pn〉), where Pi is the
particular subset of R held by Ai in a specific case of A1 holding S, then one has σu(P )
(in the “new” setting) equal to σ(P ) (in the original form). The main objection to such
an approach is that the utility function, u1, is likely to have allocative externalities, i.e.
its value is dependent not only on the actual resources held by A1 but also upon how the
other resources are distributed. It has tended to be the normal assumption, often not even
mentioned directly,4 that utility functions do not have such externalities, e.g. (Dunne, 2005;
Dunne et al., 2005; Endriss et al., 2003; Sandholm, 1998). While the complexity classifi-
cation of Φ − PATHE has some interest in itself, our main concern is with the decision

2. Although we describe the range of σ and u to be whole numbers using slp encodings, it is a trivial matter
to extend to integers, e.g. use an additional output bit to indicate whether a value is positive or negative;
and to rationals, e.g. treat one section of the output bits as defining a numerator, the remaining section
as a denominator.

3. Some illustrative constructions of slps in specific polynomial-time reductions are presented in (Dunne
et al., 2005, pp. 33–4).

4. One of the few exceptions is (Yokoo et al., 2004) which explicitly states that the valuation functions
considered are assumed to be free of allocative externalities.
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problem relating to Φ − PATHU , which focuses on a single measure of how good an allo-
cation is – σu – and, in keeping with standard approaches, assumes utility functions to be
free from externalities.

One point of some importance in our proofs concerning the variant of Φ−PATHE given
in Section 5, is that the evaluation measure, σ, constructed in the instance 〈A,R, σ, P (s), P (t)〉
does not admit a direct translation to 〈A,R,U , P (s), P (t)〉 in which U is externality-free and
is such that σu(P ) = σ(P ). We introduce a “coding trick” by means of which a general
translation from any 〈A,R, σ〉 to a setting 〈{A1, A2},R′, {u1, u2}〉 results. In particular this
translation provides the means by which two special cases of Φ − PATHU can be proven
pspace-hard, i.e. the problems 1-swap and iro-path.

Of course, in principle, our proofs that the special cases of Φ − PATHU are pspace-
hard could be presented directly, i.e. without reference to Φ − PATHE and the coding
device used. There are, however, a number of reasons why we avoid such an approach. The
first of these is the technical complexity of the proofs themselves: although the translation
from Φ − PATHE to Φ − PATHU turns out to be relatively straightforward, the central
result that 1-path is pspace–hard on which our subsequent classifications build, is rather
more involved. We note that notwithstanding the use of arbitrary evaluation measures,
the problem 1-path is a “natural” decision question whose properties, we contend, merit
consideration in their own right.

4.3 Proof Structure

We begin by recalling the decision problems considered.

1-path (special case of Φ−PATHE)
Instance: 〈A,R, σ, P (s), P (t)〉 with σ(P (t)) > σ(P (s)).
Question: Is there a σ-rational 1-bounded path for 〈P (s), P (t)〉?

1-swap (special case of Φ−PATHU )
Instance: 〈A,R,U , P (s), P (t)〉 with σu(P (t)) > σu(P (s)).
Question: Is there an ir 1-swap path for 〈P (s), P (t)〉?

iro-path (special case of Φ−PATHU )
Instance: 〈A,R,U , P (s), P (t)〉 with σu(P (t)) > σu(P (s)).
Question: Is there an ir 1-bounded path for 〈P (s), P (t)〉?

Subject to Φ(P,Q) being decidable in pspace it is straightforward to show that Φ −
PATHE ∈ pspace. For each of the problems listed, the corresponding Φ(P,Q) is decidable
in (deterministic) polynomial-time.

On first inspection the approach taken to proving pspace–hardness may seen rather
indirect: an “auxiliary problem” – Achievable Circuit Sequence (acs) – is defined inde-
pendently of the arena of multiagent negotiation contexts, with the assertion “1-path is
pspace-complete”, justified by showing “acs is pspace-complete” (Theorem 2) and then
acs ≤p 1-path (Theorem 3). This auxiliary problem has, however, two important prop-
erties. Firstly, it is “easy” to prove that acs is pspace–complete using standard generic
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reduction techniques.5 The second property of acs is that its formal structure is very similar
to that of 1-path.

Thus, acs is concerned with deciding a property of a given (N,N)-combinational logic
network, C, with respect to two distinct binary N -tuples. The N inputs of C are inter-
preted as a sequence of n data bits 〈x1, x2, . . . , xn〉 coupled with a sequence of m value
bits 〈y0, y1, . . . , ym−1〉; the N outputs are viewed in a similar fashion. Now, suppose that
a = 〈data(a), value(a)〉 and b = 〈data(b), value(b)〉 are the binary N -tuples given with C
to form an instance of acs.

Recall that val(y) is the whole number represented by them value bits of C, i.e. val(y) =∑m−1
i=0 (2i) ∗ yi, and define

〈datak(a), valuek(a)〉 =

{
〈data(a), value(a)〉 if k = 0
C(〈datak−1(a), valuek−1(a)〉) if k > 0

Since the output of any (N,N)-combinational logic network on a given instantiation of its
inputs is uniquely determined, the sequence [〈datak(a), valuek(a)〉]k≥0 is well-defined and
unique.

Informally, acs asks of its instance 〈C, a, b〉 if there is some value t ≥ 1 with which:

a. 〈datat(a), valuet(a)〉 = 〈data(b), value(b)〉

b. For each 1 ≤ i ≤ t, val(valuei(a)) > val(valuei−1(a)).

Although the formal technical argument that acs ≤p 1-path given in Section 5.2 involves
a number of notational complexities, its basic strategy is not difficult to describe. Recalling
that an instance of acs consists of an (n + m,n + m)-combinational logic network, C,
together with instantiations 〈x, y〉, 〈z, w〉 from 〈0, 1〉n+m, the instance 〈AC ,RC , σ, P

(s), P (t)〉
of 1-path that is formed uses 5 agents. The resource set RC contains disjoint sets each of
size 2(n+m) – RV and RW – with “appropriate” subsets of RX (for X ∈ {V,W}) mapping
to elements of 〈0, 1〉n+m. In the initial allocation, P (s), A1 holds the subset of RV and the
subset of RW that maps to 〈x, y〉 ∈ 〈0, 1〉n+m. In the final allocation, P (t), A1 should hold
the subsets of RV and RW that map to 〈z, w〉. For the agents A2 and A3: the former
should hold subsets of RV while the latter holds subsets of RW . The evaluation measure,
σ, is constructed so that any allocation, Q, for which Q2 6⊆ RV or Q3 6⊆ RW has σ(Q) < 0.

The main idea is to simulate the witnessing sequence {〈xi, yi〉}0≤i≤t for a positive in-
stance of acs by a sequence of allocations to A1, i.e. from the initial allocation to A1

which we recall mapped to 〈x0, y0
〉 ∈ 〈0, 1〉n+m subsequent allocations to A1 will be those

subsets of RV and RW which map to 〈xi, yi〉 ∈ 〈0, 1〉
n+m. The problem that arises in this

simulation is that if Q(i) is the allocation in which A1’s holding reflects 〈xi, yi〉 then the
deal 〈Q(i), Q(i+1)〉 although σ-rational for the evaluation measure constructed, will not be
1-bounded. In order to effect this deal, a sequence of 1-bounded σ-rational deals is used
which involve the following stages:

1. a subset of RV is transferred one resource at a time from A2 to A4;

5. That is to say, “easy” pace the notational overheads inherent in most generic simulations of resource-
bounded Turing machine classes: the elegant casting of Turing machine behaviour in terms of planning
operators presented in (Bylander, 1994) being a notable exception.

10
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2. a subset of RV is transferred one resource at a time from A1 to A2

3. the resources moved into A4 in stage (1) are transferred to A1.

The subset of RV held by A1 on completion will map to 〈xi+1, yi+1
〉, while the subset

of RW continues to map to 〈xi, yi〉. These three stages are then repeated, but now with
resources from RW and the agent A3 involved, so that the subset of RW held by A1 will,
on completion, map to 〈xi+1, yi+1

〉.
In order to track whether resources should be moved out of A4 into A1, a “marker”

resource, µ, initially held by A5 is used: µ is reallocated to A4 at the end of the second
phase and returned to A5 once the third stage is complete.

The notational overhead in the proof stems from specifying the evaluation measure, σ,
in such a way that a σ-rational 1-bounded sequence of deals to go from P (s) to P (t) is
possible if and only the source instance of acs should be accepted.

5. PSPACE-complete Negotiation Questions

We begin with the relatively straightforward proof that the decision problems we consider
are all decidable by pspace algorithms. Since all of these are specialisations of Φ−PATHE

and the predicate Φ(P,Q) is polynomial-time decidable for each, it suffices to prove,

Theorem 1 For predicates Φ : Πn,m×Πn,m → {>,⊥} such that Φ(P,Q) is polynomial-time
decidable, Φ−PATHE ∈ pspace.

Proof. Given an instance 〈A,R, σ, P (s), P (t)〉 of Φ − PATHE in which σ : Πn,m → Q is
described in the form of a straight-line program, use a non-deterministic algorithm which
proceeds as follows:

P := P (s)

loop
Non-deterministically choose an allocation Q ∈ Πn,m

if ¬Φ(P,Q) then reject
else if Q = P (t) then accept
else P := Q

end loop

If a Φ-path realising 〈P (s), P (t)〉 exists then this non-deterministic algorithm has a compu-
tation that will successfully identify it. The algorithm need only record the allocations P
and Q occurring in the loop body and thus can be implemented in npspace. The theorem
now follows from Savitch’s Theorem: npspace=pspace, (Savitch, 1970). 2

5.1 The Achievable Circuit Sequence Problem (acs)

The following decision problem is central to our subsequent argument.
Achievable Circuit Sequence (acs)
Instance: (N,N)-combinational logic network, C, with N = n + m inputs 〈Xn, Ym〉 and

11
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n+m outputs, 〈Zn,Wm〉; 〈x, y〉, 〈z, w〉 ∈ 〈0, 1〉n+m.
Question: Is there a sequence

Γ = 〈〈x0, y0
〉, 〈x1, y1

〉, . . . , 〈xk, yk〉〉

such that

a. 〈x0, y0
〉 = 〈x, y〉,

b. 〈xk, yk〉 = 〈z, w〉,

c. ∀ 1 ≤ i ≤ k, C(xi−1, yi−1
) = 〈xi, yi〉 and val(y

i
) > val(y

i−1
)?

Before showing that acs is pspace-complete, we present a small example instance. This
example will be used subsequently to illustrate the proof that acs≤p1-path.

Example 1 The table below describes (in truth-table form) the input and output charac-
teristics of a (4, 4)-combinational logic network, C:

x1 x2 y1 y2 z1 z2 w1 w2 val(〈y1, y2〉) val(〈w1, w2〉)
0 0 0 0 0 0 0 1 0 1
0 0 0 1 0 1 1 0 1 2
0 1 1 0 1 1 1 1 2 3
1 1 1 1 1 1 1 1 3 3

Table 1: Example Function for instance of acs

[The twelve unspecified entries for 〈x1, x2, y1, y2〉 all produce 〈0000〉 as their output.]
The instance 〈C, 〈0000〉, 〈1111〉〉 of acs is accepted, as witnessed by the sequence

〈0000〉 ; 〈0001〉 ; 〈0110〉 ; 〈1111〉

In contrast the instance 〈C, 〈0000〉, 〈1011〉〉 is rejected: the unique continuation of 〈0000〉
never reaches 〈1011〉.

Theorem 2 acs is pspace-complete.

Proof. An instance 〈C, x, y, z, w〉 of acs can be decided by a (deterministic) polynomial-
space computation that iterates evaluating

〈xi+1, yi+1
〉 = C(xi, yi)

(starting with 〈x, y〉).
This computation terminates either when val(y

i+1
) ≤ val(y

i
) (the instance is rejected)

or when 〈z, w〉 occurs with the former condition taking precedence when 〈xi+1, yi+1
〉 =

〈z, w〉. Since there are only 2n+m possible cases, eventually one of these two termination

12
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conditions must arise. The whole computation can be accomplished in polynomial-space
since only the current 〈xi, yi〉 need be remembered.

For pspace–hardness we use a generic reduction, i.e. given a Turing machine program,
M , input s, and space-bound S = |s|c we form an instance of acs that is accepted if and
only if s is accepted by M within an S-space bounded computation. We may assume that
M has a unique accepting configuration u. It suffices to note that from the description of M
we can build a (t, t)-combinational logic network CM whose input bits encode configurations
of M on exactly S tape-cells. For such a configuration, χ, CM (χ) = π if and only if the
configuration π follows in exactly one move of M from the configuration χ. Note we may
use the convention that CM (u) = u for the unique accepting configuration. Combine CM
with a p-bit counter, D, i.e. val(D(v)) = val(v) + 1 with p chosen large enough so that the
total number of configurations of S-tape bounded configurations of M can be represented
in p bits.6 Now let s be the instantiation of the inputs of CM corresponding to the initial
configuration of M on input s: s is accepted by M if and only if 〈(CM , D), 〈s, 0p〉, 〈u, 1p〉〉
is accepted as an instance of acs. 2

5.2 acs is polynomially-reducible to 1-path

It will be convenient to introduce the following notation and definitions.
For V = {v1, v2, . . . , vn+m} and W = {w1, w2, . . . , wn+m} disjoint sets of n+m propo-

sitional variables, we define sets

RV = {v1, v2 , . . . , vn+m, ¬v1 , . . . , ¬vn+m}
RW = {w1, w2 , . . . , wn+m, ¬w1 , . . . , ¬wn+m}
R = RV ∪ RW

In our subsequent notation, in order to avoid repetition, X refers to either of V or W .
Given S ⊆ R, the subset SX is defined via SX = S ∩RX . We define a partial mapping,

β : 2R → 〈0, 1〉n+m as follows.
For all of the cases below, β(S) is undefined, i.e. β(S) = ⊥ whenever

SV 6= ∅ and SW 6= ∅
or
S ⊆ RX and |S| 6= n+m
or
S ⊆ RX and there is some i for which {xi,¬xi} ⊂ S

For the remaining cases,

β(S) = 〈a1a2 . . . an+m〉 where ai =

{
0 if ¬xi ∈ S
1 if xi ∈ S

Given a = 〈a1a2 . . . an+m〉 ∈ 〈0, 1〉n+m, there is a uniquely defined set S ⊆ RX for which
β(S) = a. Thus we can introduce β−1

X as a total mapping from 〈0, 1〉n+m to subsets from
RX , as

β−1
X (a) = S ⊆ RX such that β(S) = a

6. It is easy to show that p = O(S).

13
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For a ∈ 〈0, 1〉n+m, we denote by valm(a) the whole number whose m bit binary representa-
tion is an+1an+2 · · · an+m, i.e the value

∑n+m
i=n+1 (ai) ∗ 2n+m−i.

Let S and T be subsets of RX that satisfy all the conditions (CS1)–(CS4) below.

CS1. S ∩ T = ∅
CS2. For each i (1 ≤ i ≤ n+m) either xi 6∈ S or ¬xi 6∈ S
CS3. For each i (1 ≤ i ≤ n+m) either xi 6∈ T or ¬xi 6∈ T
CS4. For each i (1 ≤ i ≤ n+m) if (xi 6∈ S) and (¬xi 6∈ S) then (xi ∈ T ) or (¬xi ∈ T )

For such sets S, T the composite set, S ⊗ T , is the subset of RX given by

S ⊗ T = S \ ({ x : ¬x ∈ T} ∪ { ¬x : x ∈ T})
⋃

T

Now suppose that C is an (N,N)-combinational logic network with N = n + m, a ∈
〈0, 1〉n+m, and S ⊆ RX , is such that for each i, either xi 6∈ S or ¬xi 6∈ S. The difference
set for S with respect to a is the subset of RX ,

diffX(S, a) = β−1
X (a) \ S

The following lemma establishes some useful relationships between the composite set oper-
ation, ⊗, and difference sets.

Lemma 1 Let C be an (n+m,n+m)-combinational logic network, a ∈ 〈0, 1〉n+m, and, as
in the notation introduced above, let RX denote {x1, . . . , xn+m,¬x1, . . . ,¬xn+m}.

For every D ⊆ β−1
X (a) \ β−1

X (C(a)), the sets S and T defined by

S = β−1
X (a) ∩ β−1

X (C(a)) ∪ D
T = diffX(S,C(a))

have the following properties,

a. T = β−1
X (C(a)) \ β−1

X (a)
b. S ⊗ T = β−1

X (C(a))

Proof. For (a), from the definition of diffX ,

T = diffX(S,C(a))
= β−1

X (C(a)) \ (β−1
X (a) ∩ β−1

X (C(a)) ∪ D)
= β−1

X (C(a)) \ β−1
X (a)

The final line following as D ⊆ β−1
X (a) \ β−1

X (C(a)) and thus D ∩ β−1
X (C(a)) = ∅.

For (b), consider the set S ⊗ T . This is formed by first removing from S all elements in

F = { x ∈ S : ¬x ∈ T}
⋃

{¬x ∈ S : x ∈ T}

We claim that this set comprises exactly those elements of the set D. To see this, first
observe that F cannot contain any member of the set β−1

X (a) ∩ β−1
X (C(a)): if x ∈ β−1

X (a) ∩
β−1
X (C(a)) then x ∈ β−1

X (C(a)) and from the fact that T ⊆ β−1
X (C(a)) this precludes

¬x ∈ T . Without loss of generality, suppose for the sake of contradiction, that x ∈ D \ F
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– a similar argument applies if we assume instead ¬x ∈ D \ F . From the fact that D ⊆
β−1
X (a) \ β−1

X (C(a)) we have x ∈ β−1
X (a) and x 6∈ β−1

X (C(a)). Since exactly one of x and ¬x
must appear in β−1

X (C(a)) we deduce that ¬x ∈ β−1
X (C(a)). We now have

x ∈ D ⊆ β−1
X (a) \ β−1

X (C(a)) ⊆ S
and
¬x ∈ β−1

X (C(a)) \ β−1
X (a) = T

and thus x ∈ F contradicting our assumption that x ∈ D \ F . It follows, therefore, that
D ⊆ F and thus, recalling that F ∩ β−1

X (a) ∩ β−1
X (C(a)) = ∅,

S \ F = (β−1
X (a) ∩ β−1

X (C(a)) ∪ D) \ F
= β−1

X (a) ∩ β−1
X (C(a))

Having formed S \ F , the construction of S ⊗ T is completed by adding all elements in T ,
so that

S ⊗ T = (S \ F ) ∪ T

= β−1
X (a) ∩ β−1

X (C(a)) ∪ β−1
X (C(a)) \ β−1

X (a)
= β−1

X (C(a))

as was claimed. 2

Example 2 For C : 〈0, 1〉4 → 〈0, 1〉4 as described in Example 1 and Table 1.
Let a = 〈0110〉 so that C(a) = 〈1111〉.
We then have

β−1
X (a) = {¬x1, x2, x3, ¬x4}
β−1
X (C(a)) = {x1, x2, x3, x4}

So that the set, D, of Lemma 1 which is a subset of β−1
X (a) \ β−1

X (C(a)) can be any of the
four sets,

∅ ; {¬x1} ; {¬x4} ; {¬x1, ¬x4}
with S = β−1

X (a) ∩ β−1
X (C(a)) ∪ D, correspondingly, one of

{x2, x3} ; {¬x1, x2, x3} ; {x2, x3, ¬x4} ; {¬x1, x2, x3, ¬x4}

The set T of Lemma 1 is

T = diffX(S, 〈1111〉)
= {x1, x2, x3, x4} \ S
= {x1, x4}
= β−1

X (〈1111〉) \ β−1
X (〈0110〉)

for each of the four possible choices of S.
Considering the possibilities for S ⊗ T

{x2, x3} ⊗ {x1, x4} = {x2, x3} ∪ {x1, x4}
{¬x1, x2, x3} ⊗ {x1, x4} = {¬x1, x2, x3} \ {¬x1} ∪ {x1, x4}
{x2, x3, ¬x4} ⊗ {x1, x4} = {x2, x3, ¬x4} \ {¬x4} ∪ {x1, x4}
{¬x1, x2, x3, ¬x4} ⊗ {x1, x4} = {¬x1, x2, x3, ¬x4} \ {¬x1, ¬x4} ∪ {x1, x4}

each of which gives S ⊗ T = {x1, x2, x3, x4} which is β−1
X (〈1111〉), i.e. β−1

X (C(〈0110〉)).
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We now prove,

Theorem 3 1-path is pspace–complete.

Proof. Noting that 1-path ∈ pspace the result will follow via Theorem 2 by showing
acs≤p1-path.

We will illustrate specific points of the subsequent construction with respect to C as
given in Example 1 and the positive instance 〈C, 〈0000〉, 〈1111〉〉 of acs defined from this.
We recall that the sequence

〈 〈0000〉, 〈0001〉, 〈0110〉, 〈1111〉 〉

certifies that 〈C, 〈0000〉, 〈1111〉〉 is a positive instance of acs.
Thus given, 〈C, 〈x, y〉, 〈z, w〉〉 an instance of acs we form 〈AC ,RC , σ, P

(s), P (t)〉 for which

〈C, 〈x, y〉, 〈z, w〉〉 ∈ Lacs ⇔ 〈AC ,RC , σ, P
(s), P (t)〉 ∈ L1-path

AC contains five agents,
AC = {A1, A2, A3, A4, A5}

Fix sets V = {v1, v2, . . . , vn+m} and W = {w1, w2, . . . , wn+m} so that the resource set in
the instance of 1-path is,

RC = RV
⋃
RW

⋃
{µ}

Here µ is a “new” resource distinct from those in RV ∪RW .
For the source and destination allocations – P (s) and P (t) – we use,

P
(s)
1 = β−1

V (〈x, y〉) ∪ β−1
W (〈x, y〉)

P
(s)
2 = RV \ P

(s)
1

P
(s)
3 = RW \ P

(s)
1

P
(s)
4 = ∅
P

(s)
5 = {µ}

P
(t)
1 = β−1

V (〈z, w〉) ∪ β−1
W (〈z, w〉)

P
(t)
2 = RV \ P

(t)
1

P
(t)
3 = RW \ P

(t)
1

P
(t)
4 = ∅
P

(t)
5 = {µ}

With our example instance – 〈C, 〈0000〉, 〈1111〉〉 – we obtain,

RV = {v1, v2, v3, v4,¬v1,¬v2,¬v3,¬v4}
RW = {w1, w2, w3, w4,¬w1,¬w2,¬w3,¬w4}
RC = RV ∪ RW ∪ {µ}

P
(s)
1 = {¬v1,¬v2,¬v3,¬v4} ∪

{¬w1,¬w2,¬w3,¬w4}
P

(s)
2 = {v1, v2, v3, v4}
P

(s)
3 = {w1, w2, w3, w4}
P

(s)
4 = ∅
P

(s)
5 = {µ}

P
(t)
1 = {v1, v2, v3, v4}∪

{w1, w2, w3, w4}
P

(t)
2 = {¬v1,¬v2,¬v3,¬v4}
P

(t)
3 = {¬w1,¬w2,¬w3,¬w4}
P

(t)
4 = ∅
P

(t)
5 = {µ}

To complete the construction, we need to specify σ.
Given Q ∈ Π5,4(n+m)+1, we will have σ(Q) ≥ 0 only if Q satisfies all of the following

requirements:

16



Reachability Properties in Distributed Negotiation

B1. Q1 ⊆ RV ∪RW .

B2. Q2 ⊆ RV .

B3. Q3 ⊆ RW .

B4. QV4 = ∅ or QW4 = ∅.

B5. Q5 ⊆ {µ}, i.e. either Q5 = ∅ or Q5 = {µ}.

B6. For X ∈ {V,W}, if QXi 6= ∅ then for all j, {xj ,¬xj} 6⊆ QXi .

Assuming that (B1) through (B6) hold, then σ(Q) ≥ 0 if and only if (at least) one of the
following six conditions holds true7 of Q.

C1. β(QV1 ) = β(QW1 ) and Q4 ⊆ diffV (QV1 , C(β(QW1 ))).

C2. β(QV1 ⊗QV4 ) = C(β(QW1 )) and Q4 = diffV (QV1 , C(β(QW1 ))).

C3. β(QV1 ∪QV4 ) = C(β(QW1 )) and µ ∈ Q4.

C4. β(QV1 ) = C(β(QW1 )) and Q4 ⊆ diffW (QW1 , β(QV1 )).

C5. β(QV1 ) = β(QW1 ⊗QW4 ) and Q4 = diffW (QW1 , β(QV1 )).

C6. β(QV1 ) = β(QW1 ∪QW4 ) and µ ∈ Q4.

One further requirement relating to (C3) is the following. Let f and g be the instantiations
in 〈0, 1〉n+m defined as

f = β(PW1 )
g = C(β(PW1 ))

then, in addition valm(g) > valm(f).8

We write, C1(Q), C2(Q), etc. if Q satisfies C1, C2, and so on.
In the specification of σ given below, Kmn ∈ N is a suitably large integer value depending

on n+m.9

For Q an allocation satisfying at least one10 of these conditions, σ(Q) is

C1 2 Kmnvalm(β(QW1 )) + |Q4|
C2 2 Kmnvalm(β(QW1 )) + |Q4| +n+m− |QV1 |
C3 Kmnvalm(β(QW1 )) + Kmnvalm(C(β(QW1 ))) − |Q4|
C4 2 Kmnvalm(β(QV1 )) + |Q4| − 2 −3|diffW (QW1 , β(QV1 ))|
C5 2 Kmnvalm(β(QV1 )) − 2|Q4| − 2 +n+m− |QW1 |
C6 2 Kmnvalm(β(QV1 )) − |Q4|

7. To avoid excessive repetition, when, for S ⊆ RV ∪ RW , we refer to β(S) in specifying any of these
six conditions, it should be taken that β(S) 6= ⊥: should this fail to be the case then the condition in
question is not satisfied.

8. By imposing this condition, which is not strictly necessary for the subsequent argument, we can simplify
the analysis of one particular case in proving the correctness of the reduction.

9. Choosing Kmn = 3(m + n) + 2 suffices for σ to have the properties needed in the subsequent proof and
since this value is represented in O(log mn)-bits the polynomial-time computability of the reduction from
acs is unaffected.

10. Although, it is possible for Q to satisfy both of C1 and C2 or both of C4 and C5 in the cases where this
arises the value that results for σ(Q) applying C1 (resp. C4) is the same as the value that results using
C2 (resp. C5).

17



P. E. Dunne & Y. Chevaleyre

For any allocation, Q, in which none of these conditions holds, we set σ(Q) = −1.
We note, at this juncture, that σ(Q) can be evaluated in time polynomial in the number

of bits required to encode the instance of acs: firstly, given C, the relationship between
QV1 , QW1 and Q4 characterising each of the six conditions is easily checked, and the evalu-
ation of σ(Q), given that one of these is satisfied, involves basic arithmetic operations, e.g.
multiplication and addition, on values represented in O(m) bits. It follows, via Fact 3, that
an appropriate slp defining σ can be efficiently constructed.

Example 3 Fix Kmn = 14 > 3(2 + 2) + 1 and let E(1) be the allocation.

E
(1)
1 = {¬v1, v2, v3,¬v4,¬w1, w2, w3,¬w4}

E
(1)
2 = {¬v2,¬v3, v4}

E
(1)
3 = {w1,¬w2,¬w3, w4}

E
(1)
4 = {v1}

E
(1)
5 = {µ}

This satisfies C1:

β(E(1),V
1 ) = β({¬v1, v2, v3,¬v4}) = 〈0110〉

β(E(1),W
1 ) = β({¬w1, w2, w3,¬w4}) = 〈0110〉

and

diffV ({¬v1, v2, v3,¬v4}, C(〈0110〉)) = diffV ({¬v1, v2, v3,¬v4}, 〈1111〉)
= {v1, v4}
⊇ E

(1)
4

For E(1), σ(E(1)) = 2× 14× 2 + 1 = 57.
The allocation,

E
(2)
1 = {v2, v3,¬v4,¬w1, w2, w3,¬w4}

E
(2)
2 = {¬v1,¬v2,¬v3}

E
(2)
3 = {w1,¬w2,¬w3, w4}

E
(2)
4 = {v1, v4}

E
(2)
5 = {µ}

satisfies C2:
diffV ({v2, v3,¬v4}, 〈1111〉) = {v1, v4} = E

(2)
4

and
β({v2, v3,¬v4} ⊗ {v1, v4}) = β({v1, v2, v3, v4})

= 〈1111〉
C(β({¬w1, w2, w3,¬w4})) = C(〈0110〉)

= 〈1111〉

The value σ(E(2)) is exactly 2× 14× 2 + 2 + (4− 3) = 59.
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As a final illustration, the allocation

E
(5)
1 = {v1, v2, v3, v4, w2, w3,¬w4}

E
(5)
2 = {¬v1,¬v2,¬v3,¬v4}

E
(5)
3 = {¬w1,¬w2,¬w3}

E
(5)
4 = {w1, w4}

E
(5)
5 = {µ}

satisfies C5:
β({v1, v2, v3, v4}) = 〈1111〉
β({w2, w3,¬w4} ⊗ {w1, w4}) = β({w1, w2, w3, w4})

= 〈1111〉
For this allocation,

σ(E(5)) = 2× 14× 3 − 2× 2 − 2 + (4− 3) = 79

We conclude this example by noting that

σ(P (s)) = 2× 14× 0 = 0 < 84 = 2× 14× 3 = σ(P (t))

That is, the deal 〈P (s), P (t)〉 is σ-rational.

We claim that 〈C, x, y, z, w〉 is accepted as an instance of acs if and only if 〈AC ,RC , σ, P
(s), P (t)〉

is accepted as an instance of 1-path.
Suppose that 〈C, x, y, z, w〉 ∈ Lacs and let

Γ = 〈x0, y0
〉 , . . . , 〈xi, yi〉 , . . . , 〈xp, yp〉

be the sequence of instantiations in 〈0, 1〉n+m witnessing this. Consider the sequence of
allocations

〈Q(0), Q(1) , . . . , Q(p)〉

in which
Q

(i)
1 = β−1

V (〈xi, yi〉) ∪ β−1
W (〈xi, yi〉)

Q
(i)
2 = RV \ Q

(i)
1

Q
(i)
3 = RW \ Q

(i)
1

Q
(i)
4 = ∅

Q
(i)
5 = {µ}

For each of these, C1(Q(i)) holds: when Q = Q(i)) we have

β(QV1 ) = β(QW1 ) = 〈xi, yi〉
Q4 = ∅ ⊆ diffV (QV1 , C(β(QW1 )))

In addition,

σ(Q(i)) = 2Kmnvalm(〈xi, yi〉) = 2Kmnval(yi)
< 2Kmnval(yi+1

) = 2Kmnvalm(〈xi+1, yi+1
〉)

= σ(Q(i+1))
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So that the sequence of allocations 〈Q(0), Q(1) , . . . , Q(p)〉 is σ-rational. This sequence,
however, is not 1-bounded, and so to complete the argument that positive instances of acs
yield positive instances of 1-path with the reduction described, we need to construct a
1-bounded, σ-rational sequence for each of the deals 〈Q(i), Q(i+1)〉.

Consider any Q(i) for some 0 ≤ i < p and the following sequences of 1-bounded deals
starting with Q(i). With respect to our running example we illustrate the stages realis-
ing the rational 1-path between Q(1) and Q(2), i.e. the allocations corresponding to the
instantiations {〈0001〉, 〈0110〉}, recalling that C(〈0001〉) = 〈0110〉.

Q
(1)
1 = {¬v1,¬v2,¬v3, v4} ∪

{¬w1,¬w2,¬w3, w4}
Q

(1)
2 = {v1, v2, v3,¬v4}

Q
(1)
3 = {w1, w2, w3,¬w4}

Q
(1)
4 = ∅

Q
(1)
5 = {µ}

Q
(2)
1 = {¬v1, v2, v3,¬v4} ∪

{¬w1, w2, w3,¬w4}
Q

(2)
2 = {v1,¬v2,¬v3, v4}

Q
(2)
3 = {w1,¬w2,¬w3, w4}

Q
(2)
4 = ∅

Q
(2)
5 = {µ}

Using the same value of Kmn = 14 as before,

σ(Q(1)) = 2× 14× 1 = 28 < 56 = 2× 14× 2 = σ(Q(2))

S1. Using 1-bounded deals, transfer the set diffV (Q(i),V
1 , C(β(Q(i),W

1 ))) from A2 to A4,
giving the allocation S(i),1.

Let T (j) be the allocation resulting after exactly j resources have been moved from A2

to A4, so that T (0) = Q(i) and T (d) = S(i),1, (with d = |diffV (Q(i),V
1 , C(β(Q(i),W

1 )))|).
Since the resources held by A1 are unchanged by the deal 〈T (j−1), T (j)〉 it follows that
each of the allocations T (j) satisfies C1. In addition, T (d) also satisfies C2. Each of
these deals is σ-rational, since for 0 ≤ j ≤ d: σ(T (j)) = σ(T (0)) + j. We observe
that using C2 to evaluate T (d) returns,

σ(T (d)) = σ(T (0)) + d + (n+m)− |Q(i),V
1 | = σ(T (0)) + d

since, from the fact that C1 holds, β(Q(i),V
1 ) 6= ⊥ and this requires |Q(i),V

1 | = n+m.

For our example,

T (0) = Q(1)

Q
(1),V
1 = {¬v1,¬v2,¬v3, v4}

diffV ({¬v1,¬v2,¬v3, v4}, 〈0110〉) = {v2, v3,¬v4}

So that the deal 〈Q(1), S(1),1〉 is implemented by a sequence of 3 1-bounded, σ-rational
deals – 〈T (0), T (1), T (2), T (3)〉 with the following characteristics:

j T
(j)
2 T

(j)
4 σ(T (j))

0 {v1, v2, v3,¬v4} ∅ 28
1 {v1, v3,¬v4} {v2} 29
2 {v1,¬v4} {v2, v3} 30
3 {v1} {v2, v3,¬v4} 31
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Notice that evaluating S(1),1 = T (3) via C1 gives σ(S(1),1) = 2 × 14 × 1 + 3 = 31,
and via C2, σ(S(1),1) = 2× 14× 1 + 3 + (4− 4) = 31.

S2. Using 1-bounded deals, transfer the set

D = { v ∈ S(i),1,V
1 : ¬v ∈ S(i),1

4 }
⋃

{ ¬v ∈ S(i),1,V
1 : v ∈ S(i),1

4 }

from A1 to A2, to give the allocation S(i),2.

Again denote by T (j) the allocation resulting after exactly j resources have been moved
from A1 to A2, with T (0) = S(i),1, T (d) = S(i),2 and d = |D|. Notice that

d = |S(i),1
4 | = |diffV (β−1

V (〈xi, yi〉), C(〈xi, yi〉))|

Each of these allocations satisfies C2. To see this, first observe that the resources held
by A4 are unchanged by any of the deals 〈T (j−1), T (j)〉: thoughout this stage A4 holds

β−1
V (C(〈xi, yi〉)) \ β

−1
V (〈xi, yi〉)

The subset of RV held by A1, initially β−1
V (〈xi, yi〉), is altered by transferring D to

A2. This set of resources, however, is exactly β−1
V (〈xi, yi〉) \ β

−1
V (C(〈xi, yi〉)), so that

from Lemma 1(a), in the allocation T (j), the subsets of RV held by A1 and A4 have
the respective forms,

G = β−1
V (〈xi, yi〉) ∩ β

−1
V (C(〈xi, yi〉)) ∪Dj

H = diffV (G,C(〈xi, yi〉))

Applying Lemma 1 (b), β(G ⊗ H) = C(〈xi, yi〉), i.e. each of the allocations T (j)

satisfies the conditions specified in C2. Finally we have

σ(T (j)) = σ(T (0)) + n+m− (n+m− j) = σ(T (0)) + j

so that each of the deals 〈T (j−1), T (j)〉 is σ-rational.

It should be noted that, in S(i),2 we have

|S(i),2,V
1 | = n+m− |S(i),2

4 | = n+m− |β−1
V (C(〈xi, yi〉)) \ β

−1
V (〈xi, yi〉)|

so that,

σ(S(i),2) = 2Kmnval(yi) + 2|β−1
V (C(〈xi, yi〉)) \ β

−1
V (〈xi, yi〉)|

Returning to our example, S(1),1,V
1 = {¬v1,¬v2,¬v3, v4} and S

(1),1
4 = {v2, v3,¬v4},

so that the set D in our description above consists of {¬v2,¬v3, v4}. The deal
〈S(1),1, S(1),2〉 is implemented by a sequence 〈T (0), T (1), T (2), T (3)〉 of 1-bounded, σ-
rational deals in which

j T
(j),V
1 T

(j)
2 σ(T (j))

0 {¬v1,¬v2,¬v3, v4} {v1} 31
1 {¬v1,¬v3, v4} {v1,¬v2} 32
2 {¬v1, v4} {v1,¬v2,¬v3} 33
3 {¬v1} {v1,¬v2,¬v3, v4} 34
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S3. Transfer the resource µ from A5 to A4 to give the allocation S(i),3.

The allocation satisfies S(i),3 satisfies C3, and has

S
(i),3,W
1 = β−1

W (〈xi, yi〉)

Furthermore,
|S(i),3

4 | = 1 + |β−1
V (C(〈xi, yi〉)) \ β

−1
V (〈xi, yi〉)|

With the evaluation measure σ

σ(S(i),2) = 2Kmnval(yi) + 2|β−1
V (C(〈xi, yi〉)) \ β

−1
V (〈xi, yi〉)|

< Kmnval(yi) + Kmnval(yi+1
) − |β−1

V (C(〈xi, yi〉)) \ β
−1
V (〈xi, yi〉)| − 1

= σ(S(i),3)

The deal 〈S(i),2, S(i),3〉 is σ-rational since with val(y
i+1

) ≥ val(y
i
) + 1 and Kmn large

enough,

σ(S(i),3) − σ(S(i),2) ≥ Kmn − 3|β−1
V (〈xi+1, yi+1

〉) \ β−1
V (〈xi, yi〉)| − 1

≥ Kmn − 3(n+m) − 1
> 0

In our example, S(1),3
4 = {v2, v3,¬v4, µ} and

σ(S(1),3) = 14× (1 + 2)− 4 = 38 > 34 = σ(S(1),2)

S4. Using 1-bounded deals, transfer the set S(i),3,V
4 from A4 to A1, giving S(i),4.

Let T (j) be the allocation resulting after exactly j resources have been moved from
A4 to A1, with T (0) = S(i),3 and T (d) = S(i),4 with

d = |S(i),3,V
4 | − 1 = |β−1

V (〈xi+1, yi+1
〉) \ β−1

V (〈xi, yi〉)|

Noting that
S

(i),3,V
1 = β−1

V (〈xi+1, yi+1
〉) ∩ β−1

V (〈xi, yi〉)
S

(i),3,V
4 = β−1

V (〈xi+1, yi+1
〉) \ β−1

V (〈xi, yi〉)

we see that each of the allocations, T (j) satisfies C3: β(T (j),V
1 ∪T (j),V

4 ) = C(β(T (j),W
1 )).

In addition
σ(T (j)) = σ(T (0)) + j

so each deal 〈T (j−1), T (j)〉 is σ-rational. For the allocation, S(i),4 we have

σ(S(i),4) = Kmnval(yi) + Kmnval(yi+1
)− 1

In the example, the allocation S(1),4 can be formed by a sequence of three deals
following S(1),3:

j T
(j),V
1 T

(j)
4 σ(T (j))

0 {¬v1} {v2, v3,¬v4, µ} 38
1 {¬v1, v2} {v3,¬v4, µ} 39
2 {¬v1, v2, v3} {¬v4, µ} 40
3 {¬v1, v2, v3,¬v4} {µ} 41
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S5. Transfer the resource µ from A4 to A5 giving S(i),5.

The allocation S(i),5 satisfies C4:

S
(i),5
4 = ∅ ⊆ diffW (S(i),5,W

1 , 〈xi+1, yi+1
〉)

β(S(i),5,V
1 ) = 〈xi+1, yi+1

〉 = C(β(S(i),5,W
1 ))

The deal 〈S(i),4, S(i),5〉 is σ-rational since

σ(S(i),4) = Kmnval(yi) + Kmnval(yi+1
) − 1

σ(S(i),5) = 2Kmnval(yi+1
)− 2− 3|diffW (S(i),5,W

1 , 〈xi+1, yi+1
〉)|

so that, since val(y
i+1

) ≥ val(y
i
) + 1,

σ(S(i),5)− σ(S(i),4) ≥ Kmn − 1 − 3(n+m) > 0

In the corresponding stage of our example, S(1),5
4 = ∅. Furthermore, from

S
(1),5,W
1 = {¬w1,¬w2,¬w3, w4}

β(S(1),5,V
1 ) = β({¬v1, v2, v3,¬v4})

= 〈0110〉

we obtain
diffW ({¬w1,¬w2,¬w3, w4}, 〈0110〉) = {w2, w3,¬w4}

so that σ(S(1),5) = 2× 14× 2 − 2 − 3× 3 = 45.

S6. Using 1-bounded deals, transfer the set diffW (S(i),5,W
1 , β(S(i),5,V

1 )) from A3 to A4, to
give the allocation S(i),6.

Let T (j) be the allocation in place after exactly j resources have been transferred from
A3 to A4, so that T (0) = S(i),5 and T (d) = S(i),6 with

d = |diffW (S(i),5,W
1 , β(S(i),5,V

1 ))|

By similar arguments to those used when considering S1 above, we see that each of
the allocations T (j) satisfies C4. The allocation T (d) in addition satisfies C5. The deal
〈T (j−1), T (j)〉 is σ-rational since,

σ(T (j)) = σ(T (0)) + |T (j)
4 | = σ(T (0)) + j

We, further note, that σ(T (d)) when evaluated by using C4 is,

2Kmnval(yi+1
)− 2− 2|diffW (S(i),5,W

1 , 〈xi+1, yi+1
〉)|

(since |T (d)
4 | = |diffW (S(i),5,W

1 , 〈xi+1, yi+1
〉)|), and if evaluated using C5,

σ(T (d)) = 2Kmnval(yi+1
)− 2 −2|diffW (S(i),5,W

1 , 〈xi+1, yi+1
〉)|

+n+m− |T (d),W
1 )

= 2Kmnval(yi+1
)− 2 −2|diffW (S(i),5,W

1 , 〈xi+1, yi+1
〉)|
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In the example, recalling that S(1),5,W
1 = {¬w1,¬w2,¬w3, w4} and

diffW ({¬w1,¬w2,¬w3, w4}, 〈0110〉) = {w2, w3,¬w4}

the deal 〈S(1),5, S(1),6〉 is implemented by the sequence 〈T (0), T (1), T (2), T (3)〉 with

j T
(j)
3 T

(j)
4 σ(T (j))

0 {w1, w2, w3,¬w4} ∅ 45
1 {w1, w3,¬w4} {w2} 46
2 {w1,¬w4} {w2, w3} 47
3 {w1} {w2, w3,¬w4} 48

The allocation T (3) = S(1),6 satisfies both C4 and C5: when evaluated using the former

σ(S(1),6) = 2× 14× 2 + 3 − 2 − 3× 3 = 48

When using the latter

σ(S(1),6) = 2× 14× 2 − 2× 3 − 2 + (4− 4) = 48

S7. Using 1-bounded deals, transfer the set

D = { w ∈ S(i),6,W
1 : ¬w ∈ S(i),6

4 }
⋃

{ ¬w ∈ S(i),6,W
1 : w ∈ S(i),6

4 }

from A1 to A3 to give S(i),7.

Let T (j) denote the allocation after exactly j resources have been transferred from A1

to A3, so that T (0) = S(i),6 and T (d) = S(i),7 with d = |D|. By a similar argument to
that in S2,

d = |S(i),6
4 | = |diffW (β−1

W (〈xi, yi〉), 〈xi+1, yi+1
〉)|

Again via Lemma 1 and the analysis of S2 it follows that each allocation T (j) satisfies
C5. The deal 〈T (j−1), T (j)〉 is σ-rational by virtue of the fact that σ(T (j)) = σ(T (0))+
j, so that

σ(S(i),7) = 2Kmnval(yi+1) − 2 −2|diffW (β−1
W (〈xi, yi〉), 〈xi+1, yi+1

〉)|
+n+m− |S(i),7,W

1 |
= 2Kmnval(yi+1) − 2 −|diffW (β−1

W (〈xi, yi〉), 〈xi+1, yi+1
〉)|

The last line following from the fact that

S
(i),7,W
1 = β−1

W (〈xi, yi〉) ∩ β−1
W (〈xi+1, yi+1

〉)

Returning to our running example, we have

S
(1),6,W
1 = {¬w1,¬w2,¬w3, w4}
S

(1),6
4 = {w2, w3,¬w4}
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so that D = {¬w2,¬w3, w4}. A sequence realising 〈S(1),6, S(1),7〉 is

j T
(j),W
1 T

(j)
3 σ(T (j))

0 {¬w1,¬w2,¬w3, w4} {w1} 48
1 {¬w1,¬w3, w4} {w1,¬w2} 49
2 {¬w1, w4} {w1,¬w2,¬w3} 50
3 {¬w1} {w1,¬w2,¬w3, w4} 51

S8. Transfer µ from A5 to A4 to give S(i),8.

The allocation S(i),8 satisfies C6 with the deal 〈S(i),7, S(i),8〉 being σ-rational:

σ(S(i),8) = 2Kmnval(yi+1) − 1 − |S(i),7
4 |

> 2Kmnval(yi+1) − 2 − |S(i),7
4 |

= σ(S(i),7)

In the example case, with S
(1),8
4 = {w2, w3,¬w4, µ}, we obtain σ(S(1),8) = 2 × 14 ×

2 − 4 = 52

S9. Using 1-bounded deals, transfer the set S(i),8,W
4 from A4 to A1, giving S(i),9.

Letting T (j) be the allocation after exactly j resources have been moved so that
T (0) = S(i),8 and T (d) = S(i),9 with d = |S(i),8,W

4 |, each T (j) satisfies C6 and the
deal 〈T (j−1), T (j)〉 is σ-rational since σ(T (j)) = σ(T (0)) + j. The allocation S(i),9 has
S

(i),9
4 = {µ} so that, σ(S(i),9) = 2Kmnval(yi+1

)− 1.

Furthermore, S(i),9 has

β(S(i),9,V
1 ) = β(S(i),9,W

1 ) = 〈xi+1, yi+1
〉

A corresponding sequence 〈T (0), T (1), T (2), T (3)〉 implementing 〈S(1),8, S(1),9〉 satisfies,

j T
(j),W
1 T

(j)
4 σ(T (j))

0 {¬w1} {w2, w3,¬w4, µ} 52
1 {¬w1, w2} {w3,¬w4, µ} 53
2 {¬w1, w2, w3} {¬w4, µ} 54
3 {¬w1, w2, w3,¬w4} {µ} 55

S10. Transfer the resource µ from A4 to A5 giving S(i),10. This allocation satisfies C1 and,
since σ(S(i),10) = 2Kmnval(yi+1

) the deal 〈S(i),9, S(i),10〉 is σ-rational.

Similarly, the deal 〈S(1),9, S(1),10〉 in which µ is moved from A4 to A5 in our example,
results in the allocation Q(2) with σ(Q(2)) = 2× 14× 2 = 56.

To complete the argument that positive instances acs induce positive instances of 1-path in
the reduction describe, it suffices to note that the allocation S(i),10 is exactly that described
by Q(i+1).
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It remains only to prove that should 〈AC ,RC , σ, P
(s), P (t)〉 describe a positive instance of

1-path then the instance 〈C, 〈x, y〉, 〈z, w〉〉 from which it arose described a positive instance
of acs.

Thus, let
Γ = 〈Q(0) ; Q(1) ; · · · ; Q(i) ; · · · ; Q(p)〉

be a sequence of allocations for which

a. Q(0) = P (s)

b. Q(p) = P (t)

c. ∀ 1 ≤ i ≤ p 〈Q(i−1), Q(i)〉 is 1-bounded and σ-rational.

Given an allocation Q ∈ Π5,4(n+m)+1 we say that Q has the assignment property if

(C1(Q) holds and Q4 = ∅) OR (C3(Q) holds and Q4 = {µ})

Consider the sub-sequence of Γ,

∆ = 〈S(0) ; S(1) ; · · · ; S(d)〉

such that every S(j) in ∆ has the assignment property and if 〈S(j), S(j+1)〉 correspond to
allocations 〈Q(i), Q(i+k)〉 in Γ then for every 1 ≤ t < k, the allocation Q(i+t) does not have
the assignment property. Noting that P (s) and P (t) both have the assignment property,
it is certainly that case that ∆ can be formed and will have S(0) = P (s) and S(d) = P (t).
Our aim is to use ∆ to extract the witnessing sequence of instantiations from 〈0, 1〉n+m

certifying 〈C, 〈x, y〉, 〈z, w〉〉 as a positive instance of acs.
From ∆ we may define a sequence of pairs – 〈ai, bi〉 ∈ 〈0, 1〉n+m × 〈0, 1〉n+m – via

ai = β(S(i),V
1 ) and bi = β(S(i),W

1 ). Since any allocation, Q, with the assignment property
must satisfy either C1 or C3 it follows that β(QV1 ) and β(QW1 ) are both well-defined: if
C1(Q) this is immediate from the specification of C1; if C3(Q) then since Q4 must contain
only the element µ it follows that QV4 = ∅ and, again, that β(QV1 ) is well-defined follows
from the defining conditions for C3.

In order to extract the appropriate witnessing sequence for 〈C, 〈x, y〉, 〈z, w〉〉 ∈ Lacs it
suffices to show that 〈ai, bi〉 behaves as follows:

〈ai, bi〉 =


〈〈x, y〉, 〈x, y〉〉 if i = 0
〈C(ai−1), bi−1〉 if i > 0 and i is odd
〈ai−1, C(bi−1)〉 if i > 0 and i is even

For the sequence {〈ai, bi〉 : 0 ≤ i ≤ d} defined from Γ = 〈S(0) ; · · · S(d)〉 consider the
sequence of 1-bounded, σ-rational deals that realise the (σ-rational) deal 〈S(0), S(1)〉.

First observe that this must comprise three sequences – 〈S(0), T (1)〉, 〈T (1), T (2)〉, and
〈T (2), T (3)〉 of 1-bounded, σ-rational deals implementing

〈S(0), T (1)〉 with C1(T (1)), C2(T (1)), and T (1)
4 = diffV (S(0),V

1 , C(b0))
〈T (1), T (2)〉 with C3(T (2)) and |T (2),V

1 | = n+m− |T (2)
4 |

〈T (2), S(1)〉 with C3(S(1)) and S(1),V
4 = ∅
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To see this11 consider the allocations, P , such that 〈S(0), P 〉 is 1-bounded and σ-rational.
Given that P must satisfy at least one of the conditions (C1) through (C6), and that
C1(S(0)) holds, we must have P1 = S

(0)
1 , P3 = S

(0)
3 and P5 = S

(0)
5 , i.e. 〈S(0), P 〉 involves

transferring some resource held by A2 to A4. Any such resource, however, must belong to the
set diffV (S(0),V

1 , C(b0)) or C1(P ) will fail to hold. By similar arguments any 1-bounded,
σ-rational continuation of P will eventually reach the allocation T (1). In the same way,
considering any allocation P for which 〈T (1), P 〉 is 1-bounded and σ-rational, it follows that
T

(1)
3 = P3, T

(1)
4 = P4 and T

(1)
5 = P5 so that 〈T (1), P 〉 transfers some resource between A1

and A2: the only choices for such transfers which preserve condition C2 are those v ∈ T (1),V
1

for which ¬v ∈ T
(1)
4 or ¬v ∈ T

(1),V
1 for which v ∈ T

(1)
4 . Eventually such transfers lead to

the allocation T (2) described and, in the same way from T (2) to the allocation S(1).
From C1(T (1)) and C2(T (1)) we have

β(T (1),V
1 ) = a0 = b0 = β(T (1),W

1 )

From C3(T (2)) we have

β(T (2),V
1 ∪ T

(2),V
4 ) = C(b0) = C(a0)

So that, in total, from C3(S(1)) and S(1),V
4 = ∅ we obtain

a1 = C(a0) ; b1 = b0

as required.
In the same way, noting that 〈C(a0), b0〉 6= 〈〈z, w〉, 〈z, w〉〉, it cannot be the case that

S(1) = S(d). Thus, by similar arguments to those given above, we may identify further
sequences – 〈S(1), T (3)〉, 〈T (3), T (4)〉 and 〈T (4), S(2)〉 – of σ-rational, 1-bounded deals that
realise 〈S(1), S(2)〉. These have the form

〈S(1), T (3)〉 with C4(T (3)), C5(T (3)), and T (3)
4 = diffW (S(1),W

1 , a1))
〈T (3), T (4)〉 with C6(T (4)) and |T (4),W

1 | = n+m− |T (4)
4 |

〈T (4), S(2)〉 with C1(S(2)) and S(1)
4 = ∅

From C4(T (3)) and C5(T (3)) we have

β(T (3),V
1 ) = a1 = C(a0)

β(T (3),W
1 ) = b1 = b0

From C6(T (4)) we obtain,

β(T (4),W
1 ∪ T

(4),W
4 ) = β(T (4),V

1 ) = a1

Finally, C1(S(2)) and S(2)
4 = ∅ give

a2 = β(S(2),V
1 ) = a1

b2 = β(S(2),W
1 ) = a1 = C(b1) = C(b0)

11. For ease of presentation we give only a brief outline of the argument here. The (somewhat tedious) fuller
expansion of individual cases is provided in an Appendix.
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Thus, a2 = a1 and b2 = C(b1).
Thus the assertion regarding {〈ai, bi〉}0≤i≤d follows by an identical analysis of the cases

〈a2, b2〉 , . . . , 〈a2j , b2j〉 , . . . ,

We now easily obtain the witnessing sequence that 〈C, 〈x, y〉, 〈z, w〉〉 is a positive instance
of acs simply by using,

〈a0, a2 , . . . , a2j , . . . , a2k〉

where d = 2k. We have already seen that this satisfies

a0 = 〈x, y〉
a2k = 〈z, w〉

∀ 1 ≤ i ≤ k a2i = C(a2(i−1))

This sequence, however, must also satisfy valm(a2i) > valm(a2(i−1)): the deal 〈S(2(i−1)), S(2i)〉
is σ-rational as it is realised during the 1-bounded, σ-rational implementation of 〈P (s), P (t)〉.
From the definition of σ, recalling that C1(S(2i)) and S(2i)

4 = ∅ we have

σ(S(2(i−1))) = 2Kmnvalm(β(S(2(i−1)),W
1 ))

= 2Kmnvalm(β(S(2(i−1)),V
1 ))

= 2Kmnvalm(a2(i−1))
σ(S(2i))) = 2Kmnvalm(β(S(2i),W

1 ))
= 2Kmnvalm(β(S(2i),V

1 ))
= 2Kmnvalm(a2i)

and hence σ(S(2i)) > σ(S(2(i−1))) gives valm(a2i) > valm(a2(i−1)) as required.
In summary we deduce that 〈C, 〈x, y〉, 〈z, w〉〉 is a positive instance of acs if and only

if 〈AC ,RC , σ, P
(s), P (t)〉 is a positive instance of 1-path, thereby completing the argument

that 1-path is pspace–complete. 2

5.3 Translating from Evaluation Measures to Utilities

In this section we show how settings involving arbitrary evaluation measures, σ, may be
translated in a general way to settings with utility functions so that utilitarian social wel-
fare (σu) in the translated context mirrors the evaluation measure in the source resource
allocation setting.

Consider any 〈A,R, σ〉 with |A| = n, |R| = m and σ : Πn,m → Q, where it is assumed
that for all P ∈ Πn,m, σ(P ) ≥ −1. The resource translation

τ(A,R) = Rτ

has Rτ = R×A. We define a partial mapping π : 2Rτ → Πn,m as follows
If either ∪〈r,Ai〉∈S {r} 6= R or there exists r, Ai, Aj (i 6= j) with {〈r,Ai〉, 〈r,Aj〉} ⊆ S,

then π(S) = ⊥, i.e. undefined. Otherwise

π(S) = 〈
⋃

〈r,A1〉∈S
{r} ;

⋃
〈r,A2〉∈S

{r} ; · · · ;
⋃

〈r,An〉∈S
{r}〉
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We note that for any P ∈ Πn,m there is a uniquely defined S ⊆ Rτ for which π(S) = P : we
employ the notation π−1(P ) to refer to this S.

The concept of resource translation now allows us to prove.

Theorem 4

a. 1-swop is pspace–complete.

b. iro-path is pspace–complete.

Proof. In both results we use a reduction from 1-path.
For (a), given 〈A,R, σ, P (s), P (t)〉 an instance of 1-path, consider the instance of 1-

swop, 〈B,Rτ ,U , Q(s), Q(t)〉 in which B = {B1, B2}, u2(S) = 0 for all S ⊆ Rτ and

u1(S) =

{
−2 if π(S) = ⊥
σ(π(S)) if π(S) 6= ⊥

Since the instance of 1-swop has exactly two agents, any allocation 〈Q1, Q2〉 is completely
determined by the subset of Rτ allocated to B1. Thus, to complete the reduction we set
Q

(s)
1 = π−1(P (s)) and, similarly, Q(t)

1 = π−1(P (t)).
We claim that 〈A,R, σ, P (s), P (t)〉 is accepted as an instance of 1-path if and only if

〈B,Rτ ,U , Q(s), Q(t)〉 is accepted as an instance of 1-swop.
Suppose the former is the case and let

∆ = 〈P (0), P (1) , . . . , P (d)〉

be a witnessing rational 1-bounded path. First notice that, as u2(S) = 0 for all S ⊆ Rτ , so
σu(Q) = u1(Q1). It follows, therefore that

∀ 1 ≤ k ≤ d u1(π−1(P (i−1))) < u1(π−1(P (i)))

That is to say, the sequence of successive allocations, 〈Q(0)
1 , . . . , Q

(d)
1 〉 to B1 given by

〈π−1(P (0)), π−1(P (1)), . . . , π−1(P (d))〉

yields an ir path.
It is also the case, however, that the deal defined from 〈π−1(P (i−1)), π−1(P (i))〉 is a

1-swop. To see this, recall that 〈P (i−1), P (i)〉 is 1-bounded. Let {Aj , Ak} be the agents
involved and r ∈ R be the resource transferred, without loss of generality, from Aj to Ak.
Then,

〈r,Aj〉 ∈ π−1(P (i−1)) ; 〈r,Ak〉 ∈ Rτ \ π−1(P (i−1))
〈r,Ak〉 ∈ π−1(P (i)) ; 〈r,Aj〉 ∈ Rτ \ π−1(P (i))

so that the deal corresponding to 〈π−1(P (i−1)), π−1(P (i))〉 is realised by exchanging 〈r,Aj〉 ∈
Q

(i−1)
1 for 〈r,Ak〉 ∈ Q

(i−1)
2 . We deduce that if 〈A,R, σ, P (s), P (t)〉 is accepted as an instance

of 1-path then 〈B,Rτ ,U , Q(s), Q(t)〉 is accepted as an instance of 1-swop.
Now suppose that 〈B,Rτ ,U , Q(s), Q(t)〉 is accepted as an instance of 1-swop, letting

〈Q(0)
1 , Q

(1)
1 , . . . Q

(d)
1 〉
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be the sequence of successive allocations to B1 witnessing this. Consider the sequence of
allocations,

〈π(Q(0)
1 ), π(Q(1)

1 ) , . . . , π(Q(d)
1 )〉

of R among A. It is certainly the case that for each Q(i), π(Q(i)
1 ) 6= ⊥ and σ(π(Q(i−1)

1 )) <
σ(π(Q(i)

1 )), so it remains to show that each of the deals 〈π(Q(i−1)
1 ), π(Q(i)

1 )〉 is 1–bounded.
Let 〈r,Aj〉 ∈ Q(i−1)

1 and 〈r′, Ak〉 ∈ Q
(i−1)
2 be the resources featuring in the ir 1-swop deal

〈Q(i−1), Q(i)〉 so that

Q
(i)
1 = Q

(i−1)
1 \ {〈r,Aj〉} ∪ {〈r′, Ak〉}

Q
(i)
2 = Q

(i−1)
2 \ {〈r′, Ak〉} ∪ {〈r,Aj〉}

Since π(Q(i)
1 ) 6= ⊥, we must have ∪〈r,A〉∈Q(i)

1

r = R, and thus r = r′. It follows that the deal

〈π(Q(i−1)), π(Q(i))〉 corresponds to a single resource, r, being transferred from Aj to Ak, i.e.
this deal is 1-bounded. In consequence, if 〈B,Rτ ,U , Q(s), Q(t)〉 is accepted as an instance of
1-swop then 〈A,R, σ, P (s), P (t)〉 is accepted as an instance of 1-path, completing the proof
that 1-swop is pspace–complete.

For (b), we employ a similar approach: given an instance 〈A,R, σ, P (s), P (t)〉 of 1-path
we form an instance 〈B,Rτ ,U , Q(s), Q(t)〉 of iro–path in which B = {B1, B2}, u2(S) = 0
for all S ⊆ Rτ and u1(S) is now,

u1(S) =



−2 if |S| < |R|
−2 if |S| = |R| and π(S) = ⊥
2σ(π(S)) if |S| = |R| and π(S) 6= ⊥
−2 if |S| > |R|+ 1
−2 if |S| = |R|+ 1 and for all 〈r,Aj〉 ∈ S, π(S \ {r,Aj}) = ⊥

The only unspecified case is that of, |S| = |R| and with π(S \ {〈r,Aj〉}) 6= ⊥ for some
〈r,Aj〉 ∈ S. In this case, u1(S) is

2 min
〈r,Aj〉∈S : π(S\{〈r,Aj〉}) 6=⊥

σ(π(S \ {r,Aj})) + 1

To complete the construction we fix Q
(s)
1 = π−1(P (s)) and Q

(t)
1 = π−1(P (t)). As before

suppose that
∆ = 〈P (0), P (1) , . . . , P (d)〉

witnesses to 〈A,R, σ, P (s), P (t)〉 as a positive instance of 1-path. The sequence of allocations
to B1, 〈Q(0)

1 , . . . , Q
(d)
1 〉 with Q

(i)
1 = π−1(P (i))) is ir by the argument used in part (a).

Although this sequence is not 1-bounded we can, however, modify it as follows. From the
proof of part (a), we know that the deal 〈Q(i−1)), Q(i)〉 is a 1-swop: let 〈r,Aj〉 ∈ Q(i−1)

1 and
〈r,Ak〉 ∈ Q

(i−1)
2 be the resources swopped in order to form Q(i). The deal 〈Q(i−1)), Q(i)〉

may be implemented by,

Q
(i−1),0
1 = Q

(i−1)
1

Q
(i−1),1
1 = Q

(i−1),0
1 ∪ {〈r,Ak〉}

Q
(i−1),2
1 = Q

(i−1),1
1 \ {〈r,Aj〉}

Q
(i)
1 = Q

(i−1),2
1
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This defines a sequence of 1-bounded deals implementing 〈Q(i−1), Q(i)〉. In addition

u1(Q
(i−1),0
1 ) = 2σ(π(Q(i−1)

1 ))
< 2σ(π(Q(i−1)

1 )) + 1
= u1(Q

(i−1),1
1 )

< 2σ(π(Q(i)
1 ))

= u1(Q(i−1),2) = u1(Q
(i)
1 )

Notice that u1(Q
(i−1),1
1 ) = 2σ(π(Q(i−1)

1 )) + 1, follows from the fact that there are exactly
two choices of 〈r,A〉 ∈ Q(i−1),1

1 for which π(Q(i−1),1
1 \ {〈r,A〉}) 6= ⊥: one of these is 〈r,Ak〉;

the other being 〈r,Aj〉. From the premise that we have a positive instance of 1–path, it
follows σ(P (i−1)) < σ(P (i)) so that

σ(P (i−1)) = σ(π(Q(i−1)
1 )) = σ(π(Q(i−1),1 \ {〈r,Ak〉}))

σ(P (i)) = σ(π(Q(i)
1 )) = σ(π(Q(i−1),1 \ {〈r,Aj〉}))

Thus, if 〈A,R, σ, P (s), P (t)〉 is a positive instance of 1–path then we can construct an ir
1-bounded path in the instance 〈B,Rτ ,U , Q(s), Q(t)〉 of iro–path.

For the converse, given
〈Q(0), Q(1) , . . . , Q(d)〉

establishing that 〈B,Rτ ,U , Q(s), Q(t)〉 is accepted as an instance of iro–path, it is easy
to see that |Q(i)

1 | = |R| if and only if i is even, with |Q(i)
1 | = |R| + 1 whenever i is odd.

Furthermore, π(Q(2j)
1 ) 6= ⊥, and

σ(π(Q(2(j−1))
1 )) = u1(Q

(2(j−1))
1 )/2 < u1(Q

(2j)
1 )/2 = σ(π(Q(2j)

1 ))

By similar arguments used to those in part (a), from the fact that the deal 〈Q2(j−1), Q(2j)〉
must be an ir 1-swop we deduce that 〈π(Q(2(j−1))

1 ), π(Q(2j)
1 )〉 is a σ-rational 1-bounded deal.

Hence if 〈B,Rτ ,U , Q(s), Q(t)〉 is accepted as an instance of iro–path then 〈A,R, σ, P (s), P (t)〉
is a positive instance of 1–path, thus establishing that iro–path is pspace–complete. 2

6. Convergence and Accessibility

Our analyses of the preceding sections report consequences resulting from restricting the
mechanisms by which agents negotiate in the context of determining whether a particular
reallocation may be effected from a given initial allocation. As we noted in the introduc-
tion, such issues can be seen as addressing a rather localised property. In this section our
aim is to consider two different questions, one – Convergence – of a rather more “global”
nature, the other – Accessibility – falling in between the extremes represented by Conver-
gence and the variants of Φ-PATH examined in Section 5. To clarify this point we now
give formal definitions of the problems Φ-Convergence and Φ-Accessibility. In the same
style used in defining Φ-PATH we give a version (for Φ-Accessibility) both in terms of
evaluation measures and social welfare via specific utility functions. For the decision prob-
lem Φ-Convergence, however, only the utility form is used, it being possible to determine
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complexity bounds for this in a straightforward manner, i.e. without recourse to devices
such as those used in the proof of Theorem 4.

Recall that Φ(P,Q) is a predicate on deals and that a sequence of allocations

∆ = 〈 P (0) ; P (1) ; . . . ; P (d−1) ; P (d) 〉

is said to be a Φ-path for the deal 〈P (0), P (d)〉 if Φ(P (i−1), P (i)) holds for each 1 ≤ i ≤ d.
We say that ∆ is a maximal Φ-path if

∆ = 〈 P (0) ; P (1) ; . . . ; P (d−1) ; P (d) 〉 and ∀ Q ∈ Πn,m ¬Φ(P (d), Q)

For ∆ a maximal Φ-path we use last(∆) to denote the final allocation of R that results,
i.e. P (d) in the notation above.

Finally, for P ∈ Πn,m we denote by maxΦ(P ) the set

maxΦ(P ) = { ∆ : ∆ is a maximal Φ-path starting from P}

We note that maxΦ(P ) is never empty: if there is no allocation Q for which Φ(P,Q) holds
then maxΦ(P ) = {〈P 〉}, the path containing exactly one allocation.
Φ-Convergence
Instance: 〈A,R,U〉.
Question: Is the case that

∀ P ∈ Πn,m ∀ ∆ ∈ maxΦ(P ) ∀ Q ∈ Πn,m σu(last(∆)) ≥ σu(Q) ?

Φ-AccessibleE

Instance: 〈A,R, σ〉 and P ∈ Πn,m

Question: Is the case that

∃ ∆ ∈ maxΦ(P ) such that ∀ Q ∈ Πn,m σ(last(∆)) ≥ σ(Q) ?
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Φ-AccessibleU

Instance: 〈A,R,U〉 and P ∈ Πn,m

Question: Is the case that

∃ ∆ ∈ maxΦ(P ) such that σu(last(∆)) ≥ σu(Q) ?

We consider the special case of Φ(P,Q) holding if and only if 〈P,Q〉 is 1-bounded and σ-
rational where in the utility function based variants, the measure σ is that of social welfare,
i.e. σ = σu, denoting by 1-conv the correponding instantiation of Φ-Convergence;12

1-accE (respectively 1-accU ) the related special cases of Φ-Accessible.
In the specific cases of 1-bounded ir deals, both of these problems are of some practical

interest: in settings yielding positive instances of 1-conv, it is guaranteed that starting from
any allocation and following any sequence of 1-bounded ir deals from this will eventually
converge to an optimal allocation. Similarly, in the case of positive instances of 1-acc,
it will be known that some sequence of rational 1-bounded deals will lead to an optimal
allocation.

Theorem 5 1-conv is co-np–complete.

Proof. To show 1-conv is in co-np, given 〈A,R,U〉 it suffices to test whether the following
predicate is true of all pairs of allocations P , Q in Πn,m:

χ(P,Q) = (σu(P ) < σu(Q)) ⇒ (∃ R such that 〈P,R〉 is 1-bounded and ir)

Certainly χ(P,Q) can be evaluated in deterministic polynomial-time since there are exactly
m(n − 1) 1-bounded deals consistent with P . To see this algorithm correctly decides in-
stances of 1-conv, suppose 〈A,R,U〉 should be accepted: then any allocation P ∈ Πn,m is
either optimal (so χ(P,Q) always holds since the premise σu(P ) < σu(Q) is always false)
or (if sub-optimal) cannot be last(∆) on any maximal ir 1-path, i.e. there is at least one
ir 1-bounded deal 〈P,R〉 available.

On the other hand, suppose the instance 〈A,R,U〉 should not be accepted. Then there is
some maximal 1-path ∆, whose final allocation, last(∆) is sub-optimal. Since last(∆) is sub-
optimal there is an allocation Q with σu(last(∆)) < σu(Q): as a result χ(last(∆), Q) = ⊥
and such instances would fail to be accepted.

To prove co-np–hardness we use a reduction from unsat, an instance of which is a
3-cnf formula

ψ(x1, x2, . . . , xn) =
t∧
i=1

( yi,1 ∨ yi,2 ∨ yi,3 )

where
yi,j ∈ {x1, x2, . . . , xn, ¬x1,¬x2, . . . ,¬xn}

We say that a subset

S ⊆ {x1, x2, . . . , xn, ¬x1,¬x2, . . . ,¬xn}

12. The condition “∀P ∀∆ ∀Q · · ·” that qualifies acceptance of an instance of Φ-Convergence, suggests
another decision problem in which the quantifiers are “∀P ∃ ∆ ∀Q · · ·”: in fact, it is not difficult to see
that this form is equivalent to Φ-Convergence, hence we do not need to consider it separately.
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is useful for ψ if |S| = n, S contains exactly one of each of the literals {xi,¬xi}, and the
instantiation formed by setting each literal in S to > satisfies ψ.

Given ψ(x1, x2, . . . , xn), the instance 〈Aψ,Rψ,Uψ〉 of 1-conv has,

Aψ = {a1, a2}
Rψ = {x1, x2, . . . , xn, ¬x1,¬x2, . . . ,¬xn}
Uψ = 〈u1, u2〉

with

u1(S) =

{
2n+ 1 if S is useful for ψ
2|S| otherwise

u2(S) = |S|

We claim that ψ(x1, . . . , xn) is unsatisfiable if and only 〈Aψ,Rψ,Uψ〉 is accepted as an
instance of 1-conv.

First observe that the allocation P opt = 〈Rψ ; ∅〉 has σu(P opt) = 4n, and every
other allocation, Q, has σu(Q) < 4n. Thus to complete the proof, it suffices to show that
ψ is unsatisfiable if and only if every maximal rational 1-path, ∆ within 〈Aψ,Rψ,Uψ〉 has
last(∆) = P opt.

Suppose ψ is unsatisfiable and consider any allocation 〈S,Rψ \ S〉. Since ψ is unsatis-
fiable, it follows that u1(S) = 2|S| for every S ⊆ Rψ (since there are no subsets that are
useful for ψ). Thus, the only ir 1-bounded deals possible must involve a transfer of a single
literal held by a2 to a1: any transfer from a1 to a2 reduces u1 by exactly 2 while increasing
u2 by exactly one. It follows that any maximal rational 1-path ∆ from 〈S,Rψ \ S〉 has
last(∆) = 〈Rψ, ∅〉, i.e. if ψ is unsatisfiable then 〈Aψ,Rψ,Uψ〉 is accepted as an instance of
1-conv.

On the other hand, suppose that 〈Aψ,Rψ,Uψ〉 is accepted as an instance of 1-conv. We
show that ψ must be unsatisfiable in this case. Assume the contrary, letting {y1, . . . , yn−1, yn}
be a set of n literals whose instantiation to > satisfies ψ. Now consider the allocation

P = 〈{y1, . . . , yn−1} ; Rψ \ {y1, . . . , yn−1}〉

We have σu(P ) = 2n− 2 + n+ 1 = 3n− 1. Consider the 1-bounded deal 〈P,Q〉 under
which yn is transferred from a2 to a1. For this, since the set {y1, . . . , yn−1, yn} is useful we
get σu(Q) = 2n + 1 + n = 3n + 1, so that 〈P,Q〉 is ir. Any subsequent 1-bounded
deal 〈Q,Q′〉, will not, however, be ir: we have seen that this must involve a single resource
transfer from a2 to a1, but then σu(Q′) = 2n + 2 + n − 1 = 3n + 1 with no increase in
welfare, contradicting the premise that 〈Aψ,Rψ,Uψ〉 is accepted as an instance of 1-conv.
We deduce that the assumption that ψ is satisfiable cannot hold, i.e. if 〈Aψ,Rψ,Uψ〉 is
accepted as an instance of 1-conv then ψ is unsatisfiable. 2

Thus, in contrast to iro-path considered in Theorem 4(b), whose complexity is pspace–
complete, the (superficially) more difficult question represented by 1-conv is co-np–complete,
i.e. under the usual assumptions significantly easier. This reduced complexity is easily ac-
counted for by the properties of the predicate χ(P,Q) introduced in the membership part of
the proof. We note in passing that χ(P,Q) is polynomial-time decidable by virtue of there
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being only a “small” (polynomially many) number of cases to consider, i.e. 1-bounded deals
compatible with the allocation P . If, however, we consider Φ-Convergence when Φ(P,Q)
is such that there may be superpolynomially many allocations Φ-deals compatible with any
given P , while we cannot guarantee co-np as an upper bound, (provided that Φ(P,Q) it-
self is polynomial-time decidable) “at worst” Φ-Convergence is in Πp

2, i.e. still somewhat
easier than Φ-PATH. To see this, it suffices to note that the following predicate, χ′(P,Q)
is decidable by an np algorithm:

χ′(P,Q) = (σu(P ) < σu(Q)) ⇒ ∃ R ∈ Πn,m : Φ(P,R) ∧ (σu(R) > σu(P ))

Turning to the problem, Φ-Accessible, notice that we have the following progression

Problem Number of allocations in Instance Complexity
1-path 2 pspace-complete
1-acc 1 See below
1-conv 0 co-np–complete

Thus, in principle, we could hope that the classification of 1-acc is “closer” to that of
1-conv. In practice, as demonstrated in the following results, such hopes turn out to be
ill-founded.

Theorem 6 1-accE is pspace-complete.

Proof. For membership in pspace, given 〈〈A,R, σ〉, P 〉 we may use an npspace algorithm,
similar to that of Theorem 1, to choose last(∆), for some ∆ ∈ maxΦ(P ). We may then test,
in pspace, whether σ(last(∆)) ≥ σ(Q) for every Q ∈ Πn,m accepting if and only if this is
the case. Noting that npspace=pspace completes the argument.

To establish 1-accE is pspace–hard, we show that acs ≤p 1-accE. Given an instance
〈C, 〈x, y〉, 〈z, w〉〉 of acs we form an instance 〈〈AC ,RC , σ

′〉, P (C)〉 of 1-accE. This instance
is identical to that described in the proof of Theorem 3 except for the following details:
P (C) = P (s) the source allocation in the construction of Theorem 3; σ′ is defined via

σ′(Q) =

{
−2 if σ(Q) > σ(P (t)) or σ(Q) = σ(P (t)) and Q 6= P (t).
σ(Q) otherwise

This modification ensures that the allocation, P (t), in the proof of Theorem 3 is the unique
allocation which maximises σ′. We now have, by exactly the same argument, that an optimal
allocation is accessible from P (C) if and only if 〈C, 〈x, y〉, 〈z, w〉〉 is a positive instance of
acs. 2

Corollary 1 1-accU is pspace-complete.

Proof. Immediate by applying the translation of Theorem 4(b) to instances of 1-accE
2
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7. Conclusions

The class of negotiation questions analysed in Theorem 4, considers environments in which
agents may independently assess their resource holdings and use such assessments as a basis
for obtaining a different resource set by agreeing reallocations with other agents. Thus in
the most basic case, where only two agents are involved, extremely simple protocols –
e.g. allowing an agent to make offers to buy/sell a single resource for a given price; to
accept offers; and to decline these – provide a sufficiently expressive mechanism through
which the agents may finalise a partition of the resource set. Such schemes, even when
limited to one resource at a time deals, are capable of achieving optimal (in the sense
of maximising social welfare) allocations, provided that neither agent insists that given
deals be ir. As we observed in the discussion opening Section 3, it is in the extreme
case where rationality constraints are introduced, that significant problems arise within
the simple negotiation regimes just outlined: some reallocations may be unrealisable, as
demonstrated by Sandholm (1998); even if a particular reallocation can be realised by a
sequence of 1-bounded rational deals, the constructions presented in Dunne (2005) indicate
that the number of deals involved may be exponentially larger than the number of 1-bounded
deals required without the rationality condition imposed; and, deciding if such a sequence
exists at all, a problem already known to be np–hard from Dunne et al. (2005), is, in fact,
(under the standard assumptions) unlikely even to belong to np: Theorem 4 (b) proving
this decision problem to be pspace–complete. Although we do not develop the proofs
in detail here, it is straightforward to demonstrate that this level of complexity is not a
property limited to negotiations attempting to improve social welfare: for example, when
the notion of 〈P,Q〉 being “rational” is that of “cooperative rationality”13, then deciding
if 〈P (s), P (t)〉 is realisable by a sequence of 1-bounded, cooperatively rational deals is also
pspace-complete.14

To conclude we raise some open questions relating to the computational complexity of
the decision problems addressed when alternative formalisms are used for representing util-
ity functions. We have noted that the slp representation is general enough to describe any
set of utility functions and can do so via a program of length comparable to the run-time
of an optimal algorithm to compute the function’s value. There are a number of alterna-
tive representation approaches that have been proposed which while not being completely
general are of interest as compact representations. In particular, (Endriss & Maudet, 2004;
Chevaleyre et al., 2005) have proposed the class of k-additive functions as such a mechanism.

A function f : 2R → Q is said to k-additive if there are constants

{ αT : T ⊆ R, |T | ≤ k}

for which
∀S ⊆ R f(S) =

∑
T⊆R : |T |≤k

αT · IT (S)

where IT (S) is the indicator function whose value is 1 if T ⊆ S and 0 otherwise.

13. The deal 〈P, Q〉 is said to cooperatively rational if for every i, ui(Qi) ≥ ui(Pi) and there is at least one j
for which uj(Qj) > uj(Pj).

14. This is a trivial consequence of the fact that u2(S) = 0 in the reduction presented in Theorem 4 (b).

36



Reachability Properties in Distributed Negotiation

When k = O(1), i.e. a constant, k-additive functions may be represented by the O(mk)
values defining the characterising set of constants {αT }. It is, of course, the case that for
any constant value of k, there will be functions that cannot be expressed as in k-additive
form. In the special case of k = 1, it is shown in (Chevaleyre et al., 2005), that 1-conv is
trivial: every system 〈A,R,U〉 in which each ui is 1-additive, is a priori a positive instance
of 1-conv. For k ≥ 2, however, the status of other decision problems is less clear. Thus,
for k = 2, we have

Problem Proven Complexity
1-conv co-np–complete
1-acc np–hard
1-path Open

Table 2: Complexity of 1-conv, 1-acc, and 1-path with 2-additive utility functions.

Determining exact bounds for 1-acc and 1-conv with all utility functions 2-additive
is likely to present significant problems. In particular, we have one unresolved issue which
affects whether 1-path belongs to np. Thus, (Dunne, 2005), introduces the following mea-
sures

• Lopt(P,Q): the length of the shortest Φ-path realising 〈P,Q〉.

• Lmax(A,R,U): the maximum value of Lopt(P,Q) over those deals for which a Φ-path
exists.

• ρmax(n,m): The maximum value (taken over all choices of utility function) of Lmax(A,R,U).

• ρmax
C (n,m): As ρmax, but with the maximisation taken over utility functions belonging

to some class C.

In the case of Φ(P,Q) holding when 〈P,Q〉 is 1-bounded and ir, ρmax(2,m) is shown to be
exponential in m, a result which provides indications – justified by Theorem 4(b) – that
iro-path 6∈np. It is open, however, as to whether ρmax

2−add(2,m) is superpolynomial in m. A
proof to the contrary, i.e that ρmax

2−add(2,m) = O(mp) with p = O(1) would in the light of
Theorem 4(b) have some consequences of interest: both 1-acc and 1-path for such utility
functions would belong to np, contrasting with the pspace–hardness lower bounds for the
general case that have have been the basis of the main results of this paper.
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Appendix - σ-rational, 1-bounded deals in the proof of Theorem 3

For completeness we present in this appendix the case analysis concerning one aspect of the
proof of Theorem 3. This arises in the argument that

〈AC ,RC , σ, P
(s), P (t)〉 ∈ L1-path ⇒ 〈C, 〈x, y〉, 〈z, w〉〉 ∈ Lacs

In particular, given P ∈ Π5,4(n+m)+1 satisfying at least one of the conditions (C1) through
(C6) listed above, we precisely characterise those allocations, Q, for which 〈P,Q〉 is σ-
rational and 1-bounded.

We first note that P satisfies exactly one of the following:

a. C1(P ) ∧ ¬C2(P ) d. C4(P ) ∧ ¬C5(P )
b. C2(P ) e. C5(P )
c. C3(P ) f. C6(P )

(1)

As a second point, although AC has five agents and thus there are 20 possible choices for
the combination of agent from whom a resource is transferred and to whom this resource
is reallocated, in practice the 8 choices arising from

〈A2, A3〉, 〈A3, A2〉,
〈A1, A5〉, 〈A2, A5〉, 〈A3, A5〉,
〈A5, A1〉, 〈A5, A2〉, 〈A5, A3〉

 (2)

need not be considered. If P satisfies the conditions described in (1) then a 1-bounded deal
transferring a resource from Ai to Aj with 〈Ai, Aj〉 defined by (2), results in an allocation
that fails at least one of the conditions (B1)–(B6) presented in the proof15 of Theorem 3.

Line P satisfies From To Q satisfies Conditions
1. C1(P ) ∧ ¬C2(P ) A2 A4 C1(Q) ∧ ¬C2(Q) Q4 ⊂ diffV (QV1 , C(β(QW1 )))
2. C1(P ) ∧ ¬C2(P ) A2 A4 C2(Q) Q4 = diffV (QV1 , C(β(QW1 )))
3. C2(P ) A1 A2 C2(Q) |P V1 | > n+m− |P4|
4. C2(P ) A5 A4 C3(Q) |P V1 | = n+m− |P4|
5. C3(P ) A4 A1 C3(Q) |P V1 | < n+m

6. C3(P ) A4 A5 C4(Q) |P V1 | = n+m

7. C4(P ) ∧ ¬C5(P ) A3 A4 C4(Q) ∧ ¬C5(Q) Q4 ⊂ diffW (QW1 , β(QV1 ))
8. C4(P ) ∧ ¬C5(P ) A3 A4 C5(Q) Q4 = diffW (QW1 , β(QV1 ))
9. C5(P ) A1 A3 C5(Q) |PW1 | > n+m− |P4|
10. C5(P ) A5 A4 C6(Q) |PW1 | = n+m− |P4|
11. C6(P ) A4 A1 C6(Q) |PW1 | < n+m

12. C6(P ) A4 A5 C1(Q) |PW1 | = n+m

Table 3: 1-bounded, rational successors of P

15. We recall that σ(Q) ≥ 0 only if Q satisfies these six conditions.
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Given P satisfying (1), Table 3 characterises possible choices for Q such that 〈P,Q〉 is
σ-rational and 1-bounded.

We wish to show that if the instance of 1-path constructed from 〈C, 〈x, y〉, 〈z, w〉〉 is
accepted then every 1-bounded, σ-rational path witnessing this must progress (from P =
P (s)) according to the sequence specified in Table 3, where we note that P (s) satisfies
C1(P (s)) ∧ ¬C2(P (s)).

For ease of reference we recall the conditions (B1)–(B6) and (C1)–(C6) which must be
satisfied in order for P to have σ(P ) ≥ 0

B1. Q1 ⊆ RV ∪RW .

B2. Q2 ⊆ RV .

B3. Q3 ⊆ RW .

B4. QV4 = ∅ or QW4 = ∅.

B5. Q5 ⊆ {µ}, i.e. either Q5 = ∅ or Q5 = {µ}.

B6. For X ∈ {V,W}, if QXi 6= ∅ then for all j, {xj ,¬xj} 6⊆ QXi .

C1. β(QV1 ) = β(QW1 ) and Q4 ⊆ diffV (QV1 , C(β(QW1 ))).

C2. β(QV1 ⊗QV4 ) = C(β(QW1 )) and Q4 = diffV (QV1 , C(β(QW1 ))).

C3. β(QV1 ∪QV4 ) = C(β(QW1 )) and µ ∈ Q4.

C4. β(QV1 ) = C(β(QW1 )) and Q4 ⊆ diffW (QW1 , β(QV1 )).

C5. β(QV1 ) = β(QW1 ⊗QW4 ) and Q4 = diffW (QW1 , β(QV1 )).

C6. β(QV1 ) = β(QW1 ∪QW4 ) and µ ∈ Q4.

Similarly, we recall that σ(Q) is given as,

C1 2 Kmnvalm(β(QW1 )) + |Q4|
C2 2 Kmnvalm(β(QW1 )) + |Q4| +n+m− |QV1 |
C3 Kmnvalm(β(QW1 )) + Kmnvalm(C(β(QW1 ))) − |Q4|
C4 2 Kmnvalm(β(QV1 )) + |Q4| − 2 −3|diffW (QW1 , β(QV1 ))|
C5 2 Kmnvalm(β(QV1 )) − 2|Q4| − 2 +n+m− |QW1 |
C6 2 Kmnvalm(β(QV1 )) − |Q4|

with all other allocations having σ(Q) = −1.
We proceed by a case analysis of the different possibilities, where we use from(P ) to

denote the agent from which a resource is transferred, to(Q) for the agent receiving this
resource in the 1-bounded deal 〈P,Q〉, and rP ∈ RC to denote the featured resource. We
note that it suffices to present the analysis with respect to lines (1)–(6) of Table 3: lines (7)
through (12) follow through a near identical argument.

Let 〈P,Q〉 be 1-bounded. Given the cases identified already in (2) we have the following.
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Case 1: C1(P ) ∧ ¬C2(P )

1(a) from(P ) = A1; to(Q) = A2

If rP ∈ RW then Q fails to satisfy (B2), so we may assume rP = v ∈ P V1 . Since
C1(P )∧¬C2(P ) holds, such a transfer will result in β(QV1 ) being ill-defined, a situation
which is only allowed in (C2) and (C3): C3(Q) is ruled out since µ 6∈ Q4; C2(Q)
requires β(QV1 ⊗Q4) to be well-defined and equal to C(β(QW1 )), but where this to be
case then ¬v ∈ Q4 = P4 and hence P4 = diffV (P V1 , C(β(PW1 ))), contradicting the
assumption ¬C2(P ).

1(b) from(P ) = A2; to(Q) = A1

In this case Q fails to satisfy (B6) with respect to the subset QV1 .

1(c) from(P ) = A1; to(Q) = A3

If rP ∈ P V1 then Q fails (B3). If rP ∈ PW1 then, β(QW1 ) is ill-defined a state only
allowed with C6(Q) or C5(Q). The first cannot hold since µ 6∈ P4. The second is
impossible also: Q4 = P4 and therefore QW4 = ∅ ensuring that QW1 ⊗QW4 is ill-defined.

1(d) from(P ) = A3; to(Q) = A1

For this case, Q fails to satisfy (B6) with respect to the subset QW1 .

1(e) from(P ) = A1; to(Q) = A4

If rP ∈ P V1 then β(QV1 ) will be ill-defined and since µ 6∈ Q4 by virtue of the fact that
C1(P ) ∧ ¬C2(P ), the only possible condition that Q could satisfy is (C2), i.e. Q4 =
diffV (QV1 , C(β(QW1 ))) and β(QV1 ⊗Q4) = C(β(QW1 )). Let v = rP . If ¬v ∈ Q4 then Q
fails to meet condition (B6). It now follows, from C2(Q) that QV1 ⊗Q4 = P V1 ⊗ P4,
i.e. P4 = diffV (P V1 , C(β(PW1 ))) contradicting the assumption ¬C2(P ).

If rP ∈ PW1 then from the fact that C1(P ) ∧ ¬C2(P ), β(QW1 ) will be ill-defined,
and since µ 6∈ P4 the only possibility is that C5(Q) holds, and thus Q4 = {rP } =
diffW (QW1 , β(QV1 ): notice that P4 must be empty (as is implied by Q4 = {rP }),
for otherwise Q would breach condition (B4) on account of QV4 6= ∅ and QW4 6= ∅.
Comparing σ(P ) with σ(Q) in this case, however, it is easily seen that 〈P,Q〉 cannot
be σ-rational. Noting that P V1 = QV1 and β(P V1 ) = β(PW1 ) we have,

σ(P ) = 2Kmnvalm(β(P V1 ))
σ(Q) = 2Kmnvalm(β(P V1 )) − 2|Q4| − 2 + (n+m− |QW1 |)

= 2Kmnvalm(β(P V1 ))− 3

1(f) from(P ) = A4; to(Q) = A1

In this case noting that P4 ⊂ diffV (P V1 , C(β(PW1 ))), via Lemma 1(a) and C1(P ) the
resuting allocation would fail to satisfy (B6) with respect to the set QV1 .

1(g) from(P ) = A2; to(Q) = A4

Discussed at the end of Case 1.
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1(h) from(P ) = A4; to(Q) = A2

Given C1(P ) ∧ ¬C2(P ), C1(Q) can hold, however, 〈P,Q〉 cannot be σ-rational:

σ(P ) = 2Kmnvalm(β(P V1 )) + |P4|
σ(Q) = 2Kmnvalm(β(P V1 )) + |Q4|

= 2Kmnvalm(β(P V1 )) + |P4| − 1

1(i) from(P ) = A3; to(Q) = A4

If P4 6= ∅ then from C1(P ), Q will fail condition (B4). Again, from C1(P ) both β(P V1 )
and β(PW1 ) are well defined and, thus, the only option open for Q is that C4(Q). In
this case, however, 〈P,Q〉 cannot be σ-rational:

σ(P ) = 2Kmnvalm(β(P V1 ))
σ(Q) ≤ 2Kmnvalm(β(P V1 )) + |Q4| − 2

≤ 2Kmnvalm(β(P V1 ))− 1

1(j) from(P ) = A4; to(Q) = A3

In this case, Q fails to satisfy (B3).

1(k) from(P ) = A4; to(Q) = A5

From the fact that µ 6∈ P4, Q would breach (B5).

1(l) from(P ) = A5; to(Q) = A4

The only options allowing µ ∈ Q4 are C3(Q) and C6(Q). In the first of these it must
be the case that QV4 = ∅ for otherwise β(QV1 ∪QV4 ) is ill-defined. In this case, however,
since Q1 = P1, we get from C1(P ) that β(P V1 ) = β(PW1 ) = C(β(PW1 )). It now follows
that 〈P,Q〉 is not σ-rational

σ(P ) = 2Kmnvalm(β(PW1 ))
σ(Q) = Kmnvalm(β(PW1 )) +Kmnvalm(C(β(PW1 )))− |Q4|

= 2Kmnvalm(β(PW1 ))− 1

We are left only with Case 1(g) – from(P ) = A2 and to(Q) = A4 – corresponding to the
first two lines of Table 3 – and in order to preserve σ(Q) ≥ 0 the only choice available for
rP is to as a member of the set diffV (P V1 , C(β(PW1 ))) \P4. Notice that, from ¬C2(P ) this
set is non-empty. We now have two possibilities for Q: C1(Q) ∧ ¬C2(Q), arising when

rP ∪ P4 = Q4 ⊂ diffV (P V1 , C(β(PW1 ))) = diffV (QV1 , C(β(QW1 )))

and

rP ∪ P4 = Q4 = diffV (P V1 , C(β(PW1 ))) = diffV (QV1 , C(β(QW1 )))

The first is line (1) of Table 3; the second corresponds to line (2).
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Case 2: C2(P )

2(a) from(P ) = A1; to(Q) = A2

This is discussed at the end of Case 2.

2(b) from(P ) = A2; to(Q) = A1

Although Q could satisfy (C2), the resulting deal would not be σ-rational: |QV1 | > |P V1
and |Q4| = |P4|.

2(c) from(P ) = A1; to(Q) = A3

If rP ∈ P V1 then Q fails condition (B3). If rP ∈ PW1 , then β(QW1 ) is ill-defined. In
this case, however, C6(Q) cannot hold (since µ 6∈ P4), and C5(Q) cannot hold: from
C2(P ), we have QW4 = ∅ and thus QW1 ⊗QW4 is ill-defined also.

2(d) from(P ) = A3; to(Q) = A1

From C2(P ) is follows that β(PW1 ) is well-defined, but this would fail to be the case
for QW1 which would have size n+m+ 1.

2(e) from(P ) = A1; to(Q) = A4

From C2(P ) we have P4 = diffV (P V1 , C(β(PW1 ))), thus to retain B6(Q) (with respect
to Q4) and B4(Q), would require

rP ∈ β−1
V (β(PW1 )) ∩ β−1

V (C(β(PW1 )))

The resulting allocation, however, satisfies neither (C5) (µ 6∈ Q4) nor (C2) as Q4 6=
diffV (QV1 , C(β(QW1 ))): Q must satisfy one of these as β(QV1 ), is ill-defined.

2(f) from(P ) = A4; to(Q) = A1

Similarly to 2(b), although Q could satisfy (C2), the resulting deal would not be
σ-rational: |QV1 | > |P V1 and |Q4| < |P4|.

2(g) from(P ) = A2; to(Q) = A4

From C2(P ), P4 = diffV (P V1 , C(β(PW1 ))): since Q4 6= diffV (QV1 , C(β(QW1 ))), Q
cannot satisfy any of (C1) thorugh (C6).

2(h) from(P ) = A4; to(Q) = A2

The resulting allocation could satisfy C1(Q) ∧ ¬C2(Q) (if |P V1 | = n + m), however,
〈P,Q〉 would not be σ-rational: σ(Q) = σ(P )− 1.

2(i) from(P ) = A3; to(Q) = A4

If P4 6= ∅ thenQ fails to satisfy (B4). Otherwise, from C2(P ) we have diffV (P V1 , C(β(PW1 ))) =
∅, i.e.

β(P V1 ) = C(β(PW1 ) = β(PW1 )

In this case, however, P V1 = QV1 , PW1 = QW1 and both β(P V1 ) and β(PW1 ) are well-
defined and from

β(P V1 ) = C(β(PW1 ) = β(PW1 )

it follows that diffW (QW1 , β(QV1 )) = ∅ so that C4(Q) cannot hold.
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2(j) from(P ) = A4; to(Q) = A3

If P4 6= ∅ then C2(P ) would lead to Q failing to satisfy (B3). If P4 = ∅ then no
transfer from A4 to A3 is possible.

2(k) from(P ) = A4; to(Q) = A5 Since µ 6∈ P4 as a consequence of C2(P ), any such trans-
fer would result in Q failing to satisfy (B5).

2(l) from(P ) = A5; to(Q) = A4

Dealt with below.

With the exception of Cases 2(a) and 2(l) each of of the possible 1-bounded deals from P
results in an allocation Q such that the deal 〈P,Q〉 fails to be σ-rational. For 2(a) – in
which from(P ) = A1 and to(Q) = A2 – we need only note that rP ∈ P V1 (in order that
(B2) is satisfied) and, for the conditions governing (C2) to continue to be true of Q, it must
be the case that

rP ∈ P V1 \ β−1
V (C(β(PW1 )))

Such a choice of rP is possible if and only if C2(P ) with |P V1 | > n+m− |P 4
1 |, i.e. exactly

the preconditions relevant for line (3) of Table 3. Case 2(l), with from(P ) = A5 and
to(Q) = A4, has only rP = µ as an option. The resulting allocation, Q, given that C2(P )
holds, will satisfy C3(Q) if and only if β(QV1 ∪QV4 ) is well-defined and equal to C(β(QW1 ):
this is possible only in the conditions prescribed by line (4) or Table 3.

Case 3: C3(P )

We first recall the additional condition imposed in order that C3(P ) holds. For

f = β(PW1 )
g = C(β(PW1 ))

valm(g) > valm(f). This is useful for dealing with Case 3(k).

3(a) from(P ) = A1; to(Q) = A2

As with previous cases, we must have rP ∈ P V1 or B2(Q) fails. From C3(P ), however,
we still have µ ∈ Q4 leaving only the option C3(Q): this, however, cannot hold since
β(P V1 ∪ P V4 ) is well-defined but β(QV1 ∪QV4 ) = β(P V1 \ {rP } ∪ P V4 ) is not.

3(b) from(P ) = A2; to(Q) = A1 In the same way as the previous case, from µ ∈ Q4,
β(QV1 ∪QV4 ) will be ill-defined.

3(c) from(P ) = A1; to(Q) = A3 We may assume rP ∈ PW1 (otherwise (B3) fails to hold).
As a result we have µ ∈ Q4 and β(QW1 ) ill-defined. From C3(P ), QW4 = ∅, and so the
resulting allocation is unable to satisfy (C6) the only option open.

3(d) from(P ) = A3; to(Q) = A1 Again from C3(P ), the instantiation β(PW1 ) is well-
defined: this will not be the case, however, for β(PW1 ∪ {rP }), i.e. β(QW1 ).
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3(e) from(P ) = A1; to(Q) = A4

Although C3(Q) will hold, provided that rP ∈ P V1 , the deal 〈P,Q〉 will not be σ-
rational: |P4| < |Q4| thus σ(P ) = σ(Q) + 1 using the evaluation condition for (C3).

3(f) from(P ) = A4; to(Q) = A1

Considered at the end of Case 3.

3(g) from(P ) = A2; to(Q) = A4 Such a transfer will result in β(QV1 ∪QV4 ) being ill-defined.

3(h) from(P ) = A4; to(Q) = A2 Similarly, such a transfer results in β(QV1 ∪ QV4 ) being
ill-defined.

3(i) from(P ) = A3; to(Q) = A4

From C3(P ) it holds that µ ∈ Q4: if Q4 6= {µ} then (B6) fails to hold with respect to
Q4; on the other hand, if QV4 = ∅, then β(QW1 ∪QW4 ) is ill-defined thereby preventing
the option C6(Q) from the fact that β(PW1 ) is well-defined.

3(j) from(P ) = A4; to(Q) = A3

Any choice of rP ∈ P4 results in Q3 not satsfying (B3).

3(k) from(P ) = A4; to(Q) = A5

Considered below.

3(l) from(P ) = A5; to(Q) = A4

Given C3(P ) we have P5 = ∅ and thus no such transfer is possible.

The remaining two cases are 3(f) (from(P ) = A4, to(Q) = A1) and 3(k) (from(P ) = A4;
to(Q) = A5). In the first of these, given that rP 6= µ (condition (B1) must hold for Q), we
have the case described by line (5) of Table 3. In the second, from (B5) the only choice is
rP = µ. If it is the case that Q4 6= ∅, then the resulting allocation, Q, would satisfy (C2):
now recalling that C3(P ) enforces,

valm(C(β(PW1 ))) > valm(β(PW1 ))

were it the case that Q4 6= ∅ and C2(Q) the deal 〈P,Q〉 would not be σ-rational,

σ(Q) ≤ 2Kmnvalm(β(QW1 )) + |Q4| + n+m
= 2Kmnvalm(β(PW1 )) + |P4| − 1 + n+m
< Kmnvalm(β(PW1 )) + Kmnvalm(C(β(PW1 ))) − |P4|
= σ(P )
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